xref: /openbsd-src/lib/libm/src/ld80/k_cosl.c (revision beb15867ad58c144f0b15621aba82cb13678cd97)
1*beb15867Skrw /*	$OpenBSD: k_cosl.c,v 1.2 2017/01/21 08:29:13 krw Exp $	*/
2390c8400Smartynas /* From: @(#)k_cos.c 1.3 95/01/18 */
3390c8400Smartynas /*
4390c8400Smartynas  * ====================================================
5390c8400Smartynas  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6390c8400Smartynas  * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
7390c8400Smartynas  *
8390c8400Smartynas  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9390c8400Smartynas  * Permission to use, copy, modify, and distribute this
10390c8400Smartynas  * software is freely granted, provided that this notice
11390c8400Smartynas  * is preserved.
12390c8400Smartynas  * ====================================================
13390c8400Smartynas  */
14390c8400Smartynas 
15390c8400Smartynas /*
16390c8400Smartynas  * ld80 version of k_cos.c.  See ../k_cos.c for most comments.
17390c8400Smartynas  */
18390c8400Smartynas 
19390c8400Smartynas #include "math_private.h"
20390c8400Smartynas 
21390c8400Smartynas /*
22390c8400Smartynas  * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
23390c8400Smartynas  * |cos(x) - c(x)| < 2**-75.1
24390c8400Smartynas  *
25390c8400Smartynas  * The coefficients of c(x) were generated by a pari-gp script using
26390c8400Smartynas  * a Remez algorithm that searches for the best higher coefficients
27390c8400Smartynas  * after rounding leading coefficients to a specified precision.
28390c8400Smartynas  *
29390c8400Smartynas  * Simpler methods like Chebyshev or basic Remez barely suffice for
30390c8400Smartynas  * cos() in 64-bit precision, because we want the coefficient of x^2
31390c8400Smartynas  * to be precisely -0.5 so that multiplying by it is exact, and plain
32390c8400Smartynas  * rounding of the coefficients of a good polynomial approximation only
33390c8400Smartynas  * gives this up to about 64-bit precision.  Plain rounding also gives
34390c8400Smartynas  * a mediocre approximation for the coefficient of x^4, but a rounding
35390c8400Smartynas  * error of 0.5 ulps for this coefficient would only contribute ~0.01
36390c8400Smartynas  * ulps to the final error, so this is unimportant.  Rounding errors in
37390c8400Smartynas  * higher coefficients are even less important.
38390c8400Smartynas  *
39390c8400Smartynas  * In fact, coefficients above the x^4 one only need to have 53-bit
40390c8400Smartynas  * precision, and this is more efficient.  We get this optimization
41390c8400Smartynas  * almost for free from the complications needed to search for the best
42390c8400Smartynas  * higher coefficients.
43390c8400Smartynas  */
44390c8400Smartynas static const double
45390c8400Smartynas one = 1.0;
46390c8400Smartynas 
47390c8400Smartynas #if defined(__amd64__) || defined(__i386__)
48390c8400Smartynas /* Long double constants are slow on these arches, and broken on i386. */
49390c8400Smartynas static const volatile double
50390c8400Smartynas C1hi = 0.041666666666666664,		/*  0x15555555555555.0p-57 */
51390c8400Smartynas C1lo = 2.2598839032744733e-18;		/*  0x14d80000000000.0p-111 */
52390c8400Smartynas #define	C1	((long double)C1hi + C1lo)
53390c8400Smartynas #else
54390c8400Smartynas static const long double
55390c8400Smartynas C1 =  0.0416666666666666666136L;	/*  0xaaaaaaaaaaaaaa9b.0p-68 */
56390c8400Smartynas #endif
57390c8400Smartynas 
58390c8400Smartynas static const double
59390c8400Smartynas C2 = -0.0013888888888888874,		/* -0x16c16c16c16c10.0p-62 */
60390c8400Smartynas C3 =  0.000024801587301571716,		/*  0x1a01a01a018e22.0p-68 */
61390c8400Smartynas C4 = -0.00000027557319215507120,	/* -0x127e4fb7602f22.0p-74 */
62390c8400Smartynas C5 =  0.0000000020876754400407278,	/*  0x11eed8caaeccf1.0p-81 */
63390c8400Smartynas C6 = -1.1470297442401303e-11,		/* -0x19393412bd1529.0p-89 */
64390c8400Smartynas C7 =  4.7383039476436467e-14;		/*  0x1aac9d9af5c43e.0p-97 */
65390c8400Smartynas 
66390c8400Smartynas long double
__kernel_cosl(long double x,long double y)67390c8400Smartynas __kernel_cosl(long double x, long double y)
68390c8400Smartynas {
69390c8400Smartynas 	long double hz,z,r,w;
70390c8400Smartynas 
71390c8400Smartynas 	z  = x*x;
72390c8400Smartynas 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))));
73390c8400Smartynas 	hz = 0.5*z;
74390c8400Smartynas 	w  = one-hz;
75390c8400Smartynas 	return w + (((one-w)-hz) + (z*r-x*y));
76390c8400Smartynas }
77