1 /* $OpenBSD: kvm_proc.c,v 1.5 1999/06/22 12:54:45 art Exp $ */ 2 /* $NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $ */ 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 /*- 39 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. All advertising materials mentioning features or use of this software 56 * must display the following acknowledgement: 57 * This product includes software developed by the University of 58 * California, Berkeley and its contributors. 59 * 4. Neither the name of the University nor the names of its contributors 60 * may be used to endorse or promote products derived from this software 61 * without specific prior written permission. 62 * 63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 73 * SUCH DAMAGE. 74 */ 75 76 #if defined(LIBC_SCCS) && !defined(lint) 77 #if 0 78 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 79 #else 80 static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.5 1999/06/22 12:54:45 art Exp $"; 81 #endif 82 #endif /* LIBC_SCCS and not lint */ 83 84 /* 85 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 86 * users of this code, so we've factored it out into a separate module. 87 * Thus, we keep this grunge out of the other kvm applications (i.e., 88 * most other applications are interested only in open/close/read/nlist). 89 */ 90 91 #include <sys/param.h> 92 #include <sys/user.h> 93 #include <sys/proc.h> 94 #include <sys/exec.h> 95 #include <sys/stat.h> 96 #include <sys/ioctl.h> 97 #include <sys/tty.h> 98 #include <stdlib.h> 99 #include <string.h> 100 #include <unistd.h> 101 #include <nlist.h> 102 #include <kvm.h> 103 104 #include <vm/vm.h> 105 #include <vm/vm_param.h> 106 107 #ifdef UVM 108 #include <uvm/uvm_extern.h> 109 #include <uvm/uvm_amap.h> 110 #else 111 #include <vm/swap_pager.h> 112 #endif 113 114 #include <sys/sysctl.h> 115 116 #include <limits.h> 117 #include <db.h> 118 #include <paths.h> 119 120 #include "kvm_private.h" 121 122 #define KREAD(kd, addr, obj) \ 123 (kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj)) 124 125 #ifndef UVM 126 int _kvm_readfromcore __P((kvm_t *, u_long, u_long)); 127 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long)); 128 #endif 129 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 130 size_t)); 131 132 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int, 133 int)); 134 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 135 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int, 136 void (*)(struct ps_strings *, u_long *, int *))); 137 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 138 struct kinfo_proc *, int)); 139 static int proc_verify __P((kvm_t *, u_long, const struct proc *)); 140 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 141 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 142 143 char * 144 _kvm_uread(kd, p, va, cnt) 145 kvm_t *kd; 146 const struct proc *p; 147 u_long va; 148 u_long *cnt; 149 { 150 u_long addr, head; 151 u_long offset; 152 struct vm_map_entry vme; 153 #ifdef UVM 154 struct vm_amap amap; 155 struct vm_anon *anonp, anon; 156 struct vm_page pg; 157 u_long slot; 158 #else 159 struct vm_object vmo; 160 int rv; 161 #endif 162 163 if (kd->swapspc == 0) { 164 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg); 165 if (kd->swapspc == 0) 166 return (0); 167 } 168 169 /* 170 * Look through the address map for the memory object 171 * that corresponds to the given virtual address. 172 * The header just has the entire valid range. 173 */ 174 head = (u_long)&p->p_vmspace->vm_map.header; 175 addr = head; 176 while (1) { 177 if (KREAD(kd, addr, &vme)) 178 return (0); 179 180 #ifdef UVM 181 if (va >= vme.start && va < vme.end && 182 vme.aref.ar_amap != NULL) 183 break; 184 #else 185 if (va >= vme.start && va < vme.end && 186 vme.object.vm_object != 0) 187 break; 188 #endif 189 190 addr = (u_long)vme.next; 191 if (addr == head) 192 return (0); 193 } 194 195 #ifdef UVM 196 /* 197 * we found the map entry, now to find the object... 198 */ 199 if (vme.aref.ar_amap == NULL) 200 return NULL; 201 202 addr = (u_long)vme.aref.ar_amap; 203 if (KREAD(kd, addr, &amap)) 204 return NULL; 205 206 offset = va - vme.start; 207 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 208 /* sanity-check slot number */ 209 if (slot > amap.am_nslot) 210 return NULL; 211 212 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 213 if (KREAD(kd, addr, &anonp)) 214 return NULL; 215 216 addr = (u_long)anonp; 217 if (KREAD(kd, addr, &anon)) 218 return NULL; 219 220 addr = (u_long)anon.u.an_page; 221 if (addr) { 222 if (KREAD(kd, addr, &pg)) 223 return NULL; 224 225 if (lseek(kd->pmfd, pg.phys_addr, SEEK_SET) < 0) 226 return NULL; 227 228 if (read(kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg) 229 != kd->nbpg) 230 return NULL; 231 } else { 232 if (lseek(kd->swfd, (off_t)(anon.an_swslot * kd->nbpg), 233 SEEK_SET) < 0) 234 return NULL; 235 if (read(kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg) 236 != kd->nbpg) 237 return NULL; 238 } 239 240 #else 241 /* 242 * We found the right object -- follow shadow links. 243 */ 244 offset = va - vme.start + vme.offset; 245 addr = (u_long)vme.object.vm_object; 246 247 while (1) { 248 /* Try reading the page from core first. */ 249 if ((rv = _kvm_readfromcore(kd, addr, offset))) 250 break; 251 252 if (KREAD(kd, addr, &vmo)) 253 return (0); 254 255 /* If there is a pager here, see if it has the page. */ 256 if (vmo.pager != 0 && 257 (rv = _kvm_readfrompager(kd, &vmo, offset))) 258 break; 259 260 /* Move down the shadow chain. */ 261 addr = (u_long)vmo.shadow; 262 if (addr == 0) 263 return (0); 264 offset += vmo.shadow_offset; 265 } 266 267 if (rv == -1) 268 return (0); 269 #endif 270 271 /* Found the page. */ 272 offset %= kd->nbpg; 273 *cnt = kd->nbpg - offset; 274 return (&kd->swapspc[offset]); 275 } 276 277 #ifndef UVM 278 279 #define vm_page_hash(kd, object, offset) \ 280 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask) 281 282 int 283 _kvm_coreinit(kd) 284 kvm_t *kd; 285 { 286 struct nlist nlist[3]; 287 288 nlist[0].n_name = "_vm_page_buckets"; 289 nlist[1].n_name = "_vm_page_hash_mask"; 290 nlist[2].n_name = 0; 291 if (kvm_nlist(kd, nlist) != 0) 292 return (-1); 293 294 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) || 295 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask)) 296 return (-1); 297 298 return (0); 299 } 300 301 int 302 _kvm_readfromcore(kd, object, offset) 303 kvm_t *kd; 304 u_long object, offset; 305 { 306 u_long addr; 307 struct pglist bucket; 308 struct vm_page mem; 309 off_t seekpoint; 310 311 if (kd->vm_page_buckets == 0 && 312 _kvm_coreinit(kd)) 313 return (-1); 314 315 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)]; 316 if (KREAD(kd, addr, &bucket)) 317 return (-1); 318 319 addr = (u_long)bucket.tqh_first; 320 offset &= ~(kd->nbpg -1); 321 while (1) { 322 if (addr == 0) 323 return (0); 324 325 if (KREAD(kd, addr, &mem)) 326 return (-1); 327 328 if ((u_long)mem.object == object && 329 (u_long)mem.offset == offset) 330 break; 331 332 addr = (u_long)mem.hashq.tqe_next; 333 } 334 335 seekpoint = mem.phys_addr; 336 337 if (lseek(kd->pmfd, seekpoint, 0) == -1) 338 return (-1); 339 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg) 340 return (-1); 341 342 return (1); 343 } 344 345 int 346 _kvm_readfrompager(kd, vmop, offset) 347 kvm_t *kd; 348 struct vm_object *vmop; 349 u_long offset; 350 { 351 u_long addr; 352 struct pager_struct pager; 353 struct swpager swap; 354 int ix; 355 struct swblock swb; 356 off_t seekpoint; 357 358 /* Read in the pager info and make sure it's a swap device. */ 359 addr = (u_long)vmop->pager; 360 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP) 361 return (-1); 362 363 /* Read in the swap_pager private data. */ 364 addr = (u_long)pager.pg_data; 365 if (KREAD(kd, addr, &swap)) 366 return (-1); 367 368 /* 369 * Calculate the paging offset, and make sure it's within the 370 * bounds of the pager. 371 */ 372 offset += vmop->paging_offset; 373 ix = offset / dbtob(swap.sw_bsize); 374 #if 0 375 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) 376 return (-1); 377 #else 378 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) { 379 int i; 380 printf("BUG BUG BUG BUG:\n"); 381 printf("object %x offset %x pgoffset %x pager %x swpager %x\n", 382 vmop, offset - vmop->paging_offset, vmop->paging_offset, 383 vmop->pager, pager.pg_data); 384 printf("osize %x bsize %x blocks %x nblocks %x\n", 385 swap.sw_osize, swap.sw_bsize, swap.sw_blocks, 386 swap.sw_nblocks); 387 for (ix = 0; ix < swap.sw_nblocks; ix++) { 388 addr = (u_long)&swap.sw_blocks[ix]; 389 if (KREAD(kd, addr, &swb)) 390 return (0); 391 printf("sw_blocks[%d]: block %x mask %x\n", ix, 392 swb.swb_block, swb.swb_mask); 393 } 394 return (-1); 395 } 396 #endif 397 398 /* Read in the swap records. */ 399 addr = (u_long)&swap.sw_blocks[ix]; 400 if (KREAD(kd, addr, &swb)) 401 return (-1); 402 403 /* Calculate offset within pager. */ 404 offset %= dbtob(swap.sw_bsize); 405 406 /* Check that the page is actually present. */ 407 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0) 408 return (0); 409 410 if (!ISALIVE(kd)) 411 return (-1); 412 413 /* Calculate the physical address and read the page. */ 414 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1)); 415 416 if (lseek(kd->swfd, seekpoint, 0) == -1) 417 return (-1); 418 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg) 419 return (-1); 420 421 return (1); 422 } 423 #endif /* UVM */ 424 425 /* 426 * Read proc's from memory file into buffer bp, which has space to hold 427 * at most maxcnt procs. 428 */ 429 static int 430 kvm_proclist(kd, what, arg, p, bp, maxcnt) 431 kvm_t *kd; 432 int what, arg; 433 struct proc *p; 434 struct kinfo_proc *bp; 435 int maxcnt; 436 { 437 int cnt = 0; 438 struct eproc eproc; 439 struct pgrp pgrp; 440 struct session sess; 441 struct tty tty; 442 struct proc proc; 443 444 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 445 if (KREAD(kd, (u_long)p, &proc)) { 446 _kvm_err(kd, kd->program, "can't read proc at %x", p); 447 return (-1); 448 } 449 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 450 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 451 &eproc.e_ucred); 452 453 switch(what) { 454 455 case KERN_PROC_PID: 456 if (proc.p_pid != (pid_t)arg) 457 continue; 458 break; 459 460 case KERN_PROC_UID: 461 if (eproc.e_ucred.cr_uid != (uid_t)arg) 462 continue; 463 break; 464 465 case KERN_PROC_RUID: 466 if (eproc.e_pcred.p_ruid != (uid_t)arg) 467 continue; 468 break; 469 } 470 /* 471 * We're going to add another proc to the set. If this 472 * will overflow the buffer, assume the reason is because 473 * nprocs (or the proc list) is corrupt and declare an error. 474 */ 475 if (cnt >= maxcnt) { 476 _kvm_err(kd, kd->program, "nprocs corrupt"); 477 return (-1); 478 } 479 /* 480 * gather eproc 481 */ 482 eproc.e_paddr = p; 483 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 484 _kvm_err(kd, kd->program, "can't read pgrp at %x", 485 proc.p_pgrp); 486 return (-1); 487 } 488 eproc.e_sess = pgrp.pg_session; 489 eproc.e_pgid = pgrp.pg_id; 490 eproc.e_jobc = pgrp.pg_jobc; 491 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 492 _kvm_err(kd, kd->program, "can't read session at %x", 493 pgrp.pg_session); 494 return (-1); 495 } 496 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 497 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 498 _kvm_err(kd, kd->program, 499 "can't read tty at %x", sess.s_ttyp); 500 return (-1); 501 } 502 eproc.e_tdev = tty.t_dev; 503 eproc.e_tsess = tty.t_session; 504 if (tty.t_pgrp != NULL) { 505 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 506 _kvm_err(kd, kd->program, 507 "can't read tpgrp at &x", 508 tty.t_pgrp); 509 return (-1); 510 } 511 eproc.e_tpgid = pgrp.pg_id; 512 } else 513 eproc.e_tpgid = -1; 514 } else 515 eproc.e_tdev = NODEV; 516 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 517 if (sess.s_leader == p) 518 eproc.e_flag |= EPROC_SLEADER; 519 if (proc.p_wmesg) 520 (void)kvm_read(kd, (u_long)proc.p_wmesg, 521 eproc.e_wmesg, WMESGLEN); 522 523 (void)kvm_read(kd, (u_long)proc.p_vmspace, 524 &eproc.e_vm, sizeof(eproc.e_vm)); 525 526 eproc.e_xsize = eproc.e_xrssize = 0; 527 eproc.e_xccount = eproc.e_xswrss = 0; 528 529 switch (what) { 530 531 case KERN_PROC_PGRP: 532 if (eproc.e_pgid != (pid_t)arg) 533 continue; 534 break; 535 536 case KERN_PROC_TTY: 537 if ((proc.p_flag & P_CONTROLT) == 0 || 538 eproc.e_tdev != (dev_t)arg) 539 continue; 540 break; 541 } 542 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 543 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 544 ++bp; 545 ++cnt; 546 } 547 return (cnt); 548 } 549 550 /* 551 * Build proc info array by reading in proc list from a crash dump. 552 * Return number of procs read. maxcnt is the max we will read. 553 */ 554 static int 555 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 556 kvm_t *kd; 557 int what, arg; 558 u_long a_allproc; 559 u_long a_zombproc; 560 int maxcnt; 561 { 562 struct kinfo_proc *bp = kd->procbase; 563 int acnt, zcnt; 564 struct proc *p; 565 566 if (KREAD(kd, a_allproc, &p)) { 567 _kvm_err(kd, kd->program, "cannot read allproc"); 568 return (-1); 569 } 570 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 571 if (acnt < 0) 572 return (acnt); 573 574 if (KREAD(kd, a_zombproc, &p)) { 575 _kvm_err(kd, kd->program, "cannot read zombproc"); 576 return (-1); 577 } 578 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 579 if (zcnt < 0) 580 zcnt = 0; 581 582 return (acnt + zcnt); 583 } 584 585 struct kinfo_proc * 586 kvm_getprocs(kd, op, arg, cnt) 587 kvm_t *kd; 588 int op, arg; 589 int *cnt; 590 { 591 size_t size; 592 int mib[4], st, nprocs; 593 594 if (kd->procbase != 0) { 595 free((void *)kd->procbase); 596 /* 597 * Clear this pointer in case this call fails. Otherwise, 598 * kvm_close() will free it again. 599 */ 600 kd->procbase = 0; 601 } 602 if (ISALIVE(kd)) { 603 size = 0; 604 mib[0] = CTL_KERN; 605 mib[1] = KERN_PROC; 606 mib[2] = op; 607 mib[3] = arg; 608 st = sysctl(mib, 4, NULL, &size, NULL, 0); 609 if (st == -1) { 610 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 611 return (0); 612 } 613 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 614 if (kd->procbase == 0) 615 return (0); 616 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 617 if (st == -1) { 618 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 619 return (0); 620 } 621 if (size % sizeof(struct kinfo_proc) != 0) { 622 _kvm_err(kd, kd->program, 623 "proc size mismatch (%d total, %d chunks)", 624 size, sizeof(struct kinfo_proc)); 625 return (0); 626 } 627 nprocs = size / sizeof(struct kinfo_proc); 628 } else { 629 struct nlist nl[4], *p; 630 631 nl[0].n_name = "_nprocs"; 632 nl[1].n_name = "_allproc"; 633 nl[2].n_name = "_zombproc"; 634 nl[3].n_name = 0; 635 636 if (kvm_nlist(kd, nl) != 0) { 637 for (p = nl; p->n_type != 0; ++p) 638 ; 639 _kvm_err(kd, kd->program, 640 "%s: no such symbol", p->n_name); 641 return (0); 642 } 643 if (KREAD(kd, nl[0].n_value, &nprocs)) { 644 _kvm_err(kd, kd->program, "can't read nprocs"); 645 return (0); 646 } 647 size = nprocs * sizeof(struct kinfo_proc); 648 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 649 if (kd->procbase == 0) 650 return (0); 651 652 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 653 nl[2].n_value, nprocs); 654 #ifdef notdef 655 size = nprocs * sizeof(struct kinfo_proc); 656 (void)realloc(kd->procbase, size); 657 #endif 658 } 659 *cnt = nprocs; 660 return (kd->procbase); 661 } 662 663 void 664 _kvm_freeprocs(kd) 665 kvm_t *kd; 666 { 667 if (kd->procbase) { 668 free(kd->procbase); 669 kd->procbase = 0; 670 } 671 } 672 673 void * 674 _kvm_realloc(kd, p, n) 675 kvm_t *kd; 676 void *p; 677 size_t n; 678 { 679 void *np = (void *)realloc(p, n); 680 681 if (np == 0) 682 _kvm_err(kd, kd->program, "out of memory"); 683 return (np); 684 } 685 686 #ifndef MAX 687 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 688 #endif 689 690 /* 691 * Read in an argument vector from the user address space of process p. 692 * addr if the user-space base address of narg null-terminated contiguous 693 * strings. This is used to read in both the command arguments and 694 * environment strings. Read at most maxcnt characters of strings. 695 */ 696 static char ** 697 kvm_argv(kd, p, addr, narg, maxcnt) 698 kvm_t *kd; 699 const struct proc *p; 700 u_long addr; 701 int narg; 702 int maxcnt; 703 { 704 char *np, *cp, *ep, *ap; 705 u_long oaddr = -1; 706 int len, cc; 707 char **argv; 708 709 /* 710 * Check that there aren't an unreasonable number of agruments, 711 * and that the address is in user space. 712 */ 713 if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 714 return (0); 715 716 if (kd->argv == 0) { 717 /* 718 * Try to avoid reallocs. 719 */ 720 kd->argc = MAX(narg + 1, 32); 721 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 722 sizeof(*kd->argv)); 723 if (kd->argv == 0) 724 return (0); 725 } else if (narg + 1 > kd->argc) { 726 kd->argc = MAX(2 * kd->argc, narg + 1); 727 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 728 sizeof(*kd->argv)); 729 if (kd->argv == 0) 730 return (0); 731 } 732 if (kd->argspc == 0) { 733 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg); 734 if (kd->argspc == 0) 735 return (0); 736 kd->arglen = kd->nbpg; 737 } 738 if (kd->argbuf == 0) { 739 kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg); 740 if (kd->argbuf == 0) 741 return (0); 742 } 743 cc = sizeof(char *) * narg; 744 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc) 745 return (0); 746 ap = np = kd->argspc; 747 argv = kd->argv; 748 len = 0; 749 /* 750 * Loop over pages, filling in the argument vector. 751 */ 752 while (argv < kd->argv + narg && *argv != 0) { 753 addr = (u_long)*argv & ~(kd->nbpg - 1); 754 if (addr != oaddr) { 755 if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) != 756 kd->nbpg) 757 return (0); 758 oaddr = addr; 759 } 760 addr = (u_long)*argv & (kd->nbpg - 1); 761 cp = kd->argbuf + addr; 762 cc = kd->nbpg - addr; 763 if (maxcnt > 0 && cc > maxcnt - len) 764 cc = maxcnt - len;; 765 ep = memchr(cp, '\0', cc); 766 if (ep != 0) 767 cc = ep - cp + 1; 768 if (len + cc > kd->arglen) { 769 int off; 770 char **pp; 771 char *op = kd->argspc; 772 773 kd->arglen *= 2; 774 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 775 kd->arglen); 776 if (kd->argspc == 0) 777 return (0); 778 /* 779 * Adjust argv pointers in case realloc moved 780 * the string space. 781 */ 782 off = kd->argspc - op; 783 for (pp = kd->argv; pp < argv; pp++) 784 *pp += off; 785 ap += off; 786 np += off; 787 } 788 memcpy(np, cp, cc); 789 np += cc; 790 len += cc; 791 if (ep != 0) { 792 *argv++ = ap; 793 ap = np; 794 } else 795 *argv += cc; 796 if (maxcnt > 0 && len >= maxcnt) { 797 /* 798 * We're stopping prematurely. Terminate the 799 * current string. 800 */ 801 if (ep == 0) { 802 *np = '\0'; 803 *argv++ = ap; 804 } 805 break; 806 } 807 } 808 /* Make sure argv is terminated. */ 809 *argv = 0; 810 return (kd->argv); 811 } 812 813 static void 814 ps_str_a(p, addr, n) 815 struct ps_strings *p; 816 u_long *addr; 817 int *n; 818 { 819 *addr = (u_long)p->ps_argvstr; 820 *n = p->ps_nargvstr; 821 } 822 823 static void 824 ps_str_e(p, addr, n) 825 struct ps_strings *p; 826 u_long *addr; 827 int *n; 828 { 829 *addr = (u_long)p->ps_envstr; 830 *n = p->ps_nenvstr; 831 } 832 833 /* 834 * Determine if the proc indicated by p is still active. 835 * This test is not 100% foolproof in theory, but chances of 836 * being wrong are very low. 837 */ 838 static int 839 proc_verify(kd, kernp, p) 840 kvm_t *kd; 841 u_long kernp; 842 const struct proc *p; 843 { 844 struct proc kernproc; 845 846 /* 847 * Just read in the whole proc. It's not that big relative 848 * to the cost of the read system call. 849 */ 850 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 851 sizeof(kernproc)) 852 return (0); 853 return (p->p_pid == kernproc.p_pid && 854 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 855 } 856 857 static char ** 858 kvm_doargv(kd, kp, nchr, info) 859 kvm_t *kd; 860 const struct kinfo_proc *kp; 861 int nchr; 862 void (*info)(struct ps_strings *, u_long *, int *); 863 { 864 const struct proc *p = &kp->kp_proc; 865 char **ap; 866 u_long addr; 867 int cnt; 868 struct ps_strings arginfo; 869 static struct ps_strings *ps; 870 871 if (ps == NULL) { 872 struct _ps_strings _ps; 873 int mib[2]; 874 size_t len; 875 876 mib[0] = CTL_VM; 877 mib[1] = VM_PSSTRINGS; 878 len = sizeof(_ps); 879 sysctl(mib, 2, &_ps, &len, NULL, 0); 880 ps = (struct ps_strings *)_ps.val; 881 } 882 883 /* 884 * Pointers are stored at the top of the user stack. 885 */ 886 if (p->p_stat == SZOMB || 887 kvm_uread(kd, p, (u_long)ps, (char *)&arginfo, 888 sizeof(arginfo)) != sizeof(arginfo)) 889 return (0); 890 891 (*info)(&arginfo, &addr, &cnt); 892 if (cnt == 0) 893 return (0); 894 ap = kvm_argv(kd, p, addr, cnt, nchr); 895 /* 896 * For live kernels, make sure this process didn't go away. 897 */ 898 if (ap != 0 && ISALIVE(kd) && 899 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 900 ap = 0; 901 return (ap); 902 } 903 904 /* 905 * Get the command args. This code is now machine independent. 906 */ 907 char ** 908 kvm_getargv(kd, kp, nchr) 909 kvm_t *kd; 910 const struct kinfo_proc *kp; 911 int nchr; 912 { 913 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 914 } 915 916 char ** 917 kvm_getenvv(kd, kp, nchr) 918 kvm_t *kd; 919 const struct kinfo_proc *kp; 920 int nchr; 921 { 922 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 923 } 924 925 /* 926 * Read from user space. The user context is given by p. 927 */ 928 ssize_t 929 kvm_uread(kd, p, uva, buf, len) 930 kvm_t *kd; 931 const struct proc *p; 932 u_long uva; 933 char *buf; 934 size_t len; 935 { 936 char *cp; 937 938 cp = buf; 939 while (len > 0) { 940 int cc; 941 char *dp; 942 u_long cnt; 943 944 dp = _kvm_uread(kd, p, uva, &cnt); 945 if (dp == 0) { 946 _kvm_err(kd, 0, "invalid address (%lx)", uva); 947 return (0); 948 } 949 cc = MIN(cnt, len); 950 bcopy(dp, cp, cc); 951 952 cp += cc; 953 uva += cc; 954 len -= cc; 955 } 956 return (ssize_t)(cp - buf); 957 } 958