xref: /openbsd-src/lib/libm/src/ld80/e_expl.c (revision 2f2c00629eff6a304ebffb255fc56f4fa7a1833b)
1*2f2c0062Sguenther /*	$OpenBSD: e_expl.c,v 1.4 2016/09/12 19:47:02 guenther Exp $	*/
249393c00Smartynas 
349393c00Smartynas /*
449393c00Smartynas  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
549393c00Smartynas  *
649393c00Smartynas  * Permission to use, copy, modify, and distribute this software for any
749393c00Smartynas  * purpose with or without fee is hereby granted, provided that the above
849393c00Smartynas  * copyright notice and this permission notice appear in all copies.
949393c00Smartynas  *
1049393c00Smartynas  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
1149393c00Smartynas  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
1249393c00Smartynas  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
1349393c00Smartynas  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
1449393c00Smartynas  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
1549393c00Smartynas  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
1649393c00Smartynas  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
1749393c00Smartynas  */
1849393c00Smartynas 
1949393c00Smartynas /*							expl.c
2049393c00Smartynas  *
2149393c00Smartynas  *	Exponential function, long double precision
2249393c00Smartynas  *
2349393c00Smartynas  *
2449393c00Smartynas  *
2549393c00Smartynas  * SYNOPSIS:
2649393c00Smartynas  *
2749393c00Smartynas  * long double x, y, expl();
2849393c00Smartynas  *
2949393c00Smartynas  * y = expl( x );
3049393c00Smartynas  *
3149393c00Smartynas  *
3249393c00Smartynas  *
3349393c00Smartynas  * DESCRIPTION:
3449393c00Smartynas  *
3549393c00Smartynas  * Returns e (2.71828...) raised to the x power.
3649393c00Smartynas  *
3749393c00Smartynas  * Range reduction is accomplished by separating the argument
3849393c00Smartynas  * into an integer k and fraction f such that
3949393c00Smartynas  *
4049393c00Smartynas  *     x    k  f
4149393c00Smartynas  *    e  = 2  e.
4249393c00Smartynas  *
4349393c00Smartynas  * A Pade' form of degree 2/3 is used to approximate exp(f) - 1
4449393c00Smartynas  * in the basic range [-0.5 ln 2, 0.5 ln 2].
4549393c00Smartynas  *
4649393c00Smartynas  *
4749393c00Smartynas  * ACCURACY:
4849393c00Smartynas  *
4949393c00Smartynas  *                      Relative error:
5049393c00Smartynas  * arithmetic   domain     # trials      peak         rms
5149393c00Smartynas  *    IEEE      +-10000     50000       1.12e-19    2.81e-20
5249393c00Smartynas  *
5349393c00Smartynas  *
5449393c00Smartynas  * Error amplification in the exponential function can be
5549393c00Smartynas  * a serious matter.  The error propagation involves
5649393c00Smartynas  * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
5749393c00Smartynas  * which shows that a 1 lsb error in representing X produces
5849393c00Smartynas  * a relative error of X times 1 lsb in the function.
5949393c00Smartynas  * While the routine gives an accurate result for arguments
6049393c00Smartynas  * that are exactly represented by a long double precision
6149393c00Smartynas  * computer number, the result contains amplified roundoff
6249393c00Smartynas  * error for large arguments not exactly represented.
6349393c00Smartynas  *
6449393c00Smartynas  *
6549393c00Smartynas  * ERROR MESSAGES:
6649393c00Smartynas  *
6749393c00Smartynas  *   message         condition      value returned
6849393c00Smartynas  * exp underflow    x < MINLOG         0.0
6949393c00Smartynas  * exp overflow     x > MAXLOG         MAXNUM
7049393c00Smartynas  *
7149393c00Smartynas  */
7249393c00Smartynas 
7349393c00Smartynas /*	Exponential function	*/
7449393c00Smartynas 
7549393c00Smartynas #include <math.h>
7649393c00Smartynas 
7712129755Smartynas #include "math_private.h"
7812129755Smartynas 
7949393c00Smartynas static long double P[3] = {
8049393c00Smartynas  1.2617719307481059087798E-4L,
8149393c00Smartynas  3.0299440770744196129956E-2L,
8249393c00Smartynas  9.9999999999999999991025E-1L,
8349393c00Smartynas };
8449393c00Smartynas static long double Q[4] = {
8549393c00Smartynas  3.0019850513866445504159E-6L,
8649393c00Smartynas  2.5244834034968410419224E-3L,
8749393c00Smartynas  2.2726554820815502876593E-1L,
8849393c00Smartynas  2.0000000000000000000897E0L,
8949393c00Smartynas };
909fc13282Smartynas static const long double C1 = 6.9314575195312500000000E-1L;
919fc13282Smartynas static const long double C2 = 1.4286068203094172321215E-6L;
929fc13282Smartynas static const long double MAXLOGL = 1.1356523406294143949492E4L;
939fc13282Smartynas static const long double MINLOGL = -1.13994985314888605586758E4L;
949fc13282Smartynas static const long double LOG2EL = 1.4426950408889634073599E0L;
9549393c00Smartynas 
9649393c00Smartynas long double
expl(long double x)9749393c00Smartynas expl(long double x)
9849393c00Smartynas {
9949393c00Smartynas long double px, xx;
10049393c00Smartynas int n;
10149393c00Smartynas 
10249393c00Smartynas if( isnan(x) )
10349393c00Smartynas 	return(x);
10449393c00Smartynas if( x > MAXLOGL)
10549393c00Smartynas 	return( INFINITY );
10649393c00Smartynas 
10749393c00Smartynas if( x < MINLOGL )
10849393c00Smartynas 	return(0.0L);
10949393c00Smartynas 
11049393c00Smartynas /* Express e**x = e**g 2**n
11149393c00Smartynas  *   = e**g e**( n loge(2) )
11249393c00Smartynas  *   = e**( g + n loge(2) )
11349393c00Smartynas  */
11449393c00Smartynas px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
11549393c00Smartynas n = px;
11649393c00Smartynas x -= px * C1;
11749393c00Smartynas x -= px * C2;
11849393c00Smartynas 
11949393c00Smartynas 
12049393c00Smartynas /* rational approximation for exponential
12149393c00Smartynas  * of the fractional part:
12249393c00Smartynas  * e**x =  1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
12349393c00Smartynas  */
12449393c00Smartynas xx = x * x;
12549393c00Smartynas px = x * __polevll( xx, P, 2 );
12649393c00Smartynas x =  px/( __polevll( xx, Q, 3 ) - px );
12749393c00Smartynas x = 1.0L + ldexpl( x, 1 );
12849393c00Smartynas 
12949393c00Smartynas x = ldexpl( x, n );
13049393c00Smartynas return(x);
13149393c00Smartynas }
132*2f2c0062Sguenther DEF_STD(expl);
133