xref: /openbsd-src/lib/libkvm/kvm_proc.c (revision 33b4f39fbeffad07bc3206f173cff9f3c9901cd1)
1 /*	$OpenBSD: kvm_proc.c,v 1.21 2004/01/07 03:47:46 millert Exp $	*/
2 /*	$NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $	*/
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 /*-
39  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  */
71 
72 #if defined(LIBC_SCCS) && !defined(lint)
73 #if 0
74 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
75 #else
76 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.21 2004/01/07 03:47:46 millert Exp $";
77 #endif
78 #endif /* LIBC_SCCS and not lint */
79 
80 /*
81  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
82  * users of this code, so we've factored it out into a separate module.
83  * Thus, we keep this grunge out of the other kvm applications (i.e.,
84  * most other applications are interested only in open/close/read/nlist).
85  */
86 
87 #include <sys/param.h>
88 #include <sys/user.h>
89 #include <sys/proc.h>
90 #include <sys/exec.h>
91 #include <sys/stat.h>
92 #include <sys/ioctl.h>
93 #include <sys/tty.h>
94 #include <stdlib.h>
95 #include <string.h>
96 #include <unistd.h>
97 #include <nlist.h>
98 #include <kvm.h>
99 
100 #include <uvm/uvm_extern.h>
101 #include <uvm/uvm_amap.h>
102 #include <machine/vmparam.h>
103 #include <machine/pmap.h>
104 
105 #include <sys/sysctl.h>
106 
107 #include <limits.h>
108 #include <db.h>
109 #include <paths.h>
110 
111 #include "kvm_private.h"
112 
113 /*
114  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
115  */
116 struct miniproc {
117 	struct	vmspace *p_vmspace;
118 	char	p_stat;
119 	struct	proc *p_paddr;
120 	pid_t	p_pid;
121 };
122 
123 /*
124  * Convert from struct proc and kinfo_proc{,2} to miniproc.
125  */
126 #define PTOMINI(kp, p) \
127 	do { \
128 		(p)->p_stat = (kp)->p_stat; \
129 		(p)->p_pid = (kp)->p_pid; \
130 		(p)->p_paddr = NULL; \
131 		(p)->p_vmspace = (kp)->p_vmspace; \
132 	} while (/*CONSTCOND*/0);
133 
134 #define KPTOMINI(kp, p) \
135 	do { \
136 		(p)->p_stat = (kp)->kp_proc.p_stat; \
137 		(p)->p_pid = (kp)->kp_proc.p_pid; \
138 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
139 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
140 	} while (/*CONSTCOND*/0);
141 
142 #define KP2TOMINI(kp, p) \
143 	do { \
144 		(p)->p_stat = (kp)->p_stat; \
145 		(p)->p_pid = (kp)->p_pid; \
146 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
147 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
148 	} while (/*CONSTCOND*/0);
149 
150 
151 #define	PTRTOINT64(foo)	((u_int64_t)(u_long)(foo))
152 
153 #define KREAD(kd, addr, obj) \
154 	(kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
155 
156 ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *, size_t);
157 
158 static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, u_long *);
159 static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long, char *, size_t);
160 
161 static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
162 
163 static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
164 static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
165 		    void (*)(struct ps_strings *, u_long *, int *));
166 static int	kvm_proclist(kvm_t *, int, int, struct proc *,
167 		    struct kinfo_proc *, int);
168 static int	proc_verify(kvm_t *, const struct miniproc *);
169 static void	ps_str_a(struct ps_strings *, u_long *, int *);
170 static void	ps_str_e(struct ps_strings *, u_long *, int *);
171 
172 static char *
173 _kvm_ureadm(kd, p, va, cnt)
174 	kvm_t *kd;
175 	const struct miniproc *p;
176 	u_long va;
177 	u_long *cnt;
178 {
179 	u_long addr, head;
180 	u_long offset;
181 	struct vm_map_entry vme;
182 	struct vm_amap amap;
183 	struct vm_anon *anonp, anon;
184 	struct vm_page pg;
185 	u_long slot;
186 
187 	if (kd->swapspc == 0) {
188 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
189 		if (kd->swapspc == 0)
190 			return (0);
191 	}
192 
193 	/*
194 	 * Look through the address map for the memory object
195 	 * that corresponds to the given virtual address.
196 	 * The header just has the entire valid range.
197 	 */
198 	head = (u_long)&p->p_vmspace->vm_map.header;
199 	addr = head;
200 	while (1) {
201 		if (KREAD(kd, addr, &vme))
202 			return (0);
203 
204 		if (va >= vme.start && va < vme.end &&
205 		    vme.aref.ar_amap != NULL)
206 			break;
207 
208 		addr = (u_long)vme.next;
209 		if (addr == head)
210 			return (0);
211 	}
212 
213 	/*
214 	 * we found the map entry, now to find the object...
215 	 */
216 	if (vme.aref.ar_amap == NULL)
217 		return NULL;
218 
219 	addr = (u_long)vme.aref.ar_amap;
220 	if (KREAD(kd, addr, &amap))
221 		return NULL;
222 
223 	offset = va - vme.start;
224 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
225 	/* sanity-check slot number */
226 	if (slot > amap.am_nslot)
227 		return NULL;
228 
229 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
230 	if (KREAD(kd, addr, &anonp))
231 		return NULL;
232 
233 	addr = (u_long)anonp;
234 	if (KREAD(kd, addr, &anon))
235 		return NULL;
236 
237 	addr = (u_long)anon.u.an_page;
238 	if (addr) {
239 		if (KREAD(kd, addr, &pg))
240 			return NULL;
241 
242 		if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg) {
243 			return NULL;
244 		}
245 	} else {
246 		if (_kvm_pread(kd, kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg, (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) {
247 			return NULL;
248 		}
249 	}
250 
251 	/* Found the page. */
252 	offset %= kd->nbpg;
253 	*cnt = kd->nbpg - offset;
254 	return (&kd->swapspc[offset]);
255 }
256 
257 char *
258 _kvm_uread(kd, p, va, cnt)
259 	kvm_t *kd;
260 	const struct proc *p;
261 	u_long va;
262 	u_long *cnt;
263 {
264 	struct miniproc mp;
265 
266 	PTOMINI(p, &mp);
267 	return (_kvm_ureadm(kd, &mp, va, cnt));
268 }
269 
270 /*
271  * Read proc's from memory file into buffer bp, which has space to hold
272  * at most maxcnt procs.
273  */
274 static int
275 kvm_proclist(kd, what, arg, p, bp, maxcnt)
276 	kvm_t *kd;
277 	int what, arg;
278 	struct proc *p;
279 	struct kinfo_proc *bp;
280 	int maxcnt;
281 {
282 	int cnt = 0;
283 	struct eproc eproc;
284 	struct pgrp pgrp;
285 	struct session sess;
286 	struct tty tty;
287 	struct proc proc;
288 
289 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
290 		if (KREAD(kd, (u_long)p, &proc)) {
291 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
292 			return (-1);
293 		}
294 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
295 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
296 			      &eproc.e_ucred);
297 
298 		switch(what) {
299 
300 		case KERN_PROC_PID:
301 			if (proc.p_pid != (pid_t)arg)
302 				continue;
303 			break;
304 
305 		case KERN_PROC_UID:
306 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
307 				continue;
308 			break;
309 
310 		case KERN_PROC_RUID:
311 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
312 				continue;
313 			break;
314 
315 		case KERN_PROC_ALL:
316 			if (proc.p_flag & P_SYSTEM)
317 				continue;
318 			break;
319 		}
320 		/*
321 		 * We're going to add another proc to the set.  If this
322 		 * will overflow the buffer, assume the reason is because
323 		 * nprocs (or the proc list) is corrupt and declare an error.
324 		 */
325 		if (cnt >= maxcnt) {
326 			_kvm_err(kd, kd->program, "nprocs corrupt");
327 			return (-1);
328 		}
329 		/*
330 		 * gather eproc
331 		 */
332 		eproc.e_paddr = p;
333 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
334 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
335 				 proc.p_pgrp);
336 			return (-1);
337 		}
338 		eproc.e_sess = pgrp.pg_session;
339 		eproc.e_pgid = pgrp.pg_id;
340 		eproc.e_jobc = pgrp.pg_jobc;
341 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
342 			_kvm_err(kd, kd->program, "can't read session at %x",
343 				pgrp.pg_session);
344 			return (-1);
345 		}
346 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
347 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
348 				_kvm_err(kd, kd->program,
349 					 "can't read tty at %x", sess.s_ttyp);
350 				return (-1);
351 			}
352 			eproc.e_tdev = tty.t_dev;
353 			eproc.e_tsess = tty.t_session;
354 			if (tty.t_pgrp != NULL) {
355 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
356 					_kvm_err(kd, kd->program,
357 						 "can't read tpgrp at &x",
358 						tty.t_pgrp);
359 					return (-1);
360 				}
361 				eproc.e_tpgid = pgrp.pg_id;
362 			} else
363 				eproc.e_tpgid = -1;
364 		} else
365 			eproc.e_tdev = NODEV;
366 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
367 		if (sess.s_leader == p)
368 			eproc.e_flag |= EPROC_SLEADER;
369 		if (proc.p_wmesg)
370 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
371 			    eproc.e_wmesg, WMESGLEN);
372 
373 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
374 		    &eproc.e_vm, sizeof(eproc.e_vm));
375 
376 		eproc.e_xsize = eproc.e_xrssize = 0;
377 		eproc.e_xccount = eproc.e_xswrss = 0;
378 
379 		switch (what) {
380 
381 		case KERN_PROC_PGRP:
382 			if (eproc.e_pgid != (pid_t)arg)
383 				continue;
384 			break;
385 
386 		case KERN_PROC_TTY:
387 			if ((proc.p_flag & P_CONTROLT) == 0 ||
388 			     eproc.e_tdev != (dev_t)arg)
389 				continue;
390 			break;
391 		}
392 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
393 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
394 		++bp;
395 		++cnt;
396 	}
397 	return (cnt);
398 }
399 
400 /*
401  * Build proc info array by reading in proc list from a crash dump.
402  * Return number of procs read.  maxcnt is the max we will read.
403  */
404 static int
405 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
406 	kvm_t *kd;
407 	int what, arg;
408 	u_long a_allproc;
409 	u_long a_zombproc;
410 	int maxcnt;
411 {
412 	struct kinfo_proc *bp = kd->procbase;
413 	int acnt, zcnt;
414 	struct proc *p;
415 
416 	if (KREAD(kd, a_allproc, &p)) {
417 		_kvm_err(kd, kd->program, "cannot read allproc");
418 		return (-1);
419 	}
420 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
421 	if (acnt < 0)
422 		return (acnt);
423 
424 	if (KREAD(kd, a_zombproc, &p)) {
425 		_kvm_err(kd, kd->program, "cannot read zombproc");
426 		return (-1);
427 	}
428 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
429 	if (zcnt < 0)
430 		zcnt = 0;
431 
432 	return (acnt + zcnt);
433 }
434 
435 struct kinfo_proc2 *
436 kvm_getproc2(kd, op, arg, esize, cnt)
437 	kvm_t *kd;
438 	int op, arg;
439 	size_t esize;
440 	int *cnt;
441 {
442 	size_t size;
443 	int mib[6], st, nprocs;
444 	struct user user;
445 
446 	if (esize < 0)
447 		return NULL;
448 
449 	if (kd->procbase2 != NULL) {
450 		free(kd->procbase2);
451 		/*
452 		 * Clear this pointer in case this call fails.  Otherwise,
453 		 * kvm_close() will free it again.
454 		 */
455 		kd->procbase2 = 0;
456 	}
457 
458 	if (ISALIVE(kd)) {
459 		size = 0;
460 		mib[0] = CTL_KERN;
461 		mib[1] = KERN_PROC2;
462 		mib[2] = op;
463 		mib[3] = arg;
464 		mib[4] = esize;
465 		mib[5] = 0;
466 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
467 		if (st == -1) {
468 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
469 			return NULL;
470 		}
471 
472 		mib[5] = size / esize;
473 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
474 		if (kd->procbase2 == 0)
475 			return NULL;
476 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
477 		if (st == -1) {
478 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
479 			return NULL;
480 		}
481 		nprocs = size / esize;
482 	} else {
483 		char *kp2c;
484 		struct kinfo_proc *kp;
485 		struct kinfo_proc2 kp2, *kp2p;
486 		int i;
487 
488 		kp = kvm_getprocs(kd, op, arg, &nprocs);
489 		if (kp == NULL)
490 			return NULL;
491 
492 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
493 		kp2c = (char *)kd->procbase2;
494 		kp2p = &kp2;
495 		for (i = 0; i < nprocs; i++, kp++) {
496 			memset(kp2p, 0, sizeof(kp2));
497 			kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw);
498 			kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back);
499 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
500 
501 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
502 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
503 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
504 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
505 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
506 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
507 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
508 			kp2p->p_tsess = 0;
509 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
510 
511 			kp2p->p_eflag = 0;
512 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
513 			kp2p->p_flag = kp->kp_proc.p_flag;
514 
515 			kp2p->p_pid = kp->kp_proc.p_pid;
516 
517 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
518 #if 0
519 			kp2p->p_sid = kp->kp_eproc.e_sid;
520 #else
521 			kp2p->p_sid = -1; /* XXX */
522 #endif
523 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
524 
525 			kp2p->p_tpgid = -1;
526 
527 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
528 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
529 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
530 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
531 
532 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
533 			    MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
534 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
535 
536 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
537 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
538 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
539 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
540 
541 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
542 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
543 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
544 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
545 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
546 			kp2p->p_swtime = kp->kp_proc.p_swtime;
547 			kp2p->p_slptime = kp->kp_proc.p_slptime;
548 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
549 
550 			kp2p->p_uticks = kp->kp_proc.p_uticks;
551 			kp2p->p_sticks = kp->kp_proc.p_sticks;
552 			kp2p->p_iticks = kp->kp_proc.p_iticks;
553 
554 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
555 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
556 
557 			kp2p->p_holdcnt = kp->kp_proc.p_holdcnt;
558 
559 			kp2p->p_siglist = kp->kp_proc.p_siglist;
560 			kp2p->p_sigmask = kp->kp_proc.p_sigmask;
561 			kp2p->p_sigignore = kp->kp_proc.p_sigignore;
562 			kp2p->p_sigcatch = kp->kp_proc.p_sigcatch;
563 
564 			kp2p->p_stat = kp->kp_proc.p_stat;
565 			kp2p->p_priority = kp->kp_proc.p_priority;
566 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
567 			kp2p->p_nice = kp->kp_proc.p_nice;
568 
569 			kp2p->p_xstat = kp->kp_proc.p_xstat;
570 			kp2p->p_acflag = kp->kp_proc.p_acflag;
571 
572 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
573 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
574 
575 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
576 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
577 
578 			strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
579 
580 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
581 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
582 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
583 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
584 
585 			kp2p->p_eflag = kp->kp_eproc.e_flag;
586 
587 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
588 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
589 				kp2p->p_uvalid = 0;
590 			} else {
591 				kp2p->p_uvalid = 1;
592 
593 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
594 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
595 
596 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
597 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
598 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
599 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
600 
601 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
602 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
603 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
604 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
605 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
606 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
607 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
608 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
609 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
610 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
611 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
612 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
613 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
614 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
615 
616 				kp2p->p_uctime_sec = user.u_stats.p_cru.ru_utime.tv_sec +
617 				    user.u_stats.p_cru.ru_stime.tv_sec;
618 				kp2p->p_uctime_usec = user.u_stats.p_cru.ru_utime.tv_usec +
619 				    user.u_stats.p_cru.ru_stime.tv_usec;
620 			}
621 
622 			memcpy(kp2c, &kp2, esize);
623 			kp2c += esize;
624 		}
625 
626 		free(kd->procbase);
627 	}
628 	*cnt = nprocs;
629 	return (kd->procbase2);
630 }
631 
632 struct kinfo_proc *
633 kvm_getprocs(kd, op, arg, cnt)
634 	kvm_t *kd;
635 	int op, arg;
636 	int *cnt;
637 {
638 	size_t size;
639 	int mib[4], st, nprocs;
640 
641 	if (kd->procbase != 0) {
642 		free((void *)kd->procbase);
643 		/*
644 		 * Clear this pointer in case this call fails.  Otherwise,
645 		 * kvm_close() will free it again.
646 		 */
647 		kd->procbase = 0;
648 	}
649 	if (ISALIVE(kd)) {
650 		size = 0;
651 		mib[0] = CTL_KERN;
652 		mib[1] = KERN_PROC;
653 		mib[2] = op;
654 		mib[3] = arg;
655 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
656 		if (st == -1) {
657 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
658 			return (0);
659 		}
660 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
661 		if (kd->procbase == 0)
662 			return (0);
663 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
664 		if (st == -1) {
665 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
666 			return (0);
667 		}
668 		if (size % sizeof(struct kinfo_proc) != 0) {
669 			_kvm_err(kd, kd->program,
670 				"proc size mismatch (%d total, %d chunks)",
671 				size, sizeof(struct kinfo_proc));
672 			return (0);
673 		}
674 		nprocs = size / sizeof(struct kinfo_proc);
675 	} else {
676 		struct nlist nl[4], *p;
677 
678 		memset(nl, 0, sizeof(nl));
679 		nl[0].n_name = "_nprocs";
680 		nl[1].n_name = "_allproc";
681 		nl[2].n_name = "_zombproc";
682 		nl[3].n_name = NULL;
683 
684 		if (kvm_nlist(kd, nl) != 0) {
685 			for (p = nl; p->n_type != 0; ++p)
686 				;
687 			_kvm_err(kd, kd->program,
688 				 "%s: no such symbol", p->n_name);
689 			return (0);
690 		}
691 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
692 			_kvm_err(kd, kd->program, "can't read nprocs");
693 			return (0);
694 		}
695 		size = nprocs * sizeof(struct kinfo_proc);
696 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
697 		if (kd->procbase == 0)
698 			return (0);
699 
700 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
701 				      nl[2].n_value, nprocs);
702 #ifdef notdef
703 		size = nprocs * sizeof(struct kinfo_proc);
704 		(void)realloc(kd->procbase, size);
705 #endif
706 	}
707 	*cnt = nprocs;
708 	return (kd->procbase);
709 }
710 
711 void
712 _kvm_freeprocs(kd)
713 	kvm_t *kd;
714 {
715 	if (kd->procbase) {
716 		free(kd->procbase);
717 		kd->procbase = 0;
718 	}
719 }
720 
721 void *
722 _kvm_realloc(kd, p, n)
723 	kvm_t *kd;
724 	void *p;
725 	size_t n;
726 {
727 	void *np = (void *)realloc(p, n);
728 
729 	if (np == 0)
730 		_kvm_err(kd, kd->program, "out of memory");
731 	return (np);
732 }
733 
734 /*
735  * Read in an argument vector from the user address space of process p.
736  * addr if the user-space base address of narg null-terminated contiguous
737  * strings.  This is used to read in both the command arguments and
738  * environment strings.  Read at most maxcnt characters of strings.
739  */
740 static char **
741 kvm_argv(kd, p, addr, narg, maxcnt)
742 	kvm_t *kd;
743 	const struct miniproc *p;
744 	u_long addr;
745 	int narg;
746 	int maxcnt;
747 {
748 	char *np, *cp, *ep, *ap;
749 	u_long oaddr = -1;
750 	int len, cc;
751 	char **argv;
752 
753 	/*
754 	 * Check that there aren't an unreasonable number of agruments,
755 	 * and that the address is in user space.
756 	 */
757 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
758 		return (0);
759 
760 	if (kd->argv == 0) {
761 		/*
762 		 * Try to avoid reallocs.
763 		 */
764 		kd->argc = MAX(narg + 1, 32);
765 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
766 						sizeof(*kd->argv));
767 		if (kd->argv == 0)
768 			return (0);
769 	} else if (narg + 1 > kd->argc) {
770 		kd->argc = MAX(2 * kd->argc, narg + 1);
771 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
772 						sizeof(*kd->argv));
773 		if (kd->argv == 0)
774 			return (0);
775 	}
776 	if (kd->argspc == 0) {
777 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
778 		if (kd->argspc == 0)
779 			return (0);
780 		kd->arglen = kd->nbpg;
781 	}
782 	if (kd->argbuf == 0) {
783 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
784 		if (kd->argbuf == 0)
785 			return (0);
786 	}
787 	cc = sizeof(char *) * narg;
788 	if (kvm_ureadm(kd, p, addr, (char *)kd->argv, cc) != cc)
789 		return (0);
790 	ap = np = kd->argspc;
791 	argv = kd->argv;
792 	len = 0;
793 	/*
794 	 * Loop over pages, filling in the argument vector.
795 	 */
796 	while (argv < kd->argv + narg && *argv != 0) {
797 		addr = (u_long)*argv & ~(kd->nbpg - 1);
798 		if (addr != oaddr) {
799 			if (kvm_ureadm(kd, p, addr, kd->argbuf, kd->nbpg) !=
800 			    kd->nbpg)
801 				return (0);
802 			oaddr = addr;
803 		}
804 		addr = (u_long)*argv & (kd->nbpg - 1);
805 		cp = kd->argbuf + addr;
806 		cc = kd->nbpg - addr;
807 		if (maxcnt > 0 && cc > maxcnt - len)
808 			cc = maxcnt - len;
809 		ep = memchr(cp, '\0', cc);
810 		if (ep != 0)
811 			cc = ep - cp + 1;
812 		if (len + cc > kd->arglen) {
813 			int off;
814 			char **pp;
815 			char *op = kd->argspc;
816 
817 			kd->arglen *= 2;
818 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
819 							  kd->arglen);
820 			if (kd->argspc == 0)
821 				return (0);
822 			/*
823 			 * Adjust argv pointers in case realloc moved
824 			 * the string space.
825 			 */
826 			off = kd->argspc - op;
827 			for (pp = kd->argv; pp < argv; pp++)
828 				*pp += off;
829 			ap += off;
830 			np += off;
831 		}
832 		memcpy(np, cp, cc);
833 		np += cc;
834 		len += cc;
835 		if (ep != 0) {
836 			*argv++ = ap;
837 			ap = np;
838 		} else
839 			*argv += cc;
840 		if (maxcnt > 0 && len >= maxcnt) {
841 			/*
842 			 * We're stopping prematurely.  Terminate the
843 			 * current string.
844 			 */
845 			if (ep == 0) {
846 				*np = '\0';
847 				*argv++ = ap;
848 			}
849 			break;
850 		}
851 	}
852 	/* Make sure argv is terminated. */
853 	*argv = 0;
854 	return (kd->argv);
855 }
856 
857 static void
858 ps_str_a(p, addr, n)
859 	struct ps_strings *p;
860 	u_long *addr;
861 	int *n;
862 {
863 	*addr = (u_long)p->ps_argvstr;
864 	*n = p->ps_nargvstr;
865 }
866 
867 static void
868 ps_str_e(p, addr, n)
869 	struct ps_strings *p;
870 	u_long *addr;
871 	int *n;
872 {
873 	*addr = (u_long)p->ps_envstr;
874 	*n = p->ps_nenvstr;
875 }
876 
877 /*
878  * Determine if the proc indicated by p is still active.
879  * This test is not 100% foolproof in theory, but chances of
880  * being wrong are very low.
881  */
882 static int
883 proc_verify(kd, p)
884 	kvm_t *kd;
885 	const struct miniproc *p;
886 {
887 	struct proc kernproc;
888 
889 	/*
890 	 * Just read in the whole proc.  It's not that big relative
891 	 * to the cost of the read system call.
892 	 */
893 	if (kvm_read(kd, (u_long)p->p_paddr, &kernproc, sizeof(kernproc)) !=
894 	    sizeof(kernproc))
895 		return (0);
896 	return (p->p_pid == kernproc.p_pid &&
897 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
898 }
899 
900 static char **
901 kvm_doargv(kd, p, nchr, info)
902 	kvm_t *kd;
903 	const struct miniproc *p;
904 	int nchr;
905 	void (*info)(struct ps_strings *, u_long *, int *);
906 {
907 	char **ap;
908 	u_long addr;
909 	int cnt;
910 	struct ps_strings arginfo;
911 	static struct ps_strings *ps;
912 
913 	if (ps == NULL) {
914 		struct _ps_strings _ps;
915 		int mib[2];
916 		size_t len;
917 
918 		mib[0] = CTL_VM;
919 		mib[1] = VM_PSSTRINGS;
920 		len = sizeof(_ps);
921 		sysctl(mib, 2, &_ps, &len, NULL, 0);
922 		ps = (struct ps_strings *)_ps.val;
923 	}
924 
925 	/*
926 	 * Pointers are stored at the top of the user stack.
927 	 */
928 	if (p->p_stat == SZOMB ||
929 	    kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo,
930 		      sizeof(arginfo)) != sizeof(arginfo))
931 		return (0);
932 
933 	(*info)(&arginfo, &addr, &cnt);
934 	if (cnt == 0)
935 		return (0);
936 	ap = kvm_argv(kd, p, addr, cnt, nchr);
937 	/*
938 	 * For live kernels, make sure this process didn't go away.
939 	 */
940 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p))
941 		ap = 0;
942 	return (ap);
943 }
944 
945 static char **
946 kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int env)
947 {
948 	int mib[4];
949 	size_t len, orglen;
950 	int ret;
951 	char *buf;
952 
953 	orglen = kd->nbpg;
954 	if (kd->argbuf == NULL &&
955 	    (kd->argbuf = _kvm_malloc(kd, orglen)) == NULL)
956 		return (NULL);
957 
958 again:
959 	mib[0] = CTL_KERN;
960 	mib[1] = KERN_PROC_ARGS;
961 	mib[2] = (int)pid;
962 	mib[3] = env ? KERN_PROC_ENV : KERN_PROC_ARGV;
963 
964 	len = orglen;
965 	ret = (sysctl(mib, 4, kd->argbuf, &len, NULL, 0) < 0);
966 	if (ret && errno == ENOMEM) {
967 		orglen += kd->nbpg;
968 		buf = _kvm_realloc(kd, kd->argbuf, orglen);
969 		if (buf == NULL)
970 			return (NULL);
971 		kd->argbuf = buf;
972 		goto again;
973 	}
974 
975 	if (ret) {
976 		free(kd->argbuf);
977 		kd->argbuf = NULL;
978 		_kvm_syserr(kd, kd->program, "kvm_arg_sysctl");
979 		return (NULL);
980 	}
981 #if 0
982 	for (argv = (char **)kd->argbuf; *argv != NULL; argv++)
983 		if (strlen(*argv) > nchr)
984 			*argv[nchr] = '\0';
985 #endif
986 
987 	return (char **)(kd->argbuf);
988 }
989 
990 /*
991  * Get the command args.  This code is now machine independent.
992  */
993 char **
994 kvm_getargv(kd, kp, nchr)
995 	kvm_t *kd;
996 	const struct kinfo_proc *kp;
997 	int nchr;
998 {
999 	struct miniproc p;
1000 
1001 	if (ISALIVE(kd))
1002 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 0));
1003 	KPTOMINI(kp, &p);
1004 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1005 }
1006 
1007 char **
1008 kvm_getenvv(kd, kp, nchr)
1009 	kvm_t *kd;
1010 	const struct kinfo_proc *kp;
1011 	int nchr;
1012 {
1013 	struct miniproc p;
1014 
1015 	if (ISALIVE(kd))
1016 		return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 1));
1017 	KPTOMINI(kp, &p);
1018 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1019 }
1020 
1021 char **
1022 kvm_getargv2(kd, kp, nchr)
1023 	kvm_t *kd;
1024 	const struct kinfo_proc2 *kp;
1025 	int nchr;
1026 {
1027 	struct miniproc p;
1028 
1029 	if (ISALIVE(kd))
1030 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0));
1031 	KP2TOMINI(kp, &p);
1032 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1033 }
1034 
1035 char **
1036 kvm_getenvv2(kd, kp, nchr)
1037 	kvm_t *kd;
1038 	const struct kinfo_proc2 *kp;
1039 	int nchr;
1040 {
1041 	struct miniproc p;
1042 
1043 	if (ISALIVE(kd))
1044 		return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1));
1045 	KP2TOMINI(kp, &p);
1046 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1047 }
1048 
1049 /*
1050  * Read from user space.  The user context is given by p.
1051  */
1052 static ssize_t
1053 kvm_ureadm(kd, p, uva, buf, len)
1054 	kvm_t *kd;
1055 	const struct miniproc *p;
1056 	u_long uva;
1057 	char *buf;
1058 	size_t len;
1059 {
1060 	char *cp;
1061 
1062 	cp = buf;
1063 	while (len > 0) {
1064 		size_t cc;
1065 		char *dp;
1066 		u_long cnt;
1067 
1068 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1069 		if (dp == 0) {
1070 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1071 			return (0);
1072 		}
1073 		cc = (size_t)MIN(cnt, len);
1074 		bcopy(dp, cp, cc);
1075 		cp += cc;
1076 		uva += cc;
1077 		len -= cc;
1078 	}
1079 	return (ssize_t)(cp - buf);
1080 }
1081 
1082 ssize_t
1083 kvm_uread(kd, p, uva, buf, len)
1084 	kvm_t *kd;
1085 	const struct proc *p;
1086 	u_long uva;
1087 	char *buf;
1088 	size_t len;
1089 {
1090 	struct miniproc mp;
1091 
1092 	PTOMINI(p, &mp);
1093 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1094 }
1095