1*2f2c0062Sguenther /* $OpenBSD: s_fma.c,v 1.7 2016/09/12 19:47:02 guenther Exp $ */
249393c00Smartynas
349393c00Smartynas /*-
449393c00Smartynas * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
549393c00Smartynas * All rights reserved.
649393c00Smartynas *
749393c00Smartynas * Redistribution and use in source and binary forms, with or without
849393c00Smartynas * modification, are permitted provided that the following conditions
949393c00Smartynas * are met:
1049393c00Smartynas * 1. Redistributions of source code must retain the above copyright
1149393c00Smartynas * notice, this list of conditions and the following disclaimer.
1249393c00Smartynas * 2. Redistributions in binary form must reproduce the above copyright
1349393c00Smartynas * notice, this list of conditions and the following disclaimer in the
1449393c00Smartynas * documentation and/or other materials provided with the distribution.
1549393c00Smartynas *
1649393c00Smartynas * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1749393c00Smartynas * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1849393c00Smartynas * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1949393c00Smartynas * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
2049393c00Smartynas * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2149393c00Smartynas * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2249393c00Smartynas * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2349393c00Smartynas * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2449393c00Smartynas * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2549393c00Smartynas * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2649393c00Smartynas * SUCH DAMAGE.
2749393c00Smartynas */
2849393c00Smartynas
2949393c00Smartynas #include <fenv.h>
3049393c00Smartynas #include <float.h>
3149393c00Smartynas #include <math.h>
3249393c00Smartynas
3349393c00Smartynas /*
3449393c00Smartynas * Fused multiply-add: Compute x * y + z with a single rounding error.
3549393c00Smartynas *
3649393c00Smartynas * We use scaling to avoid overflow/underflow, along with the
3749393c00Smartynas * canonical precision-doubling technique adapted from:
3849393c00Smartynas *
3949393c00Smartynas * Dekker, T. A Floating-Point Technique for Extending the
4049393c00Smartynas * Available Precision. Numer. Math. 18, 224-242 (1971).
4149393c00Smartynas *
4249393c00Smartynas * This algorithm is sensitive to the rounding precision. FPUs such
4349393c00Smartynas * as the i387 must be set in double-precision mode if variables are
4449393c00Smartynas * to be stored in FP registers in order to avoid incorrect results.
4549393c00Smartynas * This is the default on FreeBSD, but not on many other systems.
4649393c00Smartynas *
4749393c00Smartynas * Hardware instructions should be used on architectures that support it,
4849393c00Smartynas * since this implementation will likely be several times slower.
4949393c00Smartynas */
5049393c00Smartynas #if LDBL_MANT_DIG != 113
5149393c00Smartynas double
fma(double x,double y,double z)5249393c00Smartynas fma(double x, double y, double z)
5349393c00Smartynas {
5449393c00Smartynas static const double split = 0x1p27 + 1.0;
5549393c00Smartynas double xs, ys, zs;
5649393c00Smartynas double c, cc, hx, hy, p, q, tx, ty;
5749393c00Smartynas double r, rr, s;
5849393c00Smartynas int oround;
5949393c00Smartynas int ex, ey, ez;
6049393c00Smartynas int spread;
6149393c00Smartynas
6249393c00Smartynas /*
6349393c00Smartynas * Handle special cases. The order of operations and the particular
6449393c00Smartynas * return values here are crucial in handling special cases involving
6549393c00Smartynas * infinities, NaNs, overflows, and signed zeroes correctly.
6649393c00Smartynas */
6749393c00Smartynas if (x == 0.0 || y == 0.0)
6849393c00Smartynas return (x * y + z);
6949393c00Smartynas if (z == 0.0)
7049393c00Smartynas return (x * y);
7149393c00Smartynas if (!isfinite(x) || !isfinite(y))
7249393c00Smartynas return (x * y + z);
7349393c00Smartynas if (!isfinite(z))
7449393c00Smartynas return (z);
7549393c00Smartynas
7649393c00Smartynas xs = frexp(x, &ex);
7749393c00Smartynas ys = frexp(y, &ey);
7849393c00Smartynas zs = frexp(z, &ez);
7949393c00Smartynas oround = fegetround();
8049393c00Smartynas spread = ex + ey - ez;
8149393c00Smartynas
8249393c00Smartynas /*
8349393c00Smartynas * If x * y and z are many orders of magnitude apart, the scaling
8449393c00Smartynas * will overflow, so we handle these cases specially. Rounding
8549393c00Smartynas * modes other than FE_TONEAREST are painful.
8649393c00Smartynas */
8749393c00Smartynas if (spread > DBL_MANT_DIG * 2) {
8849393c00Smartynas fenv_t env;
8949393c00Smartynas feraiseexcept(FE_INEXACT);
9049393c00Smartynas switch(oround) {
9149393c00Smartynas case FE_TONEAREST:
9249393c00Smartynas return (x * y);
9349393c00Smartynas case FE_TOWARDZERO:
9463d6ab21Smartynas if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
9549393c00Smartynas return (x * y);
9649393c00Smartynas feholdexcept(&env);
9749393c00Smartynas r = x * y;
9849393c00Smartynas if (!fetestexcept(FE_INEXACT))
9949393c00Smartynas r = nextafter(r, 0);
10049393c00Smartynas feupdateenv(&env);
10149393c00Smartynas return (r);
10249393c00Smartynas case FE_DOWNWARD:
10349393c00Smartynas if (z > 0.0)
10449393c00Smartynas return (x * y);
10549393c00Smartynas feholdexcept(&env);
10649393c00Smartynas r = x * y;
10749393c00Smartynas if (!fetestexcept(FE_INEXACT))
10849393c00Smartynas r = nextafter(r, -INFINITY);
10949393c00Smartynas feupdateenv(&env);
11049393c00Smartynas return (r);
11149393c00Smartynas default: /* FE_UPWARD */
11249393c00Smartynas if (z < 0.0)
11349393c00Smartynas return (x * y);
11449393c00Smartynas feholdexcept(&env);
11549393c00Smartynas r = x * y;
11649393c00Smartynas if (!fetestexcept(FE_INEXACT))
11749393c00Smartynas r = nextafter(r, INFINITY);
11849393c00Smartynas feupdateenv(&env);
11949393c00Smartynas return (r);
12049393c00Smartynas }
12149393c00Smartynas }
12249393c00Smartynas if (spread < -DBL_MANT_DIG) {
12349393c00Smartynas feraiseexcept(FE_INEXACT);
12449393c00Smartynas if (!isnormal(z))
12549393c00Smartynas feraiseexcept(FE_UNDERFLOW);
12649393c00Smartynas switch (oround) {
12749393c00Smartynas case FE_TONEAREST:
12849393c00Smartynas return (z);
12949393c00Smartynas case FE_TOWARDZERO:
13063d6ab21Smartynas if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
13149393c00Smartynas return (z);
13249393c00Smartynas else
13349393c00Smartynas return (nextafter(z, 0));
13449393c00Smartynas case FE_DOWNWARD:
13563d6ab21Smartynas if ((x > 0.0) ^ (y < 0.0))
13649393c00Smartynas return (z);
13749393c00Smartynas else
13849393c00Smartynas return (nextafter(z, -INFINITY));
13949393c00Smartynas default: /* FE_UPWARD */
14063d6ab21Smartynas if ((x > 0.0) ^ (y < 0.0))
14149393c00Smartynas return (nextafter(z, INFINITY));
14249393c00Smartynas else
14349393c00Smartynas return (z);
14449393c00Smartynas }
14549393c00Smartynas }
14649393c00Smartynas
14749393c00Smartynas /*
14849393c00Smartynas * Use Dekker's algorithm to perform the multiplication and
14949393c00Smartynas * subsequent addition in twice the machine precision.
15049393c00Smartynas * Arrange so that x * y = c + cc, and x * y + z = r + rr.
15149393c00Smartynas */
15249393c00Smartynas fesetround(FE_TONEAREST);
15349393c00Smartynas
15449393c00Smartynas p = xs * split;
15549393c00Smartynas hx = xs - p;
15649393c00Smartynas hx += p;
15749393c00Smartynas tx = xs - hx;
15849393c00Smartynas
15949393c00Smartynas p = ys * split;
16049393c00Smartynas hy = ys - p;
16149393c00Smartynas hy += p;
16249393c00Smartynas ty = ys - hy;
16349393c00Smartynas
16449393c00Smartynas p = hx * hy;
16549393c00Smartynas q = hx * ty + tx * hy;
16649393c00Smartynas c = p + q;
16749393c00Smartynas cc = p - c + q + tx * ty;
16849393c00Smartynas
16949393c00Smartynas zs = ldexp(zs, -spread);
17049393c00Smartynas r = c + zs;
17149393c00Smartynas s = r - c;
17249393c00Smartynas rr = (c - (r - s)) + (zs - s) + cc;
17349393c00Smartynas
17449393c00Smartynas spread = ex + ey;
17549393c00Smartynas if (spread + ilogb(r) > -1023) {
17649393c00Smartynas fesetround(oround);
17749393c00Smartynas r = r + rr;
17849393c00Smartynas } else {
17949393c00Smartynas /*
18049393c00Smartynas * The result is subnormal, so we round before scaling to
18149393c00Smartynas * avoid double rounding.
18249393c00Smartynas */
18349393c00Smartynas p = ldexp(copysign(0x1p-1022, r), -spread);
18449393c00Smartynas c = r + p;
18549393c00Smartynas s = c - r;
18649393c00Smartynas cc = (r - (c - s)) + (p - s) + rr;
18749393c00Smartynas fesetround(oround);
18849393c00Smartynas r = (c + cc) - p;
18949393c00Smartynas }
19049393c00Smartynas return (ldexp(r, spread));
19149393c00Smartynas }
19249393c00Smartynas #else /* LDBL_MANT_DIG == 113 */
19349393c00Smartynas /*
19449393c00Smartynas * 113 bits of precision is more than twice the precision of a double,
19549393c00Smartynas * so it is enough to represent the intermediate product exactly.
19649393c00Smartynas */
19749393c00Smartynas double
fma(double x,double y,double z)19849393c00Smartynas fma(double x, double y, double z)
19949393c00Smartynas {
20049393c00Smartynas return ((long double)x * y + z);
20149393c00Smartynas }
20249393c00Smartynas #endif /* LDBL_MANT_DIG != 113 */
203*2f2c0062Sguenther DEF_STD(fma);
204*2f2c0062Sguenther LDBL_MAYBE_UNUSED_CLONE(fma);
205