1df930be7Sderaadt /* @(#)e_log.c 5.1 93/09/24 */
2df930be7Sderaadt /*
3df930be7Sderaadt * ====================================================
4df930be7Sderaadt * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5df930be7Sderaadt *
6df930be7Sderaadt * Developed at SunPro, a Sun Microsystems, Inc. business.
7df930be7Sderaadt * Permission to use, copy, modify, and distribute this
8df930be7Sderaadt * software is freely granted, provided that this notice
9df930be7Sderaadt * is preserved.
10df930be7Sderaadt * ====================================================
11df930be7Sderaadt */
12df930be7Sderaadt
137b36286aSmartynas /* log(x)
14c9ea850eSmartynas * Return the logarithm of x
15df930be7Sderaadt *
16df930be7Sderaadt * Method :
17df930be7Sderaadt * 1. Argument Reduction: find k and f such that
18df930be7Sderaadt * x = 2^k * (1+f),
19df930be7Sderaadt * where sqrt(2)/2 < 1+f < sqrt(2) .
20df930be7Sderaadt *
21df930be7Sderaadt * 2. Approximation of log(1+f).
22df930be7Sderaadt * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
23df930be7Sderaadt * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
24df930be7Sderaadt * = 2s + s*R
2571a22d32Smartynas * We use a special Remes algorithm on [0,0.1716] to generate
26df930be7Sderaadt * a polynomial of degree 14 to approximate R The maximum error
27df930be7Sderaadt * of this polynomial approximation is bounded by 2**-58.45. In
28df930be7Sderaadt * other words,
29df930be7Sderaadt * 2 4 6 8 10 12 14
30df930be7Sderaadt * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
31df930be7Sderaadt * (the values of Lg1 to Lg7 are listed in the program)
32df930be7Sderaadt * and
33df930be7Sderaadt * | 2 14 | -58.45
34df930be7Sderaadt * | Lg1*s +...+Lg7*s - R(z) | <= 2
35df930be7Sderaadt * | |
36df930be7Sderaadt * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
37df930be7Sderaadt * In order to guarantee error in log below 1ulp, we compute log
38df930be7Sderaadt * by
39df930be7Sderaadt * log(1+f) = f - s*(f - R) (if f is not too large)
40df930be7Sderaadt * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
41df930be7Sderaadt *
42df930be7Sderaadt * 3. Finally, log(x) = k*ln2 + log(1+f).
43df930be7Sderaadt * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
44df930be7Sderaadt * Here ln2 is split into two floating point number:
45df930be7Sderaadt * ln2_hi + ln2_lo,
46df930be7Sderaadt * where n*ln2_hi is always exact for |n| < 2000.
47df930be7Sderaadt *
48df930be7Sderaadt * Special cases:
49df930be7Sderaadt * log(x) is NaN with signal if x < 0 (including -INF) ;
50df930be7Sderaadt * log(+INF) is +INF; log(0) is -INF with signal;
51df930be7Sderaadt * log(NaN) is that NaN with no signal.
52df930be7Sderaadt *
53df930be7Sderaadt * Accuracy:
54df930be7Sderaadt * according to an error analysis, the error is always less than
55df930be7Sderaadt * 1 ulp (unit in the last place).
56df930be7Sderaadt *
57df930be7Sderaadt * Constants:
58df930be7Sderaadt * The hexadecimal values are the intended ones for the following
59df930be7Sderaadt * constants. The decimal values may be used, provided that the
60df930be7Sderaadt * compiler will convert from decimal to binary accurately enough
61df930be7Sderaadt * to produce the hexadecimal values shown.
62df930be7Sderaadt */
63df930be7Sderaadt
6449393c00Smartynas #include <float.h>
6549393c00Smartynas #include <math.h>
6649393c00Smartynas
67df930be7Sderaadt #include "math_private.h"
68df930be7Sderaadt
69df930be7Sderaadt static const double
70df930be7Sderaadt ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
71df930be7Sderaadt ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
72df930be7Sderaadt two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
73df930be7Sderaadt Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
74df930be7Sderaadt Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
75df930be7Sderaadt Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
76df930be7Sderaadt Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
77df930be7Sderaadt Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
78df930be7Sderaadt Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
79df930be7Sderaadt Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
80df930be7Sderaadt
81df930be7Sderaadt static const double zero = 0.0;
82df930be7Sderaadt
83e7beb4a7Smillert double
log(double x)847b36286aSmartynas log(double x)
85df930be7Sderaadt {
86df930be7Sderaadt double hfsq,f,s,z,R,w,t1,t2,dk;
87df930be7Sderaadt int32_t k,hx,i,j;
88df930be7Sderaadt u_int32_t lx;
89df930be7Sderaadt
90df930be7Sderaadt EXTRACT_WORDS(hx,lx,x);
91df930be7Sderaadt
92df930be7Sderaadt k=0;
93df930be7Sderaadt if (hx < 0x00100000) { /* x < 2**-1022 */
94df930be7Sderaadt if (((hx&0x7fffffff)|lx)==0)
95df930be7Sderaadt return -two54/zero; /* log(+-0)=-inf */
96df930be7Sderaadt if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
97df930be7Sderaadt k -= 54; x *= two54; /* subnormal number, scale up x */
98df930be7Sderaadt GET_HIGH_WORD(hx,x);
99df930be7Sderaadt }
100df930be7Sderaadt if (hx >= 0x7ff00000) return x+x;
101df930be7Sderaadt k += (hx>>20)-1023;
102df930be7Sderaadt hx &= 0x000fffff;
103df930be7Sderaadt i = (hx+0x95f64)&0x100000;
104df930be7Sderaadt SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
105df930be7Sderaadt k += (i>>20);
106df930be7Sderaadt f = x-1.0;
107df930be7Sderaadt if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
108df930be7Sderaadt if(f==zero) if(k==0) return zero; else {dk=(double)k;
109df930be7Sderaadt return dk*ln2_hi+dk*ln2_lo;}
110df930be7Sderaadt R = f*f*(0.5-0.33333333333333333*f);
111df930be7Sderaadt if(k==0) return f-R; else {dk=(double)k;
112df930be7Sderaadt return dk*ln2_hi-((R-dk*ln2_lo)-f);}
113df930be7Sderaadt }
114df930be7Sderaadt s = f/(2.0+f);
115df930be7Sderaadt dk = (double)k;
116df930be7Sderaadt z = s*s;
117df930be7Sderaadt i = hx-0x6147a;
118df930be7Sderaadt w = z*z;
119df930be7Sderaadt j = 0x6b851-hx;
120df930be7Sderaadt t1= w*(Lg2+w*(Lg4+w*Lg6));
121df930be7Sderaadt t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
122df930be7Sderaadt i |= j;
123df930be7Sderaadt R = t2+t1;
124df930be7Sderaadt if(i>0) {
125df930be7Sderaadt hfsq=0.5*f*f;
126df930be7Sderaadt if(k==0) return f-(hfsq-s*(hfsq+R)); else
127df930be7Sderaadt return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
128df930be7Sderaadt } else {
129df930be7Sderaadt if(k==0) return f-s*(f-R); else
130df930be7Sderaadt return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
131df930be7Sderaadt }
132df930be7Sderaadt }
133*2f2c0062Sguenther DEF_STD(log);
134*2f2c0062Sguenther LDBL_MAYBE_CLONE(log);
135