xref: /openbsd-src/lib/libc/stdlib/random.c (revision 33b4f39fbeffad07bc3206f173cff9f3c9901cd1)
1 /*
2  * Copyright (c) 1983 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #if defined(LIBC_SCCS) && !defined(lint)
31 static char *rcsid = "$OpenBSD: random.c,v 1.12 2003/06/02 20:18:38 millert Exp $";
32 #endif /* LIBC_SCCS and not lint */
33 
34 #include <sys/param.h>
35 #include <sys/sysctl.h>
36 #include <sys/time.h>
37 #include <fcntl.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <unistd.h>
41 
42 /*
43  * random.c:
44  *
45  * An improved random number generation package.  In addition to the standard
46  * rand()/srand() like interface, this package also has a special state info
47  * interface.  The initstate() routine is called with a seed, an array of
48  * bytes, and a count of how many bytes are being passed in; this array is
49  * then initialized to contain information for random number generation with
50  * that much state information.  Good sizes for the amount of state
51  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
52  * calling the setstate() routine with the same array as was initiallized
53  * with initstate().  By default, the package runs with 128 bytes of state
54  * information and generates far better random numbers than a linear
55  * congruential generator.  If the amount of state information is less than
56  * 32 bytes, a simple linear congruential R.N.G. is used.
57  *
58  * Internally, the state information is treated as an array of int32_t; the
59  * zeroeth element of the array is the type of R.N.G. being used (small
60  * integer); the remainder of the array is the state information for the
61  * R.N.G.  Thus, 32 bytes of state information will give 7 int32_ts worth of
62  * state information, which will allow a degree seven polynomial.  (Note:
63  * the zeroeth word of state information also has some other information
64  * stored in it -- see setstate() for details).
65  *
66  * The random number generation technique is a linear feedback shift register
67  * approach, employing trinomials (since there are fewer terms to sum up that
68  * way).  In this approach, the least significant bit of all the numbers in
69  * the state table will act as a linear feedback shift register, and will
70  * have period 2^deg - 1 (where deg is the degree of the polynomial being
71  * used, assuming that the polynomial is irreducible and primitive).  The
72  * higher order bits will have longer periods, since their values are also
73  * influenced by pseudo-random carries out of the lower bits.  The total
74  * period of the generator is approximately deg*(2**deg - 1); thus doubling
75  * the amount of state information has a vast influence on the period of the
76  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
77  * large deg, when the period of the shift register is the dominant factor.
78  * With deg equal to seven, the period is actually much longer than the
79  * 7*(2**7 - 1) predicted by this formula.
80  */
81 
82 /*
83  * For each of the currently supported random number generators, we have a
84  * break value on the amount of state information (you need at least this
85  * many bytes of state info to support this random number generator), a degree
86  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
87  * the separation between the two lower order coefficients of the trinomial.
88  */
89 #define	TYPE_0		0		/* linear congruential */
90 #define	BREAK_0		8
91 #define	DEG_0		0
92 #define	SEP_0		0
93 
94 #define	TYPE_1		1		/* x**7 + x**3 + 1 */
95 #define	BREAK_1		32
96 #define	DEG_1		7
97 #define	SEP_1		3
98 
99 #define	TYPE_2		2		/* x**15 + x + 1 */
100 #define	BREAK_2		64
101 #define	DEG_2		15
102 #define	SEP_2		1
103 
104 #define	TYPE_3		3		/* x**31 + x**3 + 1 */
105 #define	BREAK_3		128
106 #define	DEG_3		31
107 #define	SEP_3		3
108 
109 #define	TYPE_4		4		/* x**63 + x + 1 */
110 #define	BREAK_4		256
111 #define	DEG_4		63
112 #define	SEP_4		1
113 
114 /*
115  * Array versions of the above information to make code run faster --
116  * relies on fact that TYPE_i == i.
117  */
118 #define	MAX_TYPES	5		/* max number of types above */
119 
120 static int degrees[MAX_TYPES] =	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
121 static int seps [MAX_TYPES] =	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
122 
123 /*
124  * Initially, everything is set up as if from:
125  *
126  *	initstate(1, &randtbl, 128);
127  *
128  * Note that this initialization takes advantage of the fact that srandom()
129  * advances the front and rear pointers 10*rand_deg times, and hence the
130  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
131  * element of the state information, which contains info about the current
132  * position of the rear pointer is just
133  *
134  *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
135  */
136 
137 static int32_t randtbl[DEG_3 + 1] = {
138 	TYPE_3,
139 	0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
140 	0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
141 	0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
142 	0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
143 	0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
144 	0xf3bec5da,
145 };
146 
147 /*
148  * fptr and rptr are two pointers into the state info, a front and a rear
149  * pointer.  These two pointers are always rand_sep places aparts, as they
150  * cycle cyclically through the state information.  (Yes, this does mean we
151  * could get away with just one pointer, but the code for random() is more
152  * efficient this way).  The pointers are left positioned as they would be
153  * from the call
154  *
155  *	initstate(1, randtbl, 128);
156  *
157  * (The position of the rear pointer, rptr, is really 0 (as explained above
158  * in the initialization of randtbl) because the state table pointer is set
159  * to point to randtbl[1] (as explained below).
160  */
161 static int32_t *fptr = &randtbl[SEP_3 + 1];
162 static int32_t *rptr = &randtbl[1];
163 
164 /*
165  * The following things are the pointer to the state information table, the
166  * type of the current generator, the degree of the current polynomial being
167  * used, and the separation between the two pointers.  Note that for efficiency
168  * of random(), we remember the first location of the state information, not
169  * the zeroeth.  Hence it is valid to access state[-1], which is used to
170  * store the type of the R.N.G.  Also, we remember the last location, since
171  * this is more efficient than indexing every time to find the address of
172  * the last element to see if the front and rear pointers have wrapped.
173  */
174 static int32_t *state = &randtbl[1];
175 static int32_t *end_ptr = &randtbl[DEG_3 + 1];
176 static int rand_type = TYPE_3;
177 static int rand_deg = DEG_3;
178 static int rand_sep = SEP_3;
179 
180 /*
181  * srandom:
182  *
183  * Initialize the random number generator based on the given seed.  If the
184  * type is the trivial no-state-information type, just remember the seed.
185  * Otherwise, initializes state[] based on the given "seed" via a linear
186  * congruential generator.  Then, the pointers are set to known locations
187  * that are exactly rand_sep places apart.  Lastly, it cycles the state
188  * information a given number of times to get rid of any initial dependencies
189  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
190  * for default usage relies on values produced by this routine.
191  */
192 void
193 srandom(x)
194 	unsigned int x;
195 {
196 	int i;
197 	int32_t test;
198 	div_t val;
199 
200 	if (rand_type == TYPE_0)
201 		state[0] = x;
202 	else {
203 		state[0] = x;
204 		for (i = 1; i < rand_deg; i++) {
205 			/*
206 			 * Implement the following, without overflowing 31 bits:
207 			 *
208 			 *	state[i] = (16807 * state[i - 1]) % 2147483647;
209 			 *
210 			 *	2^31-1 (prime) = 2147483647 = 127773*16807+2836
211 			 */
212 			val = div(state[i-1], 127773);
213 			test = 16807 * val.rem - 2836 * val.quot;
214 			state[i] = test + (test < 0 ? 2147483647 : 0);
215 		}
216 		fptr = &state[rand_sep];
217 		rptr = &state[0];
218 		for (i = 0; i < 10 * rand_deg; i++)
219 			(void)random();
220 	}
221 }
222 
223 /*
224  * srandomdev:
225  *
226  * Many programs choose the seed value in a totally predictable manner.
227  * This often causes problems.  We seed the generator using the much more
228  * secure arandom(4) interface.  Note that this particular seeding
229  * procedure can generate states which are impossible to reproduce by
230  * calling srandom() with any value, since the succeeding terms in the
231  * state buffer are no longer derived from the LC algorithm applied to
232  * a fixed seed.
233  */
234 void
235 srandomdev()
236 {
237 	int fd, i, mib[2], n;
238 	size_t len;
239 
240 	if (rand_type == TYPE_0)
241 		len = sizeof(state[0]);
242 	else
243 		len = rand_deg * sizeof(state[0]);
244 
245 	/*
246 	 * To get seed data, first try reading from /dev/arandom.
247 	 * If that fails, try the KERN_ARND sysctl() (one int at a time).
248 	 * As a last resort, call srandom().
249 	 */
250 	if ((fd = open("/dev/arandom", O_RDONLY, 0)) != -1 &&
251 	    read(fd, (void *) state, len) == (ssize_t) len) {
252 		close(fd);
253 	} else {
254 		if (fd != -1)
255 			close(fd);
256 		mib[0] = CTL_KERN;
257 		mib[1] = KERN_ARND;
258 		n = len / sizeof(int);
259 		len = sizeof(int);
260 		for (i = 0; i < n; i++) {
261 			if (sysctl(mib, 2, (char *)((int *)state + i), &len,
262 			    NULL, 0) == -1)
263 				break;
264 		}
265 		if (i != n) {
266 			struct timeval tv;
267 			u_int junk;
268 
269 			/* XXX - this could be better */
270 			gettimeofday(&tv, NULL);
271 			srandom(getpid() ^ tv.tv_sec ^ tv.tv_usec ^ junk);
272 			return;
273 		}
274 	}
275 
276 	if (rand_type != TYPE_0) {
277 		fptr = &state[rand_sep];
278 		rptr = &state[0];
279 	}
280 }
281 
282 /*
283  * initstate:
284  *
285  * Initialize the state information in the given array of n bytes for future
286  * random number generation.  Based on the number of bytes we are given, and
287  * the break values for the different R.N.G.'s, we choose the best (largest)
288  * one we can and set things up for it.  srandom() is then called to
289  * initialize the state information.
290  *
291  * Note that on return from srandom(), we set state[-1] to be the type
292  * multiplexed with the current value of the rear pointer; this is so
293  * successive calls to initstate() won't lose this information and will be
294  * able to restart with setstate().
295  *
296  * Note: the first thing we do is save the current state, if any, just like
297  * setstate() so that it doesn't matter when initstate is called.
298  *
299  * Returns a pointer to the old state.
300  */
301 char *
302 initstate(seed, arg_state, n)
303 	u_int seed;			/* seed for R.N.G. */
304 	char *arg_state;		/* pointer to state array */
305 	size_t n;			/* # bytes of state info */
306 {
307 	char *ostate = (char *)(&state[-1]);
308 
309 	if (rand_type == TYPE_0)
310 		state[-1] = rand_type;
311 	else
312 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
313 	if (n < BREAK_0)
314 		return(NULL);
315 	if (n < BREAK_1) {
316 		rand_type = TYPE_0;
317 		rand_deg = DEG_0;
318 		rand_sep = SEP_0;
319 	} else if (n < BREAK_2) {
320 		rand_type = TYPE_1;
321 		rand_deg = DEG_1;
322 		rand_sep = SEP_1;
323 	} else if (n < BREAK_3) {
324 		rand_type = TYPE_2;
325 		rand_deg = DEG_2;
326 		rand_sep = SEP_2;
327 	} else if (n < BREAK_4) {
328 		rand_type = TYPE_3;
329 		rand_deg = DEG_3;
330 		rand_sep = SEP_3;
331 	} else {
332 		rand_type = TYPE_4;
333 		rand_deg = DEG_4;
334 		rand_sep = SEP_4;
335 	}
336 	state = &(((int32_t *)arg_state)[1]);	/* first location */
337 	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
338 	srandom(seed);
339 	if (rand_type == TYPE_0)
340 		state[-1] = rand_type;
341 	else
342 		state[-1] = MAX_TYPES*(rptr - state) + rand_type;
343 	return(ostate);
344 }
345 
346 /*
347  * setstate:
348  *
349  * Restore the state from the given state array.
350  *
351  * Note: it is important that we also remember the locations of the pointers
352  * in the current state information, and restore the locations of the pointers
353  * from the old state information.  This is done by multiplexing the pointer
354  * location into the zeroeth word of the state information.
355  *
356  * Note that due to the order in which things are done, it is OK to call
357  * setstate() with the same state as the current state.
358  *
359  * Returns a pointer to the old state information.
360  */
361 char *
362 setstate(arg_state)
363 	const char *arg_state;
364 {
365 	int32_t *new_state = (int32_t *)arg_state;
366 	int32_t type = new_state[0] % MAX_TYPES;
367 	int32_t rear = new_state[0] / MAX_TYPES;
368 	char *ostate = (char *)(&state[-1]);
369 
370 	if (rand_type == TYPE_0)
371 		state[-1] = rand_type;
372 	else
373 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
374 	switch(type) {
375 	case TYPE_0:
376 	case TYPE_1:
377 	case TYPE_2:
378 	case TYPE_3:
379 	case TYPE_4:
380 		rand_type = type;
381 		rand_deg = degrees[type];
382 		rand_sep = seps[type];
383 		break;
384 	default:
385 		return(NULL);
386 	}
387 	state = &new_state[1];
388 	if (rand_type != TYPE_0) {
389 		rptr = &state[rear];
390 		fptr = &state[(rear + rand_sep) % rand_deg];
391 	}
392 	end_ptr = &state[rand_deg];		/* set end_ptr too */
393 	return(ostate);
394 }
395 
396 /*
397  * random:
398  *
399  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
400  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
401  * the same in all the other cases due to all the global variables that have
402  * been set up.  The basic operation is to add the number at the rear pointer
403  * into the one at the front pointer.  Then both pointers are advanced to
404  * the next location cyclically in the table.  The value returned is the sum
405  * generated, reduced to 31 bits by throwing away the "least random" low bit.
406  *
407  * Note: the code takes advantage of the fact that both the front and
408  * rear pointers can't wrap on the same call by not testing the rear
409  * pointer if the front one has wrapped.
410  *
411  * Returns a 31-bit random number.
412  */
413 long
414 random()
415 {
416 	int32_t i;
417 
418 	if (rand_type == TYPE_0)
419 		i = state[0] = (state[0] * 1103515245 + 12345) & 0x7fffffff;
420 	else {
421 		*fptr += *rptr;
422 		i = (*fptr >> 1) & 0x7fffffff;	/* chucking least random bit */
423 		if (++fptr >= end_ptr) {
424 			fptr = state;
425 			++rptr;
426 		} else if (++rptr >= end_ptr)
427 			rptr = state;
428 	}
429 	return((long)i);
430 }
431