1 /* $OpenBSD: optimize.c,v 1.6 1999/07/20 04:49:55 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that: (1) source code distributions 9 * retain the above copyright notice and this paragraph in its entirety, (2) 10 * distributions including binary code include the above copyright notice and 11 * this paragraph in its entirety in the documentation or other materials 12 * provided with the distribution, and (3) all advertising materials mentioning 13 * features or use of this software display the following acknowledgement: 14 * ``This product includes software developed by the University of California, 15 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 16 * the University nor the names of its contributors may be used to endorse 17 * or promote products derived from this software without specific prior 18 * written permission. 19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 20 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 22 * 23 * Optimization module for tcpdump intermediate representation. 24 */ 25 #ifndef lint 26 static const char rcsid[] = 27 "@(#) $Header: /home/cvs/src/lib/libpcap/optimize.c,v 1.6 1999/07/20 04:49:55 deraadt Exp $ (LBL)"; 28 #endif 29 30 #include <sys/types.h> 31 #include <sys/time.h> 32 33 #include <stdio.h> 34 #include <stdlib.h> 35 #include <memory.h> 36 37 #include "pcap-int.h" 38 39 #include "gencode.h" 40 41 #ifdef HAVE_OS_PROTO_H 42 #include "os-proto.h" 43 #endif 44 45 #ifdef BDEBUG 46 extern int dflag; 47 #endif 48 49 #define A_ATOM BPF_MEMWORDS 50 #define X_ATOM (BPF_MEMWORDS+1) 51 52 #define NOP -1 53 54 /* 55 * This define is used to represent *both* the accumulator and 56 * x register in use-def computations. 57 * Currently, the use-def code assumes only one definition per instruction. 58 */ 59 #define AX_ATOM N_ATOMS 60 61 /* 62 * A flag to indicate that further optimization is needed. 63 * Iterative passes are continued until a given pass yields no 64 * branch movement. 65 */ 66 static int done; 67 68 /* 69 * A block is marked if only if its mark equals the current mark. 70 * Rather than traverse the code array, marking each item, 'cur_mark' is 71 * incremented. This automatically makes each element unmarked. 72 */ 73 static int cur_mark; 74 #define isMarked(p) ((p)->mark == cur_mark) 75 #define unMarkAll() cur_mark += 1 76 #define Mark(p) ((p)->mark = cur_mark) 77 78 static void opt_init(struct block *); 79 static void opt_cleanup(void); 80 81 static void make_marks(struct block *); 82 static void mark_code(struct block *); 83 84 static void intern_blocks(struct block *); 85 86 static int eq_slist(struct slist *, struct slist *); 87 88 static void find_levels_r(struct block *); 89 90 static void find_levels(struct block *); 91 static void find_dom(struct block *); 92 static void propedom(struct edge *); 93 static void find_edom(struct block *); 94 static void find_closure(struct block *); 95 static int atomuse(struct stmt *); 96 static int atomdef(struct stmt *); 97 static void compute_local_ud(struct block *); 98 static void find_ud(struct block *); 99 static void init_val(void); 100 static int F(int, int, int); 101 static __inline void vstore(struct stmt *, int *, int, int); 102 static void opt_blk(struct block *, int); 103 static int use_conflict(struct block *, struct block *); 104 static void opt_j(struct edge *); 105 static void or_pullup(struct block *); 106 static void and_pullup(struct block *); 107 static void opt_blks(struct block *, int); 108 static __inline void link_inedge(struct edge *, struct block *); 109 static void find_inedges(struct block *); 110 static void opt_root(struct block **); 111 static void opt_loop(struct block *, int); 112 static void fold_op(struct stmt *, int, int); 113 static __inline struct slist *this_op(struct slist *); 114 static void opt_not(struct block *); 115 static void opt_peep(struct block *); 116 static void opt_stmt(struct stmt *, int[], int); 117 static void deadstmt(struct stmt *, struct stmt *[]); 118 static void opt_deadstores(struct block *); 119 static void opt_blk(struct block *, int); 120 static int use_conflict(struct block *, struct block *); 121 static void opt_j(struct edge *); 122 static struct block *fold_edge(struct block *, struct edge *); 123 static __inline int eq_blk(struct block *, struct block *); 124 static int slength(struct slist *); 125 static int count_blocks(struct block *); 126 static void number_blks_r(struct block *); 127 static int count_stmts(struct block *); 128 static int convert_code_r(struct block *); 129 #ifdef BDEBUG 130 static void opt_dump(struct block *); 131 #endif 132 133 static int n_blocks; 134 struct block **blocks; 135 static int n_edges; 136 struct edge **edges; 137 138 /* 139 * A bit vector set representation of the dominators. 140 * We round up the set size to the next power of two. 141 */ 142 static int nodewords; 143 static int edgewords; 144 struct block **levels; 145 bpf_u_int32 *space; 146 #define BITS_PER_WORD (8*sizeof(bpf_u_int32)) 147 /* 148 * True if a is in uset {p} 149 */ 150 #define SET_MEMBER(p, a) \ 151 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD))) 152 153 /* 154 * Add 'a' to uset p. 155 */ 156 #define SET_INSERT(p, a) \ 157 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD)) 158 159 /* 160 * Delete 'a' from uset p. 161 */ 162 #define SET_DELETE(p, a) \ 163 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD)) 164 165 /* 166 * a := a intersect b 167 */ 168 #define SET_INTERSECT(a, b, n)\ 169 {\ 170 register bpf_u_int32 *_x = a, *_y = b;\ 171 register int _n = n;\ 172 while (--_n >= 0) *_x++ &= *_y++;\ 173 } 174 175 /* 176 * a := a - b 177 */ 178 #define SET_SUBTRACT(a, b, n)\ 179 {\ 180 register bpf_u_int32 *_x = a, *_y = b;\ 181 register int _n = n;\ 182 while (--_n >= 0) *_x++ &=~ *_y++;\ 183 } 184 185 /* 186 * a := a union b 187 */ 188 #define SET_UNION(a, b, n)\ 189 {\ 190 register bpf_u_int32 *_x = a, *_y = b;\ 191 register int _n = n;\ 192 while (--_n >= 0) *_x++ |= *_y++;\ 193 } 194 195 static uset all_dom_sets; 196 static uset all_closure_sets; 197 static uset all_edge_sets; 198 199 #ifndef MAX 200 #define MAX(a,b) ((a)>(b)?(a):(b)) 201 #endif 202 203 static void 204 find_levels_r(b) 205 struct block *b; 206 { 207 int level; 208 209 if (isMarked(b)) 210 return; 211 212 Mark(b); 213 b->link = 0; 214 215 if (JT(b)) { 216 find_levels_r(JT(b)); 217 find_levels_r(JF(b)); 218 level = MAX(JT(b)->level, JF(b)->level) + 1; 219 } else 220 level = 0; 221 b->level = level; 222 b->link = levels[level]; 223 levels[level] = b; 224 } 225 226 /* 227 * Level graph. The levels go from 0 at the leaves to 228 * N_LEVELS at the root. The levels[] array points to the 229 * first node of the level list, whose elements are linked 230 * with the 'link' field of the struct block. 231 */ 232 static void 233 find_levels(root) 234 struct block *root; 235 { 236 memset((char *)levels, 0, n_blocks * sizeof(*levels)); 237 unMarkAll(); 238 find_levels_r(root); 239 } 240 241 /* 242 * Find dominator relationships. 243 * Assumes graph has been leveled. 244 */ 245 static void 246 find_dom(root) 247 struct block *root; 248 { 249 int i; 250 struct block *b; 251 bpf_u_int32 *x; 252 253 /* 254 * Initialize sets to contain all nodes. 255 */ 256 x = all_dom_sets; 257 i = n_blocks * nodewords; 258 while (--i >= 0) 259 *x++ = ~0; 260 /* Root starts off empty. */ 261 for (i = nodewords; --i >= 0;) 262 root->dom[i] = 0; 263 264 /* root->level is the highest level no found. */ 265 for (i = root->level; i >= 0; --i) { 266 for (b = levels[i]; b; b = b->link) { 267 SET_INSERT(b->dom, b->id); 268 if (JT(b) == 0) 269 continue; 270 SET_INTERSECT(JT(b)->dom, b->dom, nodewords); 271 SET_INTERSECT(JF(b)->dom, b->dom, nodewords); 272 } 273 } 274 } 275 276 static void 277 propedom(ep) 278 struct edge *ep; 279 { 280 SET_INSERT(ep->edom, ep->id); 281 if (ep->succ) { 282 SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords); 283 SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords); 284 } 285 } 286 287 /* 288 * Compute edge dominators. 289 * Assumes graph has been leveled and predecessors established. 290 */ 291 static void 292 find_edom(root) 293 struct block *root; 294 { 295 int i; 296 uset x; 297 struct block *b; 298 299 x = all_edge_sets; 300 for (i = n_edges * edgewords; --i >= 0; ) 301 x[i] = ~0; 302 303 /* root->level is the highest level no found. */ 304 memset(root->et.edom, 0, edgewords * sizeof(*(uset)0)); 305 memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0)); 306 for (i = root->level; i >= 0; --i) { 307 for (b = levels[i]; b != 0; b = b->link) { 308 propedom(&b->et); 309 propedom(&b->ef); 310 } 311 } 312 } 313 314 /* 315 * Find the backwards transitive closure of the flow graph. These sets 316 * are backwards in the sense that we find the set of nodes that reach 317 * a given node, not the set of nodes that can be reached by a node. 318 * 319 * Assumes graph has been leveled. 320 */ 321 static void 322 find_closure(root) 323 struct block *root; 324 { 325 int i; 326 struct block *b; 327 328 /* 329 * Initialize sets to contain no nodes. 330 */ 331 memset((char *)all_closure_sets, 0, 332 n_blocks * nodewords * sizeof(*all_closure_sets)); 333 334 /* root->level is the highest level no found. */ 335 for (i = root->level; i >= 0; --i) { 336 for (b = levels[i]; b; b = b->link) { 337 SET_INSERT(b->closure, b->id); 338 if (JT(b) == 0) 339 continue; 340 SET_UNION(JT(b)->closure, b->closure, nodewords); 341 SET_UNION(JF(b)->closure, b->closure, nodewords); 342 } 343 } 344 } 345 346 /* 347 * Return the register number that is used by s. If A and X are both 348 * used, return AX_ATOM. If no register is used, return -1. 349 * 350 * The implementation should probably change to an array access. 351 */ 352 static int 353 atomuse(s) 354 struct stmt *s; 355 { 356 register int c = s->code; 357 358 if (c == NOP) 359 return -1; 360 361 switch (BPF_CLASS(c)) { 362 363 case BPF_RET: 364 return (BPF_RVAL(c) == BPF_A) ? A_ATOM : 365 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; 366 367 case BPF_LD: 368 case BPF_LDX: 369 return (BPF_MODE(c) == BPF_IND) ? X_ATOM : 370 (BPF_MODE(c) == BPF_MEM) ? s->k : -1; 371 372 case BPF_ST: 373 return A_ATOM; 374 375 case BPF_STX: 376 return X_ATOM; 377 378 case BPF_JMP: 379 case BPF_ALU: 380 if (BPF_SRC(c) == BPF_X) 381 return AX_ATOM; 382 return A_ATOM; 383 384 case BPF_MISC: 385 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; 386 } 387 abort(); 388 /* NOTREACHED */ 389 } 390 391 /* 392 * Return the register number that is defined by 's'. We assume that 393 * a single stmt cannot define more than one register. If no register 394 * is defined, return -1. 395 * 396 * The implementation should probably change to an array access. 397 */ 398 static int 399 atomdef(s) 400 struct stmt *s; 401 { 402 if (s->code == NOP) 403 return -1; 404 405 switch (BPF_CLASS(s->code)) { 406 407 case BPF_LD: 408 case BPF_ALU: 409 return A_ATOM; 410 411 case BPF_LDX: 412 return X_ATOM; 413 414 case BPF_ST: 415 case BPF_STX: 416 return s->k; 417 418 case BPF_MISC: 419 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; 420 } 421 return -1; 422 } 423 424 static void 425 compute_local_ud(b) 426 struct block *b; 427 { 428 struct slist *s; 429 atomset def = 0, use = 0, kill = 0; 430 int atom; 431 432 for (s = b->stmts; s; s = s->next) { 433 if (s->s.code == NOP) 434 continue; 435 atom = atomuse(&s->s); 436 if (atom >= 0) { 437 if (atom == AX_ATOM) { 438 if (!ATOMELEM(def, X_ATOM)) 439 use |= ATOMMASK(X_ATOM); 440 if (!ATOMELEM(def, A_ATOM)) 441 use |= ATOMMASK(A_ATOM); 442 } 443 else if (atom < N_ATOMS) { 444 if (!ATOMELEM(def, atom)) 445 use |= ATOMMASK(atom); 446 } 447 else 448 abort(); 449 } 450 atom = atomdef(&s->s); 451 if (atom >= 0) { 452 if (!ATOMELEM(use, atom)) 453 kill |= ATOMMASK(atom); 454 def |= ATOMMASK(atom); 455 } 456 } 457 if (!ATOMELEM(def, A_ATOM) && BPF_CLASS(b->s.code) == BPF_JMP) 458 use |= ATOMMASK(A_ATOM); 459 460 b->def = def; 461 b->kill = kill; 462 b->in_use = use; 463 } 464 465 /* 466 * Assume graph is already leveled. 467 */ 468 static void 469 find_ud(root) 470 struct block *root; 471 { 472 int i, maxlevel; 473 struct block *p; 474 475 /* 476 * root->level is the highest level no found; 477 * count down from there. 478 */ 479 maxlevel = root->level; 480 for (i = maxlevel; i >= 0; --i) 481 for (p = levels[i]; p; p = p->link) { 482 compute_local_ud(p); 483 p->out_use = 0; 484 } 485 486 for (i = 1; i <= maxlevel; ++i) { 487 for (p = levels[i]; p; p = p->link) { 488 p->out_use |= JT(p)->in_use | JF(p)->in_use; 489 p->in_use |= p->out_use &~ p->kill; 490 } 491 } 492 } 493 494 /* 495 * These data structures are used in a Cocke and Shwarz style 496 * value numbering scheme. Since the flowgraph is acyclic, 497 * exit values can be propagated from a node's predecessors 498 * provided it is uniquely defined. 499 */ 500 struct valnode { 501 int code; 502 int v0, v1; 503 int val; 504 struct valnode *next; 505 }; 506 507 #define MODULUS 213 508 static struct valnode *hashtbl[MODULUS]; 509 static int curval; 510 static int maxval; 511 512 /* Integer constants mapped with the load immediate opcode. */ 513 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L) 514 515 struct vmapinfo { 516 int is_const; 517 bpf_int32 const_val; 518 }; 519 520 struct vmapinfo *vmap; 521 struct valnode *vnode_base; 522 struct valnode *next_vnode; 523 524 static void 525 init_val() 526 { 527 curval = 0; 528 next_vnode = vnode_base; 529 memset((char *)vmap, 0, maxval * sizeof(*vmap)); 530 memset((char *)hashtbl, 0, sizeof hashtbl); 531 } 532 533 /* Because we really don't have an IR, this stuff is a little messy. */ 534 static int 535 F(code, v0, v1) 536 int code; 537 int v0, v1; 538 { 539 u_int hash; 540 int val; 541 struct valnode *p; 542 543 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8); 544 hash %= MODULUS; 545 546 for (p = hashtbl[hash]; p; p = p->next) 547 if (p->code == code && p->v0 == v0 && p->v1 == v1) 548 return p->val; 549 550 val = ++curval; 551 if (BPF_MODE(code) == BPF_IMM && 552 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { 553 vmap[val].const_val = v0; 554 vmap[val].is_const = 1; 555 } 556 p = next_vnode++; 557 p->val = val; 558 p->code = code; 559 p->v0 = v0; 560 p->v1 = v1; 561 p->next = hashtbl[hash]; 562 hashtbl[hash] = p; 563 564 return val; 565 } 566 567 static __inline void 568 vstore(s, valp, newval, alter) 569 struct stmt *s; 570 int *valp; 571 int newval; 572 int alter; 573 { 574 if (alter && *valp == newval) 575 s->code = NOP; 576 else 577 *valp = newval; 578 } 579 580 static void 581 fold_op(s, v0, v1) 582 struct stmt *s; 583 int v0, v1; 584 { 585 bpf_int32 a, b; 586 587 a = vmap[v0].const_val; 588 b = vmap[v1].const_val; 589 590 switch (BPF_OP(s->code)) { 591 case BPF_ADD: 592 a += b; 593 break; 594 595 case BPF_SUB: 596 a -= b; 597 break; 598 599 case BPF_MUL: 600 a *= b; 601 break; 602 603 case BPF_DIV: 604 if (b == 0) 605 bpf_error("division by zero"); 606 a /= b; 607 break; 608 609 case BPF_AND: 610 a &= b; 611 break; 612 613 case BPF_OR: 614 a |= b; 615 break; 616 617 case BPF_LSH: 618 a <<= b; 619 break; 620 621 case BPF_RSH: 622 a >>= b; 623 break; 624 625 case BPF_NEG: 626 a = -a; 627 break; 628 629 default: 630 abort(); 631 } 632 s->k = a; 633 s->code = BPF_LD|BPF_IMM; 634 done = 0; 635 } 636 637 static __inline struct slist * 638 this_op(s) 639 struct slist *s; 640 { 641 while (s != 0 && s->s.code == NOP) 642 s = s->next; 643 return s; 644 } 645 646 static void 647 opt_not(b) 648 struct block *b; 649 { 650 struct block *tmp = JT(b); 651 652 JT(b) = JF(b); 653 JF(b) = tmp; 654 } 655 656 static void 657 opt_peep(b) 658 struct block *b; 659 { 660 struct slist *s; 661 struct slist *next, *last; 662 int val; 663 664 s = b->stmts; 665 if (s == 0) 666 return; 667 668 last = s; 669 while (1) { 670 s = this_op(s); 671 if (s == 0) 672 break; 673 next = this_op(s->next); 674 if (next == 0) 675 break; 676 last = next; 677 678 /* 679 * st M[k] --> st M[k] 680 * ldx M[k] tax 681 */ 682 if (s->s.code == BPF_ST && 683 next->s.code == (BPF_LDX|BPF_MEM) && 684 s->s.k == next->s.k) { 685 done = 0; 686 next->s.code = BPF_MISC|BPF_TAX; 687 } 688 /* 689 * ld #k --> ldx #k 690 * tax txa 691 */ 692 if (s->s.code == (BPF_LD|BPF_IMM) && 693 next->s.code == (BPF_MISC|BPF_TAX)) { 694 s->s.code = BPF_LDX|BPF_IMM; 695 next->s.code = BPF_MISC|BPF_TXA; 696 done = 0; 697 } 698 /* 699 * This is an ugly special case, but it happens 700 * when you say tcp[k] or udp[k] where k is a constant. 701 */ 702 if (s->s.code == (BPF_LD|BPF_IMM)) { 703 struct slist *add, *tax, *ild; 704 705 /* 706 * Check that X isn't used on exit from this 707 * block (which the optimizer might cause). 708 * We know the code generator won't generate 709 * any local dependencies. 710 */ 711 if (ATOMELEM(b->out_use, X_ATOM)) 712 break; 713 714 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) 715 add = next; 716 else 717 add = this_op(next->next); 718 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) 719 break; 720 721 tax = this_op(add->next); 722 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) 723 break; 724 725 ild = this_op(tax->next); 726 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || 727 BPF_MODE(ild->s.code) != BPF_IND) 728 break; 729 /* 730 * XXX We need to check that X is not 731 * subsequently used. We know we can eliminate the 732 * accumulator modifications since it is defined 733 * by the last stmt of this sequence. 734 * 735 * We want to turn this sequence: 736 * 737 * (004) ldi #0x2 {s} 738 * (005) ldxms [14] {next} -- optional 739 * (006) addx {add} 740 * (007) tax {tax} 741 * (008) ild [x+0] {ild} 742 * 743 * into this sequence: 744 * 745 * (004) nop 746 * (005) ldxms [14] 747 * (006) nop 748 * (007) nop 749 * (008) ild [x+2] 750 * 751 */ 752 ild->s.k += s->s.k; 753 s->s.code = NOP; 754 add->s.code = NOP; 755 tax->s.code = NOP; 756 done = 0; 757 } 758 s = next; 759 } 760 /* 761 * If we have a subtract to do a comparison, and the X register 762 * is a known constant, we can merge this value into the 763 * comparison. 764 */ 765 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X) && 766 !ATOMELEM(b->out_use, A_ATOM)) { 767 val = b->val[X_ATOM]; 768 if (vmap[val].is_const) { 769 int op; 770 771 b->s.k += vmap[val].const_val; 772 op = BPF_OP(b->s.code); 773 if (op == BPF_JGT || op == BPF_JGE) { 774 struct block *t = JT(b); 775 JT(b) = JF(b); 776 JF(b) = t; 777 b->s.k += 0x80000000; 778 } 779 last->s.code = NOP; 780 done = 0; 781 } else if (b->s.k == 0) { 782 /* 783 * sub x -> nop 784 * j #0 j x 785 */ 786 last->s.code = NOP; 787 b->s.code = BPF_CLASS(b->s.code) | BPF_OP(b->s.code) | 788 BPF_X; 789 done = 0; 790 } 791 } 792 /* 793 * Likewise, a constant subtract can be simplified. 794 */ 795 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K) && 796 !ATOMELEM(b->out_use, A_ATOM)) { 797 int op; 798 799 b->s.k += last->s.k; 800 last->s.code = NOP; 801 op = BPF_OP(b->s.code); 802 if (op == BPF_JGT || op == BPF_JGE) { 803 struct block *t = JT(b); 804 JT(b) = JF(b); 805 JF(b) = t; 806 b->s.k += 0x80000000; 807 } 808 done = 0; 809 } 810 /* 811 * and #k nop 812 * jeq #0 -> jset #k 813 */ 814 if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && 815 !ATOMELEM(b->out_use, A_ATOM) && b->s.k == 0) { 816 b->s.k = last->s.k; 817 b->s.code = BPF_JMP|BPF_K|BPF_JSET; 818 last->s.code = NOP; 819 done = 0; 820 opt_not(b); 821 } 822 /* 823 * If the accumulator is a known constant, we can compute the 824 * comparison result. 825 */ 826 val = b->val[A_ATOM]; 827 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { 828 bpf_int32 v = vmap[val].const_val; 829 switch (BPF_OP(b->s.code)) { 830 831 case BPF_JEQ: 832 v = v == b->s.k; 833 break; 834 835 case BPF_JGT: 836 v = (unsigned)v > b->s.k; 837 break; 838 839 case BPF_JGE: 840 v = (unsigned)v >= b->s.k; 841 break; 842 843 case BPF_JSET: 844 v &= b->s.k; 845 break; 846 847 default: 848 abort(); 849 } 850 if (JF(b) != JT(b)) 851 done = 0; 852 if (v) 853 JF(b) = JT(b); 854 else 855 JT(b) = JF(b); 856 } 857 } 858 859 /* 860 * Compute the symbolic value of expression of 's', and update 861 * anything it defines in the value table 'val'. If 'alter' is true, 862 * do various optimizations. This code would be cleaner if symbolic 863 * evaluation and code transformations weren't folded together. 864 */ 865 static void 866 opt_stmt(s, val, alter) 867 struct stmt *s; 868 int val[]; 869 int alter; 870 { 871 int op; 872 int v; 873 874 switch (s->code) { 875 876 case BPF_LD|BPF_ABS|BPF_W: 877 case BPF_LD|BPF_ABS|BPF_H: 878 case BPF_LD|BPF_ABS|BPF_B: 879 v = F(s->code, s->k, 0L); 880 vstore(s, &val[A_ATOM], v, alter); 881 break; 882 883 case BPF_LD|BPF_IND|BPF_W: 884 case BPF_LD|BPF_IND|BPF_H: 885 case BPF_LD|BPF_IND|BPF_B: 886 v = val[X_ATOM]; 887 if (alter && vmap[v].is_const) { 888 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); 889 s->k += vmap[v].const_val; 890 v = F(s->code, s->k, 0L); 891 done = 0; 892 } 893 else 894 v = F(s->code, s->k, v); 895 vstore(s, &val[A_ATOM], v, alter); 896 break; 897 898 case BPF_LD|BPF_LEN: 899 v = F(s->code, 0L, 0L); 900 vstore(s, &val[A_ATOM], v, alter); 901 break; 902 903 case BPF_LD|BPF_IMM: 904 v = K(s->k); 905 vstore(s, &val[A_ATOM], v, alter); 906 break; 907 908 case BPF_LDX|BPF_IMM: 909 v = K(s->k); 910 vstore(s, &val[X_ATOM], v, alter); 911 break; 912 913 case BPF_LDX|BPF_MSH|BPF_B: 914 v = F(s->code, s->k, 0L); 915 vstore(s, &val[X_ATOM], v, alter); 916 break; 917 918 case BPF_ALU|BPF_NEG: 919 if (alter && vmap[val[A_ATOM]].is_const) { 920 s->code = BPF_LD|BPF_IMM; 921 s->k = -vmap[val[A_ATOM]].const_val; 922 val[A_ATOM] = K(s->k); 923 } 924 else 925 val[A_ATOM] = F(s->code, val[A_ATOM], 0L); 926 break; 927 928 case BPF_ALU|BPF_ADD|BPF_K: 929 case BPF_ALU|BPF_SUB|BPF_K: 930 case BPF_ALU|BPF_MUL|BPF_K: 931 case BPF_ALU|BPF_DIV|BPF_K: 932 case BPF_ALU|BPF_AND|BPF_K: 933 case BPF_ALU|BPF_OR|BPF_K: 934 case BPF_ALU|BPF_LSH|BPF_K: 935 case BPF_ALU|BPF_RSH|BPF_K: 936 op = BPF_OP(s->code); 937 if (alter) { 938 if (s->k == 0) { 939 if (op == BPF_ADD || op == BPF_SUB || 940 op == BPF_LSH || op == BPF_RSH || 941 op == BPF_OR) { 942 s->code = NOP; 943 break; 944 } 945 if (op == BPF_MUL || op == BPF_AND) { 946 s->code = BPF_LD|BPF_IMM; 947 val[A_ATOM] = K(s->k); 948 break; 949 } 950 } 951 if (vmap[val[A_ATOM]].is_const) { 952 fold_op(s, val[A_ATOM], K(s->k)); 953 val[A_ATOM] = K(s->k); 954 break; 955 } 956 } 957 val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k)); 958 break; 959 960 case BPF_ALU|BPF_ADD|BPF_X: 961 case BPF_ALU|BPF_SUB|BPF_X: 962 case BPF_ALU|BPF_MUL|BPF_X: 963 case BPF_ALU|BPF_DIV|BPF_X: 964 case BPF_ALU|BPF_AND|BPF_X: 965 case BPF_ALU|BPF_OR|BPF_X: 966 case BPF_ALU|BPF_LSH|BPF_X: 967 case BPF_ALU|BPF_RSH|BPF_X: 968 op = BPF_OP(s->code); 969 if (alter && vmap[val[X_ATOM]].is_const) { 970 if (vmap[val[A_ATOM]].is_const) { 971 fold_op(s, val[A_ATOM], val[X_ATOM]); 972 val[A_ATOM] = K(s->k); 973 } 974 else { 975 s->code = BPF_ALU|BPF_K|op; 976 s->k = vmap[val[X_ATOM]].const_val; 977 done = 0; 978 val[A_ATOM] = 979 F(s->code, val[A_ATOM], K(s->k)); 980 } 981 break; 982 } 983 /* 984 * Check if we're doing something to an accumulator 985 * that is 0, and simplify. This may not seem like 986 * much of a simplification but it could open up further 987 * optimizations. 988 * XXX We could also check for mul by 1, and -1, etc. 989 */ 990 if (alter && vmap[val[A_ATOM]].is_const 991 && vmap[val[A_ATOM]].const_val == 0) { 992 if (op == BPF_ADD || op == BPF_OR || 993 op == BPF_LSH || op == BPF_RSH || op == BPF_SUB) { 994 s->code = BPF_MISC|BPF_TXA; 995 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 996 break; 997 } 998 else if (op == BPF_MUL || op == BPF_DIV || 999 op == BPF_AND) { 1000 s->code = BPF_LD|BPF_IMM; 1001 s->k = 0; 1002 vstore(s, &val[A_ATOM], K(s->k), alter); 1003 break; 1004 } 1005 else if (op == BPF_NEG) { 1006 s->code = NOP; 1007 break; 1008 } 1009 } 1010 val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]); 1011 break; 1012 1013 case BPF_MISC|BPF_TXA: 1014 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1015 break; 1016 1017 case BPF_LD|BPF_MEM: 1018 v = val[s->k]; 1019 if (alter && vmap[v].is_const) { 1020 s->code = BPF_LD|BPF_IMM; 1021 s->k = vmap[v].const_val; 1022 done = 0; 1023 } 1024 vstore(s, &val[A_ATOM], v, alter); 1025 break; 1026 1027 case BPF_MISC|BPF_TAX: 1028 vstore(s, &val[X_ATOM], val[A_ATOM], alter); 1029 break; 1030 1031 case BPF_LDX|BPF_MEM: 1032 v = val[s->k]; 1033 if (alter && vmap[v].is_const) { 1034 s->code = BPF_LDX|BPF_IMM; 1035 s->k = vmap[v].const_val; 1036 done = 0; 1037 } 1038 vstore(s, &val[X_ATOM], v, alter); 1039 break; 1040 1041 case BPF_ST: 1042 vstore(s, &val[s->k], val[A_ATOM], alter); 1043 break; 1044 1045 case BPF_STX: 1046 vstore(s, &val[s->k], val[X_ATOM], alter); 1047 break; 1048 } 1049 } 1050 1051 static void 1052 deadstmt(s, last) 1053 register struct stmt *s; 1054 register struct stmt *last[]; 1055 { 1056 register int atom; 1057 1058 atom = atomuse(s); 1059 if (atom >= 0) { 1060 if (atom == AX_ATOM) { 1061 last[X_ATOM] = 0; 1062 last[A_ATOM] = 0; 1063 } 1064 else 1065 last[atom] = 0; 1066 } 1067 atom = atomdef(s); 1068 if (atom >= 0) { 1069 if (last[atom]) { 1070 done = 0; 1071 last[atom]->code = NOP; 1072 } 1073 last[atom] = s; 1074 } 1075 } 1076 1077 static void 1078 opt_deadstores(b) 1079 register struct block *b; 1080 { 1081 register struct slist *s; 1082 register int atom; 1083 struct stmt *last[N_ATOMS]; 1084 1085 memset((char *)last, 0, sizeof last); 1086 1087 for (s = b->stmts; s != 0; s = s->next) 1088 deadstmt(&s->s, last); 1089 deadstmt(&b->s, last); 1090 1091 for (atom = 0; atom < N_ATOMS; ++atom) 1092 if (last[atom] && !ATOMELEM(b->out_use, atom)) { 1093 last[atom]->code = NOP; 1094 done = 0; 1095 } 1096 } 1097 1098 static void 1099 opt_blk(b, do_stmts) 1100 struct block *b; 1101 int do_stmts; 1102 { 1103 struct slist *s; 1104 struct edge *p; 1105 int i; 1106 bpf_int32 aval; 1107 1108 /* 1109 * Initialize the atom values. 1110 * If we have no predecessors, everything is undefined. 1111 * Otherwise, we inherent our values from our predecessors. 1112 * If any register has an ambiguous value (i.e. control paths are 1113 * merging) give it the undefined value of 0. 1114 */ 1115 p = b->in_edges; 1116 if (p == 0) 1117 memset((char *)b->val, 0, sizeof(b->val)); 1118 else { 1119 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); 1120 while ((p = p->next) != NULL) { 1121 for (i = 0; i < N_ATOMS; ++i) 1122 if (b->val[i] != p->pred->val[i]) 1123 b->val[i] = 0; 1124 } 1125 } 1126 aval = b->val[A_ATOM]; 1127 for (s = b->stmts; s; s = s->next) 1128 opt_stmt(&s->s, b->val, do_stmts); 1129 1130 /* 1131 * This is a special case: if we don't use anything from this 1132 * block, and we load the accumulator with value that is 1133 * already there, or if this block is a return, 1134 * eliminate all the statements. 1135 */ 1136 if (do_stmts && 1137 ((b->out_use == 0 && aval != 0 &&b->val[A_ATOM] == aval) || 1138 BPF_CLASS(b->s.code) == BPF_RET)) { 1139 if (b->stmts != 0) { 1140 b->stmts = 0; 1141 done = 0; 1142 } 1143 } else { 1144 opt_peep(b); 1145 opt_deadstores(b); 1146 } 1147 /* 1148 * Set up values for branch optimizer. 1149 */ 1150 if (BPF_SRC(b->s.code) == BPF_K) 1151 b->oval = K(b->s.k); 1152 else 1153 b->oval = b->val[X_ATOM]; 1154 b->et.code = b->s.code; 1155 b->ef.code = -b->s.code; 1156 } 1157 1158 /* 1159 * Return true if any register that is used on exit from 'succ', has 1160 * an exit value that is different from the corresponding exit value 1161 * from 'b'. 1162 */ 1163 static int 1164 use_conflict(b, succ) 1165 struct block *b, *succ; 1166 { 1167 int atom; 1168 atomset use = succ->out_use; 1169 1170 if (use == 0) 1171 return 0; 1172 1173 for (atom = 0; atom < N_ATOMS; ++atom) 1174 if (ATOMELEM(use, atom)) 1175 if (b->val[atom] != succ->val[atom]) 1176 return 1; 1177 return 0; 1178 } 1179 1180 static struct block * 1181 fold_edge(child, ep) 1182 struct block *child; 1183 struct edge *ep; 1184 { 1185 int sense; 1186 int aval0, aval1, oval0, oval1; 1187 int code = ep->code; 1188 1189 if (code < 0) { 1190 code = -code; 1191 sense = 0; 1192 } else 1193 sense = 1; 1194 1195 if (child->s.code != code) 1196 return 0; 1197 1198 aval0 = child->val[A_ATOM]; 1199 oval0 = child->oval; 1200 aval1 = ep->pred->val[A_ATOM]; 1201 oval1 = ep->pred->oval; 1202 1203 if (aval0 != aval1) 1204 return 0; 1205 1206 if (oval0 == oval1) 1207 /* 1208 * The operands are identical, so the 1209 * result is true if a true branch was 1210 * taken to get here, otherwise false. 1211 */ 1212 return sense ? JT(child) : JF(child); 1213 1214 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) 1215 /* 1216 * At this point, we only know the comparison if we 1217 * came down the true branch, and it was an equality 1218 * comparison with a constant. We rely on the fact that 1219 * distinct constants have distinct value numbers. 1220 */ 1221 return JF(child); 1222 1223 return 0; 1224 } 1225 1226 static void 1227 opt_j(ep) 1228 struct edge *ep; 1229 { 1230 register int i, k; 1231 register struct block *target; 1232 1233 if (JT(ep->succ) == 0) 1234 return; 1235 1236 if (JT(ep->succ) == JF(ep->succ)) { 1237 /* 1238 * Common branch targets can be eliminated, provided 1239 * there is no data dependency. 1240 */ 1241 if (!use_conflict(ep->pred, ep->succ->et.succ)) { 1242 done = 0; 1243 ep->succ = JT(ep->succ); 1244 } 1245 } 1246 /* 1247 * For each edge dominator that matches the successor of this 1248 * edge, promote the edge successor to the its grandchild. 1249 * 1250 * XXX We violate the set abstraction here in favor a reasonably 1251 * efficient loop. 1252 */ 1253 top: 1254 for (i = 0; i < edgewords; ++i) { 1255 register bpf_u_int32 x = ep->edom[i]; 1256 1257 while (x != 0) { 1258 k = ffs(x) - 1; 1259 x &=~ (1 << k); 1260 k += i * BITS_PER_WORD; 1261 1262 target = fold_edge(ep->succ, edges[k]); 1263 /* 1264 * Check that there is no data dependency between 1265 * nodes that will be violated if we move the edge. 1266 */ 1267 if (target != 0 && !use_conflict(ep->pred, target)) { 1268 done = 0; 1269 ep->succ = target; 1270 if (JT(target) != 0) 1271 /* 1272 * Start over unless we hit a leaf. 1273 */ 1274 goto top; 1275 return; 1276 } 1277 } 1278 } 1279 } 1280 1281 1282 static void 1283 or_pullup(b) 1284 struct block *b; 1285 { 1286 int val, at_top; 1287 struct block *pull; 1288 struct block **diffp, **samep; 1289 struct edge *ep; 1290 1291 ep = b->in_edges; 1292 if (ep == 0) 1293 return; 1294 1295 /* 1296 * Make sure each predecessor loads the same value. 1297 * XXX why? 1298 */ 1299 val = ep->pred->val[A_ATOM]; 1300 for (ep = ep->next; ep != 0; ep = ep->next) 1301 if (val != ep->pred->val[A_ATOM]) 1302 return; 1303 1304 if (JT(b->in_edges->pred) == b) 1305 diffp = &JT(b->in_edges->pred); 1306 else 1307 diffp = &JF(b->in_edges->pred); 1308 1309 at_top = 1; 1310 while (1) { 1311 if (*diffp == 0) 1312 return; 1313 1314 if (JT(*diffp) != JT(b)) 1315 return; 1316 1317 if (!SET_MEMBER((*diffp)->dom, b->id)) 1318 return; 1319 1320 if ((*diffp)->val[A_ATOM] != val) 1321 break; 1322 1323 diffp = &JF(*diffp); 1324 at_top = 0; 1325 } 1326 samep = &JF(*diffp); 1327 while (1) { 1328 if (*samep == 0) 1329 return; 1330 1331 if (JT(*samep) != JT(b)) 1332 return; 1333 1334 if (!SET_MEMBER((*samep)->dom, b->id)) 1335 return; 1336 1337 if ((*samep)->val[A_ATOM] == val) 1338 break; 1339 1340 /* XXX Need to check that there are no data dependencies 1341 between dp0 and dp1. Currently, the code generator 1342 will not produce such dependencies. */ 1343 samep = &JF(*samep); 1344 } 1345 #ifdef notdef 1346 /* XXX This doesn't cover everything. */ 1347 for (i = 0; i < N_ATOMS; ++i) 1348 if ((*samep)->val[i] != pred->val[i]) 1349 return; 1350 #endif 1351 /* Pull up the node. */ 1352 pull = *samep; 1353 *samep = JF(pull); 1354 JF(pull) = *diffp; 1355 1356 /* 1357 * At the top of the chain, each predecessor needs to point at the 1358 * pulled up node. Inside the chain, there is only one predecessor 1359 * to worry about. 1360 */ 1361 if (at_top) { 1362 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1363 if (JT(ep->pred) == b) 1364 JT(ep->pred) = pull; 1365 else 1366 JF(ep->pred) = pull; 1367 } 1368 } 1369 else 1370 *diffp = pull; 1371 1372 done = 0; 1373 } 1374 1375 static void 1376 and_pullup(b) 1377 struct block *b; 1378 { 1379 int val, at_top; 1380 struct block *pull; 1381 struct block **diffp, **samep; 1382 struct edge *ep; 1383 1384 ep = b->in_edges; 1385 if (ep == 0) 1386 return; 1387 1388 /* 1389 * Make sure each predecessor loads the same value. 1390 */ 1391 val = ep->pred->val[A_ATOM]; 1392 for (ep = ep->next; ep != 0; ep = ep->next) 1393 if (val != ep->pred->val[A_ATOM]) 1394 return; 1395 1396 if (JT(b->in_edges->pred) == b) 1397 diffp = &JT(b->in_edges->pred); 1398 else 1399 diffp = &JF(b->in_edges->pred); 1400 1401 at_top = 1; 1402 while (1) { 1403 if (*diffp == 0) 1404 return; 1405 1406 if (JF(*diffp) != JF(b)) 1407 return; 1408 1409 if (!SET_MEMBER((*diffp)->dom, b->id)) 1410 return; 1411 1412 if ((*diffp)->val[A_ATOM] != val) 1413 break; 1414 1415 diffp = &JT(*diffp); 1416 at_top = 0; 1417 } 1418 samep = &JT(*diffp); 1419 while (1) { 1420 if (*samep == 0) 1421 return; 1422 1423 if (JF(*samep) != JF(b)) 1424 return; 1425 1426 if (!SET_MEMBER((*samep)->dom, b->id)) 1427 return; 1428 1429 if ((*samep)->val[A_ATOM] == val) 1430 break; 1431 1432 /* XXX Need to check that there are no data dependencies 1433 between diffp and samep. Currently, the code generator 1434 will not produce such dependencies. */ 1435 samep = &JT(*samep); 1436 } 1437 #ifdef notdef 1438 /* XXX This doesn't cover everything. */ 1439 for (i = 0; i < N_ATOMS; ++i) 1440 if ((*samep)->val[i] != pred->val[i]) 1441 return; 1442 #endif 1443 /* Pull up the node. */ 1444 pull = *samep; 1445 *samep = JT(pull); 1446 JT(pull) = *diffp; 1447 1448 /* 1449 * At the top of the chain, each predecessor needs to point at the 1450 * pulled up node. Inside the chain, there is only one predecessor 1451 * to worry about. 1452 */ 1453 if (at_top) { 1454 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1455 if (JT(ep->pred) == b) 1456 JT(ep->pred) = pull; 1457 else 1458 JF(ep->pred) = pull; 1459 } 1460 } 1461 else 1462 *diffp = pull; 1463 1464 done = 0; 1465 } 1466 1467 static void 1468 opt_blks(root, do_stmts) 1469 struct block *root; 1470 int do_stmts; 1471 { 1472 int i, maxlevel; 1473 struct block *p; 1474 1475 init_val(); 1476 maxlevel = root->level; 1477 for (i = maxlevel; i >= 0; --i) 1478 for (p = levels[i]; p; p = p->link) 1479 opt_blk(p, do_stmts); 1480 1481 if (do_stmts) 1482 /* 1483 * No point trying to move branches; it can't possibly 1484 * make a difference at this point. 1485 */ 1486 return; 1487 1488 for (i = 1; i <= maxlevel; ++i) { 1489 for (p = levels[i]; p; p = p->link) { 1490 opt_j(&p->et); 1491 opt_j(&p->ef); 1492 } 1493 } 1494 for (i = 1; i <= maxlevel; ++i) { 1495 for (p = levels[i]; p; p = p->link) { 1496 or_pullup(p); 1497 and_pullup(p); 1498 } 1499 } 1500 } 1501 1502 static __inline void 1503 link_inedge(parent, child) 1504 struct edge *parent; 1505 struct block *child; 1506 { 1507 parent->next = child->in_edges; 1508 child->in_edges = parent; 1509 } 1510 1511 static void 1512 find_inedges(root) 1513 struct block *root; 1514 { 1515 int i; 1516 struct block *b; 1517 1518 for (i = 0; i < n_blocks; ++i) 1519 blocks[i]->in_edges = 0; 1520 1521 /* 1522 * Traverse the graph, adding each edge to the predecessor 1523 * list of its successors. Skip the leaves (i.e. level 0). 1524 */ 1525 for (i = root->level; i > 0; --i) { 1526 for (b = levels[i]; b != 0; b = b->link) { 1527 link_inedge(&b->et, JT(b)); 1528 link_inedge(&b->ef, JF(b)); 1529 } 1530 } 1531 } 1532 1533 static void 1534 opt_root(b) 1535 struct block **b; 1536 { 1537 struct slist *tmp, *s; 1538 1539 s = (*b)->stmts; 1540 (*b)->stmts = 0; 1541 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) 1542 *b = JT(*b); 1543 1544 tmp = (*b)->stmts; 1545 if (tmp != 0) 1546 sappend(s, tmp); 1547 (*b)->stmts = s; 1548 1549 /* 1550 * If the root node is a return, then there is no 1551 * point executing any statements (since the bpf machine 1552 * has no side effects). 1553 */ 1554 if (BPF_CLASS((*b)->s.code) == BPF_RET) 1555 (*b)->stmts = 0; 1556 } 1557 1558 static void 1559 opt_loop(root, do_stmts) 1560 struct block *root; 1561 int do_stmts; 1562 { 1563 1564 #ifdef BDEBUG 1565 if (dflag > 1) 1566 opt_dump(root); 1567 #endif 1568 do { 1569 done = 1; 1570 find_levels(root); 1571 find_dom(root); 1572 find_closure(root); 1573 find_inedges(root); 1574 find_ud(root); 1575 find_edom(root); 1576 opt_blks(root, do_stmts); 1577 #ifdef BDEBUG 1578 if (dflag > 1) 1579 opt_dump(root); 1580 #endif 1581 } while (!done); 1582 } 1583 1584 /* 1585 * Optimize the filter code in its dag representation. 1586 */ 1587 void 1588 bpf_optimize(rootp) 1589 struct block **rootp; 1590 { 1591 struct block *root; 1592 1593 root = *rootp; 1594 1595 opt_init(root); 1596 opt_loop(root, 0); 1597 opt_loop(root, 1); 1598 intern_blocks(root); 1599 opt_root(rootp); 1600 opt_cleanup(); 1601 } 1602 1603 static void 1604 make_marks(p) 1605 struct block *p; 1606 { 1607 if (!isMarked(p)) { 1608 Mark(p); 1609 if (BPF_CLASS(p->s.code) != BPF_RET) { 1610 make_marks(JT(p)); 1611 make_marks(JF(p)); 1612 } 1613 } 1614 } 1615 1616 /* 1617 * Mark code array such that isMarked(i) is true 1618 * only for nodes that are alive. 1619 */ 1620 static void 1621 mark_code(p) 1622 struct block *p; 1623 { 1624 cur_mark += 1; 1625 make_marks(p); 1626 } 1627 1628 /* 1629 * True iff the two stmt lists load the same value from the packet into 1630 * the accumulator. 1631 */ 1632 static int 1633 eq_slist(x, y) 1634 struct slist *x, *y; 1635 { 1636 while (1) { 1637 while (x && x->s.code == NOP) 1638 x = x->next; 1639 while (y && y->s.code == NOP) 1640 y = y->next; 1641 if (x == 0) 1642 return y == 0; 1643 if (y == 0) 1644 return x == 0; 1645 if (x->s.code != y->s.code || x->s.k != y->s.k) 1646 return 0; 1647 x = x->next; 1648 y = y->next; 1649 } 1650 } 1651 1652 static __inline int 1653 eq_blk(b0, b1) 1654 struct block *b0, *b1; 1655 { 1656 if (b0->s.code == b1->s.code && 1657 b0->s.k == b1->s.k && 1658 b0->et.succ == b1->et.succ && 1659 b0->ef.succ == b1->ef.succ) 1660 return eq_slist(b0->stmts, b1->stmts); 1661 return 0; 1662 } 1663 1664 static void 1665 intern_blocks(root) 1666 struct block *root; 1667 { 1668 struct block *p; 1669 int i, j; 1670 int done; 1671 top: 1672 done = 1; 1673 for (i = 0; i < n_blocks; ++i) 1674 blocks[i]->link = 0; 1675 1676 mark_code(root); 1677 1678 for (i = n_blocks - 1; --i >= 0; ) { 1679 if (!isMarked(blocks[i])) 1680 continue; 1681 for (j = i + 1; j < n_blocks; ++j) { 1682 if (!isMarked(blocks[j])) 1683 continue; 1684 if (eq_blk(blocks[i], blocks[j])) { 1685 blocks[i]->link = blocks[j]->link ? 1686 blocks[j]->link : blocks[j]; 1687 break; 1688 } 1689 } 1690 } 1691 for (i = 0; i < n_blocks; ++i) { 1692 p = blocks[i]; 1693 if (JT(p) == 0) 1694 continue; 1695 if (JT(p)->link) { 1696 done = 0; 1697 JT(p) = JT(p)->link; 1698 } 1699 if (JF(p)->link) { 1700 done = 0; 1701 JF(p) = JF(p)->link; 1702 } 1703 } 1704 if (!done) 1705 goto top; 1706 } 1707 1708 static void 1709 opt_cleanup() 1710 { 1711 free((void *)vnode_base); 1712 free((void *)vmap); 1713 free((void *)edges); 1714 free((void *)space); 1715 free((void *)levels); 1716 free((void *)blocks); 1717 } 1718 1719 /* 1720 * Return the number of stmts in 's'. 1721 */ 1722 static int 1723 slength(s) 1724 struct slist *s; 1725 { 1726 int n = 0; 1727 1728 for (; s; s = s->next) 1729 if (s->s.code != NOP) 1730 ++n; 1731 return n; 1732 } 1733 1734 /* 1735 * Return the number of nodes reachable by 'p'. 1736 * All nodes should be initially unmarked. 1737 */ 1738 static int 1739 count_blocks(p) 1740 struct block *p; 1741 { 1742 if (p == 0 || isMarked(p)) 1743 return 0; 1744 Mark(p); 1745 return count_blocks(JT(p)) + count_blocks(JF(p)) + 1; 1746 } 1747 1748 /* 1749 * Do a depth first search on the flow graph, numbering the 1750 * the basic blocks, and entering them into the 'blocks' array.` 1751 */ 1752 static void 1753 number_blks_r(p) 1754 struct block *p; 1755 { 1756 int n; 1757 1758 if (p == 0 || isMarked(p)) 1759 return; 1760 1761 Mark(p); 1762 n = n_blocks++; 1763 p->id = n; 1764 blocks[n] = p; 1765 1766 number_blks_r(JT(p)); 1767 number_blks_r(JF(p)); 1768 } 1769 1770 /* 1771 * Return the number of stmts in the flowgraph reachable by 'p'. 1772 * The nodes should be unmarked before calling. 1773 */ 1774 static int 1775 count_stmts(p) 1776 struct block *p; 1777 { 1778 int n; 1779 1780 if (p == 0 || isMarked(p)) 1781 return 0; 1782 Mark(p); 1783 n = count_stmts(JT(p)) + count_stmts(JF(p)); 1784 return slength(p->stmts) + n + 1; 1785 } 1786 1787 /* 1788 * Allocate memory. All allocation is done before optimization 1789 * is begun. A linear bound on the size of all data structures is computed 1790 * from the total number of blocks and/or statements. 1791 */ 1792 static void 1793 opt_init(root) 1794 struct block *root; 1795 { 1796 bpf_u_int32 *p; 1797 int i, n, max_stmts; 1798 1799 /* 1800 * First, count the blocks, so we can malloc an array to map 1801 * block number to block. Then, put the blocks into the array. 1802 */ 1803 unMarkAll(); 1804 n = count_blocks(root); 1805 blocks = (struct block **)malloc(n * sizeof(*blocks)); 1806 unMarkAll(); 1807 n_blocks = 0; 1808 number_blks_r(root); 1809 1810 n_edges = 2 * n_blocks; 1811 edges = (struct edge **)malloc(n_edges * sizeof(*edges)); 1812 1813 /* 1814 * The number of levels is bounded by the number of nodes. 1815 */ 1816 levels = (struct block **)malloc(n_blocks * sizeof(*levels)); 1817 1818 edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1; 1819 nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1; 1820 1821 /* XXX */ 1822 space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space) 1823 + n_edges * edgewords * sizeof(*space)); 1824 p = space; 1825 all_dom_sets = p; 1826 for (i = 0; i < n; ++i) { 1827 blocks[i]->dom = p; 1828 p += nodewords; 1829 } 1830 all_closure_sets = p; 1831 for (i = 0; i < n; ++i) { 1832 blocks[i]->closure = p; 1833 p += nodewords; 1834 } 1835 all_edge_sets = p; 1836 for (i = 0; i < n; ++i) { 1837 register struct block *b = blocks[i]; 1838 1839 b->et.edom = p; 1840 p += edgewords; 1841 b->ef.edom = p; 1842 p += edgewords; 1843 b->et.id = i; 1844 edges[i] = &b->et; 1845 b->ef.id = n_blocks + i; 1846 edges[n_blocks + i] = &b->ef; 1847 b->et.pred = b; 1848 b->ef.pred = b; 1849 } 1850 max_stmts = 0; 1851 for (i = 0; i < n; ++i) 1852 max_stmts += slength(blocks[i]->stmts) + 1; 1853 /* 1854 * We allocate at most 3 value numbers per statement, 1855 * so this is an upper bound on the number of valnodes 1856 * we'll need. 1857 */ 1858 maxval = 3 * max_stmts; 1859 vmap = (struct vmapinfo *)malloc(maxval * sizeof(*vmap)); 1860 vnode_base = (struct valnode *)malloc(maxval * sizeof(*vmap)); 1861 } 1862 1863 /* 1864 * Some pointers used to convert the basic block form of the code, 1865 * into the array form that BPF requires. 'fstart' will point to 1866 * the malloc'd array while 'ftail' is used during the recursive traversal. 1867 */ 1868 static struct bpf_insn *fstart; 1869 static struct bpf_insn *ftail; 1870 1871 #ifdef BDEBUG 1872 int bids[1000]; 1873 #endif 1874 1875 /* 1876 * Returns true if successful. Returns false if a branch has 1877 * an offset that is too large. If so, we have marked that 1878 * branch so that on a subsequent iteration, it will be treated 1879 * properly. 1880 */ 1881 static int 1882 convert_code_r(p) 1883 struct block *p; 1884 { 1885 struct bpf_insn *dst; 1886 struct slist *src; 1887 int slen; 1888 u_int off; 1889 int extrajmps; /* number of extra jumps inserted */ 1890 1891 if (p == 0 || isMarked(p)) 1892 return (1); 1893 Mark(p); 1894 1895 if (convert_code_r(JF(p)) == 0) 1896 return (0); 1897 if (convert_code_r(JT(p)) == 0) 1898 return (0); 1899 1900 slen = slength(p->stmts); 1901 dst = ftail -= (slen + 1 + p->longjt + p->longjf); 1902 /* inflate length by any extra jumps */ 1903 1904 p->offset = dst - fstart; 1905 1906 for (src = p->stmts; src; src = src->next) { 1907 if (src->s.code == NOP) 1908 continue; 1909 dst->code = (u_short)src->s.code; 1910 dst->k = src->s.k; 1911 ++dst; 1912 } 1913 #ifdef BDEBUG 1914 bids[dst - fstart] = p->id + 1; 1915 #endif 1916 dst->code = (u_short)p->s.code; 1917 dst->k = p->s.k; 1918 if (JT(p)) { 1919 extrajmps = 0; 1920 off = JT(p)->offset - (p->offset + slen) - 1; 1921 if (off >= 256) { 1922 /* offset too large for branch, must add a jump */ 1923 if (p->longjt == 0) { 1924 /* mark this instruction and retry */ 1925 p->longjt++; 1926 return(0); 1927 } 1928 /* branch if T to following jump */ 1929 dst->jt = extrajmps; 1930 extrajmps++; 1931 dst[extrajmps].code = BPF_JMP|BPF_JA; 1932 dst[extrajmps].k = off - extrajmps; 1933 } 1934 else 1935 dst->jt = off; 1936 off = JF(p)->offset - (p->offset + slen) - 1; 1937 if (off >= 256) { 1938 /* offset too large for branch, must add a jump */ 1939 if (p->longjf == 0) { 1940 /* mark this instruction and retry */ 1941 p->longjf++; 1942 return(0); 1943 } 1944 /* branch if F to following jump */ 1945 /* if two jumps are inserted, F goes to second one */ 1946 dst->jf = extrajmps; 1947 extrajmps++; 1948 dst[extrajmps].code = BPF_JMP|BPF_JA; 1949 dst[extrajmps].k = off - extrajmps; 1950 } 1951 else 1952 dst->jf = off; 1953 } 1954 return (1); 1955 } 1956 1957 1958 /* 1959 * Convert flowgraph intermediate representation to the 1960 * BPF array representation. Set *lenp to the number of instructions. 1961 */ 1962 struct bpf_insn * 1963 icode_to_fcode(root, lenp) 1964 struct block *root; 1965 int *lenp; 1966 { 1967 int n; 1968 struct bpf_insn *fp; 1969 1970 /* 1971 * Loop doing convert_codr_r() until no branches remain 1972 * with too-large offsets. 1973 */ 1974 while (1) { 1975 unMarkAll(); 1976 n = *lenp = count_stmts(root); 1977 1978 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n); 1979 memset((char *)fp, 0, sizeof(*fp) * n); 1980 fstart = fp; 1981 ftail = fp + n; 1982 1983 unMarkAll(); 1984 if (convert_code_r(root)) 1985 break; 1986 free(fp); 1987 } 1988 1989 return fp; 1990 } 1991 1992 #ifdef BDEBUG 1993 static void 1994 opt_dump(root) 1995 struct block *root; 1996 { 1997 struct bpf_program f; 1998 1999 memset(bids, 0, sizeof bids); 2000 f.bf_insns = icode_to_fcode(root, &f.bf_len); 2001 bpf_dump(&f, 1); 2002 putchar('\n'); 2003 free((char *)f.bf_insns); 2004 } 2005 #endif 2006