xref: /openbsd-src/lib/libm/src/e_hypot.c (revision 2f2c00629eff6a304ebffb255fc56f4fa7a1833b)
1df930be7Sderaadt /* @(#)e_hypot.c 5.1 93/09/24 */
2df930be7Sderaadt /*
3df930be7Sderaadt  * ====================================================
4df930be7Sderaadt  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5df930be7Sderaadt  *
6df930be7Sderaadt  * Developed at SunPro, a Sun Microsystems, Inc. business.
7df930be7Sderaadt  * Permission to use, copy, modify, and distribute this
8df930be7Sderaadt  * software is freely granted, provided that this notice
9df930be7Sderaadt  * is preserved.
10df930be7Sderaadt  * ====================================================
11df930be7Sderaadt  */
12df930be7Sderaadt 
137b36286aSmartynas /* hypot(x,y)
14df930be7Sderaadt  *
15df930be7Sderaadt  * Method :
16df930be7Sderaadt  *	If (assume round-to-nearest) z=x*x+y*y
17df930be7Sderaadt  *	has error less than sqrt(2)/2 ulp, than
18df930be7Sderaadt  *	sqrt(z) has error less than 1 ulp (exercise).
19df930be7Sderaadt  *
20df930be7Sderaadt  *	So, compute sqrt(x*x+y*y) with some care as
21df930be7Sderaadt  *	follows to get the error below 1 ulp:
22df930be7Sderaadt  *
23df930be7Sderaadt  *	Assume x>y>0;
24df930be7Sderaadt  *	(if possible, set rounding to round-to-nearest)
25df930be7Sderaadt  *	1. if x > 2y  use
26df930be7Sderaadt  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
27df930be7Sderaadt  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
28df930be7Sderaadt  *	2. if x <= 2y use
2955fa043fSotto  *		t1*yy1+((x-y)*(x-y)+(t1*y2+t2*y))
30df930be7Sderaadt  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
3155fa043fSotto  *	yy1= y with lower 32 bits chopped, y2 = y-yy1.
32df930be7Sderaadt  *
33df930be7Sderaadt  *	NOTE: scaling may be necessary if some argument is too
34df930be7Sderaadt  *	      large or too tiny
35df930be7Sderaadt  *
36df930be7Sderaadt  * Special cases:
37df930be7Sderaadt  *	hypot(x,y) is INF if x or y is +INF or -INF; else
38df930be7Sderaadt  *	hypot(x,y) is NAN if x or y is NAN.
39df930be7Sderaadt  *
40df930be7Sderaadt  * Accuracy:
41df930be7Sderaadt  * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
42df930be7Sderaadt  * 	than 1 ulps (units in the last place)
43df930be7Sderaadt  */
44df930be7Sderaadt 
4549393c00Smartynas #include <float.h>
4649393c00Smartynas #include <math.h>
4749393c00Smartynas 
48df930be7Sderaadt #include "math_private.h"
49df930be7Sderaadt 
50e7beb4a7Smillert double
hypot(double x,double y)517b36286aSmartynas hypot(double x, double y)
52df930be7Sderaadt {
5355fa043fSotto 	double a=x,b=y,t1,t2,yy1,y2,w;
54df930be7Sderaadt 	int32_t j,k,ha,hb;
55df930be7Sderaadt 
56df930be7Sderaadt 	GET_HIGH_WORD(ha,x);
57df930be7Sderaadt 	ha &= 0x7fffffff;
58df930be7Sderaadt 	GET_HIGH_WORD(hb,y);
59df930be7Sderaadt 	hb &= 0x7fffffff;
60df930be7Sderaadt 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
61df930be7Sderaadt 	SET_HIGH_WORD(a,ha);	/* a <- |a| */
62df930be7Sderaadt 	SET_HIGH_WORD(b,hb);	/* b <- |b| */
63df930be7Sderaadt 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
64df930be7Sderaadt 	k=0;
65df930be7Sderaadt 	if(ha > 0x5f300000) {	/* a>2**500 */
66df930be7Sderaadt 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
67df930be7Sderaadt 	       u_int32_t low;
68df930be7Sderaadt 	       w = a+b;			/* for sNaN */
69df930be7Sderaadt 	       GET_LOW_WORD(low,a);
70df930be7Sderaadt 	       if(((ha&0xfffff)|low)==0) w = a;
71df930be7Sderaadt 	       GET_LOW_WORD(low,b);
72df930be7Sderaadt 	       if(((hb^0x7ff00000)|low)==0) w = b;
73df930be7Sderaadt 	       return w;
74df930be7Sderaadt 	   }
75df930be7Sderaadt 	   /* scale a and b by 2**-600 */
76df930be7Sderaadt 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
77df930be7Sderaadt 	   SET_HIGH_WORD(a,ha);
78df930be7Sderaadt 	   SET_HIGH_WORD(b,hb);
79df930be7Sderaadt 	}
80df930be7Sderaadt 	if(hb < 0x20b00000) {	/* b < 2**-500 */
81df930be7Sderaadt 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
82df930be7Sderaadt 	        u_int32_t low;
83df930be7Sderaadt 		GET_LOW_WORD(low,b);
84df930be7Sderaadt 		if((hb|low)==0) return a;
85df930be7Sderaadt 		t1=0;
86df930be7Sderaadt 		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
87df930be7Sderaadt 		b *= t1;
88df930be7Sderaadt 		a *= t1;
89df930be7Sderaadt 		k -= 1022;
90df930be7Sderaadt 	    } else {		/* scale a and b by 2^600 */
91df930be7Sderaadt 	        ha += 0x25800000; 	/* a *= 2^600 */
92df930be7Sderaadt 		hb += 0x25800000;	/* b *= 2^600 */
93df930be7Sderaadt 		k -= 600;
94df930be7Sderaadt 		SET_HIGH_WORD(a,ha);
95df930be7Sderaadt 		SET_HIGH_WORD(b,hb);
96df930be7Sderaadt 	    }
97df930be7Sderaadt 	}
98df930be7Sderaadt     /* medium size a and b */
99df930be7Sderaadt 	w = a-b;
100df930be7Sderaadt 	if (w>b) {
101df930be7Sderaadt 	    t1 = 0;
102df930be7Sderaadt 	    SET_HIGH_WORD(t1,ha);
103df930be7Sderaadt 	    t2 = a-t1;
1047b36286aSmartynas 	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
105df930be7Sderaadt 	} else {
106df930be7Sderaadt 	    a  = a+a;
10755fa043fSotto 	    yy1 = 0;
10855fa043fSotto 	    SET_HIGH_WORD(yy1,hb);
10955fa043fSotto 	    y2 = b - yy1;
110df930be7Sderaadt 	    t1 = 0;
111df930be7Sderaadt 	    SET_HIGH_WORD(t1,ha+0x00100000);
112df930be7Sderaadt 	    t2 = a - t1;
1137b36286aSmartynas 	    w  = sqrt(t1*yy1-(w*(-w)-(t1*y2+t2*b)));
114df930be7Sderaadt 	}
115df930be7Sderaadt 	if(k!=0) {
116df930be7Sderaadt 	    u_int32_t high;
117df930be7Sderaadt 	    t1 = 1.0;
118df930be7Sderaadt 	    GET_HIGH_WORD(high,t1);
119df930be7Sderaadt 	    SET_HIGH_WORD(t1,high+(k<<20));
120df930be7Sderaadt 	    return t1*w;
121df930be7Sderaadt 	} else return w;
122df930be7Sderaadt }
123*2f2c0062Sguenther DEF_STD(hypot);
124*2f2c0062Sguenther LDBL_MAYBE_CLONE(hypot);
125