xref: /openbsd-src/lib/libkvm/kvm_proc.c (revision 675c2d3ef6ea3055d4205b4545e7b240efa755c8)
1 /*	$OpenBSD: kvm_proc.c,v 1.39 2009/10/27 23:59:28 deraadt Exp $	*/
2 /*	$NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $	*/
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
33  * Copyright (c) 1989, 1992, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * This code is derived from software developed by the Computer Systems
37  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38  * BG 91-66 and contributed to Berkeley.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 /*
66  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
67  * users of this code, so we've factored it out into a separate module.
68  * Thus, we keep this grunge out of the other kvm applications (i.e.,
69  * most other applications are interested only in open/close/read/nlist).
70  */
71 
72 #define __need_process
73 #include <sys/param.h>
74 #include <sys/user.h>
75 #include <sys/proc.h>
76 #include <sys/exec.h>
77 #include <sys/stat.h>
78 #include <sys/ioctl.h>
79 #include <sys/tty.h>
80 #include <stdlib.h>
81 #include <string.h>
82 #include <unistd.h>
83 #include <nlist.h>
84 #include <kvm.h>
85 
86 #include <uvm/uvm_extern.h>
87 #include <uvm/uvm_amap.h>
88 #include <machine/vmparam.h>
89 #include <machine/pmap.h>
90 
91 #include <sys/sysctl.h>
92 
93 #include <limits.h>
94 #include <db.h>
95 #include <paths.h>
96 
97 #include "kvm_private.h"
98 
99 /*
100  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
101  */
102 struct miniproc {
103 	struct	vmspace *p_vmspace;
104 	char	p_stat;
105 	struct	proc *p_paddr;
106 	pid_t	p_pid;
107 };
108 
109 /*
110  * Convert from struct proc and kinfo_proc{,2} to miniproc.
111  */
112 #define PTOMINI(kp, p) \
113 	do { \
114 		(p)->p_stat = (kp)->p_stat; \
115 		(p)->p_pid = (kp)->p_pid; \
116 		(p)->p_paddr = NULL; \
117 		(p)->p_vmspace = (kp)->p_vmspace; \
118 	} while (/*CONSTCOND*/0);
119 
120 #define KPTOMINI(kp, p) \
121 	do { \
122 		(p)->p_stat = (kp)->kp_proc.p_stat; \
123 		(p)->p_pid = (kp)->kp_proc.p_pid; \
124 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
125 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
126 	} while (/*CONSTCOND*/0);
127 
128 #define KP2TOMINI(kp, p) \
129 	do { \
130 		(p)->p_stat = (kp)->p_stat; \
131 		(p)->p_pid = (kp)->p_pid; \
132 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
133 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
134 	} while (/*CONSTCOND*/0);
135 
136 
137 #define	PTRTOINT64(foo)	((u_int64_t)(u_long)(foo))
138 
139 ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *, size_t);
140 
141 static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, u_long *);
142 static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long, char *, size_t);
143 
144 static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
145 
146 static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
147 static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
148 		    void (*)(struct ps_strings *, u_long *, int *));
149 static int	kvm_proclist(kvm_t *, int, int, struct proc *,
150 		    struct kinfo_proc *, int);
151 static int	proc_verify(kvm_t *, const struct miniproc *);
152 static void	ps_str_a(struct ps_strings *, u_long *, int *);
153 static void	ps_str_e(struct ps_strings *, u_long *, int *);
154 
155 static char *
156 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
157 {
158 	u_long addr, head, offset, slot;
159 	struct vm_anon *anonp, anon;
160 	struct vm_map_entry vme;
161 	struct vm_amap amap;
162 	struct vm_page pg;
163 
164 	if (kd->swapspc == 0) {
165 		kd->swapspc = _kvm_malloc(kd, kd->nbpg);
166 		if (kd->swapspc == 0)
167 			return (0);
168 	}
169 
170 	/*
171 	 * Look through the address map for the memory object
172 	 * that corresponds to the given virtual address.
173 	 * The header just has the entire valid range.
174 	 */
175 	head = (u_long)&p->p_vmspace->vm_map.header;
176 	addr = head;
177 	while (1) {
178 		if (KREAD(kd, addr, &vme))
179 			return (0);
180 
181 		if (va >= vme.start && va < vme.end &&
182 		    vme.aref.ar_amap != NULL)
183 			break;
184 
185 		addr = (u_long)vme.next;
186 		if (addr == head)
187 			return (0);
188 	}
189 
190 	/*
191 	 * we found the map entry, now to find the object...
192 	 */
193 	if (vme.aref.ar_amap == NULL)
194 		return (NULL);
195 
196 	addr = (u_long)vme.aref.ar_amap;
197 	if (KREAD(kd, addr, &amap))
198 		return (NULL);
199 
200 	offset = va - vme.start;
201 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
202 	/* sanity-check slot number */
203 	if (slot > amap.am_nslot)
204 		return (NULL);
205 
206 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
207 	if (KREAD(kd, addr, &anonp))
208 		return (NULL);
209 
210 	addr = (u_long)anonp;
211 	if (KREAD(kd, addr, &anon))
212 		return (NULL);
213 
214 	addr = (u_long)anon.an_page;
215 	if (addr) {
216 		if (KREAD(kd, addr, &pg))
217 			return (NULL);
218 
219 		if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc,
220 		    (size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg)
221 			return (NULL);
222 	} else {
223 		if (kd->swfd == -1 ||
224 		    _kvm_pread(kd, kd->swfd, (void *)kd->swapspc,
225 		    (size_t)kd->nbpg,
226 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
227 			return (NULL);
228 	}
229 
230 	/* Found the page. */
231 	offset %= kd->nbpg;
232 	*cnt = kd->nbpg - offset;
233 	return (&kd->swapspc[offset]);
234 }
235 
236 char *
237 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
238 {
239 	struct miniproc mp;
240 
241 	PTOMINI(p, &mp);
242 	return (_kvm_ureadm(kd, &mp, va, cnt));
243 }
244 
245 /*
246  * Read proc's from memory file into buffer bp, which has space to hold
247  * at most maxcnt procs.
248  */
249 static int
250 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
251     struct kinfo_proc *bp, int maxcnt)
252 {
253 	struct session sess;
254 	struct eproc eproc;
255 	struct proc proc;
256 	struct process process;
257 	struct pgrp pgrp;
258 	struct tty tty;
259 	int cnt = 0;
260 
261 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
262 		if (KREAD(kd, (u_long)p, &proc)) {
263 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
264 			return (-1);
265 		}
266 		if (KREAD(kd, (u_long)proc.p_p, &process)) {
267 			_kvm_err(kd, kd->program, "can't read process at %x", proc.p_p);
268 			return (-1);
269 		}
270 		if (KREAD(kd, (u_long)process.ps_cred, &eproc.e_pcred) == 0)
271 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
272 			    &eproc.e_ucred);
273 
274 		switch (what) {
275 		case KERN_PROC_PID:
276 			if (proc.p_pid != (pid_t)arg)
277 				continue;
278 			break;
279 
280 		case KERN_PROC_UID:
281 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
282 				continue;
283 			break;
284 
285 		case KERN_PROC_RUID:
286 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
287 				continue;
288 			break;
289 
290 		case KERN_PROC_ALL:
291 			if (proc.p_flag & P_SYSTEM)
292 				continue;
293 			break;
294 		}
295 		/*
296 		 * We're going to add another proc to the set.  If this
297 		 * will overflow the buffer, assume the reason is because
298 		 * nprocs (or the proc list) is corrupt and declare an error.
299 		 */
300 		if (cnt >= maxcnt) {
301 			_kvm_err(kd, kd->program, "nprocs corrupt");
302 			return (-1);
303 		}
304 		/*
305 		 * gather eproc
306 		 */
307 		eproc.e_paddr = p;
308 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
309 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
310 			    proc.p_pgrp);
311 			return (-1);
312 		}
313 		eproc.e_sess = pgrp.pg_session;
314 		eproc.e_pgid = pgrp.pg_id;
315 		eproc.e_jobc = pgrp.pg_jobc;
316 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
317 			_kvm_err(kd, kd->program, "can't read session at %x",
318 			    pgrp.pg_session);
319 			return (-1);
320 		}
321 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
322 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
323 				_kvm_err(kd, kd->program,
324 				    "can't read tty at %x", sess.s_ttyp);
325 				return (-1);
326 			}
327 			eproc.e_tdev = tty.t_dev;
328 			eproc.e_tsess = tty.t_session;
329 			if (tty.t_pgrp != NULL) {
330 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
331 					_kvm_err(kd, kd->program,
332 					    "can't read tpgrp at &x",
333 					    tty.t_pgrp);
334 					return (-1);
335 				}
336 				eproc.e_tpgid = pgrp.pg_id;
337 			} else
338 				eproc.e_tpgid = -1;
339 		} else
340 			eproc.e_tdev = NODEV;
341 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
342 		if (sess.s_leader == p)
343 			eproc.e_flag |= EPROC_SLEADER;
344 		if (proc.p_wmesg)
345 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
346 			    eproc.e_wmesg, WMESGLEN);
347 
348 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
349 		    &eproc.e_vm, sizeof(eproc.e_vm));
350 
351 		eproc.e_xsize = eproc.e_xrssize = 0;
352 		eproc.e_xccount = eproc.e_xswrss = 0;
353 
354 		switch (what) {
355 		case KERN_PROC_PGRP:
356 			if (eproc.e_pgid != (pid_t)arg)
357 				continue;
358 			break;
359 
360 		case KERN_PROC_TTY:
361 			if ((proc.p_flag & P_CONTROLT) == 0 ||
362 			    eproc.e_tdev != (dev_t)arg)
363 				continue;
364 			break;
365 		}
366 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
367 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
368 		++bp;
369 		++cnt;
370 	}
371 	return (cnt);
372 }
373 
374 /*
375  * Build proc info array by reading in proc list from a crash dump.
376  * Return number of procs read.  maxcnt is the max we will read.
377  */
378 static int
379 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
380     u_long a_zombproc, int maxcnt)
381 {
382 	struct kinfo_proc *bp = kd->procbase;
383 	struct proc *p;
384 	int acnt, zcnt;
385 
386 	if (KREAD(kd, a_allproc, &p)) {
387 		_kvm_err(kd, kd->program, "cannot read allproc");
388 		return (-1);
389 	}
390 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
391 	if (acnt < 0)
392 		return (acnt);
393 
394 	if (KREAD(kd, a_zombproc, &p)) {
395 		_kvm_err(kd, kd->program, "cannot read zombproc");
396 		return (-1);
397 	}
398 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
399 	if (zcnt < 0)
400 		zcnt = 0;
401 
402 	return (acnt + zcnt);
403 }
404 
405 struct kinfo_proc2 *
406 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
407 {
408 	int mib[6], st, nprocs;
409 	struct user user;
410 	size_t size;
411 
412 	if ((ssize_t)esize < 0)
413 		return (NULL);
414 
415 	if (kd->procbase2 != NULL) {
416 		free(kd->procbase2);
417 		/*
418 		 * Clear this pointer in case this call fails.  Otherwise,
419 		 * kvm_close() will free it again.
420 		 */
421 		kd->procbase2 = 0;
422 	}
423 
424 	if (ISALIVE(kd)) {
425 		size = 0;
426 		mib[0] = CTL_KERN;
427 		mib[1] = KERN_PROC2;
428 		mib[2] = op;
429 		mib[3] = arg;
430 		mib[4] = esize;
431 		mib[5] = 0;
432 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
433 		if (st == -1) {
434 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
435 			return (NULL);
436 		}
437 
438 		mib[5] = size / esize;
439 		kd->procbase2 = _kvm_malloc(kd, size);
440 		if (kd->procbase2 == 0)
441 			return (NULL);
442 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
443 		if (st == -1) {
444 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
445 			return (NULL);
446 		}
447 		nprocs = size / esize;
448 	} else {
449 		struct kinfo_proc2 kp2, *kp2p;
450 		struct kinfo_proc *kp;
451 		char *kp2c;
452 		int i;
453 
454 		kp = kvm_getprocs(kd, op, arg, &nprocs);
455 		if (kp == NULL)
456 			return (NULL);
457 
458 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
459 		kp2c = (char *)kd->procbase2;
460 		kp2p = &kp2;
461 		for (i = 0; i < nprocs; i++, kp++) {
462 			memset(kp2p, 0, sizeof(kp2));
463 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
464 
465 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
466 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
467 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
468 			kp2p->p_limit = PTRTOINT64(kp->kp_eproc.e_limit);
469 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
470 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
471 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
472 			kp2p->p_tsess = 0;
473 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
474 
475 			kp2p->p_eflag = 0;
476 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
477 			kp2p->p_flag = kp->kp_proc.p_flag;
478 
479 			kp2p->p_pid = kp->kp_proc.p_pid;
480 
481 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
482 #if 0
483 			kp2p->p_sid = kp->kp_eproc.e_sid;
484 #else
485 			kp2p->p_sid = -1; /* XXX */
486 #endif
487 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
488 
489 			kp2p->p_tpgid = -1;
490 
491 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
492 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
493 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
494 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
495 
496 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
497 			    MIN(sizeof(kp2p->p_groups),
498 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
499 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
500 
501 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
502 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
503 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
504 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
505 
506 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
507 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
508 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
509 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
510 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
511 			kp2p->p_swtime = kp->kp_proc.p_swtime;
512 			kp2p->p_slptime = kp->kp_proc.p_slptime;
513 			kp2p->p_schedflags = 0;
514 
515 			kp2p->p_uticks = kp->kp_proc.p_uticks;
516 			kp2p->p_sticks = kp->kp_proc.p_sticks;
517 			kp2p->p_iticks = kp->kp_proc.p_iticks;
518 
519 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
520 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
521 
522 			kp2p->p_holdcnt = 1;
523 
524 			kp2p->p_siglist = kp->kp_proc.p_siglist;
525 			kp2p->p_sigmask = kp->kp_proc.p_sigmask;
526 			kp2p->p_sigignore = kp->kp_proc.p_sigignore;
527 			kp2p->p_sigcatch = kp->kp_proc.p_sigcatch;
528 
529 			kp2p->p_stat = kp->kp_proc.p_stat;
530 			kp2p->p_priority = kp->kp_proc.p_priority;
531 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
532 			kp2p->p_nice = kp->kp_proc.p_nice;
533 
534 			kp2p->p_xstat = kp->kp_proc.p_xstat;
535 			kp2p->p_acflag = kp->kp_proc.p_acflag;
536 
537 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
538 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
539 
540 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
541 			    sizeof(kp2p->p_wmesg));
542 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
543 
544 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
545 			    sizeof(kp2p->p_login));
546 
547 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
548 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
549 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
550 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
551 
552 			kp2p->p_eflag = kp->kp_eproc.e_flag;
553 
554 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
555 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
556 				kp2p->p_uvalid = 0;
557 			} else {
558 				kp2p->p_uvalid = 1;
559 
560 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
561 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
562 
563 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
564 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
565 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
566 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
567 
568 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
569 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
570 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
571 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
572 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
573 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
574 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
575 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
576 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
577 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
578 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
579 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
580 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
581 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
582 
583 				kp2p->p_uctime_sec =
584 				    user.u_stats.p_cru.ru_utime.tv_sec +
585 				    user.u_stats.p_cru.ru_stime.tv_sec;
586 				kp2p->p_uctime_usec =
587 				    user.u_stats.p_cru.ru_utime.tv_usec +
588 				    user.u_stats.p_cru.ru_stime.tv_usec;
589 			}
590 
591 			memcpy(kp2c, &kp2, esize);
592 			kp2c += esize;
593 		}
594 
595 		free(kd->procbase);
596 	}
597 	*cnt = nprocs;
598 	return (kd->procbase2);
599 }
600 
601 struct kinfo_proc *
602 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
603 {
604 	int mib[4], st, nprocs;
605 	size_t size;
606 
607 	if (kd->procbase != 0) {
608 		free((void *)kd->procbase);
609 		/*
610 		 * Clear this pointer in case this call fails.  Otherwise,
611 		 * kvm_close() will free it again.
612 		 */
613 		kd->procbase = 0;
614 	}
615 	if (ISALIVE(kd)) {
616 		size = 0;
617 		mib[0] = CTL_KERN;
618 		mib[1] = KERN_PROC;
619 		mib[2] = op;
620 		mib[3] = arg;
621 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
622 		if (st == -1) {
623 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
624 			return (0);
625 		}
626 		kd->procbase = _kvm_malloc(kd, size);
627 		if (kd->procbase == 0)
628 			return (0);
629 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
630 		if (st == -1) {
631 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
632 			return (0);
633 		}
634 		if (size % sizeof(struct kinfo_proc) != 0) {
635 			_kvm_err(kd, kd->program,
636 			    "proc size mismatch (%d total, %d chunks)",
637 			    size, sizeof(struct kinfo_proc));
638 			return (0);
639 		}
640 		nprocs = size / sizeof(struct kinfo_proc);
641 	} else {
642 		struct nlist nl[4], *p;
643 
644 		memset(nl, 0, sizeof(nl));
645 		nl[0].n_name = "_nprocs";
646 		nl[1].n_name = "_allproc";
647 		nl[2].n_name = "_zombproc";
648 		nl[3].n_name = NULL;
649 
650 		if (kvm_nlist(kd, nl) != 0) {
651 			for (p = nl; p->n_type != 0; ++p)
652 				;
653 			_kvm_err(kd, kd->program,
654 			    "%s: no such symbol", p->n_name);
655 			return (0);
656 		}
657 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
658 			_kvm_err(kd, kd->program, "can't read nprocs");
659 			return (0);
660 		}
661 		size = nprocs * sizeof(struct kinfo_proc);
662 		kd->procbase = _kvm_malloc(kd, size);
663 		if (kd->procbase == 0)
664 			return (0);
665 
666 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
667 		    nl[2].n_value, nprocs);
668 #ifdef notdef
669 		size = nprocs * sizeof(struct kinfo_proc);
670 		(void)realloc(kd->procbase, size);
671 #endif
672 	}
673 	*cnt = nprocs;
674 	return (kd->procbase);
675 }
676 
677 void
678 _kvm_freeprocs(kvm_t *kd)
679 {
680 	if (kd->procbase) {
681 		free(kd->procbase);
682 		kd->procbase = 0;
683 	}
684 }
685 
686 void *
687 _kvm_realloc(kvm_t *kd, void *p, size_t n)
688 {
689 	void *np = (void *)realloc(p, n);
690 
691 	if (np == 0)
692 		_kvm_err(kd, kd->program, "out of memory");
693 	return (np);
694 }
695 
696 /*
697  * Read in an argument vector from the user address space of process p.
698  * addr if the user-space base address of narg null-terminated contiguous
699  * strings.  This is used to read in both the command arguments and
700  * environment strings.  Read at most maxcnt characters of strings.
701  */
702 static char **
703 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
704     int maxcnt)
705 {
706 	char *np, *cp, *ep, *ap, **argv;
707 	u_long oaddr = -1;
708 	int len, cc;
709 
710 	/*
711 	 * Check that there aren't an unreasonable number of agruments,
712 	 * and that the address is in user space.
713 	 */
714 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
715 		return (0);
716 
717 	if (kd->argv == 0) {
718 		/*
719 		 * Try to avoid reallocs.
720 		 */
721 		kd->argc = MAX(narg + 1, 32);
722 		kd->argv = _kvm_malloc(kd, kd->argc *
723 		    sizeof(*kd->argv));
724 		if (kd->argv == 0)
725 			return (0);
726 	} else if (narg + 1 > kd->argc) {
727 		kd->argc = MAX(2 * kd->argc, narg + 1);
728 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
729 		    sizeof(*kd->argv));
730 		if (kd->argv == 0)
731 			return (0);
732 	}
733 	if (kd->argspc == 0) {
734 		kd->argspc = _kvm_malloc(kd, kd->nbpg);
735 		if (kd->argspc == 0)
736 			return (0);
737 		kd->arglen = kd->nbpg;
738 	}
739 	if (kd->argbuf == 0) {
740 		kd->argbuf = _kvm_malloc(kd, kd->nbpg);
741 		if (kd->argbuf == 0)
742 			return (0);
743 	}
744 	cc = sizeof(char *) * narg;
745 	if (kvm_ureadm(kd, p, addr, (char *)kd->argv, cc) != cc)
746 		return (0);
747 	ap = np = kd->argspc;
748 	argv = kd->argv;
749 	len = 0;
750 
751 	/*
752 	 * Loop over pages, filling in the argument vector.
753 	 */
754 	while (argv < kd->argv + narg && *argv != 0) {
755 		addr = (u_long)*argv & ~(kd->nbpg - 1);
756 		if (addr != oaddr) {
757 			if (kvm_ureadm(kd, p, addr, kd->argbuf, kd->nbpg) !=
758 			    kd->nbpg)
759 				return (0);
760 			oaddr = addr;
761 		}
762 		addr = (u_long)*argv & (kd->nbpg - 1);
763 		cp = kd->argbuf + addr;
764 		cc = kd->nbpg - addr;
765 		if (maxcnt > 0 && cc > maxcnt - len)
766 			cc = maxcnt - len;
767 		ep = memchr(cp, '\0', cc);
768 		if (ep != 0)
769 			cc = ep - cp + 1;
770 		if (len + cc > kd->arglen) {
771 			int off;
772 			char **pp;
773 			char *op = kd->argspc;
774 
775 			kd->arglen *= 2;
776 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
777 			    kd->arglen);
778 			if (kd->argspc == 0)
779 				return (0);
780 			/*
781 			 * Adjust argv pointers in case realloc moved
782 			 * the string space.
783 			 */
784 			off = kd->argspc - op;
785 			for (pp = kd->argv; pp < argv; pp++)
786 				*pp += off;
787 			ap += off;
788 			np += off;
789 		}
790 		memcpy(np, cp, cc);
791 		np += cc;
792 		len += cc;
793 		if (ep != 0) {
794 			*argv++ = ap;
795 			ap = np;
796 		} else
797 			*argv += cc;
798 		if (maxcnt > 0 && len >= maxcnt) {
799 			/*
800 			 * We're stopping prematurely.  Terminate the
801 			 * current string.
802 			 */
803 			if (ep == 0) {
804 				*np = '\0';
805 				*argv++ = ap;
806 			}
807 			break;
808 		}
809 	}
810 	/* Make sure argv is terminated. */
811 	*argv = 0;
812 	return (kd->argv);
813 }
814 
815 static void
816 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
817 {
818 	*addr = (u_long)p->ps_argvstr;
819 	*n = p->ps_nargvstr;
820 }
821 
822 static void
823 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
824 {
825 	*addr = (u_long)p->ps_envstr;
826 	*n = p->ps_nenvstr;
827 }
828 
829 /*
830  * Determine if the proc indicated by p is still active.
831  * This test is not 100% foolproof in theory, but chances of
832  * being wrong are very low.
833  */
834 static int
835 proc_verify(kvm_t *kd, const struct miniproc *p)
836 {
837 	struct proc kernproc;
838 
839 	/*
840 	 * Just read in the whole proc.  It's not that big relative
841 	 * to the cost of the read system call.
842 	 */
843 	if (kvm_read(kd, (u_long)p->p_paddr, &kernproc, sizeof(kernproc)) !=
844 	    sizeof(kernproc))
845 		return (0);
846 	return (p->p_pid == kernproc.p_pid &&
847 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
848 }
849 
850 static char **
851 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
852     void (*info)(struct ps_strings *, u_long *, int *))
853 {
854 	static struct ps_strings *ps;
855 	struct ps_strings arginfo;
856 	u_long addr;
857 	char **ap;
858 	int cnt;
859 
860 	if (ps == NULL) {
861 		struct _ps_strings _ps;
862 		int mib[2];
863 		size_t len;
864 
865 		mib[0] = CTL_VM;
866 		mib[1] = VM_PSSTRINGS;
867 		len = sizeof(_ps);
868 		sysctl(mib, 2, &_ps, &len, NULL, 0);
869 		ps = (struct ps_strings *)_ps.val;
870 	}
871 
872 	/*
873 	 * Pointers are stored at the top of the user stack.
874 	 */
875 	if (p->p_stat == SZOMB ||
876 	    kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo,
877 	    sizeof(arginfo)) != sizeof(arginfo))
878 		return (0);
879 
880 	(*info)(&arginfo, &addr, &cnt);
881 	if (cnt == 0)
882 		return (0);
883 	ap = kvm_argv(kd, p, addr, cnt, nchr);
884 	/*
885 	 * For live kernels, make sure this process didn't go away.
886 	 */
887 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p))
888 		ap = 0;
889 	return (ap);
890 }
891 
892 static char **
893 kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int env)
894 {
895 	size_t len, orglen;
896 	int mib[4], ret;
897 	char *buf;
898 
899 	orglen = env ? kd->nbpg : 8 * kd->nbpg;	/* XXX - should be ARG_MAX */
900 	if (kd->argbuf == NULL &&
901 	    (kd->argbuf = _kvm_malloc(kd, orglen)) == NULL)
902 		return (NULL);
903 
904 again:
905 	mib[0] = CTL_KERN;
906 	mib[1] = KERN_PROC_ARGS;
907 	mib[2] = (int)pid;
908 	mib[3] = env ? KERN_PROC_ENV : KERN_PROC_ARGV;
909 
910 	len = orglen;
911 	ret = (sysctl(mib, 4, kd->argbuf, &len, NULL, 0) < 0);
912 	if (ret && errno == ENOMEM) {
913 		orglen *= 2;
914 		buf = _kvm_realloc(kd, kd->argbuf, orglen);
915 		if (buf == NULL)
916 			return (NULL);
917 		kd->argbuf = buf;
918 		goto again;
919 	}
920 
921 	if (ret) {
922 		free(kd->argbuf);
923 		kd->argbuf = NULL;
924 		_kvm_syserr(kd, kd->program, "kvm_arg_sysctl");
925 		return (NULL);
926 	}
927 #if 0
928 	for (argv = (char **)kd->argbuf; *argv != NULL; argv++)
929 		if (strlen(*argv) > nchr)
930 			*argv[nchr] = '\0';
931 #endif
932 
933 	return (char **)(kd->argbuf);
934 }
935 
936 /*
937  * Get the command args.  This code is now machine independent.
938  */
939 char **
940 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
941 {
942 	struct miniproc p;
943 
944 	if (ISALIVE(kd))
945 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 0));
946 	KPTOMINI(kp, &p);
947 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
948 }
949 
950 char **
951 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
952 {
953 	struct miniproc p;
954 
955 	if (ISALIVE(kd))
956 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 1));
957 	KPTOMINI(kp, &p);
958 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
959 }
960 
961 char **
962 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
963 {
964 	struct miniproc p;
965 
966 	if (ISALIVE(kd))
967 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0));
968 	KP2TOMINI(kp, &p);
969 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
970 }
971 
972 char **
973 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
974 {
975 	struct miniproc p;
976 
977 	if (ISALIVE(kd))
978 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1));
979 	KP2TOMINI(kp, &p);
980 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
981 }
982 
983 /*
984  * Read from user space.  The user context is given by p.
985  */
986 static ssize_t
987 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, char *buf,
988     size_t len)
989 {
990 	char *cp = buf;
991 
992 	while (len > 0) {
993 		u_long cnt;
994 		size_t cc;
995 		char *dp;
996 
997 		dp = _kvm_ureadm(kd, p, uva, &cnt);
998 		if (dp == 0) {
999 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1000 			return (0);
1001 		}
1002 		cc = (size_t)MIN(cnt, len);
1003 		bcopy(dp, cp, cc);
1004 		cp += cc;
1005 		uva += cc;
1006 		len -= cc;
1007 	}
1008 	return (ssize_t)(cp - buf);
1009 }
1010 
1011 ssize_t
1012 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf,
1013     size_t len)
1014 {
1015 	struct miniproc mp;
1016 
1017 	PTOMINI(p, &mp);
1018 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1019 }
1020