1 /* utf8.c 2 * 3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 4 * by Larry Wall and others 5 * 6 * You may distribute under the terms of either the GNU General Public 7 * License or the Artistic License, as specified in the README file. 8 * 9 */ 10 11 /* 12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever 13 * heard of that we don't want to see any closer; and that's the one place 14 * we're trying to get to! And that's just where we can't get, nohow.' 15 * 16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"] 17 * 18 * 'Well do I understand your speech,' he answered in the same language; 19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue, 20 * as is the custom in the West, if you wish to be answered?' 21 * --Gandalf, addressing Théoden's door wardens 22 * 23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"] 24 * 25 * ...the travellers perceived that the floor was paved with stones of many 26 * hues; branching runes and strange devices intertwined beneath their feet. 27 * 28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"] 29 */ 30 31 #include "EXTERN.h" 32 #define PERL_IN_UTF8_C 33 #include "perl.h" 34 #include "invlist_inline.h" 35 36 static const char malformed_text[] = "Malformed UTF-8 character"; 37 static const char unees[] = 38 "Malformed UTF-8 character (unexpected end of string)"; 39 40 /* 41 =head1 Unicode Support 42 These are various utility functions for manipulating UTF8-encoded 43 strings. For the uninitiated, this is a method of representing arbitrary 44 Unicode characters as a variable number of bytes, in such a way that 45 characters in the ASCII range are unmodified, and a zero byte never appears 46 within non-zero characters. 47 48 =cut 49 */ 50 51 /* helper for Perl__force_out_malformed_utf8_message(). Like 52 * SAVECOMPILEWARNINGS(), but works with PL_curcop rather than 53 * PL_compiling */ 54 55 static void 56 S_restore_cop_warnings(pTHX_ void *p) 57 { 58 free_and_set_cop_warnings(PL_curcop, (STRLEN*) p); 59 } 60 61 62 void 63 Perl__force_out_malformed_utf8_message(pTHX_ 64 const U8 *const p, /* First byte in UTF-8 sequence */ 65 const U8 * const e, /* Final byte in sequence (may include 66 multiple chars */ 67 const U32 flags, /* Flags to pass to utf8n_to_uvchr(), 68 usually 0, or some DISALLOW flags */ 69 const bool die_here) /* If TRUE, this function does not return */ 70 { 71 /* This core-only function is to be called when a malformed UTF-8 character 72 * is found, in order to output the detailed information about the 73 * malformation before dieing. The reason it exists is for the occasions 74 * when such a malformation is fatal, but warnings might be turned off, so 75 * that normally they would not be actually output. This ensures that they 76 * do get output. Because a sequence may be malformed in more than one 77 * way, multiple messages may be generated, so we can't make them fatal, as 78 * that would cause the first one to die. 79 * 80 * Instead we pretend -W was passed to perl, then die afterwards. The 81 * flexibility is here to return to the caller so they can finish up and 82 * die themselves */ 83 U32 errors; 84 85 PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE; 86 87 ENTER; 88 SAVEI8(PL_dowarn); 89 SAVESPTR(PL_curcop); 90 91 PL_dowarn = G_WARN_ALL_ON|G_WARN_ON; 92 if (PL_curcop) { 93 /* this is like SAVECOMPILEWARNINGS() except with PL_curcop rather 94 * than PL_compiling */ 95 SAVEDESTRUCTOR_X(S_restore_cop_warnings, 96 (void*)PL_curcop->cop_warnings); 97 PL_curcop->cop_warnings = pWARN_ALL; 98 } 99 100 (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors); 101 102 LEAVE; 103 104 if (! errors) { 105 Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should" 106 " be called only when there are errors found"); 107 } 108 109 if (die_here) { 110 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)"); 111 } 112 } 113 114 STATIC HV * 115 S_new_msg_hv(pTHX_ const char * const message, /* The message text */ 116 U32 categories, /* Packed warning categories */ 117 U32 flag) /* Flag associated with this message */ 118 { 119 /* Creates, populates, and returns an HV* that describes an error message 120 * for the translators between UTF8 and code point */ 121 122 SV* msg_sv = newSVpv(message, 0); 123 SV* category_sv = newSVuv(categories); 124 SV* flag_bit_sv = newSVuv(flag); 125 126 HV* msg_hv = newHV(); 127 128 PERL_ARGS_ASSERT_NEW_MSG_HV; 129 130 (void) hv_stores(msg_hv, "text", msg_sv); 131 (void) hv_stores(msg_hv, "warn_categories", category_sv); 132 (void) hv_stores(msg_hv, "flag_bit", flag_bit_sv); 133 134 return msg_hv; 135 } 136 137 /* 138 =for apidoc uvoffuni_to_utf8_flags 139 140 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES. 141 Instead, B<Almost all code should use L<perlapi/uvchr_to_utf8> or 142 L<perlapi/uvchr_to_utf8_flags>>. 143 144 This function is like them, but the input is a strict Unicode 145 (as opposed to native) code point. Only in very rare circumstances should code 146 not be using the native code point. 147 148 For details, see the description for L<perlapi/uvchr_to_utf8_flags>. 149 150 =cut 151 */ 152 153 U8 * 154 Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, const UV flags) 155 { 156 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS; 157 158 return uvoffuni_to_utf8_flags_msgs(d, uv, flags, NULL); 159 } 160 161 /* All these formats take a single UV code point argument */ 162 const char surrogate_cp_format[] = "UTF-16 surrogate U+%04" UVXf; 163 const char nonchar_cp_format[] = "Unicode non-character U+%04" UVXf 164 " is not recommended for open interchange"; 165 const char super_cp_format[] = "Code point 0x%" UVXf " is not Unicode," 166 " may not be portable"; 167 168 #define HANDLE_UNICODE_SURROGATE(uv, flags, msgs) \ 169 STMT_START { \ 170 if (flags & UNICODE_WARN_SURROGATE) { \ 171 U32 category = packWARN(WARN_SURROGATE); \ 172 const char * format = surrogate_cp_format; \ 173 if (msgs) { \ 174 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \ 175 category, \ 176 UNICODE_GOT_SURROGATE); \ 177 } \ 178 else { \ 179 Perl_ck_warner_d(aTHX_ category, format, uv); \ 180 } \ 181 } \ 182 if (flags & UNICODE_DISALLOW_SURROGATE) { \ 183 return NULL; \ 184 } \ 185 } STMT_END; 186 187 #define HANDLE_UNICODE_NONCHAR(uv, flags, msgs) \ 188 STMT_START { \ 189 if (flags & UNICODE_WARN_NONCHAR) { \ 190 U32 category = packWARN(WARN_NONCHAR); \ 191 const char * format = nonchar_cp_format; \ 192 if (msgs) { \ 193 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \ 194 category, \ 195 UNICODE_GOT_NONCHAR); \ 196 } \ 197 else { \ 198 Perl_ck_warner_d(aTHX_ category, format, uv); \ 199 } \ 200 } \ 201 if (flags & UNICODE_DISALLOW_NONCHAR) { \ 202 return NULL; \ 203 } \ 204 } STMT_END; 205 206 /* Use shorter names internally in this file */ 207 #define SHIFT UTF_ACCUMULATION_SHIFT 208 #undef MARK 209 #define MARK UTF_CONTINUATION_MARK 210 #define MASK UTF_CONTINUATION_MASK 211 212 /* 213 =for apidoc uvchr_to_utf8_flags_msgs 214 215 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES. 216 217 Most code should use C<L</uvchr_to_utf8_flags>()> rather than call this directly. 218 219 This function is for code that wants any warning and/or error messages to be 220 returned to the caller rather than be displayed. All messages that would have 221 been displayed if all lexical warnings are enabled will be returned. 222 223 It is just like C<L</uvchr_to_utf8_flags>> but it takes an extra parameter 224 placed after all the others, C<msgs>. If this parameter is 0, this function 225 behaves identically to C<L</uvchr_to_utf8_flags>>. Otherwise, C<msgs> should 226 be a pointer to an C<HV *> variable, in which this function creates a new HV to 227 contain any appropriate messages. The hash has three key-value pairs, as 228 follows: 229 230 =over 4 231 232 =item C<text> 233 234 The text of the message as a C<SVpv>. 235 236 =item C<warn_categories> 237 238 The warning category (or categories) packed into a C<SVuv>. 239 240 =item C<flag> 241 242 A single flag bit associated with this message, in a C<SVuv>. 243 The bit corresponds to some bit in the C<*errors> return value, 244 such as C<UNICODE_GOT_SURROGATE>. 245 246 =back 247 248 It's important to note that specifying this parameter as non-null will cause 249 any warnings this function would otherwise generate to be suppressed, and 250 instead be placed in C<*msgs>. The caller can check the lexical warnings state 251 (or not) when choosing what to do with the returned messages. 252 253 The caller, of course, is responsible for freeing any returned HV. 254 255 =cut 256 */ 257 258 /* Undocumented; we don't want people using this. Instead they should use 259 * uvchr_to_utf8_flags_msgs() */ 260 U8 * 261 Perl_uvoffuni_to_utf8_flags_msgs(pTHX_ U8 *d, UV uv, const UV flags, HV** msgs) 262 { 263 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS_MSGS; 264 265 if (msgs) { 266 *msgs = NULL; 267 } 268 269 if (OFFUNI_IS_INVARIANT(uv)) { 270 *d++ = LATIN1_TO_NATIVE(uv); 271 return d; 272 } 273 274 if (uv <= MAX_UTF8_TWO_BYTE) { 275 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2)); 276 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK); 277 return d; 278 } 279 280 /* Not 2-byte; test for and handle 3-byte result. In the test immediately 281 * below, the 16 is for start bytes E0-EF (which are all the possible ones 282 * for 3 byte characters). The 2 is for 2 continuation bytes; these each 283 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000 284 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC; 285 * 0x800-0xFFFF on ASCII */ 286 if (uv < (16 * (1U << (2 * SHIFT)))) { 287 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3)); 288 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK); 289 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK); 290 291 #ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so 292 aren't tested here */ 293 /* The most likely code points in this range are below the surrogates. 294 * Do an extra test to quickly exclude those. */ 295 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) { 296 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv) 297 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) 298 { 299 HANDLE_UNICODE_NONCHAR(uv, flags, msgs); 300 } 301 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) { 302 HANDLE_UNICODE_SURROGATE(uv, flags, msgs); 303 } 304 } 305 #endif 306 return d; 307 } 308 309 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII 310 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can 311 * happen starting with 4-byte characters on ASCII platforms. We unify the 312 * code for these with EBCDIC, even though some of them require 5-bytes on 313 * those, because khw believes the code saving is worth the very slight 314 * performance hit on these high EBCDIC code points. */ 315 316 if (UNLIKELY(UNICODE_IS_SUPER(uv))) { 317 if (UNLIKELY( uv > MAX_LEGAL_CP 318 && ! (flags & UNICODE_ALLOW_ABOVE_IV_MAX))) 319 { 320 Perl_croak(aTHX_ "%s", form_cp_too_large_msg(16, NULL, 0, uv)); 321 } 322 if ( (flags & UNICODE_WARN_SUPER) 323 || ( (flags & UNICODE_WARN_PERL_EXTENDED) 324 && UNICODE_IS_PERL_EXTENDED(uv))) 325 { 326 const char * format = super_cp_format; 327 U32 category = packWARN(WARN_NON_UNICODE); 328 U32 flag = UNICODE_GOT_SUPER; 329 330 /* Choose the more dire applicable warning */ 331 if (UNICODE_IS_PERL_EXTENDED(uv)) { 332 format = PL_extended_cp_format; 333 category = packWARN2(WARN_NON_UNICODE, WARN_PORTABLE); 334 if (flags & (UNICODE_WARN_PERL_EXTENDED 335 |UNICODE_DISALLOW_PERL_EXTENDED)) 336 { 337 flag = UNICODE_GOT_PERL_EXTENDED; 338 } 339 } 340 341 if (msgs) { 342 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), 343 category, flag); 344 } 345 else if ( ckWARN_d(WARN_NON_UNICODE) 346 || ( (flag & UNICODE_GOT_PERL_EXTENDED) 347 && ckWARN(WARN_PORTABLE))) 348 { 349 Perl_warner(aTHX_ category, format, uv); 350 } 351 } 352 if ( (flags & UNICODE_DISALLOW_SUPER) 353 || ( (flags & UNICODE_DISALLOW_PERL_EXTENDED) 354 && UNICODE_IS_PERL_EXTENDED(uv))) 355 { 356 return NULL; 357 } 358 } 359 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) { 360 HANDLE_UNICODE_NONCHAR(uv, flags, msgs); 361 } 362 363 /* Test for and handle 4-byte result. In the test immediately below, the 364 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte 365 * characters). The 3 is for 3 continuation bytes; these each contribute 366 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on 367 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC; 368 * 0x1_0000-0x1F_FFFF on ASCII */ 369 if (uv < (8 * (1U << (3 * SHIFT)))) { 370 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4)); 371 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK); 372 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK); 373 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK); 374 375 #ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte 376 characters. The end-plane non-characters for EBCDIC were 377 handled just above */ 378 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) { 379 HANDLE_UNICODE_NONCHAR(uv, flags, msgs); 380 } 381 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) { 382 HANDLE_UNICODE_SURROGATE(uv, flags, msgs); 383 } 384 #endif 385 386 return d; 387 } 388 389 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII 390 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop 391 * format. The unrolled version above turns out to not save all that much 392 * time, and at these high code points (well above the legal Unicode range 393 * on ASCII platforms, and well above anything in common use in EBCDIC), 394 * khw believes that less code outweighs slight performance gains. */ 395 396 { 397 STRLEN len = OFFUNISKIP(uv); 398 U8 *p = d+len-1; 399 while (p > d) { 400 *p-- = I8_TO_NATIVE_UTF8((uv & MASK) | MARK); 401 uv >>= SHIFT; 402 } 403 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len)); 404 return d+len; 405 } 406 } 407 408 /* 409 =for apidoc uvchr_to_utf8 410 411 Adds the UTF-8 representation of the native code point C<uv> to the end 412 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to 413 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to 414 the byte after the end of the new character. In other words, 415 416 d = uvchr_to_utf8(d, uv); 417 418 is the recommended wide native character-aware way of saying 419 420 *(d++) = uv; 421 422 This function accepts any code point from 0..C<IV_MAX> as input. 423 C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word. 424 425 It is possible to forbid or warn on non-Unicode code points, or those that may 426 be problematic by using L</uvchr_to_utf8_flags>. 427 428 =cut 429 */ 430 431 /* This is also a macro */ 432 PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv); 433 434 U8 * 435 Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv) 436 { 437 return uvchr_to_utf8(d, uv); 438 } 439 440 /* 441 =for apidoc uvchr_to_utf8_flags 442 443 Adds the UTF-8 representation of the native code point C<uv> to the end 444 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to 445 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to 446 the byte after the end of the new character. In other words, 447 448 d = uvchr_to_utf8_flags(d, uv, flags); 449 450 or, in most cases, 451 452 d = uvchr_to_utf8_flags(d, uv, 0); 453 454 This is the Unicode-aware way of saying 455 456 *(d++) = uv; 457 458 If C<flags> is 0, this function accepts any code point from 0..C<IV_MAX> as 459 input. C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word. 460 461 Specifying C<flags> can further restrict what is allowed and not warned on, as 462 follows: 463 464 If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set, 465 the function will raise a warning, provided UTF8 warnings are enabled. If 466 instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return 467 NULL. If both flags are set, the function will both warn and return NULL. 468 469 Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags 470 affect how the function handles a Unicode non-character. 471 472 And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags 473 affect the handling of code points that are above the Unicode maximum of 474 0x10FFFF. Languages other than Perl may not be able to accept files that 475 contain these. 476 477 The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of 478 the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all 479 three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the 480 allowed inputs to the strict UTF-8 traditionally defined by Unicode. 481 Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and 482 C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the 483 above-Unicode and surrogate flags, but not the non-character ones, as 484 defined in 485 L<Unicode Corrigendum #9|https://www.unicode.org/versions/corrigendum9.html>. 486 See L<perlunicode/Noncharacter code points>. 487 488 Extremely high code points were never specified in any standard, and require an 489 extension to UTF-8 to express, which Perl does. It is likely that programs 490 written in something other than Perl would not be able to read files that 491 contain these; nor would Perl understand files written by something that uses a 492 different extension. For these reasons, there is a separate set of flags that 493 can warn and/or disallow these extremely high code points, even if other 494 above-Unicode ones are accepted. They are the C<UNICODE_WARN_PERL_EXTENDED> 495 and C<UNICODE_DISALLOW_PERL_EXTENDED> flags. For more information see 496 L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UNICODE_DISALLOW_SUPER> will 497 treat all above-Unicode code points, including these, as malformations. (Note 498 that the Unicode standard considers anything above 0x10FFFF to be illegal, but 499 there are standards predating it that allow up to 0x7FFF_FFFF (2**31 -1)) 500 501 A somewhat misleadingly named synonym for C<UNICODE_WARN_PERL_EXTENDED> is 502 retained for backward compatibility: C<UNICODE_WARN_ABOVE_31_BIT>. Similarly, 503 C<UNICODE_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named 504 C<UNICODE_DISALLOW_PERL_EXTENDED>. The names are misleading because on EBCDIC 505 platforms,these flags can apply to code points that actually do fit in 31 bits. 506 The new names accurately describe the situation in all cases. 507 508 =cut 509 */ 510 511 /* This is also a macro */ 512 PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags); 513 514 U8 * 515 Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags) 516 { 517 return uvchr_to_utf8_flags(d, uv, flags); 518 } 519 520 #ifndef UV_IS_QUAD 521 522 STATIC int 523 S_is_utf8_cp_above_31_bits(const U8 * const s, 524 const U8 * const e, 525 const bool consider_overlongs) 526 { 527 /* Returns TRUE if the first code point represented by the Perl-extended- 528 * UTF-8-encoded string starting at 's', and looking no further than 'e - 529 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31. 530 * 531 * The function handles the case where the input bytes do not include all 532 * the ones necessary to represent a full character. That is, they may be 533 * the intial bytes of the representation of a code point, but possibly 534 * the final ones necessary for the complete representation may be beyond 535 * 'e - 1'. 536 * 537 * The function also can handle the case where the input is an overlong 538 * sequence. If 'consider_overlongs' is 0, the function assumes the 539 * input is not overlong, without checking, and will return based on that 540 * assumption. If this parameter is 1, the function will go to the trouble 541 * of figuring out if it actually evaluates to above or below 31 bits. 542 * 543 * The sequence is otherwise assumed to be well-formed, without checking. 544 */ 545 546 const STRLEN len = e - s; 547 int is_overlong; 548 549 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS; 550 551 assert(! UTF8_IS_INVARIANT(*s) && e > s); 552 553 #ifdef EBCDIC 554 555 PERL_UNUSED_ARG(consider_overlongs); 556 557 /* On the EBCDIC code pages we handle, only the native start byte 0xFE can 558 * mean a 32-bit or larger code point (0xFF is an invariant). 0xFE can 559 * also be the start byte for a 31-bit code point; we need at least 2 560 * bytes, and maybe up through 8 bytes, to determine that. (It can also be 561 * the start byte for an overlong sequence, but for 30-bit or smaller code 562 * points, so we don't have to worry about overlongs on EBCDIC.) */ 563 if (*s != 0xFE) { 564 return 0; 565 } 566 567 if (len == 1) { 568 return -1; 569 } 570 571 #else 572 573 /* On ASCII, FE and FF are the only start bytes that can evaluate to 574 * needing more than 31 bits. */ 575 if (LIKELY(*s < 0xFE)) { 576 return 0; 577 } 578 579 /* What we have left are FE and FF. Both of these require more than 31 580 * bits unless they are for overlongs. */ 581 if (! consider_overlongs) { 582 return 1; 583 } 584 585 /* Here, we have FE or FF. If the input isn't overlong, it evaluates to 586 * above 31 bits. But we need more than one byte to discern this, so if 587 * passed just the start byte, it could be an overlong evaluating to 588 * smaller */ 589 if (len == 1) { 590 return -1; 591 } 592 593 /* Having excluded len==1, and knowing that FE and FF are both valid start 594 * bytes, we can call the function below to see if the sequence is 595 * overlong. (We don't need the full generality of the called function, 596 * but for these huge code points, speed shouldn't be a consideration, and 597 * the compiler does have enough information, since it's static to this 598 * file, to optimize to just the needed parts.) */ 599 is_overlong = is_utf8_overlong_given_start_byte_ok(s, len); 600 601 /* If it isn't overlong, more than 31 bits are required. */ 602 if (is_overlong == 0) { 603 return 1; 604 } 605 606 /* If it is indeterminate if it is overlong, return that */ 607 if (is_overlong < 0) { 608 return -1; 609 } 610 611 /* Here is overlong. Such a sequence starting with FE is below 31 bits, as 612 * the max it can be is 2**31 - 1 */ 613 if (*s == 0xFE) { 614 return 0; 615 } 616 617 #endif 618 619 /* Here, ASCII and EBCDIC rejoin: 620 * On ASCII: We have an overlong sequence starting with FF 621 * On EBCDIC: We have a sequence starting with FE. */ 622 623 { /* For C89, use a block so the declaration can be close to its use */ 624 625 #ifdef EBCDIC 626 627 /* U+7FFFFFFF (2 ** 31 - 1) 628 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13 629 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73 630 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72 631 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75 632 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF 633 * U+80000000 (2 ** 31): 634 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41 635 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41 636 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41 637 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0 638 * 639 * and since we know that *s = \xfe, any continuation sequcence 640 * following it that is gt the below is above 31 bits 641 [0] [1] [2] [3] [4] [5] [6] */ 642 const U8 conts_for_highest_30_bit[] = "\x41\x41\x41\x41\x41\x41\x42"; 643 644 #else 645 646 /* FF overlong for U+7FFFFFFF (2 ** 31 - 1) 647 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x81\xBF\xBF\xBF\xBF\xBF 648 * FF overlong for U+80000000 (2 ** 31): 649 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x82\x80\x80\x80\x80\x80 650 * and since we know that *s = \xff, any continuation sequcence 651 * following it that is gt the below is above 30 bits 652 [0] [1] [2] [3] [4] [5] [6] */ 653 const U8 conts_for_highest_30_bit[] = "\x80\x80\x80\x80\x80\x80\x81"; 654 655 656 #endif 657 const STRLEN conts_len = sizeof(conts_for_highest_30_bit) - 1; 658 const STRLEN cmp_len = MIN(conts_len, len - 1); 659 660 /* Now compare the continuation bytes in s with the ones we have 661 * compiled in that are for the largest 30 bit code point. If we have 662 * enough bytes available to determine the answer, or the bytes we do 663 * have differ from them, we can compare the two to get a definitive 664 * answer (Note that in UTF-EBCDIC, the two lowest possible 665 * continuation bytes are \x41 and \x42.) */ 666 if (cmp_len >= conts_len || memNE(s + 1, 667 conts_for_highest_30_bit, 668 cmp_len)) 669 { 670 return cBOOL(memGT(s + 1, conts_for_highest_30_bit, cmp_len)); 671 } 672 673 /* Here, all the bytes we have are the same as the highest 30-bit code 674 * point, but we are missing so many bytes that we can't make the 675 * determination */ 676 return -1; 677 } 678 } 679 680 #endif 681 682 PERL_STATIC_INLINE int 683 S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len) 684 { 685 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to 686 * 's' + 'len' - 1 is an overlong. It returns 1 if it is an overlong; 0 if 687 * it isn't, and -1 if there isn't enough information to tell. This last 688 * return value can happen if the sequence is incomplete, missing some 689 * trailing bytes that would form a complete character. If there are 690 * enough bytes to make a definitive decision, this function does so. 691 * Usually 2 bytes sufficient. 692 * 693 * Overlongs can occur whenever the number of continuation bytes changes. 694 * That means whenever the number of leading 1 bits in a start byte 695 * increases from the next lower start byte. That happens for start bytes 696 * C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following illegal 697 * start bytes have already been excluded, so don't need to be tested here; 698 * ASCII platforms: C0, C1 699 * EBCDIC platforms C0, C1, C2, C3, C4, E0 700 */ 701 702 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]); 703 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]); 704 705 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK; 706 assert(len > 1 && UTF8_IS_START(*s)); 707 708 /* Each platform has overlongs after the start bytes given above (expressed 709 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but 710 * the logic is the same, except the E0 overlong has already been excluded 711 * on EBCDIC platforms. The values below were found by manually 712 * inspecting the UTF-8 patterns. See the tables in utf8.h and 713 * utfebcdic.h. */ 714 715 # ifdef EBCDIC 716 # define F0_ABOVE_OVERLONG 0xB0 717 # define F8_ABOVE_OVERLONG 0xA8 718 # define FC_ABOVE_OVERLONG 0xA4 719 # define FE_ABOVE_OVERLONG 0xA2 720 # define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41" 721 /* I8(0xfe) is FF */ 722 # else 723 724 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) { 725 return 1; 726 } 727 728 # define F0_ABOVE_OVERLONG 0x90 729 # define F8_ABOVE_OVERLONG 0x88 730 # define FC_ABOVE_OVERLONG 0x84 731 # define FE_ABOVE_OVERLONG 0x82 732 # define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80" 733 # endif 734 735 736 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG)) 737 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG)) 738 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG)) 739 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG))) 740 { 741 return 1; 742 } 743 744 /* Check for the FF overlong */ 745 return isFF_OVERLONG(s, len); 746 } 747 748 PERL_STATIC_INLINE int 749 S_isFF_OVERLONG(const U8 * const s, const STRLEN len) 750 { 751 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to 752 * 'e' - 1 is an overlong beginning with \xFF. It returns 1 if it is; 0 if 753 * it isn't, and -1 if there isn't enough information to tell. This last 754 * return value can happen if the sequence is incomplete, missing some 755 * trailing bytes that would form a complete character. If there are 756 * enough bytes to make a definitive decision, this function does so. */ 757 758 PERL_ARGS_ASSERT_ISFF_OVERLONG; 759 760 /* To be an FF overlong, all the available bytes must match */ 761 if (LIKELY(memNE(s, FF_OVERLONG_PREFIX, 762 MIN(len, sizeof(FF_OVERLONG_PREFIX) - 1)))) 763 { 764 return 0; 765 } 766 767 /* To be an FF overlong sequence, all the bytes in FF_OVERLONG_PREFIX must 768 * be there; what comes after them doesn't matter. See tables in utf8.h, 769 * utfebcdic.h. */ 770 if (len >= sizeof(FF_OVERLONG_PREFIX) - 1) { 771 return 1; 772 } 773 774 /* The missing bytes could cause the result to go one way or the other, so 775 * the result is indeterminate */ 776 return -1; 777 } 778 779 #if defined(UV_IS_QUAD) /* These assume IV_MAX is 2**63-1 */ 780 # ifdef EBCDIC /* Actually is I8 */ 781 # define HIGHEST_REPRESENTABLE_UTF8 \ 782 "\xFF\xA7\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF" 783 # else 784 # define HIGHEST_REPRESENTABLE_UTF8 \ 785 "\xFF\x80\x87\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF" 786 # endif 787 #endif 788 789 PERL_STATIC_INLINE int 790 S_does_utf8_overflow(const U8 * const s, 791 const U8 * e, 792 const bool consider_overlongs) 793 { 794 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to 795 * 'e' - 1 would overflow an IV on this platform; that is if it represents 796 * a code point larger than the highest representable code point. It 797 * returns 1 if it does overflow; 0 if it doesn't, and -1 if there isn't 798 * enough information to tell. This last return value can happen if the 799 * sequence is incomplete, missing some trailing bytes that would form a 800 * complete character. If there are enough bytes to make a definitive 801 * decision, this function does so. 802 * 803 * If 'consider_overlongs' is TRUE, the function checks for the possibility 804 * that the sequence is an overlong that doesn't overflow. Otherwise, it 805 * assumes the sequence is not an overlong. This can give different 806 * results only on ASCII 32-bit platforms. 807 * 808 * (For ASCII platforms, we could use memcmp() because we don't have to 809 * convert each byte to I8, but it's very rare input indeed that would 810 * approach overflow, so the loop below will likely only get executed once.) 811 * 812 * 'e' - 1 must not be beyond a full character. */ 813 814 815 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW; 816 assert(s <= e && s + UTF8SKIP(s) >= e); 817 818 #if ! defined(UV_IS_QUAD) 819 820 return is_utf8_cp_above_31_bits(s, e, consider_overlongs); 821 822 #else 823 824 PERL_UNUSED_ARG(consider_overlongs); 825 826 { 827 const STRLEN len = e - s; 828 const U8 *x; 829 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8; 830 831 for (x = s; x < e; x++, y++) { 832 833 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) == *y)) { 834 continue; 835 } 836 837 /* If this byte is larger than the corresponding highest UTF-8 838 * byte, the sequence overflow; otherwise the byte is less than, 839 * and so the sequence doesn't overflow */ 840 return NATIVE_UTF8_TO_I8(*x) > *y; 841 842 } 843 844 /* Got to the end and all bytes are the same. If the input is a whole 845 * character, it doesn't overflow. And if it is a partial character, 846 * there's not enough information to tell */ 847 if (len < sizeof(HIGHEST_REPRESENTABLE_UTF8) - 1) { 848 return -1; 849 } 850 851 return 0; 852 } 853 854 #endif 855 856 } 857 858 #if 0 859 860 /* This is the portions of the above function that deal with UV_MAX instead of 861 * IV_MAX. They are left here in case we want to combine them so that internal 862 * uses can have larger code points. The only logic difference is that the 863 * 32-bit EBCDIC platform is treate like the 64-bit, and the 32-bit ASCII has 864 * different logic. 865 */ 866 867 /* Anything larger than this will overflow the word if it were converted into a UV */ 868 #if defined(UV_IS_QUAD) 869 # ifdef EBCDIC /* Actually is I8 */ 870 # define HIGHEST_REPRESENTABLE_UTF8 \ 871 "\xFF\xAF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF" 872 # else 873 # define HIGHEST_REPRESENTABLE_UTF8 \ 874 "\xFF\x80\x8F\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF" 875 # endif 876 #else /* 32-bit */ 877 # ifdef EBCDIC 878 # define HIGHEST_REPRESENTABLE_UTF8 \ 879 "\xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA3\xBF\xBF\xBF\xBF\xBF\xBF" 880 # else 881 # define HIGHEST_REPRESENTABLE_UTF8 "\xFE\x83\xBF\xBF\xBF\xBF\xBF" 882 # endif 883 #endif 884 885 #if ! defined(UV_IS_QUAD) && ! defined(EBCDIC) 886 887 /* On 32 bit ASCII machines, many overlongs that start with FF don't 888 * overflow */ 889 if (consider_overlongs && isFF_OVERLONG(s, len) > 0) { 890 891 /* To be such an overlong, the first bytes of 's' must match 892 * FF_OVERLONG_PREFIX, which is "\xff\x80\x80\x80\x80\x80\x80". If we 893 * don't have any additional bytes available, the sequence, when 894 * completed might or might not fit in 32 bits. But if we have that 895 * next byte, we can tell for sure. If it is <= 0x83, then it does 896 * fit. */ 897 if (len <= sizeof(FF_OVERLONG_PREFIX) - 1) { 898 return -1; 899 } 900 901 return s[sizeof(FF_OVERLONG_PREFIX) - 1] > 0x83; 902 } 903 904 /* Starting with the #else, the rest of the function is identical except 905 * 1. we need to move the 'len' declaration to be global to the function 906 * 2. the endif move to just after the UNUSED_ARG. 907 * An empty endif is given just below to satisfy the preprocessor 908 */ 909 #endif 910 911 #endif 912 913 #undef F0_ABOVE_OVERLONG 914 #undef F8_ABOVE_OVERLONG 915 #undef FC_ABOVE_OVERLONG 916 #undef FE_ABOVE_OVERLONG 917 #undef FF_OVERLONG_PREFIX 918 919 STRLEN 920 Perl_is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags) 921 { 922 STRLEN len; 923 const U8 *x; 924 925 /* A helper function that should not be called directly. 926 * 927 * This function returns non-zero if the string beginning at 's' and 928 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a 929 * code point; otherwise it returns 0. The examination stops after the 930 * first code point in 's' is validated, not looking at the rest of the 931 * input. If 'e' is such that there are not enough bytes to represent a 932 * complete code point, this function will return non-zero anyway, if the 933 * bytes it does have are well-formed UTF-8 as far as they go, and aren't 934 * excluded by 'flags'. 935 * 936 * A non-zero return gives the number of bytes required to represent the 937 * code point. Be aware that if the input is for a partial character, the 938 * return will be larger than 'e - s'. 939 * 940 * This function assumes that the code point represented is UTF-8 variant. 941 * The caller should have excluded the possibility of it being invariant 942 * before calling this function. 943 * 944 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags 945 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return 946 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but 947 * disallowed by the flags. If the input is only for a partial character, 948 * the function will return non-zero if there is any sequence of 949 * well-formed UTF-8 that, when appended to the input sequence, could 950 * result in an allowed code point; otherwise it returns 0. Non characters 951 * cannot be determined based on partial character input. But many of the 952 * other excluded types can be determined with just the first one or two 953 * bytes. 954 * 955 */ 956 957 PERL_ARGS_ASSERT_IS_UTF8_CHAR_HELPER; 958 959 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE 960 |UTF8_DISALLOW_PERL_EXTENDED))); 961 assert(! UTF8_IS_INVARIANT(*s)); 962 963 /* A variant char must begin with a start byte */ 964 if (UNLIKELY(! UTF8_IS_START(*s))) { 965 return 0; 966 } 967 968 /* Examine a maximum of a single whole code point */ 969 if (e - s > UTF8SKIP(s)) { 970 e = s + UTF8SKIP(s); 971 } 972 973 len = e - s; 974 975 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) { 976 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]); 977 978 /* Here, we are disallowing some set of largish code points, and the 979 * first byte indicates the sequence is for a code point that could be 980 * in the excluded set. We generally don't have to look beyond this or 981 * the second byte to see if the sequence is actually for one of the 982 * excluded classes. The code below is derived from this table: 983 * 984 * UTF-8 UTF-EBCDIC I8 985 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate 986 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate 987 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode 988 * 989 * Keep in mind that legal continuation bytes range between \x80..\xBF 990 * for UTF-8, and \xA0..\xBF for I8. Anything above those aren't 991 * continuation bytes. Hence, we don't have to test the upper edge 992 * because if any of those is encountered, the sequence is malformed, 993 * and would fail elsewhere in this function. 994 * 995 * The code here likewise assumes that there aren't other 996 * malformations; again the function should fail elsewhere because of 997 * these. For example, an overlong beginning with FC doesn't actually 998 * have to be a super; it could actually represent a small code point, 999 * even U+0000. But, since overlongs (and other malformations) are 1000 * illegal, the function should return FALSE in either case. 1001 */ 1002 1003 #ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */ 1004 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA 1005 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2) 1006 1007 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \ 1008 /* B6 and B7 */ \ 1009 && ((s1) & 0xFE ) == 0xB6) 1010 # define isUTF8_PERL_EXTENDED(s) (*s == I8_TO_NATIVE_UTF8(0xFF)) 1011 #else 1012 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5 1013 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90) 1014 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0) 1015 # define isUTF8_PERL_EXTENDED(s) (*s >= 0xFE) 1016 #endif 1017 1018 if ( (flags & UTF8_DISALLOW_SUPER) 1019 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER)) 1020 { 1021 return 0; /* Above Unicode */ 1022 } 1023 1024 if ( (flags & UTF8_DISALLOW_PERL_EXTENDED) 1025 && UNLIKELY(isUTF8_PERL_EXTENDED(s))) 1026 { 1027 return 0; 1028 } 1029 1030 if (len > 1) { 1031 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]); 1032 1033 if ( (flags & UTF8_DISALLOW_SUPER) 1034 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1))) 1035 { 1036 return 0; /* Above Unicode */ 1037 } 1038 1039 if ( (flags & UTF8_DISALLOW_SURROGATE) 1040 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1))) 1041 { 1042 return 0; /* Surrogate */ 1043 } 1044 1045 if ( (flags & UTF8_DISALLOW_NONCHAR) 1046 && UNLIKELY(UTF8_IS_NONCHAR(s, e))) 1047 { 1048 return 0; /* Noncharacter code point */ 1049 } 1050 } 1051 } 1052 1053 /* Make sure that all that follows are continuation bytes */ 1054 for (x = s + 1; x < e; x++) { 1055 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) { 1056 return 0; 1057 } 1058 } 1059 1060 /* Here is syntactically valid. Next, make sure this isn't the start of an 1061 * overlong. */ 1062 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len) > 0) { 1063 return 0; 1064 } 1065 1066 /* And finally, that the code point represented fits in a word on this 1067 * platform */ 1068 if (0 < does_utf8_overflow(s, e, 1069 0 /* Don't consider overlongs */ 1070 )) 1071 { 1072 return 0; 1073 } 1074 1075 return UTF8SKIP(s); 1076 } 1077 1078 char * 1079 Perl__byte_dump_string(pTHX_ const U8 * const start, const STRLEN len, const bool format) 1080 { 1081 /* Returns a mortalized C string that is a displayable copy of the 'len' 1082 * bytes starting at 'start'. 'format' gives how to display each byte. 1083 * Currently, there are only two formats, so it is currently a bool: 1084 * 0 \xab 1085 * 1 ab (that is a space between two hex digit bytes) 1086 */ 1087 1088 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a 1089 trailing NUL */ 1090 const U8 * s = start; 1091 const U8 * const e = start + len; 1092 char * output; 1093 char * d; 1094 1095 PERL_ARGS_ASSERT__BYTE_DUMP_STRING; 1096 1097 Newx(output, output_len, char); 1098 SAVEFREEPV(output); 1099 1100 d = output; 1101 for (s = start; s < e; s++) { 1102 const unsigned high_nibble = (*s & 0xF0) >> 4; 1103 const unsigned low_nibble = (*s & 0x0F); 1104 1105 if (format) { 1106 if (s > start) { 1107 *d++ = ' '; 1108 } 1109 } 1110 else { 1111 *d++ = '\\'; 1112 *d++ = 'x'; 1113 } 1114 1115 if (high_nibble < 10) { 1116 *d++ = high_nibble + '0'; 1117 } 1118 else { 1119 *d++ = high_nibble - 10 + 'a'; 1120 } 1121 1122 if (low_nibble < 10) { 1123 *d++ = low_nibble + '0'; 1124 } 1125 else { 1126 *d++ = low_nibble - 10 + 'a'; 1127 } 1128 } 1129 1130 *d = '\0'; 1131 return output; 1132 } 1133 1134 PERL_STATIC_INLINE char * 1135 S_unexpected_non_continuation_text(pTHX_ const U8 * const s, 1136 1137 /* Max number of bytes to print */ 1138 STRLEN print_len, 1139 1140 /* Which one is the non-continuation */ 1141 const STRLEN non_cont_byte_pos, 1142 1143 /* How many bytes should there be? */ 1144 const STRLEN expect_len) 1145 { 1146 /* Return the malformation warning text for an unexpected continuation 1147 * byte. */ 1148 1149 const char * const where = (non_cont_byte_pos == 1) 1150 ? "immediately" 1151 : Perl_form(aTHX_ "%d bytes", 1152 (int) non_cont_byte_pos); 1153 const U8 * x = s + non_cont_byte_pos; 1154 const U8 * e = s + print_len; 1155 1156 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT; 1157 1158 /* We don't need to pass this parameter, but since it has already been 1159 * calculated, it's likely faster to pass it; verify under DEBUGGING */ 1160 assert(expect_len == UTF8SKIP(s)); 1161 1162 /* As a defensive coding measure, don't output anything past a NUL. Such 1163 * bytes shouldn't be in the middle of a malformation, and could mark the 1164 * end of the allocated string, and what comes after is undefined */ 1165 for (; x < e; x++) { 1166 if (*x == '\0') { 1167 x++; /* Output this particular NUL */ 1168 break; 1169 } 1170 } 1171 1172 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x," 1173 " %s after start byte 0x%02x; need %d bytes, got %d)", 1174 malformed_text, 1175 _byte_dump_string(s, x - s, 0), 1176 *(s + non_cont_byte_pos), 1177 where, 1178 *s, 1179 (int) expect_len, 1180 (int) non_cont_byte_pos); 1181 } 1182 1183 /* 1184 1185 =for apidoc utf8n_to_uvchr 1186 1187 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES. 1188 Most code should use L</utf8_to_uvchr_buf>() rather than call this 1189 directly. 1190 1191 Bottom level UTF-8 decode routine. 1192 Returns the native code point value of the first character in the string C<s>, 1193 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than 1194 C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to 1195 the length, in bytes, of that character. 1196 1197 The value of C<flags> determines the behavior when C<s> does not point to a 1198 well-formed UTF-8 character. If C<flags> is 0, encountering a malformation 1199 causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>) 1200 is the next possible position in C<s> that could begin a non-malformed 1201 character. Also, if UTF-8 warnings haven't been lexically disabled, a warning 1202 is raised. Some UTF-8 input sequences may contain multiple malformations. 1203 This function tries to find every possible one in each call, so multiple 1204 warnings can be raised for the same sequence. 1205 1206 Various ALLOW flags can be set in C<flags> to allow (and not warn on) 1207 individual types of malformations, such as the sequence being overlong (that 1208 is, when there is a shorter sequence that can express the same code point; 1209 overlong sequences are expressly forbidden in the UTF-8 standard due to 1210 potential security issues). Another malformation example is the first byte of 1211 a character not being a legal first byte. See F<utf8.h> for the list of such 1212 flags. Even if allowed, this function generally returns the Unicode 1213 REPLACEMENT CHARACTER when it encounters a malformation. There are flags in 1214 F<utf8.h> to override this behavior for the overlong malformations, but don't 1215 do that except for very specialized purposes. 1216 1217 The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other 1218 flags) malformation is found. If this flag is set, the routine assumes that 1219 the caller will raise a warning, and this function will silently just set 1220 C<retlen> to C<-1> (cast to C<STRLEN>) and return zero. 1221 1222 Note that this API requires disambiguation between successful decoding a C<NUL> 1223 character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as 1224 in both cases, 0 is returned, and, depending on the malformation, C<retlen> may 1225 be set to 1. To disambiguate, upon a zero return, see if the first byte of 1226 C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an 1227 error. Or you can use C<L</utf8n_to_uvchr_error>>. 1228 1229 Certain code points are considered problematic. These are Unicode surrogates, 1230 Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF. 1231 By default these are considered regular code points, but certain situations 1232 warrant special handling for them, which can be specified using the C<flags> 1233 parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all 1234 three classes are treated as malformations and handled as such. The flags 1235 C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and 1236 C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to 1237 disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE> 1238 restricts the allowed inputs to the strict UTF-8 traditionally defined by 1239 Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness 1240 definition given by 1241 L<Unicode Corrigendum #9|https://www.unicode.org/versions/corrigendum9.html>. 1242 The difference between traditional strictness and C9 strictness is that the 1243 latter does not forbid non-character code points. (They are still discouraged, 1244 however.) For more discussion see L<perlunicode/Noncharacter code points>. 1245 1246 The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>, 1247 C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>, 1248 C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be 1249 raised for their respective categories, but otherwise the code points are 1250 considered valid (not malformations). To get a category to both be treated as 1251 a malformation and raise a warning, specify both the WARN and DISALLOW flags. 1252 (But note that warnings are not raised if lexically disabled nor if 1253 C<UTF8_CHECK_ONLY> is also specified.) 1254 1255 Extremely high code points were never specified in any standard, and require an 1256 extension to UTF-8 to express, which Perl does. It is likely that programs 1257 written in something other than Perl would not be able to read files that 1258 contain these; nor would Perl understand files written by something that uses a 1259 different extension. For these reasons, there is a separate set of flags that 1260 can warn and/or disallow these extremely high code points, even if other 1261 above-Unicode ones are accepted. They are the C<UTF8_WARN_PERL_EXTENDED> and 1262 C<UTF8_DISALLOW_PERL_EXTENDED> flags. For more information see 1263 L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UTF8_DISALLOW_SUPER> will treat all 1264 above-Unicode code points, including these, as malformations. 1265 (Note that the Unicode standard considers anything above 0x10FFFF to be 1266 illegal, but there are standards predating it that allow up to 0x7FFF_FFFF 1267 (2**31 -1)) 1268 1269 A somewhat misleadingly named synonym for C<UTF8_WARN_PERL_EXTENDED> is 1270 retained for backward compatibility: C<UTF8_WARN_ABOVE_31_BIT>. Similarly, 1271 C<UTF8_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named 1272 C<UTF8_DISALLOW_PERL_EXTENDED>. The names are misleading because these flags 1273 can apply to code points that actually do fit in 31 bits. This happens on 1274 EBCDIC platforms, and sometimes when the L<overlong 1275 malformation|/C<UTF8_GOT_LONG>> is also present. The new names accurately 1276 describe the situation in all cases. 1277 1278 1279 All other code points corresponding to Unicode characters, including private 1280 use and those yet to be assigned, are never considered malformed and never 1281 warn. 1282 1283 =for apidoc Amnh||UTF8_CHECK_ONLY 1284 =for apidoc Amnh||UTF8_DISALLOW_ILLEGAL_INTERCHANGE 1285 =for apidoc Amnh||UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE 1286 =for apidoc Amnh||UTF8_DISALLOW_SURROGATE 1287 =for apidoc Amnh||UTF8_DISALLOW_NONCHAR 1288 =for apidoc Amnh||UTF8_DISALLOW_SUPER 1289 =for apidoc Amnh||UTF8_WARN_ILLEGAL_INTERCHANGE 1290 =for apidoc Amnh||UTF8_WARN_ILLEGAL_C9_INTERCHANGE 1291 =for apidoc Amnh||UTF8_WARN_SURROGATE 1292 =for apidoc Amnh||UTF8_WARN_NONCHAR 1293 =for apidoc Amnh||UTF8_WARN_SUPER 1294 =for apidoc Amnh||UTF8_WARN_PERL_EXTENDED 1295 =for apidoc Amnh||UTF8_DISALLOW_PERL_EXTENDED 1296 1297 =cut 1298 1299 Also implemented as a macro in utf8.h 1300 */ 1301 1302 UV 1303 Perl_utf8n_to_uvchr(const U8 *s, 1304 STRLEN curlen, 1305 STRLEN *retlen, 1306 const U32 flags) 1307 { 1308 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR; 1309 1310 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL); 1311 } 1312 1313 /* 1314 1315 =for apidoc utf8n_to_uvchr_error 1316 1317 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES. 1318 Most code should use L</utf8_to_uvchr_buf>() rather than call this 1319 directly. 1320 1321 This function is for code that needs to know what the precise malformation(s) 1322 are when an error is found. If you also need to know the generated warning 1323 messages, use L</utf8n_to_uvchr_msgs>() instead. 1324 1325 It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after 1326 all the others, C<errors>. If this parameter is 0, this function behaves 1327 identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer 1328 to a C<U32> variable, which this function sets to indicate any errors found. 1329 Upon return, if C<*errors> is 0, there were no errors found. Otherwise, 1330 C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some 1331 of these bits will be set if a malformation is found, even if the input 1332 C<flags> parameter indicates that the given malformation is allowed; those 1333 exceptions are noted: 1334 1335 =over 4 1336 1337 =item C<UTF8_GOT_PERL_EXTENDED> 1338 1339 The input sequence is not standard UTF-8, but a Perl extension. This bit is 1340 set only if the input C<flags> parameter contains either the 1341 C<UTF8_DISALLOW_PERL_EXTENDED> or the C<UTF8_WARN_PERL_EXTENDED> flags. 1342 1343 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard, 1344 and so some extension must be used to express them. Perl uses a natural 1345 extension to UTF-8 to represent the ones up to 2**36-1, and invented a further 1346 extension to represent even higher ones, so that any code point that fits in a 1347 64-bit word can be represented. Text using these extensions is not likely to 1348 be portable to non-Perl code. We lump both of these extensions together and 1349 refer to them as Perl extended UTF-8. There exist other extensions that people 1350 have invented, incompatible with Perl's. 1351 1352 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing 1353 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower 1354 than on ASCII. Prior to that, code points 2**31 and higher were simply 1355 unrepresentable, and a different, incompatible method was used to represent 1356 code points between 2**30 and 2**31 - 1. 1357 1358 On both platforms, ASCII and EBCDIC, C<UTF8_GOT_PERL_EXTENDED> is set if 1359 Perl extended UTF-8 is used. 1360 1361 In earlier Perls, this bit was named C<UTF8_GOT_ABOVE_31_BIT>, which you still 1362 may use for backward compatibility. That name is misleading, as this flag may 1363 be set when the code point actually does fit in 31 bits. This happens on 1364 EBCDIC platforms, and sometimes when the L<overlong 1365 malformation|/C<UTF8_GOT_LONG>> is also present. The new name accurately 1366 describes the situation in all cases. 1367 1368 =item C<UTF8_GOT_CONTINUATION> 1369 1370 The input sequence was malformed in that the first byte was a UTF-8 1371 continuation byte. 1372 1373 =item C<UTF8_GOT_EMPTY> 1374 1375 The input C<curlen> parameter was 0. 1376 1377 =item C<UTF8_GOT_LONG> 1378 1379 The input sequence was malformed in that there is some other sequence that 1380 evaluates to the same code point, but that sequence is shorter than this one. 1381 1382 Until Unicode 3.1, it was legal for programs to accept this malformation, but 1383 it was discovered that this created security issues. 1384 1385 =item C<UTF8_GOT_NONCHAR> 1386 1387 The code point represented by the input UTF-8 sequence is for a Unicode 1388 non-character code point. 1389 This bit is set only if the input C<flags> parameter contains either the 1390 C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags. 1391 1392 =item C<UTF8_GOT_NON_CONTINUATION> 1393 1394 The input sequence was malformed in that a non-continuation type byte was found 1395 in a position where only a continuation type one should be. See also 1396 L</C<UTF8_GOT_SHORT>>. 1397 1398 =item C<UTF8_GOT_OVERFLOW> 1399 1400 The input sequence was malformed in that it is for a code point that is not 1401 representable in the number of bits available in an IV on the current platform. 1402 1403 =item C<UTF8_GOT_SHORT> 1404 1405 The input sequence was malformed in that C<curlen> is smaller than required for 1406 a complete sequence. In other words, the input is for a partial character 1407 sequence. 1408 1409 1410 C<UTF8_GOT_SHORT> and C<UTF8_GOT_NON_CONTINUATION> both indicate a too short 1411 sequence. The difference is that C<UTF8_GOT_NON_CONTINUATION> indicates always 1412 that there is an error, while C<UTF8_GOT_SHORT> means that an incomplete 1413 sequence was looked at. If no other flags are present, it means that the 1414 sequence was valid as far as it went. Depending on the application, this could 1415 mean one of three things: 1416 1417 =over 1418 1419 =item * 1420 1421 The C<curlen> length parameter passed in was too small, and the function was 1422 prevented from examining all the necessary bytes. 1423 1424 =item * 1425 1426 The buffer being looked at is based on reading data, and the data received so 1427 far stopped in the middle of a character, so that the next read will 1428 read the remainder of this character. (It is up to the caller to deal with the 1429 split bytes somehow.) 1430 1431 =item * 1432 1433 This is a real error, and the partial sequence is all we're going to get. 1434 1435 =back 1436 1437 =item C<UTF8_GOT_SUPER> 1438 1439 The input sequence was malformed in that it is for a non-Unicode code point; 1440 that is, one above the legal Unicode maximum. 1441 This bit is set only if the input C<flags> parameter contains either the 1442 C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags. 1443 1444 =item C<UTF8_GOT_SURROGATE> 1445 1446 The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate 1447 code point. 1448 This bit is set only if the input C<flags> parameter contains either the 1449 C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags. 1450 1451 =back 1452 1453 To do your own error handling, call this function with the C<UTF8_CHECK_ONLY> 1454 flag to suppress any warnings, and then examine the C<*errors> return. 1455 1456 =cut 1457 1458 Also implemented as a macro in utf8.h 1459 */ 1460 1461 UV 1462 Perl_utf8n_to_uvchr_error(const U8 *s, 1463 STRLEN curlen, 1464 STRLEN *retlen, 1465 const U32 flags, 1466 U32 * errors) 1467 { 1468 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR; 1469 1470 return utf8n_to_uvchr_msgs(s, curlen, retlen, flags, errors, NULL); 1471 } 1472 1473 /* 1474 1475 =for apidoc utf8n_to_uvchr_msgs 1476 1477 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES. 1478 Most code should use L</utf8_to_uvchr_buf>() rather than call this 1479 directly. 1480 1481 This function is for code that needs to know what the precise malformation(s) 1482 are when an error is found, and wants the corresponding warning and/or error 1483 messages to be returned to the caller rather than be displayed. All messages 1484 that would have been displayed if all lexcial warnings are enabled will be 1485 returned. 1486 1487 It is just like C<L</utf8n_to_uvchr_error>> but it takes an extra parameter 1488 placed after all the others, C<msgs>. If this parameter is 0, this function 1489 behaves identically to C<L</utf8n_to_uvchr_error>>. Otherwise, C<msgs> should 1490 be a pointer to an C<AV *> variable, in which this function creates a new AV to 1491 contain any appropriate messages. The elements of the array are ordered so 1492 that the first message that would have been displayed is in the 0th element, 1493 and so on. Each element is a hash with three key-value pairs, as follows: 1494 1495 =over 4 1496 1497 =item C<text> 1498 1499 The text of the message as a C<SVpv>. 1500 1501 =item C<warn_categories> 1502 1503 The warning category (or categories) packed into a C<SVuv>. 1504 1505 =item C<flag> 1506 1507 A single flag bit associated with this message, in a C<SVuv>. 1508 The bit corresponds to some bit in the C<*errors> return value, 1509 such as C<UTF8_GOT_LONG>. 1510 1511 =back 1512 1513 It's important to note that specifying this parameter as non-null will cause 1514 any warnings this function would otherwise generate to be suppressed, and 1515 instead be placed in C<*msgs>. The caller can check the lexical warnings state 1516 (or not) when choosing what to do with the returned messages. 1517 1518 If the flag C<UTF8_CHECK_ONLY> is passed, no warnings are generated, and hence 1519 no AV is created. 1520 1521 The caller, of course, is responsible for freeing any returned AV. 1522 1523 =cut 1524 */ 1525 1526 UV 1527 Perl__utf8n_to_uvchr_msgs_helper(const U8 *s, 1528 STRLEN curlen, 1529 STRLEN *retlen, 1530 const U32 flags, 1531 U32 * errors, 1532 AV ** msgs) 1533 { 1534 const U8 * const s0 = s; 1535 const U8 * send = s0 + curlen; 1536 U32 possible_problems; /* A bit is set here for each potential problem 1537 found as we go along */ 1538 UV uv; 1539 STRLEN expectlen; /* How long should this sequence be? */ 1540 STRLEN avail_len; /* When input is too short, gives what that is */ 1541 U32 discard_errors; /* Used to save branches when 'errors' is NULL; this 1542 gets set and discarded */ 1543 1544 /* The below are used only if there is both an overlong malformation and a 1545 * too short one. Otherwise the first two are set to 's0' and 'send', and 1546 * the third not used at all */ 1547 U8 * adjusted_s0; 1548 U8 temp_char_buf[UTF8_MAXBYTES + 1]; /* Used to avoid a Newx in this 1549 routine; see [perl #130921] */ 1550 UV uv_so_far; 1551 dTHX; 1552 1553 PERL_ARGS_ASSERT__UTF8N_TO_UVCHR_MSGS_HELPER; 1554 1555 /* Here, is one of: a) malformed; b) a problematic code point (surrogate, 1556 * non-unicode, or nonchar); or c) on ASCII platforms, one of the Hangul 1557 * syllables that the dfa doesn't properly handle. Quickly dispose of the 1558 * final case. */ 1559 1560 #ifndef EBCDIC 1561 1562 /* Each of the affected Hanguls starts with \xED */ 1563 1564 if (is_HANGUL_ED_utf8_safe(s0, send)) { 1565 if (retlen) { 1566 *retlen = 3; 1567 } 1568 if (errors) { 1569 *errors = 0; 1570 } 1571 if (msgs) { 1572 *msgs = NULL; 1573 } 1574 1575 return ((0xED & UTF_START_MASK(3)) << (2 * UTF_ACCUMULATION_SHIFT)) 1576 | ((s0[1] & UTF_CONTINUATION_MASK) << UTF_ACCUMULATION_SHIFT) 1577 | (s0[2] & UTF_CONTINUATION_MASK); 1578 } 1579 1580 #endif 1581 1582 /* In conjunction with the exhaustive tests that can be enabled in 1583 * APItest/t/utf8_warn_base.pl, this can make sure the dfa does precisely 1584 * what it is intended to do, and that no flaws in it are masked by 1585 * dropping down and executing the code below 1586 assert(! isUTF8_CHAR(s0, send) 1587 || UTF8_IS_SURROGATE(s0, send) 1588 || UTF8_IS_SUPER(s0, send) 1589 || UTF8_IS_NONCHAR(s0,send)); 1590 */ 1591 1592 s = s0; 1593 uv = *s0; 1594 possible_problems = 0; 1595 expectlen = 0; 1596 avail_len = 0; 1597 discard_errors = 0; 1598 adjusted_s0 = (U8 *) s0; 1599 uv_so_far = 0; 1600 1601 if (errors) { 1602 *errors = 0; 1603 } 1604 else { 1605 errors = &discard_errors; 1606 } 1607 1608 /* The order of malformation tests here is important. We should consume as 1609 * few bytes as possible in order to not skip any valid character. This is 1610 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also 1611 * https://unicode.org/reports/tr36 for more discussion as to why. For 1612 * example, once we've done a UTF8SKIP, we can tell the expected number of 1613 * bytes, and could fail right off the bat if the input parameters indicate 1614 * that there are too few available. But it could be that just that first 1615 * byte is garbled, and the intended character occupies fewer bytes. If we 1616 * blindly assumed that the first byte is correct, and skipped based on 1617 * that number, we could skip over a valid input character. So instead, we 1618 * always examine the sequence byte-by-byte. 1619 * 1620 * We also should not consume too few bytes, otherwise someone could inject 1621 * things. For example, an input could be deliberately designed to 1622 * overflow, and if this code bailed out immediately upon discovering that, 1623 * returning to the caller C<*retlen> pointing to the very next byte (one 1624 * which is actually part of the overflowing sequence), that could look 1625 * legitimate to the caller, which could discard the initial partial 1626 * sequence and process the rest, inappropriately. 1627 * 1628 * Some possible input sequences are malformed in more than one way. This 1629 * function goes to lengths to try to find all of them. This is necessary 1630 * for correctness, as the inputs may allow one malformation but not 1631 * another, and if we abandon searching for others after finding the 1632 * allowed one, we could allow in something that shouldn't have been. 1633 */ 1634 1635 if (UNLIKELY(curlen == 0)) { 1636 possible_problems |= UTF8_GOT_EMPTY; 1637 curlen = 0; 1638 uv = UNICODE_REPLACEMENT; 1639 goto ready_to_handle_errors; 1640 } 1641 1642 expectlen = UTF8SKIP(s); 1643 1644 /* A well-formed UTF-8 character, as the vast majority of calls to this 1645 * function will be for, has this expected length. For efficiency, set 1646 * things up here to return it. It will be overriden only in those rare 1647 * cases where a malformation is found */ 1648 if (retlen) { 1649 *retlen = expectlen; 1650 } 1651 1652 /* A continuation character can't start a valid sequence */ 1653 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) { 1654 possible_problems |= UTF8_GOT_CONTINUATION; 1655 curlen = 1; 1656 uv = UNICODE_REPLACEMENT; 1657 goto ready_to_handle_errors; 1658 } 1659 1660 /* Here is not a continuation byte, nor an invariant. The only thing left 1661 * is a start byte (possibly for an overlong). (We can't use UTF8_IS_START 1662 * because it excludes start bytes like \xC0 that always lead to 1663 * overlongs.) */ 1664 1665 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits 1666 * that indicate the number of bytes in the character's whole UTF-8 1667 * sequence, leaving just the bits that are part of the value. */ 1668 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen); 1669 1670 /* Setup the loop end point, making sure to not look past the end of the 1671 * input string, and flag it as too short if the size isn't big enough. */ 1672 if (UNLIKELY(curlen < expectlen)) { 1673 possible_problems |= UTF8_GOT_SHORT; 1674 avail_len = curlen; 1675 } 1676 else { 1677 send = (U8*) s0 + expectlen; 1678 } 1679 1680 /* Now, loop through the remaining bytes in the character's sequence, 1681 * accumulating each into the working value as we go. */ 1682 for (s = s0 + 1; s < send; s++) { 1683 if (LIKELY(UTF8_IS_CONTINUATION(*s))) { 1684 uv = UTF8_ACCUMULATE(uv, *s); 1685 continue; 1686 } 1687 1688 /* Here, found a non-continuation before processing all expected bytes. 1689 * This byte indicates the beginning of a new character, so quit, even 1690 * if allowing this malformation. */ 1691 possible_problems |= UTF8_GOT_NON_CONTINUATION; 1692 break; 1693 } /* End of loop through the character's bytes */ 1694 1695 /* Save how many bytes were actually in the character */ 1696 curlen = s - s0; 1697 1698 /* Note that there are two types of too-short malformation. One is when 1699 * there is actual wrong data before the normal termination of the 1700 * sequence. The other is that the sequence wasn't complete before the end 1701 * of the data we are allowed to look at, based on the input 'curlen'. 1702 * This means that we were passed data for a partial character, but it is 1703 * valid as far as we saw. The other is definitely invalid. This 1704 * distinction could be important to a caller, so the two types are kept 1705 * separate. 1706 * 1707 * A convenience macro that matches either of the too-short conditions. */ 1708 # define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION) 1709 1710 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) { 1711 uv_so_far = uv; 1712 uv = UNICODE_REPLACEMENT; 1713 } 1714 1715 /* Check for overflow. The algorithm requires us to not look past the end 1716 * of the current character, even if partial, so the upper limit is 's' */ 1717 if (UNLIKELY(0 < does_utf8_overflow(s0, s, 1718 1 /* Do consider overlongs */ 1719 ))) 1720 { 1721 possible_problems |= UTF8_GOT_OVERFLOW; 1722 uv = UNICODE_REPLACEMENT; 1723 } 1724 1725 /* Check for overlong. If no problems so far, 'uv' is the correct code 1726 * point value. Simply see if it is expressible in fewer bytes. Otherwise 1727 * we must look at the UTF-8 byte sequence itself to see if it is for an 1728 * overlong */ 1729 if ( ( LIKELY(! possible_problems) 1730 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv))) 1731 || ( UNLIKELY(possible_problems) 1732 && ( UNLIKELY(! UTF8_IS_START(*s0)) 1733 || ( curlen > 1 1734 && UNLIKELY(0 < is_utf8_overlong_given_start_byte_ok(s0, 1735 s - s0)))))) 1736 { 1737 possible_problems |= UTF8_GOT_LONG; 1738 1739 if ( UNLIKELY( possible_problems & UTF8_GOT_TOO_SHORT) 1740 1741 /* The calculation in the 'true' branch of this 'if' 1742 * below won't work if overflows, and isn't needed 1743 * anyway. Further below we handle all overflow 1744 * cases */ 1745 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW))) 1746 { 1747 UV min_uv = uv_so_far; 1748 STRLEN i; 1749 1750 /* Here, the input is both overlong and is missing some trailing 1751 * bytes. There is no single code point it could be for, but there 1752 * may be enough information present to determine if what we have 1753 * so far is for an unallowed code point, such as for a surrogate. 1754 * The code further below has the intelligence to determine this, 1755 * but just for non-overlong UTF-8 sequences. What we do here is 1756 * calculate the smallest code point the input could represent if 1757 * there were no too short malformation. Then we compute and save 1758 * the UTF-8 for that, which is what the code below looks at 1759 * instead of the raw input. It turns out that the smallest such 1760 * code point is all we need. */ 1761 for (i = curlen; i < expectlen; i++) { 1762 min_uv = UTF8_ACCUMULATE(min_uv, 1763 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK)); 1764 } 1765 1766 adjusted_s0 = temp_char_buf; 1767 (void) uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0); 1768 } 1769 } 1770 1771 /* Here, we have found all the possible problems, except for when the input 1772 * is for a problematic code point not allowed by the input parameters. */ 1773 1774 /* uv is valid for overlongs */ 1775 if ( ( ( LIKELY(! (possible_problems & ~UTF8_GOT_LONG)) 1776 1777 /* isn't problematic if < this */ 1778 && uv >= UNICODE_SURROGATE_FIRST) 1779 || ( UNLIKELY(possible_problems) 1780 1781 /* if overflow, we know without looking further 1782 * precisely which of the problematic types it is, 1783 * and we deal with those in the overflow handling 1784 * code */ 1785 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW)) 1786 && ( isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0) 1787 || UNLIKELY(isUTF8_PERL_EXTENDED(s0))))) 1788 && ((flags & ( UTF8_DISALLOW_NONCHAR 1789 |UTF8_DISALLOW_SURROGATE 1790 |UTF8_DISALLOW_SUPER 1791 |UTF8_DISALLOW_PERL_EXTENDED 1792 |UTF8_WARN_NONCHAR 1793 |UTF8_WARN_SURROGATE 1794 |UTF8_WARN_SUPER 1795 |UTF8_WARN_PERL_EXTENDED)))) 1796 { 1797 /* If there were no malformations, or the only malformation is an 1798 * overlong, 'uv' is valid */ 1799 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) { 1800 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) { 1801 possible_problems |= UTF8_GOT_SURROGATE; 1802 } 1803 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) { 1804 possible_problems |= UTF8_GOT_SUPER; 1805 } 1806 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) { 1807 possible_problems |= UTF8_GOT_NONCHAR; 1808 } 1809 } 1810 else { /* Otherwise, need to look at the source UTF-8, possibly 1811 adjusted to be non-overlong */ 1812 1813 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0) 1814 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER)) 1815 { 1816 possible_problems |= UTF8_GOT_SUPER; 1817 } 1818 else if (curlen > 1) { 1819 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER( 1820 NATIVE_UTF8_TO_I8(*adjusted_s0), 1821 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1))))) 1822 { 1823 possible_problems |= UTF8_GOT_SUPER; 1824 } 1825 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE( 1826 NATIVE_UTF8_TO_I8(*adjusted_s0), 1827 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1))))) 1828 { 1829 possible_problems |= UTF8_GOT_SURROGATE; 1830 } 1831 } 1832 1833 /* We need a complete well-formed UTF-8 character to discern 1834 * non-characters, so can't look for them here */ 1835 } 1836 } 1837 1838 ready_to_handle_errors: 1839 1840 /* At this point: 1841 * curlen contains the number of bytes in the sequence that 1842 * this call should advance the input by. 1843 * avail_len gives the available number of bytes passed in, but 1844 * only if this is less than the expected number of 1845 * bytes, based on the code point's start byte. 1846 * possible_problems' is 0 if there weren't any problems; otherwise a bit 1847 * is set in it for each potential problem found. 1848 * uv contains the code point the input sequence 1849 * represents; or if there is a problem that prevents 1850 * a well-defined value from being computed, it is 1851 * some subsitute value, typically the REPLACEMENT 1852 * CHARACTER. 1853 * s0 points to the first byte of the character 1854 * s points to just after were we left off processing 1855 * the character 1856 * send points to just after where that character should 1857 * end, based on how many bytes the start byte tells 1858 * us should be in it, but no further than s0 + 1859 * avail_len 1860 */ 1861 1862 if (UNLIKELY(possible_problems)) { 1863 bool disallowed = FALSE; 1864 const U32 orig_problems = possible_problems; 1865 1866 if (msgs) { 1867 *msgs = NULL; 1868 } 1869 1870 while (possible_problems) { /* Handle each possible problem */ 1871 U32 pack_warn = 0; 1872 char * message = NULL; 1873 U32 this_flag_bit = 0; 1874 1875 /* Each 'if' clause handles one problem. They are ordered so that 1876 * the first ones' messages will be displayed before the later 1877 * ones; this is kinda in decreasing severity order. But the 1878 * overlong must come last, as it changes 'uv' looked at by the 1879 * others */ 1880 if (possible_problems & UTF8_GOT_OVERFLOW) { 1881 1882 /* Overflow means also got a super and are using Perl's 1883 * extended UTF-8, but we handle all three cases here */ 1884 possible_problems 1885 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_PERL_EXTENDED); 1886 *errors |= UTF8_GOT_OVERFLOW; 1887 1888 /* But the API says we flag all errors found */ 1889 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) { 1890 *errors |= UTF8_GOT_SUPER; 1891 } 1892 if (flags 1893 & (UTF8_WARN_PERL_EXTENDED|UTF8_DISALLOW_PERL_EXTENDED)) 1894 { 1895 *errors |= UTF8_GOT_PERL_EXTENDED; 1896 } 1897 1898 /* Disallow if any of the three categories say to */ 1899 if ( ! (flags & UTF8_ALLOW_OVERFLOW) 1900 || (flags & ( UTF8_DISALLOW_SUPER 1901 |UTF8_DISALLOW_PERL_EXTENDED))) 1902 { 1903 disallowed = TRUE; 1904 } 1905 1906 /* Likewise, warn if any say to */ 1907 if ( ! (flags & UTF8_ALLOW_OVERFLOW) 1908 || (flags & (UTF8_WARN_SUPER|UTF8_WARN_PERL_EXTENDED))) 1909 { 1910 1911 /* The warnings code explicitly says it doesn't handle the 1912 * case of packWARN2 and two categories which have 1913 * parent-child relationship. Even if it works now to 1914 * raise the warning if either is enabled, it wouldn't 1915 * necessarily do so in the future. We output (only) the 1916 * most dire warning */ 1917 if (! (flags & UTF8_CHECK_ONLY)) { 1918 if (msgs || ckWARN_d(WARN_UTF8)) { 1919 pack_warn = packWARN(WARN_UTF8); 1920 } 1921 else if (msgs || ckWARN_d(WARN_NON_UNICODE)) { 1922 pack_warn = packWARN(WARN_NON_UNICODE); 1923 } 1924 if (pack_warn) { 1925 message = Perl_form(aTHX_ "%s: %s (overflows)", 1926 malformed_text, 1927 _byte_dump_string(s0, curlen, 0)); 1928 this_flag_bit = UTF8_GOT_OVERFLOW; 1929 } 1930 } 1931 } 1932 } 1933 else if (possible_problems & UTF8_GOT_EMPTY) { 1934 possible_problems &= ~UTF8_GOT_EMPTY; 1935 *errors |= UTF8_GOT_EMPTY; 1936 1937 if (! (flags & UTF8_ALLOW_EMPTY)) { 1938 1939 /* This so-called malformation is now treated as a bug in 1940 * the caller. If you have nothing to decode, skip calling 1941 * this function */ 1942 assert(0); 1943 1944 disallowed = TRUE; 1945 if ( (msgs 1946 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY)) 1947 { 1948 pack_warn = packWARN(WARN_UTF8); 1949 message = Perl_form(aTHX_ "%s (empty string)", 1950 malformed_text); 1951 this_flag_bit = UTF8_GOT_EMPTY; 1952 } 1953 } 1954 } 1955 else if (possible_problems & UTF8_GOT_CONTINUATION) { 1956 possible_problems &= ~UTF8_GOT_CONTINUATION; 1957 *errors |= UTF8_GOT_CONTINUATION; 1958 1959 if (! (flags & UTF8_ALLOW_CONTINUATION)) { 1960 disallowed = TRUE; 1961 if (( msgs 1962 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY)) 1963 { 1964 pack_warn = packWARN(WARN_UTF8); 1965 message = Perl_form(aTHX_ 1966 "%s: %s (unexpected continuation byte 0x%02x," 1967 " with no preceding start byte)", 1968 malformed_text, 1969 _byte_dump_string(s0, 1, 0), *s0); 1970 this_flag_bit = UTF8_GOT_CONTINUATION; 1971 } 1972 } 1973 } 1974 else if (possible_problems & UTF8_GOT_SHORT) { 1975 possible_problems &= ~UTF8_GOT_SHORT; 1976 *errors |= UTF8_GOT_SHORT; 1977 1978 if (! (flags & UTF8_ALLOW_SHORT)) { 1979 disallowed = TRUE; 1980 if (( msgs 1981 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY)) 1982 { 1983 pack_warn = packWARN(WARN_UTF8); 1984 message = Perl_form(aTHX_ 1985 "%s: %s (too short; %d byte%s available, need %d)", 1986 malformed_text, 1987 _byte_dump_string(s0, send - s0, 0), 1988 (int)avail_len, 1989 avail_len == 1 ? "" : "s", 1990 (int)expectlen); 1991 this_flag_bit = UTF8_GOT_SHORT; 1992 } 1993 } 1994 1995 } 1996 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) { 1997 possible_problems &= ~UTF8_GOT_NON_CONTINUATION; 1998 *errors |= UTF8_GOT_NON_CONTINUATION; 1999 2000 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) { 2001 disallowed = TRUE; 2002 if (( msgs 2003 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY)) 2004 { 2005 2006 /* If we don't know for sure that the input length is 2007 * valid, avoid as much as possible reading past the 2008 * end of the buffer */ 2009 int printlen = (flags & _UTF8_NO_CONFIDENCE_IN_CURLEN) 2010 ? (int) (s - s0) 2011 : (int) (send - s0); 2012 pack_warn = packWARN(WARN_UTF8); 2013 message = Perl_form(aTHX_ "%s", 2014 unexpected_non_continuation_text(s0, 2015 printlen, 2016 s - s0, 2017 (int) expectlen)); 2018 this_flag_bit = UTF8_GOT_NON_CONTINUATION; 2019 } 2020 } 2021 } 2022 else if (possible_problems & UTF8_GOT_SURROGATE) { 2023 possible_problems &= ~UTF8_GOT_SURROGATE; 2024 2025 if (flags & UTF8_WARN_SURROGATE) { 2026 *errors |= UTF8_GOT_SURROGATE; 2027 2028 if ( ! (flags & UTF8_CHECK_ONLY) 2029 && (msgs || ckWARN_d(WARN_SURROGATE))) 2030 { 2031 pack_warn = packWARN(WARN_SURROGATE); 2032 2033 /* These are the only errors that can occur with a 2034 * surrogate when the 'uv' isn't valid */ 2035 if (orig_problems & UTF8_GOT_TOO_SHORT) { 2036 message = Perl_form(aTHX_ 2037 "UTF-16 surrogate (any UTF-8 sequence that" 2038 " starts with \"%s\" is for a surrogate)", 2039 _byte_dump_string(s0, curlen, 0)); 2040 } 2041 else { 2042 message = Perl_form(aTHX_ surrogate_cp_format, uv); 2043 } 2044 this_flag_bit = UTF8_GOT_SURROGATE; 2045 } 2046 } 2047 2048 if (flags & UTF8_DISALLOW_SURROGATE) { 2049 disallowed = TRUE; 2050 *errors |= UTF8_GOT_SURROGATE; 2051 } 2052 } 2053 else if (possible_problems & UTF8_GOT_SUPER) { 2054 possible_problems &= ~UTF8_GOT_SUPER; 2055 2056 if (flags & UTF8_WARN_SUPER) { 2057 *errors |= UTF8_GOT_SUPER; 2058 2059 if ( ! (flags & UTF8_CHECK_ONLY) 2060 && (msgs || ckWARN_d(WARN_NON_UNICODE))) 2061 { 2062 pack_warn = packWARN(WARN_NON_UNICODE); 2063 2064 if (orig_problems & UTF8_GOT_TOO_SHORT) { 2065 message = Perl_form(aTHX_ 2066 "Any UTF-8 sequence that starts with" 2067 " \"%s\" is for a non-Unicode code point," 2068 " may not be portable", 2069 _byte_dump_string(s0, curlen, 0)); 2070 } 2071 else { 2072 message = Perl_form(aTHX_ super_cp_format, uv); 2073 } 2074 this_flag_bit = UTF8_GOT_SUPER; 2075 } 2076 } 2077 2078 /* Test for Perl's extended UTF-8 after the regular SUPER ones, 2079 * and before possibly bailing out, so that the more dire 2080 * warning will override the regular one. */ 2081 if (UNLIKELY(isUTF8_PERL_EXTENDED(s0))) { 2082 if ( ! (flags & UTF8_CHECK_ONLY) 2083 && (flags & (UTF8_WARN_PERL_EXTENDED|UTF8_WARN_SUPER)) 2084 && (msgs || ( ckWARN_d(WARN_NON_UNICODE) 2085 || ckWARN(WARN_PORTABLE)))) 2086 { 2087 pack_warn = packWARN2(WARN_NON_UNICODE, WARN_PORTABLE); 2088 2089 /* If it is an overlong that evaluates to a code point 2090 * that doesn't have to use the Perl extended UTF-8, it 2091 * still used it, and so we output a message that 2092 * doesn't refer to the code point. The same is true 2093 * if there was a SHORT malformation where the code 2094 * point is not valid. In that case, 'uv' will have 2095 * been set to the REPLACEMENT CHAR, and the message 2096 * below without the code point in it will be selected 2097 * */ 2098 if (UNICODE_IS_PERL_EXTENDED(uv)) { 2099 message = Perl_form(aTHX_ 2100 PL_extended_cp_format, uv); 2101 } 2102 else { 2103 message = Perl_form(aTHX_ 2104 "Any UTF-8 sequence that starts with" 2105 " \"%s\" is a Perl extension, and" 2106 " so is not portable", 2107 _byte_dump_string(s0, curlen, 0)); 2108 } 2109 this_flag_bit = UTF8_GOT_PERL_EXTENDED; 2110 } 2111 2112 if (flags & ( UTF8_WARN_PERL_EXTENDED 2113 |UTF8_DISALLOW_PERL_EXTENDED)) 2114 { 2115 *errors |= UTF8_GOT_PERL_EXTENDED; 2116 2117 if (flags & UTF8_DISALLOW_PERL_EXTENDED) { 2118 disallowed = TRUE; 2119 } 2120 } 2121 } 2122 2123 if (flags & UTF8_DISALLOW_SUPER) { 2124 *errors |= UTF8_GOT_SUPER; 2125 disallowed = TRUE; 2126 } 2127 } 2128 else if (possible_problems & UTF8_GOT_NONCHAR) { 2129 possible_problems &= ~UTF8_GOT_NONCHAR; 2130 2131 if (flags & UTF8_WARN_NONCHAR) { 2132 *errors |= UTF8_GOT_NONCHAR; 2133 2134 if ( ! (flags & UTF8_CHECK_ONLY) 2135 && (msgs || ckWARN_d(WARN_NONCHAR))) 2136 { 2137 /* The code above should have guaranteed that we don't 2138 * get here with errors other than overlong */ 2139 assert (! (orig_problems 2140 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR))); 2141 2142 pack_warn = packWARN(WARN_NONCHAR); 2143 message = Perl_form(aTHX_ nonchar_cp_format, uv); 2144 this_flag_bit = UTF8_GOT_NONCHAR; 2145 } 2146 } 2147 2148 if (flags & UTF8_DISALLOW_NONCHAR) { 2149 disallowed = TRUE; 2150 *errors |= UTF8_GOT_NONCHAR; 2151 } 2152 } 2153 else if (possible_problems & UTF8_GOT_LONG) { 2154 possible_problems &= ~UTF8_GOT_LONG; 2155 *errors |= UTF8_GOT_LONG; 2156 2157 if (flags & UTF8_ALLOW_LONG) { 2158 2159 /* We don't allow the actual overlong value, unless the 2160 * special extra bit is also set */ 2161 if (! (flags & ( UTF8_ALLOW_LONG_AND_ITS_VALUE 2162 & ~UTF8_ALLOW_LONG))) 2163 { 2164 uv = UNICODE_REPLACEMENT; 2165 } 2166 } 2167 else { 2168 disallowed = TRUE; 2169 2170 if (( msgs 2171 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY)) 2172 { 2173 pack_warn = packWARN(WARN_UTF8); 2174 2175 /* These error types cause 'uv' to be something that 2176 * isn't what was intended, so can't use it in the 2177 * message. The other error types either can't 2178 * generate an overlong, or else the 'uv' is valid */ 2179 if (orig_problems & 2180 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW)) 2181 { 2182 message = Perl_form(aTHX_ 2183 "%s: %s (any UTF-8 sequence that starts" 2184 " with \"%s\" is overlong which can and" 2185 " should be represented with a" 2186 " different, shorter sequence)", 2187 malformed_text, 2188 _byte_dump_string(s0, send - s0, 0), 2189 _byte_dump_string(s0, curlen, 0)); 2190 } 2191 else { 2192 U8 tmpbuf[UTF8_MAXBYTES+1]; 2193 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf, 2194 uv, 0); 2195 /* Don't use U+ for non-Unicode code points, which 2196 * includes those in the Latin1 range */ 2197 const char * preface = ( uv > PERL_UNICODE_MAX 2198 #ifdef EBCDIC 2199 || uv <= 0xFF 2200 #endif 2201 ) 2202 ? "0x" 2203 : "U+"; 2204 message = Perl_form(aTHX_ 2205 "%s: %s (overlong; instead use %s to represent" 2206 " %s%0*" UVXf ")", 2207 malformed_text, 2208 _byte_dump_string(s0, send - s0, 0), 2209 _byte_dump_string(tmpbuf, e - tmpbuf, 0), 2210 preface, 2211 ((uv < 256) ? 2 : 4), /* Field width of 2 for 2212 small code points */ 2213 UNI_TO_NATIVE(uv)); 2214 } 2215 this_flag_bit = UTF8_GOT_LONG; 2216 } 2217 } 2218 } /* End of looking through the possible flags */ 2219 2220 /* Display the message (if any) for the problem being handled in 2221 * this iteration of the loop */ 2222 if (message) { 2223 if (msgs) { 2224 assert(this_flag_bit); 2225 2226 if (*msgs == NULL) { 2227 *msgs = newAV(); 2228 } 2229 2230 av_push(*msgs, newRV_noinc((SV*) new_msg_hv(message, 2231 pack_warn, 2232 this_flag_bit))); 2233 } 2234 else if (PL_op) 2235 Perl_warner(aTHX_ pack_warn, "%s in %s", message, 2236 OP_DESC(PL_op)); 2237 else 2238 Perl_warner(aTHX_ pack_warn, "%s", message); 2239 } 2240 } /* End of 'while (possible_problems)' */ 2241 2242 /* Since there was a possible problem, the returned length may need to 2243 * be changed from the one stored at the beginning of this function. 2244 * Instead of trying to figure out if that's needed, just do it. */ 2245 if (retlen) { 2246 *retlen = curlen; 2247 } 2248 2249 if (disallowed) { 2250 if (flags & UTF8_CHECK_ONLY && retlen) { 2251 *retlen = ((STRLEN) -1); 2252 } 2253 return 0; 2254 } 2255 } 2256 2257 return UNI_TO_NATIVE(uv); 2258 } 2259 2260 /* 2261 =for apidoc utf8_to_uvchr_buf 2262 2263 Returns the native code point of the first character in the string C<s> which 2264 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>. 2265 C<*retlen> will be set to the length, in bytes, of that character. 2266 2267 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are 2268 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't 2269 C<NULL>) to -1. If those warnings are off, the computed value, if well-defined 2270 (or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and 2271 C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is 2272 the next possible position in C<s> that could begin a non-malformed character. 2273 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is 2274 returned. 2275 2276 =cut 2277 2278 Also implemented as a macro in utf8.h 2279 2280 */ 2281 2282 2283 UV 2284 Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen) 2285 { 2286 PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF; 2287 2288 return utf8_to_uvchr_buf_helper(s, send, retlen); 2289 } 2290 2291 /* This is marked as deprecated 2292 * 2293 =for apidoc utf8_to_uvuni_buf 2294 2295 Only in very rare circumstances should code need to be dealing in Unicode 2296 (as opposed to native) code points. In those few cases, use 2297 C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|perlapi/utf8_to_uvchr_buf>> instead. 2298 If you are not absolutely sure this is one of those cases, then assume it isn't 2299 and use plain C<utf8_to_uvchr_buf> instead. 2300 2301 Returns the Unicode (not-native) code point of the first character in the 2302 string C<s> which 2303 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>. 2304 C<retlen> will be set to the length, in bytes, of that character. 2305 2306 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are 2307 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't 2308 NULL) to -1. If those warnings are off, the computed value if well-defined (or 2309 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen> 2310 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the 2311 next possible position in C<s> that could begin a non-malformed character. 2312 See L<perlapi/utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is 2313 returned. 2314 2315 =cut 2316 */ 2317 2318 UV 2319 Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen) 2320 { 2321 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF; 2322 2323 assert(send > s); 2324 2325 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen)); 2326 } 2327 2328 /* 2329 =for apidoc utf8_length 2330 2331 Returns the number of characters in the sequence of UTF-8-encoded bytes starting 2332 at C<s> and ending at the byte just before C<e>. If <s> and <e> point to the 2333 same place, it returns 0 with no warning raised. 2334 2335 If C<e E<lt> s> or if the scan would end up past C<e>, it raises a UTF8 warning 2336 and returns the number of valid characters. 2337 2338 =cut 2339 */ 2340 2341 STRLEN 2342 Perl_utf8_length(pTHX_ const U8 *s, const U8 *e) 2343 { 2344 STRLEN len = 0; 2345 2346 PERL_ARGS_ASSERT_UTF8_LENGTH; 2347 2348 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g. 2349 * the bitops (especially ~) can create illegal UTF-8. 2350 * In other words: in Perl UTF-8 is not just for Unicode. */ 2351 2352 if (UNLIKELY(e < s)) 2353 goto warn_and_return; 2354 while (s < e) { 2355 s += UTF8SKIP(s); 2356 len++; 2357 } 2358 2359 if (UNLIKELY(e != s)) { 2360 len--; 2361 warn_and_return: 2362 if (PL_op) 2363 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), 2364 "%s in %s", unees, OP_DESC(PL_op)); 2365 else 2366 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees); 2367 } 2368 2369 return len; 2370 } 2371 2372 /* 2373 =for apidoc bytes_cmp_utf8 2374 2375 Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the 2376 sequence of characters (stored as UTF-8) 2377 in C<u>, C<ulen>. Returns 0 if they are 2378 equal, -1 or -2 if the first string is less than the second string, +1 or +2 2379 if the first string is greater than the second string. 2380 2381 -1 or +1 is returned if the shorter string was identical to the start of the 2382 longer string. -2 or +2 is returned if 2383 there was a difference between characters 2384 within the strings. 2385 2386 =cut 2387 */ 2388 2389 int 2390 Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen) 2391 { 2392 const U8 *const bend = b + blen; 2393 const U8 *const uend = u + ulen; 2394 2395 PERL_ARGS_ASSERT_BYTES_CMP_UTF8; 2396 2397 while (b < bend && u < uend) { 2398 U8 c = *u++; 2399 if (!UTF8_IS_INVARIANT(c)) { 2400 if (UTF8_IS_DOWNGRADEABLE_START(c)) { 2401 if (u < uend) { 2402 U8 c1 = *u++; 2403 if (UTF8_IS_CONTINUATION(c1)) { 2404 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1); 2405 } else { 2406 /* diag_listed_as: Malformed UTF-8 character%s */ 2407 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), 2408 "%s %s%s", 2409 unexpected_non_continuation_text(u - 2, 2, 1, 2), 2410 PL_op ? " in " : "", 2411 PL_op ? OP_DESC(PL_op) : ""); 2412 return -2; 2413 } 2414 } else { 2415 if (PL_op) 2416 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), 2417 "%s in %s", unees, OP_DESC(PL_op)); 2418 else 2419 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees); 2420 return -2; /* Really want to return undef :-) */ 2421 } 2422 } else { 2423 return -2; 2424 } 2425 } 2426 if (*b != c) { 2427 return *b < c ? -2 : +2; 2428 } 2429 ++b; 2430 } 2431 2432 if (b == bend && u == uend) 2433 return 0; 2434 2435 return b < bend ? +1 : -1; 2436 } 2437 2438 /* 2439 =for apidoc utf8_to_bytes 2440 2441 Converts a string C<"s"> of length C<*lenp> from UTF-8 into native byte encoding. 2442 Unlike L</bytes_to_utf8>, this over-writes the original string, and 2443 updates C<*lenp> to contain the new length. 2444 Returns zero on failure (leaving C<"s"> unchanged) setting C<*lenp> to -1. 2445 2446 Upon successful return, the number of variants in the string can be computed by 2447 having saved the value of C<*lenp> before the call, and subtracting the 2448 after-call value of C<*lenp> from it. 2449 2450 If you need a copy of the string, see L</bytes_from_utf8>. 2451 2452 =cut 2453 */ 2454 2455 U8 * 2456 Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *lenp) 2457 { 2458 U8 * first_variant; 2459 2460 PERL_ARGS_ASSERT_UTF8_TO_BYTES; 2461 PERL_UNUSED_CONTEXT; 2462 2463 /* This is a no-op if no variants at all in the input */ 2464 if (is_utf8_invariant_string_loc(s, *lenp, (const U8 **) &first_variant)) { 2465 return s; 2466 } 2467 2468 { 2469 U8 * const save = s; 2470 U8 * const send = s + *lenp; 2471 U8 * d; 2472 2473 /* Nothing before the first variant needs to be changed, so start the real 2474 * work there */ 2475 s = first_variant; 2476 while (s < send) { 2477 if (! UTF8_IS_INVARIANT(*s)) { 2478 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) { 2479 *lenp = ((STRLEN) -1); 2480 return 0; 2481 } 2482 s++; 2483 } 2484 s++; 2485 } 2486 2487 /* Is downgradable, so do it */ 2488 d = s = first_variant; 2489 while (s < send) { 2490 U8 c = *s++; 2491 if (! UVCHR_IS_INVARIANT(c)) { 2492 /* Then it is two-byte encoded */ 2493 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s); 2494 s++; 2495 } 2496 *d++ = c; 2497 } 2498 *d = '\0'; 2499 *lenp = d - save; 2500 2501 return save; 2502 } 2503 } 2504 2505 /* 2506 =for apidoc bytes_from_utf8 2507 2508 Converts a potentially UTF-8 encoded string C<s> of length C<*lenp> into native 2509 byte encoding. On input, the boolean C<*is_utf8p> gives whether or not C<s> is 2510 actually encoded in UTF-8. 2511 2512 Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, this is non-destructive of 2513 the input string. 2514 2515 Do nothing if C<*is_utf8p> is 0, or if there are code points in the string 2516 not expressible in native byte encoding. In these cases, C<*is_utf8p> and 2517 C<*lenp> are unchanged, and the return value is the original C<s>. 2518 2519 Otherwise, C<*is_utf8p> is set to 0, and the return value is a pointer to a 2520 newly created string containing a downgraded copy of C<s>, and whose length is 2521 returned in C<*lenp>, updated. The new string is C<NUL>-terminated. The 2522 caller is responsible for arranging for the memory used by this string to get 2523 freed. 2524 2525 Upon successful return, the number of variants in the string can be computed by 2526 having saved the value of C<*lenp> before the call, and subtracting the 2527 after-call value of C<*lenp> from it. 2528 2529 =cut 2530 2531 There is a macro that avoids this function call, but this is retained for 2532 anyone who calls it with the Perl_ prefix */ 2533 2534 U8 * 2535 Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *lenp, bool *is_utf8p) 2536 { 2537 PERL_ARGS_ASSERT_BYTES_FROM_UTF8; 2538 PERL_UNUSED_CONTEXT; 2539 2540 return bytes_from_utf8_loc(s, lenp, is_utf8p, NULL); 2541 } 2542 2543 /* 2544 =for comment 2545 skip apidoc 2546 This is not currently externally documented because we don't want people to use 2547 it for now. XXX Perhaps that is too paranoid, and it should be documented? 2548 2549 =for apidoc bytes_from_utf8_loc 2550 2551 Like C<L</bytes_from_utf8>()>, but takes an extra parameter, a pointer to where 2552 to store the location of the first character in C<"s"> that cannot be 2553 converted to non-UTF8. 2554 2555 If that parameter is C<NULL>, this function behaves identically to 2556 C<bytes_from_utf8>. 2557 2558 Otherwise if C<*is_utf8p> is 0 on input, the function behaves identically to 2559 C<bytes_from_utf8>, except it also sets C<*first_non_downgradable> to C<NULL>. 2560 2561 Otherwise, the function returns a newly created C<NUL>-terminated string 2562 containing the non-UTF8 equivalent of the convertible first portion of 2563 C<"s">. C<*lenp> is set to its length, not including the terminating C<NUL>. 2564 If the entire input string was converted, C<*is_utf8p> is set to a FALSE value, 2565 and C<*first_non_downgradable> is set to C<NULL>. 2566 2567 Otherwise, C<*first_non_downgradable> set to point to the first byte of the 2568 first character in the original string that wasn't converted. C<*is_utf8p> is 2569 unchanged. Note that the new string may have length 0. 2570 2571 Another way to look at it is, if C<*first_non_downgradable> is non-C<NULL> and 2572 C<*is_utf8p> is TRUE, this function starts at the beginning of C<"s"> and 2573 converts as many characters in it as possible stopping at the first one it 2574 finds that can't be converted to non-UTF-8. C<*first_non_downgradable> is 2575 set to point to that. The function returns the portion that could be converted 2576 in a newly created C<NUL>-terminated string, and C<*lenp> is set to its length, 2577 not including the terminating C<NUL>. If the very first character in the 2578 original could not be converted, C<*lenp> will be 0, and the new string will 2579 contain just a single C<NUL>. If the entire input string was converted, 2580 C<*is_utf8p> is set to FALSE and C<*first_non_downgradable> is set to C<NULL>. 2581 2582 Upon successful return, the number of variants in the converted portion of the 2583 string can be computed by having saved the value of C<*lenp> before the call, 2584 and subtracting the after-call value of C<*lenp> from it. 2585 2586 =cut 2587 2588 2589 */ 2590 2591 U8 * 2592 Perl_bytes_from_utf8_loc(const U8 *s, STRLEN *lenp, bool *is_utf8p, const U8** first_unconverted) 2593 { 2594 U8 *d; 2595 const U8 *original = s; 2596 U8 *converted_start; 2597 const U8 *send = s + *lenp; 2598 2599 PERL_ARGS_ASSERT_BYTES_FROM_UTF8_LOC; 2600 2601 if (! *is_utf8p) { 2602 if (first_unconverted) { 2603 *first_unconverted = NULL; 2604 } 2605 2606 return (U8 *) original; 2607 } 2608 2609 Newx(d, (*lenp) + 1, U8); 2610 2611 converted_start = d; 2612 while (s < send) { 2613 U8 c = *s++; 2614 if (! UTF8_IS_INVARIANT(c)) { 2615 2616 /* Then it is multi-byte encoded. If the code point is above 0xFF, 2617 * have to stop now */ 2618 if (UNLIKELY (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s - 1, send))) { 2619 if (first_unconverted) { 2620 *first_unconverted = s - 1; 2621 goto finish_and_return; 2622 } 2623 else { 2624 Safefree(converted_start); 2625 return (U8 *) original; 2626 } 2627 } 2628 2629 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s); 2630 s++; 2631 } 2632 *d++ = c; 2633 } 2634 2635 /* Here, converted the whole of the input */ 2636 *is_utf8p = FALSE; 2637 if (first_unconverted) { 2638 *first_unconverted = NULL; 2639 } 2640 2641 finish_and_return: 2642 *d = '\0'; 2643 *lenp = d - converted_start; 2644 2645 /* Trim unused space */ 2646 Renew(converted_start, *lenp + 1, U8); 2647 2648 return converted_start; 2649 } 2650 2651 /* 2652 =for apidoc bytes_to_utf8 2653 2654 Converts a string C<s> of length C<*lenp> bytes from the native encoding into 2655 UTF-8. 2656 Returns a pointer to the newly-created string, and sets C<*lenp> to 2657 reflect the new length in bytes. The caller is responsible for arranging for 2658 the memory used by this string to get freed. 2659 2660 Upon successful return, the number of variants in the string can be computed by 2661 having saved the value of C<*lenp> before the call, and subtracting it from the 2662 after-call value of C<*lenp>. 2663 2664 A C<NUL> character will be written after the end of the string. 2665 2666 If you want to convert to UTF-8 from encodings other than 2667 the native (Latin1 or EBCDIC), 2668 see L</sv_recode_to_utf8>(). 2669 2670 =cut 2671 */ 2672 2673 U8* 2674 Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *lenp) 2675 { 2676 const U8 * const send = s + (*lenp); 2677 U8 *d; 2678 U8 *dst; 2679 2680 PERL_ARGS_ASSERT_BYTES_TO_UTF8; 2681 PERL_UNUSED_CONTEXT; 2682 2683 /* 1 for each byte + 1 for each byte that expands to two, + trailing NUL */ 2684 Newx(d, (*lenp) + variant_under_utf8_count(s, send) + 1, U8); 2685 dst = d; 2686 2687 while (s < send) { 2688 append_utf8_from_native_byte(*s, &d); 2689 s++; 2690 } 2691 2692 *d = '\0'; 2693 *lenp = d-dst; 2694 2695 return dst; 2696 } 2697 2698 /* 2699 * Convert native (big-endian) UTF-16 to UTF-8. For reversed (little-endian), 2700 * use utf16_to_utf8_reversed(). 2701 * 2702 * UTF-16 requires 2 bytes for every code point below 0x10000; otherwise 4 bytes. 2703 * UTF-8 requires 1-3 bytes for every code point below 0x1000; otherwise 4 bytes. 2704 * UTF-EBCDIC requires 1-4 bytes for every code point below 0x1000; otherwise 4-5 bytes. 2705 * 2706 * These functions don't check for overflow. The worst case is every code 2707 * point in the input is 2 bytes, and requires 4 bytes on output. (If the code 2708 * is never going to run in EBCDIC, it is 2 bytes requiring 3 on output.) Therefore the 2709 * destination must be pre-extended to 2 times the source length. 2710 * 2711 * Do not use in-place. We optimize for native, for obvious reasons. */ 2712 2713 U8* 2714 Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, Size_t bytelen, Size_t *newlen) 2715 { 2716 U8* pend; 2717 U8* dstart = d; 2718 2719 PERL_ARGS_ASSERT_UTF16_TO_UTF8; 2720 2721 if (bytelen & 1) 2722 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf, 2723 (UV)bytelen); 2724 2725 pend = p + bytelen; 2726 2727 while (p < pend) { 2728 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */ 2729 p += 2; 2730 if (OFFUNI_IS_INVARIANT(uv)) { 2731 *d++ = LATIN1_TO_NATIVE((U8) uv); 2732 continue; 2733 } 2734 if (uv <= MAX_UTF8_TWO_BYTE) { 2735 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv)); 2736 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv)); 2737 continue; 2738 } 2739 2740 #define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST 2741 #define LAST_HIGH_SURROGATE 0xDBFF 2742 #define FIRST_LOW_SURROGATE 0xDC00 2743 #define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST 2744 #define FIRST_IN_PLANE1 0x10000 2745 2746 /* This assumes that most uses will be in the first Unicode plane, not 2747 * needing surrogates */ 2748 if (UNLIKELY(inRANGE(uv, UNICODE_SURROGATE_FIRST, 2749 UNICODE_SURROGATE_LAST))) 2750 { 2751 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) { 2752 Perl_croak(aTHX_ "Malformed UTF-16 surrogate"); 2753 } 2754 else { 2755 UV low = (p[0] << 8) + p[1]; 2756 if (UNLIKELY(! inRANGE(low, FIRST_LOW_SURROGATE, 2757 LAST_LOW_SURROGATE))) 2758 { 2759 Perl_croak(aTHX_ "Malformed UTF-16 surrogate"); 2760 } 2761 p += 2; 2762 uv = ((uv - FIRST_HIGH_SURROGATE) << 10) 2763 + (low - FIRST_LOW_SURROGATE) + FIRST_IN_PLANE1; 2764 } 2765 } 2766 #ifdef EBCDIC 2767 d = uvoffuni_to_utf8_flags(d, uv, 0); 2768 #else 2769 if (uv < FIRST_IN_PLANE1) { 2770 *d++ = (U8)(( uv >> 12) | 0xe0); 2771 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80); 2772 *d++ = (U8)(( uv & 0x3f) | 0x80); 2773 continue; 2774 } 2775 else { 2776 *d++ = (U8)(( uv >> 18) | 0xf0); 2777 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80); 2778 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80); 2779 *d++ = (U8)(( uv & 0x3f) | 0x80); 2780 continue; 2781 } 2782 #endif 2783 } 2784 *newlen = d - dstart; 2785 return d; 2786 } 2787 2788 /* Note: this one is slightly destructive of the source. */ 2789 2790 U8* 2791 Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, Size_t bytelen, Size_t *newlen) 2792 { 2793 U8* s = (U8*)p; 2794 U8* const send = s + bytelen; 2795 2796 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED; 2797 2798 if (bytelen & 1) 2799 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf, 2800 (UV)bytelen); 2801 2802 while (s < send) { 2803 const U8 tmp = s[0]; 2804 s[0] = s[1]; 2805 s[1] = tmp; 2806 s += 2; 2807 } 2808 return utf16_to_utf8(p, d, bytelen, newlen); 2809 } 2810 2811 bool 2812 Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c) 2813 { 2814 dVAR; 2815 return _invlist_contains_cp(PL_XPosix_ptrs[classnum], c); 2816 } 2817 2818 bool 2819 Perl__is_uni_perl_idcont(pTHX_ UV c) 2820 { 2821 dVAR; 2822 return _invlist_contains_cp(PL_utf8_perl_idcont, c); 2823 } 2824 2825 bool 2826 Perl__is_uni_perl_idstart(pTHX_ UV c) 2827 { 2828 dVAR; 2829 return _invlist_contains_cp(PL_utf8_perl_idstart, c); 2830 } 2831 2832 UV 2833 Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, 2834 const char S_or_s) 2835 { 2836 /* We have the latin1-range values compiled into the core, so just use 2837 * those, converting the result to UTF-8. The only difference between upper 2838 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is 2839 * either "SS" or "Ss". Which one to use is passed into the routine in 2840 * 'S_or_s' to avoid a test */ 2841 2842 UV converted = toUPPER_LATIN1_MOD(c); 2843 2844 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1; 2845 2846 assert(S_or_s == 'S' || S_or_s == 's'); 2847 2848 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for 2849 characters in this range */ 2850 *p = (U8) converted; 2851 *lenp = 1; 2852 return converted; 2853 } 2854 2855 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers, 2856 * which it maps to one of them, so as to only have to have one check for 2857 * it in the main case */ 2858 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) { 2859 switch (c) { 2860 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS: 2861 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS; 2862 break; 2863 case MICRO_SIGN: 2864 converted = GREEK_CAPITAL_LETTER_MU; 2865 break; 2866 #if UNICODE_MAJOR_VERSION > 2 \ 2867 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \ 2868 && UNICODE_DOT_DOT_VERSION >= 8) 2869 case LATIN_SMALL_LETTER_SHARP_S: 2870 *(p)++ = 'S'; 2871 *p = S_or_s; 2872 *lenp = 2; 2873 return 'S'; 2874 #endif 2875 default: 2876 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect" 2877 " '%c' to map to '%c'", 2878 c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS); 2879 NOT_REACHED; /* NOTREACHED */ 2880 } 2881 } 2882 2883 *(p)++ = UTF8_TWO_BYTE_HI(converted); 2884 *p = UTF8_TWO_BYTE_LO(converted); 2885 *lenp = 2; 2886 2887 return converted; 2888 } 2889 2890 /* If compiled on an early Unicode version, there may not be auxiliary tables 2891 * */ 2892 #ifndef HAS_UC_AUX_TABLES 2893 # define UC_AUX_TABLE_ptrs NULL 2894 # define UC_AUX_TABLE_lengths NULL 2895 #endif 2896 #ifndef HAS_TC_AUX_TABLES 2897 # define TC_AUX_TABLE_ptrs NULL 2898 # define TC_AUX_TABLE_lengths NULL 2899 #endif 2900 #ifndef HAS_LC_AUX_TABLES 2901 # define LC_AUX_TABLE_ptrs NULL 2902 # define LC_AUX_TABLE_lengths NULL 2903 #endif 2904 #ifndef HAS_CF_AUX_TABLES 2905 # define CF_AUX_TABLE_ptrs NULL 2906 # define CF_AUX_TABLE_lengths NULL 2907 #endif 2908 #ifndef HAS_UC_AUX_TABLES 2909 # define UC_AUX_TABLE_ptrs NULL 2910 # define UC_AUX_TABLE_lengths NULL 2911 #endif 2912 2913 /* Call the function to convert a UTF-8 encoded character to the specified case. 2914 * Note that there may be more than one character in the result. 2915 * 's' is a pointer to the first byte of the input character 2916 * 'd' will be set to the first byte of the string of changed characters. It 2917 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes 2918 * 'lenp' will be set to the length in bytes of the string of changed characters 2919 * 2920 * The functions return the ordinal of the first character in the string of 2921 * 'd' */ 2922 #define CALL_UPPER_CASE(uv, s, d, lenp) \ 2923 _to_utf8_case(uv, s, d, lenp, PL_utf8_toupper, \ 2924 Uppercase_Mapping_invmap, \ 2925 UC_AUX_TABLE_ptrs, \ 2926 UC_AUX_TABLE_lengths, \ 2927 "uppercase") 2928 #define CALL_TITLE_CASE(uv, s, d, lenp) \ 2929 _to_utf8_case(uv, s, d, lenp, PL_utf8_totitle, \ 2930 Titlecase_Mapping_invmap, \ 2931 TC_AUX_TABLE_ptrs, \ 2932 TC_AUX_TABLE_lengths, \ 2933 "titlecase") 2934 #define CALL_LOWER_CASE(uv, s, d, lenp) \ 2935 _to_utf8_case(uv, s, d, lenp, PL_utf8_tolower, \ 2936 Lowercase_Mapping_invmap, \ 2937 LC_AUX_TABLE_ptrs, \ 2938 LC_AUX_TABLE_lengths, \ 2939 "lowercase") 2940 2941 2942 /* This additionally has the input parameter 'specials', which if non-zero will 2943 * cause this to use the specials hash for folding (meaning get full case 2944 * folding); otherwise, when zero, this implies a simple case fold */ 2945 #define CALL_FOLD_CASE(uv, s, d, lenp, specials) \ 2946 (specials) \ 2947 ? _to_utf8_case(uv, s, d, lenp, PL_utf8_tofold, \ 2948 Case_Folding_invmap, \ 2949 CF_AUX_TABLE_ptrs, \ 2950 CF_AUX_TABLE_lengths, \ 2951 "foldcase") \ 2952 : _to_utf8_case(uv, s, d, lenp, PL_utf8_tosimplefold, \ 2953 Simple_Case_Folding_invmap, \ 2954 NULL, NULL, \ 2955 "foldcase") 2956 2957 UV 2958 Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp) 2959 { 2960 /* Convert the Unicode character whose ordinal is <c> to its uppercase 2961 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>. 2962 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since 2963 * the changed version may be longer than the original character. 2964 * 2965 * The ordinal of the first character of the changed version is returned 2966 * (but note, as explained above, that there may be more.) */ 2967 2968 dVAR; 2969 PERL_ARGS_ASSERT_TO_UNI_UPPER; 2970 2971 if (c < 256) { 2972 return _to_upper_title_latin1((U8) c, p, lenp, 'S'); 2973 } 2974 2975 return CALL_UPPER_CASE(c, NULL, p, lenp); 2976 } 2977 2978 UV 2979 Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp) 2980 { 2981 dVAR; 2982 PERL_ARGS_ASSERT_TO_UNI_TITLE; 2983 2984 if (c < 256) { 2985 return _to_upper_title_latin1((U8) c, p, lenp, 's'); 2986 } 2987 2988 return CALL_TITLE_CASE(c, NULL, p, lenp); 2989 } 2990 2991 STATIC U8 2992 S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy) 2993 { 2994 /* We have the latin1-range values compiled into the core, so just use 2995 * those, converting the result to UTF-8. Since the result is always just 2996 * one character, we allow <p> to be NULL */ 2997 2998 U8 converted = toLOWER_LATIN1(c); 2999 3000 PERL_UNUSED_ARG(dummy); 3001 3002 if (p != NULL) { 3003 if (NATIVE_BYTE_IS_INVARIANT(converted)) { 3004 *p = converted; 3005 *lenp = 1; 3006 } 3007 else { 3008 /* Result is known to always be < 256, so can use the EIGHT_BIT 3009 * macros */ 3010 *p = UTF8_EIGHT_BIT_HI(converted); 3011 *(p+1) = UTF8_EIGHT_BIT_LO(converted); 3012 *lenp = 2; 3013 } 3014 } 3015 return converted; 3016 } 3017 3018 UV 3019 Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp) 3020 { 3021 dVAR; 3022 PERL_ARGS_ASSERT_TO_UNI_LOWER; 3023 3024 if (c < 256) { 3025 return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ ); 3026 } 3027 3028 return CALL_LOWER_CASE(c, NULL, p, lenp); 3029 } 3030 3031 UV 3032 Perl__to_fold_latin1(const U8 c, U8* p, STRLEN *lenp, const unsigned int flags) 3033 { 3034 /* Corresponds to to_lower_latin1(); <flags> bits meanings: 3035 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited 3036 * FOLD_FLAGS_FULL iff full folding is to be used; 3037 * 3038 * Not to be used for locale folds 3039 */ 3040 3041 UV converted; 3042 3043 PERL_ARGS_ASSERT__TO_FOLD_LATIN1; 3044 3045 assert (! (flags & FOLD_FLAGS_LOCALE)); 3046 3047 if (UNLIKELY(c == MICRO_SIGN)) { 3048 converted = GREEK_SMALL_LETTER_MU; 3049 } 3050 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \ 3051 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \ 3052 || UNICODE_DOT_DOT_VERSION > 0) 3053 else if ( (flags & FOLD_FLAGS_FULL) 3054 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S)) 3055 { 3056 /* If can't cross 127/128 boundary, can't return "ss"; instead return 3057 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}") 3058 * under those circumstances. */ 3059 if (flags & FOLD_FLAGS_NOMIX_ASCII) { 3060 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2; 3061 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8, 3062 p, *lenp, U8); 3063 return LATIN_SMALL_LETTER_LONG_S; 3064 } 3065 else { 3066 *(p)++ = 's'; 3067 *p = 's'; 3068 *lenp = 2; 3069 return 's'; 3070 } 3071 } 3072 #endif 3073 else { /* In this range the fold of all other characters is their lower 3074 case */ 3075 converted = toLOWER_LATIN1(c); 3076 } 3077 3078 if (UVCHR_IS_INVARIANT(converted)) { 3079 *p = (U8) converted; 3080 *lenp = 1; 3081 } 3082 else { 3083 *(p)++ = UTF8_TWO_BYTE_HI(converted); 3084 *p = UTF8_TWO_BYTE_LO(converted); 3085 *lenp = 2; 3086 } 3087 3088 return converted; 3089 } 3090 3091 UV 3092 Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags) 3093 { 3094 3095 /* Not currently externally documented, and subject to change 3096 * <flags> bits meanings: 3097 * FOLD_FLAGS_FULL iff full folding is to be used; 3098 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying 3099 * locale are to be used. 3100 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited 3101 */ 3102 3103 dVAR; 3104 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS; 3105 3106 if (flags & FOLD_FLAGS_LOCALE) { 3107 /* Treat a non-Turkic UTF-8 locale as not being in locale at all, 3108 * except for potentially warning */ 3109 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; 3110 if (IN_UTF8_CTYPE_LOCALE && ! PL_in_utf8_turkic_locale) { 3111 flags &= ~FOLD_FLAGS_LOCALE; 3112 } 3113 else { 3114 goto needs_full_generality; 3115 } 3116 } 3117 3118 if (c < 256) { 3119 return _to_fold_latin1((U8) c, p, lenp, 3120 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)); 3121 } 3122 3123 /* Here, above 255. If no special needs, just use the macro */ 3124 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) { 3125 return CALL_FOLD_CASE(c, NULL, p, lenp, flags & FOLD_FLAGS_FULL); 3126 } 3127 else { /* Otherwise, _toFOLD_utf8_flags has the intelligence to deal with 3128 the special flags. */ 3129 U8 utf8_c[UTF8_MAXBYTES + 1]; 3130 3131 needs_full_generality: 3132 uvchr_to_utf8(utf8_c, c); 3133 return _toFOLD_utf8_flags(utf8_c, utf8_c + sizeof(utf8_c), 3134 p, lenp, flags); 3135 } 3136 } 3137 3138 PERL_STATIC_INLINE bool 3139 S_is_utf8_common(pTHX_ const U8 *const p, const U8 * const e, 3140 SV* const invlist) 3141 { 3142 /* returns a boolean giving whether or not the UTF8-encoded character that 3143 * starts at <p>, and extending no further than <e - 1> is in the inversion 3144 * list <invlist>. */ 3145 3146 UV cp = utf8n_to_uvchr(p, e - p, NULL, 0); 3147 3148 PERL_ARGS_ASSERT_IS_UTF8_COMMON; 3149 3150 if (cp == 0 && (p >= e || *p != '\0')) { 3151 _force_out_malformed_utf8_message(p, e, 0, 1); 3152 NOT_REACHED; /* NOTREACHED */ 3153 } 3154 3155 assert(invlist); 3156 return _invlist_contains_cp(invlist, cp); 3157 } 3158 3159 #if 0 /* Not currently used, but may be needed in the future */ 3160 PERLVAR(I, seen_deprecated_macro, HV *) 3161 3162 STATIC void 3163 S_warn_on_first_deprecated_use(pTHX_ const char * const name, 3164 const char * const alternative, 3165 const bool use_locale, 3166 const char * const file, 3167 const unsigned line) 3168 { 3169 const char * key; 3170 3171 PERL_ARGS_ASSERT_WARN_ON_FIRST_DEPRECATED_USE; 3172 3173 if (ckWARN_d(WARN_DEPRECATED)) { 3174 3175 key = Perl_form(aTHX_ "%s;%d;%s;%d", name, use_locale, file, line); 3176 if (! hv_fetch(PL_seen_deprecated_macro, key, strlen(key), 0)) { 3177 if (! PL_seen_deprecated_macro) { 3178 PL_seen_deprecated_macro = newHV(); 3179 } 3180 if (! hv_store(PL_seen_deprecated_macro, key, 3181 strlen(key), &PL_sv_undef, 0)) 3182 { 3183 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed"); 3184 } 3185 3186 if (instr(file, "mathoms.c")) { 3187 Perl_warner(aTHX_ WARN_DEPRECATED, 3188 "In %s, line %d, starting in Perl v5.32, %s()" 3189 " will be removed. Avoid this message by" 3190 " converting to use %s().\n", 3191 file, line, name, alternative); 3192 } 3193 else { 3194 Perl_warner(aTHX_ WARN_DEPRECATED, 3195 "In %s, line %d, starting in Perl v5.32, %s() will" 3196 " require an additional parameter. Avoid this" 3197 " message by converting to use %s().\n", 3198 file, line, name, alternative); 3199 } 3200 } 3201 } 3202 } 3203 #endif 3204 3205 bool 3206 Perl__is_utf8_FOO(pTHX_ const U8 classnum, const U8 *p, const U8 * const e) 3207 { 3208 dVAR; 3209 PERL_ARGS_ASSERT__IS_UTF8_FOO; 3210 3211 return is_utf8_common(p, e, PL_XPosix_ptrs[classnum]); 3212 } 3213 3214 bool 3215 Perl__is_utf8_perl_idstart(pTHX_ const U8 *p, const U8 * const e) 3216 { 3217 dVAR; 3218 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART; 3219 3220 return is_utf8_common(p, e, PL_utf8_perl_idstart); 3221 } 3222 3223 bool 3224 Perl__is_utf8_perl_idcont(pTHX_ const U8 *p, const U8 * const e) 3225 { 3226 dVAR; 3227 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT; 3228 3229 return is_utf8_common(p, e, PL_utf8_perl_idcont); 3230 } 3231 3232 STATIC UV 3233 S__to_utf8_case(pTHX_ const UV uv1, const U8 *p, 3234 U8* ustrp, STRLEN *lenp, 3235 SV *invlist, const I32 * const invmap, 3236 const U32 * const * const aux_tables, 3237 const U8 * const aux_table_lengths, 3238 const char * const normal) 3239 { 3240 STRLEN len = 0; 3241 3242 /* Change the case of code point 'uv1' whose UTF-8 representation (assumed 3243 * by this routine to be valid) begins at 'p'. 'normal' is a string to use 3244 * to name the new case in any generated messages, as a fallback if the 3245 * operation being used is not available. The new case is given by the 3246 * data structures in the remaining arguments. 3247 * 3248 * On return 'ustrp' points to '*lenp' UTF-8 encoded bytes representing the 3249 * entire changed case string, and the return value is the first code point 3250 * in that string */ 3251 3252 PERL_ARGS_ASSERT__TO_UTF8_CASE; 3253 3254 /* For code points that don't change case, we already know that the output 3255 * of this function is the unchanged input, so we can skip doing look-ups 3256 * for them. Unfortunately the case-changing code points are scattered 3257 * around. But there are some long consecutive ranges where there are no 3258 * case changing code points. By adding tests, we can eliminate the lookup 3259 * for all the ones in such ranges. This is currently done here only for 3260 * just a few cases where the scripts are in common use in modern commerce 3261 * (and scripts adjacent to those which can be included without additional 3262 * tests). */ 3263 3264 if (uv1 >= 0x0590) { 3265 /* This keeps from needing further processing the code points most 3266 * likely to be used in the following non-cased scripts: Hebrew, 3267 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari, 3268 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, 3269 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */ 3270 if (uv1 < 0x10A0) { 3271 goto cases_to_self; 3272 } 3273 3274 /* The following largish code point ranges also don't have case 3275 * changes, but khw didn't think they warranted extra tests to speed 3276 * them up (which would slightly slow down everything else above them): 3277 * 1100..139F Hangul Jamo, Ethiopic 3278 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic, 3279 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian, 3280 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham, 3281 * Combining Diacritical Marks Extended, Balinese, 3282 * Sundanese, Batak, Lepcha, Ol Chiki 3283 * 2000..206F General Punctuation 3284 */ 3285 3286 if (uv1 >= 0x2D30) { 3287 3288 /* This keeps the from needing further processing the code points 3289 * most likely to be used in the following non-cased major scripts: 3290 * CJK, Katakana, Hiragana, plus some less-likely scripts. 3291 * 3292 * (0x2D30 above might have to be changed to 2F00 in the unlikely 3293 * event that Unicode eventually allocates the unused block as of 3294 * v8.0 2FE0..2FEF to code points that are cased. khw has verified 3295 * that the test suite will start having failures to alert you 3296 * should that happen) */ 3297 if (uv1 < 0xA640) { 3298 goto cases_to_self; 3299 } 3300 3301 if (uv1 >= 0xAC00) { 3302 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) { 3303 if (ckWARN_d(WARN_SURROGATE)) { 3304 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal; 3305 Perl_warner(aTHX_ packWARN(WARN_SURROGATE), 3306 "Operation \"%s\" returns its argument for" 3307 " UTF-16 surrogate U+%04" UVXf, desc, uv1); 3308 } 3309 goto cases_to_self; 3310 } 3311 3312 /* AC00..FAFF Catches Hangul syllables and private use, plus 3313 * some others */ 3314 if (uv1 < 0xFB00) { 3315 goto cases_to_self; 3316 } 3317 3318 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) { 3319 if (UNLIKELY(uv1 > MAX_LEGAL_CP)) { 3320 Perl_croak(aTHX_ "%s", form_cp_too_large_msg(16, NULL, 0, uv1)); 3321 } 3322 if (ckWARN_d(WARN_NON_UNICODE)) { 3323 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal; 3324 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE), 3325 "Operation \"%s\" returns its argument for" 3326 " non-Unicode code point 0x%04" UVXf, desc, uv1); 3327 } 3328 goto cases_to_self; 3329 } 3330 #ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C 3331 if (UNLIKELY(uv1 3332 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C)) 3333 { 3334 3335 goto cases_to_self; 3336 } 3337 #endif 3338 } 3339 } 3340 3341 /* Note that non-characters are perfectly legal, so no warning should 3342 * be given. */ 3343 } 3344 3345 { 3346 unsigned int i; 3347 const U32 * cp_list; 3348 U8 * d; 3349 3350 /* 'index' is guaranteed to be non-negative, as this is an inversion 3351 * map that covers all possible inputs. See [perl #133365] */ 3352 SSize_t index = _invlist_search(invlist, uv1); 3353 I32 base = invmap[index]; 3354 3355 /* The data structures are set up so that if 'base' is non-negative, 3356 * the case change is 1-to-1; and if 0, the change is to itself */ 3357 if (base >= 0) { 3358 IV lc; 3359 3360 if (base == 0) { 3361 goto cases_to_self; 3362 } 3363 3364 /* This computes, e.g. lc(H) as 'H - A + a', using the lc table */ 3365 lc = base + uv1 - invlist_array(invlist)[index]; 3366 *lenp = uvchr_to_utf8(ustrp, lc) - ustrp; 3367 return lc; 3368 } 3369 3370 /* Here 'base' is negative. That means the mapping is 1-to-many, and 3371 * requires an auxiliary table look up. abs(base) gives the index into 3372 * a list of such tables which points to the proper aux table. And a 3373 * parallel list gives the length of each corresponding aux table. */ 3374 cp_list = aux_tables[-base]; 3375 3376 /* Create the string of UTF-8 from the mapped-to code points */ 3377 d = ustrp; 3378 for (i = 0; i < aux_table_lengths[-base]; i++) { 3379 d = uvchr_to_utf8(d, cp_list[i]); 3380 } 3381 *d = '\0'; 3382 *lenp = d - ustrp; 3383 3384 return cp_list[0]; 3385 } 3386 3387 /* Here, there was no mapping defined, which means that the code point maps 3388 * to itself. Return the inputs */ 3389 cases_to_self: 3390 if (p) { 3391 len = UTF8SKIP(p); 3392 if (p != ustrp) { /* Don't copy onto itself */ 3393 Copy(p, ustrp, len, U8); 3394 } 3395 *lenp = len; 3396 } 3397 else { 3398 *lenp = uvchr_to_utf8(ustrp, uv1) - ustrp; 3399 } 3400 3401 return uv1; 3402 3403 } 3404 3405 Size_t 3406 Perl__inverse_folds(pTHX_ const UV cp, U32 * first_folds_to, 3407 const U32 ** remaining_folds_to) 3408 { 3409 /* Returns the count of the number of code points that fold to the input 3410 * 'cp' (besides itself). 3411 * 3412 * If the return is 0, there is nothing else that folds to it, and 3413 * '*first_folds_to' is set to 0, and '*remaining_folds_to' is set to NULL. 3414 * 3415 * If the return is 1, '*first_folds_to' is set to the single code point, 3416 * and '*remaining_folds_to' is set to NULL. 3417 * 3418 * Otherwise, '*first_folds_to' is set to a code point, and 3419 * '*remaining_fold_to' is set to an array that contains the others. The 3420 * length of this array is the returned count minus 1. 3421 * 3422 * The reason for this convolution is to avoid having to deal with 3423 * allocating and freeing memory. The lists are already constructed, so 3424 * the return can point to them, but single code points aren't, so would 3425 * need to be constructed if we didn't employ something like this API 3426 * 3427 * The code points returned by this function are all legal Unicode, which 3428 * occupy at most 21 bits, and so a U32 is sufficient, and the lists are 3429 * constructed with this size (to save space and memory), and we return 3430 * pointers, so they must be this size */ 3431 3432 dVAR; 3433 /* 'index' is guaranteed to be non-negative, as this is an inversion map 3434 * that covers all possible inputs. See [perl #133365] */ 3435 SSize_t index = _invlist_search(PL_utf8_foldclosures, cp); 3436 I32 base = _Perl_IVCF_invmap[index]; 3437 3438 PERL_ARGS_ASSERT__INVERSE_FOLDS; 3439 3440 if (base == 0) { /* No fold */ 3441 *first_folds_to = 0; 3442 *remaining_folds_to = NULL; 3443 return 0; 3444 } 3445 3446 #ifndef HAS_IVCF_AUX_TABLES /* This Unicode version only has 1-1 folds */ 3447 3448 assert(base > 0); 3449 3450 #else 3451 3452 if (UNLIKELY(base < 0)) { /* Folds to more than one character */ 3453 3454 /* The data structure is set up so that the absolute value of 'base' is 3455 * an index into a table of pointers to arrays, with the array 3456 * corresponding to the index being the list of code points that fold 3457 * to 'cp', and the parallel array containing the length of the list 3458 * array */ 3459 *first_folds_to = IVCF_AUX_TABLE_ptrs[-base][0]; 3460 *remaining_folds_to = IVCF_AUX_TABLE_ptrs[-base] + 1; 3461 /* +1 excludes first_folds_to */ 3462 return IVCF_AUX_TABLE_lengths[-base]; 3463 } 3464 3465 #endif 3466 3467 /* Only the single code point. This works like 'fc(G) = G - A + a' */ 3468 *first_folds_to = (U32) (base + cp 3469 - invlist_array(PL_utf8_foldclosures)[index]); 3470 *remaining_folds_to = NULL; 3471 return 1; 3472 } 3473 3474 STATIC UV 3475 S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result, 3476 U8* const ustrp, STRLEN *lenp) 3477 { 3478 /* This is called when changing the case of a UTF-8-encoded character above 3479 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the 3480 * result contains a character that crosses the 255/256 boundary, disallow 3481 * the change, and return the original code point. See L<perlfunc/lc> for 3482 * why; 3483 * 3484 * p points to the original string whose case was changed; assumed 3485 * by this routine to be well-formed 3486 * result the code point of the first character in the changed-case string 3487 * ustrp points to the changed-case string (<result> represents its 3488 * first char) 3489 * lenp points to the length of <ustrp> */ 3490 3491 UV original; /* To store the first code point of <p> */ 3492 3493 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING; 3494 3495 assert(UTF8_IS_ABOVE_LATIN1(*p)); 3496 3497 /* We know immediately if the first character in the string crosses the 3498 * boundary, so can skip testing */ 3499 if (result > 255) { 3500 3501 /* Look at every character in the result; if any cross the 3502 * boundary, the whole thing is disallowed */ 3503 U8* s = ustrp + UTF8SKIP(ustrp); 3504 U8* e = ustrp + *lenp; 3505 while (s < e) { 3506 if (! UTF8_IS_ABOVE_LATIN1(*s)) { 3507 goto bad_crossing; 3508 } 3509 s += UTF8SKIP(s); 3510 } 3511 3512 /* Here, no characters crossed, result is ok as-is, but we warn. */ 3513 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p)); 3514 return result; 3515 } 3516 3517 bad_crossing: 3518 3519 /* Failed, have to return the original */ 3520 original = valid_utf8_to_uvchr(p, lenp); 3521 3522 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */ 3523 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), 3524 "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8" 3525 " locale; resolved to \"\\x{%" UVXf "}\".", 3526 OP_DESC(PL_op), 3527 original, 3528 original); 3529 Copy(p, ustrp, *lenp, char); 3530 return original; 3531 } 3532 3533 STATIC UV 3534 S_turkic_fc(pTHX_ const U8 * const p, const U8 * const e, 3535 U8 * ustrp, STRLEN *lenp) 3536 { 3537 /* Returns 0 if the foldcase of the input UTF-8 encoded sequence from 3538 * p0..e-1 according to Turkic rules is the same as for non-Turkic. 3539 * Otherwise, it returns the first code point of the Turkic foldcased 3540 * sequence, and the entire sequence will be stored in *ustrp. ustrp will 3541 * contain *lenp bytes 3542 * 3543 * Turkic differs only from non-Turkic in that 'i' and LATIN CAPITAL LETTER 3544 * I WITH DOT ABOVE form a case pair, as do 'I' and LATIN SMALL LETTER 3545 * DOTLESS I */ 3546 3547 PERL_ARGS_ASSERT_TURKIC_FC; 3548 assert(e > p); 3549 3550 if (UNLIKELY(*p == 'I')) { 3551 *lenp = 2; 3552 ustrp[0] = UTF8_TWO_BYTE_HI(LATIN_SMALL_LETTER_DOTLESS_I); 3553 ustrp[1] = UTF8_TWO_BYTE_LO(LATIN_SMALL_LETTER_DOTLESS_I); 3554 return LATIN_SMALL_LETTER_DOTLESS_I; 3555 } 3556 3557 if (UNLIKELY(memBEGINs(p, e - p, 3558 LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8))) 3559 { 3560 *lenp = 1; 3561 *ustrp = 'i'; 3562 return 'i'; 3563 } 3564 3565 return 0; 3566 } 3567 3568 STATIC UV 3569 S_turkic_lc(pTHX_ const U8 * const p0, const U8 * const e, 3570 U8 * ustrp, STRLEN *lenp) 3571 { 3572 /* Returns 0 if the lowercase of the input UTF-8 encoded sequence from 3573 * p0..e-1 according to Turkic rules is the same as for non-Turkic. 3574 * Otherwise, it returns the first code point of the Turkic lowercased 3575 * sequence, and the entire sequence will be stored in *ustrp. ustrp will 3576 * contain *lenp bytes */ 3577 3578 dVAR; 3579 PERL_ARGS_ASSERT_TURKIC_LC; 3580 assert(e > p0); 3581 3582 /* A 'I' requires context as to what to do */ 3583 if (UNLIKELY(*p0 == 'I')) { 3584 const U8 * p = p0 + 1; 3585 3586 /* According to the Unicode SpecialCasing.txt file, a capital 'I' 3587 * modified by a dot above lowercases to 'i' even in turkic locales. */ 3588 while (p < e) { 3589 UV cp; 3590 3591 if (memBEGINs(p, e - p, COMBINING_DOT_ABOVE_UTF8)) { 3592 ustrp[0] = 'i'; 3593 *lenp = 1; 3594 return 'i'; 3595 } 3596 3597 /* For the dot above to modify the 'I', it must be part of a 3598 * combining sequence immediately following the 'I', and no other 3599 * modifier with a ccc of 230 may intervene */ 3600 cp = utf8_to_uvchr_buf(p, e, NULL); 3601 if (! _invlist_contains_cp(PL_CCC_non0_non230, cp)) { 3602 break; 3603 } 3604 3605 /* Here the combining sequence continues */ 3606 p += UTF8SKIP(p); 3607 } 3608 } 3609 3610 /* In all other cases the lc is the same as the fold */ 3611 return turkic_fc(p0, e, ustrp, lenp); 3612 } 3613 3614 STATIC UV 3615 S_turkic_uc(pTHX_ const U8 * const p, const U8 * const e, 3616 U8 * ustrp, STRLEN *lenp) 3617 { 3618 /* Returns 0 if the upper or title-case of the input UTF-8 encoded sequence 3619 * from p0..e-1 according to Turkic rules is the same as for non-Turkic. 3620 * Otherwise, it returns the first code point of the Turkic upper or 3621 * title-cased sequence, and the entire sequence will be stored in *ustrp. 3622 * ustrp will contain *lenp bytes 3623 * 3624 * Turkic differs only from non-Turkic in that 'i' and LATIN CAPITAL LETTER 3625 * I WITH DOT ABOVE form a case pair, as do 'I' and LATIN SMALL LETTER 3626 * DOTLESS I */ 3627 3628 PERL_ARGS_ASSERT_TURKIC_UC; 3629 assert(e > p); 3630 3631 if (*p == 'i') { 3632 *lenp = 2; 3633 ustrp[0] = UTF8_TWO_BYTE_HI(LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE); 3634 ustrp[1] = UTF8_TWO_BYTE_LO(LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE); 3635 return LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE; 3636 } 3637 3638 if (memBEGINs(p, e - p, LATIN_SMALL_LETTER_DOTLESS_I_UTF8)) { 3639 *lenp = 1; 3640 *ustrp = 'I'; 3641 return 'I'; 3642 } 3643 3644 return 0; 3645 } 3646 3647 /* The process for changing the case is essentially the same for the four case 3648 * change types, except there are complications for folding. Otherwise the 3649 * difference is only which case to change to. To make sure that they all do 3650 * the same thing, the bodies of the functions are extracted out into the 3651 * following two macros. The functions are written with the same variable 3652 * names, and these are known and used inside these macros. It would be 3653 * better, of course, to have inline functions to do it, but since different 3654 * macros are called, depending on which case is being changed to, this is not 3655 * feasible in C (to khw's knowledge). Two macros are created so that the fold 3656 * function can start with the common start macro, then finish with its special 3657 * handling; while the other three cases can just use the common end macro. 3658 * 3659 * The algorithm is to use the proper (passed in) macro or function to change 3660 * the case for code points that are below 256. The macro is used if using 3661 * locale rules for the case change; the function if not. If the code point is 3662 * above 255, it is computed from the input UTF-8, and another macro is called 3663 * to do the conversion. If necessary, the output is converted to UTF-8. If 3664 * using a locale, we have to check that the change did not cross the 255/256 3665 * boundary, see check_locale_boundary_crossing() for further details. 3666 * 3667 * The macros are split with the correct case change for the below-256 case 3668 * stored into 'result', and in the middle of an else clause for the above-255 3669 * case. At that point in the 'else', 'result' is not the final result, but is 3670 * the input code point calculated from the UTF-8. The fold code needs to 3671 * realize all this and take it from there. 3672 * 3673 * To deal with Turkic locales, the function specified by the parameter 3674 * 'turkic' is called when appropriate. 3675 * 3676 * If you read the two macros as sequential, it's easier to understand what's 3677 * going on. */ 3678 #define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func, \ 3679 L1_func_extra_param, turkic) \ 3680 \ 3681 if (flags & (locale_flags)) { \ 3682 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \ 3683 if (IN_UTF8_CTYPE_LOCALE) { \ 3684 if (UNLIKELY(PL_in_utf8_turkic_locale)) { \ 3685 UV ret = turkic(p, e, ustrp, lenp); \ 3686 if (ret) return ret; \ 3687 } \ 3688 \ 3689 /* Otherwise, treat a UTF-8 locale as not being in locale at \ 3690 * all */ \ 3691 flags &= ~(locale_flags); \ 3692 } \ 3693 } \ 3694 \ 3695 if (UTF8_IS_INVARIANT(*p)) { \ 3696 if (flags & (locale_flags)) { \ 3697 result = LC_L1_change_macro(*p); \ 3698 } \ 3699 else { \ 3700 return L1_func(*p, ustrp, lenp, L1_func_extra_param); \ 3701 } \ 3702 } \ 3703 else if UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e) { \ 3704 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)); \ 3705 if (flags & (locale_flags)) { \ 3706 result = LC_L1_change_macro(c); \ 3707 } \ 3708 else { \ 3709 return L1_func(c, ustrp, lenp, L1_func_extra_param); \ 3710 } \ 3711 } \ 3712 else { /* malformed UTF-8 or ord above 255 */ \ 3713 STRLEN len_result; \ 3714 result = utf8n_to_uvchr(p, e - p, &len_result, UTF8_CHECK_ONLY); \ 3715 if (len_result == (STRLEN) -1) { \ 3716 _force_out_malformed_utf8_message(p, e, 0, 1 /* Die */ ); \ 3717 } 3718 3719 #define CASE_CHANGE_BODY_END(locale_flags, change_macro) \ 3720 result = change_macro(result, p, ustrp, lenp); \ 3721 \ 3722 if (flags & (locale_flags)) { \ 3723 result = check_locale_boundary_crossing(p, result, ustrp, lenp); \ 3724 } \ 3725 return result; \ 3726 } \ 3727 \ 3728 /* Here, used locale rules. Convert back to UTF-8 */ \ 3729 if (UTF8_IS_INVARIANT(result)) { \ 3730 *ustrp = (U8) result; \ 3731 *lenp = 1; \ 3732 } \ 3733 else { \ 3734 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); \ 3735 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); \ 3736 *lenp = 2; \ 3737 } \ 3738 \ 3739 return result; 3740 3741 /* Not currently externally documented, and subject to change: 3742 * <flags> is set iff the rules from the current underlying locale are to 3743 * be used. */ 3744 3745 UV 3746 Perl__to_utf8_upper_flags(pTHX_ const U8 *p, 3747 const U8 *e, 3748 U8* ustrp, 3749 STRLEN *lenp, 3750 bool flags) 3751 { 3752 dVAR; 3753 UV result; 3754 3755 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS; 3756 3757 /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */ 3758 /* 2nd char of uc(U+DF) is 'S' */ 3759 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S', 3760 turkic_uc); 3761 CASE_CHANGE_BODY_END (~0, CALL_UPPER_CASE); 3762 } 3763 3764 /* Not currently externally documented, and subject to change: 3765 * <flags> is set iff the rules from the current underlying locale are to be 3766 * used. Since titlecase is not defined in POSIX, for other than a 3767 * UTF-8 locale, uppercase is used instead for code points < 256. 3768 */ 3769 3770 UV 3771 Perl__to_utf8_title_flags(pTHX_ const U8 *p, 3772 const U8 *e, 3773 U8* ustrp, 3774 STRLEN *lenp, 3775 bool flags) 3776 { 3777 dVAR; 3778 UV result; 3779 3780 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS; 3781 3782 /* 2nd char of ucfirst(U+DF) is 's' */ 3783 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's', 3784 turkic_uc); 3785 CASE_CHANGE_BODY_END (~0, CALL_TITLE_CASE); 3786 } 3787 3788 /* Not currently externally documented, and subject to change: 3789 * <flags> is set iff the rules from the current underlying locale are to 3790 * be used. 3791 */ 3792 3793 UV 3794 Perl__to_utf8_lower_flags(pTHX_ const U8 *p, 3795 const U8 *e, 3796 U8* ustrp, 3797 STRLEN *lenp, 3798 bool flags) 3799 { 3800 dVAR; 3801 UV result; 3802 3803 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS; 3804 3805 CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */, 3806 turkic_lc); 3807 CASE_CHANGE_BODY_END (~0, CALL_LOWER_CASE) 3808 } 3809 3810 /* Not currently externally documented, and subject to change, 3811 * in <flags> 3812 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying 3813 * locale are to be used. 3814 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used; 3815 * otherwise simple folds 3816 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are 3817 * prohibited 3818 */ 3819 3820 UV 3821 Perl__to_utf8_fold_flags(pTHX_ const U8 *p, 3822 const U8 *e, 3823 U8* ustrp, 3824 STRLEN *lenp, 3825 U8 flags) 3826 { 3827 dVAR; 3828 UV result; 3829 3830 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS; 3831 3832 /* These are mutually exclusive */ 3833 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII))); 3834 3835 assert(p != ustrp); /* Otherwise overwrites */ 3836 3837 CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1, 3838 ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)), 3839 turkic_fc); 3840 3841 result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL); 3842 3843 if (flags & FOLD_FLAGS_LOCALE) { 3844 3845 # define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8 3846 # ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8 3847 # define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8 3848 3849 /* Special case these two characters, as what normally gets 3850 * returned under locale doesn't work */ 3851 if (memBEGINs((char *) p, e - p, CAP_SHARP_S)) 3852 { 3853 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */ 3854 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), 3855 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; " 3856 "resolved to \"\\x{17F}\\x{17F}\"."); 3857 goto return_long_s; 3858 } 3859 else 3860 #endif 3861 if (memBEGINs((char *) p, e - p, LONG_S_T)) 3862 { 3863 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */ 3864 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), 3865 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; " 3866 "resolved to \"\\x{FB06}\"."); 3867 goto return_ligature_st; 3868 } 3869 3870 #if UNICODE_MAJOR_VERSION == 3 \ 3871 && UNICODE_DOT_VERSION == 0 \ 3872 && UNICODE_DOT_DOT_VERSION == 1 3873 # define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8 3874 3875 /* And special case this on this Unicode version only, for the same 3876 * reaons the other two are special cased. They would cross the 3877 * 255/256 boundary which is forbidden under /l, and so the code 3878 * wouldn't catch that they are equivalent (which they are only in 3879 * this release) */ 3880 else if (memBEGINs((char *) p, e - p, DOTTED_I)) { 3881 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */ 3882 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), 3883 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; " 3884 "resolved to \"\\x{0131}\"."); 3885 goto return_dotless_i; 3886 } 3887 #endif 3888 3889 return check_locale_boundary_crossing(p, result, ustrp, lenp); 3890 } 3891 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) { 3892 return result; 3893 } 3894 else { 3895 /* This is called when changing the case of a UTF-8-encoded 3896 * character above the ASCII range, and the result should not 3897 * contain an ASCII character. */ 3898 3899 UV original; /* To store the first code point of <p> */ 3900 3901 /* Look at every character in the result; if any cross the 3902 * boundary, the whole thing is disallowed */ 3903 U8* s = ustrp; 3904 U8* send = ustrp + *lenp; 3905 while (s < send) { 3906 if (isASCII(*s)) { 3907 /* Crossed, have to return the original */ 3908 original = valid_utf8_to_uvchr(p, lenp); 3909 3910 /* But in these instances, there is an alternative we can 3911 * return that is valid */ 3912 if (original == LATIN_SMALL_LETTER_SHARP_S 3913 #ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */ 3914 || original == LATIN_CAPITAL_LETTER_SHARP_S 3915 #endif 3916 ) { 3917 goto return_long_s; 3918 } 3919 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) { 3920 goto return_ligature_st; 3921 } 3922 #if UNICODE_MAJOR_VERSION == 3 \ 3923 && UNICODE_DOT_VERSION == 0 \ 3924 && UNICODE_DOT_DOT_VERSION == 1 3925 3926 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) { 3927 goto return_dotless_i; 3928 } 3929 #endif 3930 Copy(p, ustrp, *lenp, char); 3931 return original; 3932 } 3933 s += UTF8SKIP(s); 3934 } 3935 3936 /* Here, no characters crossed, result is ok as-is */ 3937 return result; 3938 } 3939 } 3940 3941 /* Here, used locale rules. Convert back to UTF-8 */ 3942 if (UTF8_IS_INVARIANT(result)) { 3943 *ustrp = (U8) result; 3944 *lenp = 1; 3945 } 3946 else { 3947 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); 3948 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); 3949 *lenp = 2; 3950 } 3951 3952 return result; 3953 3954 return_long_s: 3955 /* Certain folds to 'ss' are prohibited by the options, but they do allow 3956 * folds to a string of two of these characters. By returning this 3957 * instead, then, e.g., 3958 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}") 3959 * works. */ 3960 3961 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2; 3962 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8, 3963 ustrp, *lenp, U8); 3964 return LATIN_SMALL_LETTER_LONG_S; 3965 3966 return_ligature_st: 3967 /* Two folds to 'st' are prohibited by the options; instead we pick one and 3968 * have the other one fold to it */ 3969 3970 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1; 3971 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8); 3972 return LATIN_SMALL_LIGATURE_ST; 3973 3974 #if UNICODE_MAJOR_VERSION == 3 \ 3975 && UNICODE_DOT_VERSION == 0 \ 3976 && UNICODE_DOT_DOT_VERSION == 1 3977 3978 return_dotless_i: 3979 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1; 3980 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8); 3981 return LATIN_SMALL_LETTER_DOTLESS_I; 3982 3983 #endif 3984 3985 } 3986 3987 bool 3988 Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len) 3989 { 3990 /* May change: warns if surrogates, non-character code points, or 3991 * non-Unicode code points are in 's' which has length 'len' bytes. 3992 * Returns TRUE if none found; FALSE otherwise. The only other validity 3993 * check is to make sure that this won't exceed the string's length nor 3994 * overflow */ 3995 3996 const U8* const e = s + len; 3997 bool ok = TRUE; 3998 3999 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT; 4000 4001 while (s < e) { 4002 if (UTF8SKIP(s) > len) { 4003 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), 4004 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print"); 4005 return FALSE; 4006 } 4007 if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) { 4008 if (UNLIKELY(UTF8_IS_SUPER(s, e))) { 4009 if ( ckWARN_d(WARN_NON_UNICODE) 4010 || UNLIKELY(0 < does_utf8_overflow(s, s + len, 4011 0 /* Don't consider overlongs */ 4012 ))) 4013 { 4014 /* A side effect of this function will be to warn */ 4015 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_SUPER); 4016 ok = FALSE; 4017 } 4018 } 4019 else if (UNLIKELY(UTF8_IS_SURROGATE(s, e))) { 4020 if (ckWARN_d(WARN_SURROGATE)) { 4021 /* This has a different warning than the one the called 4022 * function would output, so can't just call it, unlike we 4023 * do for the non-chars and above-unicodes */ 4024 UV uv = utf8_to_uvchr_buf(s, e, NULL); 4025 Perl_warner(aTHX_ packWARN(WARN_SURROGATE), 4026 "Unicode surrogate U+%04" UVXf " is illegal in UTF-8", 4027 uv); 4028 ok = FALSE; 4029 } 4030 } 4031 else if ( UNLIKELY(UTF8_IS_NONCHAR(s, e)) 4032 && (ckWARN_d(WARN_NONCHAR))) 4033 { 4034 /* A side effect of this function will be to warn */ 4035 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_NONCHAR); 4036 ok = FALSE; 4037 } 4038 } 4039 s += UTF8SKIP(s); 4040 } 4041 4042 return ok; 4043 } 4044 4045 /* 4046 =for apidoc pv_uni_display 4047 4048 Build to the scalar C<dsv> a displayable version of the UTF-8 encoded string 4049 C<spv>, length C<len>, the displayable version being at most C<pvlim> bytes 4050 long (if longer, the rest is truncated and C<"..."> will be appended). 4051 4052 The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display 4053 C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH> 4054 to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">) 4055 (C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">). 4056 C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both 4057 C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on. 4058 4059 Additionally, there is now C<UNI_DISPLAY_BACKSPACE> which allows C<\b> for a 4060 backspace, but only when C<UNI_DISPLAY_BACKSLASH> also is set. 4061 4062 The pointer to the PV of the C<dsv> is returned. 4063 4064 See also L</sv_uni_display>. 4065 4066 =cut */ 4067 char * 4068 Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim, 4069 UV flags) 4070 { 4071 int truncated = 0; 4072 const char *s, *e; 4073 4074 PERL_ARGS_ASSERT_PV_UNI_DISPLAY; 4075 4076 SvPVCLEAR(dsv); 4077 SvUTF8_off(dsv); 4078 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) { 4079 UV u; 4080 bool ok = 0; 4081 4082 if (pvlim && SvCUR(dsv) >= pvlim) { 4083 truncated++; 4084 break; 4085 } 4086 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0); 4087 if (u < 256) { 4088 const unsigned char c = (unsigned char)u & 0xFF; 4089 if (flags & UNI_DISPLAY_BACKSLASH) { 4090 if ( isMNEMONIC_CNTRL(c) 4091 && ( c != '\b' 4092 || (flags & UNI_DISPLAY_BACKSPACE))) 4093 { 4094 const char * mnemonic = cntrl_to_mnemonic(c); 4095 sv_catpvn(dsv, mnemonic, strlen(mnemonic)); 4096 ok = 1; 4097 } 4098 else if (c == '\\') { 4099 sv_catpvs(dsv, "\\\\"); 4100 ok = 1; 4101 } 4102 } 4103 /* isPRINT() is the locale-blind version. */ 4104 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) { 4105 const char string = c; 4106 sv_catpvn(dsv, &string, 1); 4107 ok = 1; 4108 } 4109 } 4110 if (!ok) 4111 Perl_sv_catpvf(aTHX_ dsv, "\\x{%" UVxf "}", u); 4112 } 4113 if (truncated) 4114 sv_catpvs(dsv, "..."); 4115 4116 return SvPVX(dsv); 4117 } 4118 4119 /* 4120 =for apidoc sv_uni_display 4121 4122 Build to the scalar C<dsv> a displayable version of the scalar C<sv>, 4123 the displayable version being at most C<pvlim> bytes long 4124 (if longer, the rest is truncated and "..." will be appended). 4125 4126 The C<flags> argument is as in L</pv_uni_display>(). 4127 4128 The pointer to the PV of the C<dsv> is returned. 4129 4130 =cut 4131 */ 4132 char * 4133 Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags) 4134 { 4135 const char * const ptr = 4136 isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv); 4137 4138 PERL_ARGS_ASSERT_SV_UNI_DISPLAY; 4139 4140 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr, 4141 SvCUR(ssv), pvlim, flags); 4142 } 4143 4144 /* 4145 =for apidoc foldEQ_utf8 4146 4147 Returns true if the leading portions of the strings C<s1> and C<s2> (either or 4148 both of which may be in UTF-8) are the same case-insensitively; false 4149 otherwise. How far into the strings to compare is determined by other input 4150 parameters. 4151 4152 If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode; 4153 otherwise it is assumed to be in native 8-bit encoding. Correspondingly for 4154 C<u2> with respect to C<s2>. 4155 4156 If the byte length C<l1> is non-zero, it says how far into C<s1> to check for 4157 fold equality. In other words, C<s1>+C<l1> will be used as a goal to reach. 4158 The scan will not be considered to be a match unless the goal is reached, and 4159 scanning won't continue past that goal. Correspondingly for C<l2> with respect 4160 to C<s2>. 4161 4162 If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that 4163 pointer is considered an end pointer to the position 1 byte past the maximum 4164 point in C<s1> beyond which scanning will not continue under any circumstances. 4165 (This routine assumes that UTF-8 encoded input strings are not malformed; 4166 malformed input can cause it to read past C<pe1>). This means that if both 4167 C<l1> and C<pe1> are specified, and C<pe1> is less than C<s1>+C<l1>, the match 4168 will never be successful because it can never 4169 get as far as its goal (and in fact is asserted against). Correspondingly for 4170 C<pe2> with respect to C<s2>. 4171 4172 At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and 4173 C<l2> must be non-zero), and if both do, both have to be 4174 reached for a successful match. Also, if the fold of a character is multiple 4175 characters, all of them must be matched (see tr21 reference below for 4176 'folding'). 4177 4178 Upon a successful match, if C<pe1> is non-C<NULL>, 4179 it will be set to point to the beginning of the I<next> character of C<s1> 4180 beyond what was matched. Correspondingly for C<pe2> and C<s2>. 4181 4182 For case-insensitiveness, the "casefolding" of Unicode is used 4183 instead of upper/lowercasing both the characters, see 4184 L<https://www.unicode.org/unicode/reports/tr21/> (Case Mappings). 4185 4186 =cut */ 4187 4188 /* A flags parameter has been added which may change, and hence isn't 4189 * externally documented. Currently it is: 4190 * 0 for as-documented above 4191 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an 4192 ASCII one, to not match 4193 * FOLDEQ_LOCALE is set iff the rules from the current underlying 4194 * locale are to be used. 4195 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this 4196 * routine. This allows that step to be skipped. 4197 * Currently, this requires s1 to be encoded as UTF-8 4198 * (u1 must be true), which is asserted for. 4199 * FOLDEQ_S1_FOLDS_SANE With either NOMIX_ASCII or LOCALE, no folds may 4200 * cross certain boundaries. Hence, the caller should 4201 * let this function do the folding instead of 4202 * pre-folding. This code contains an assertion to 4203 * that effect. However, if the caller knows what 4204 * it's doing, it can pass this flag to indicate that, 4205 * and the assertion is skipped. 4206 * FOLDEQ_S2_ALREADY_FOLDED Similar to FOLDEQ_S1_ALREADY_FOLDED, but applies 4207 * to s2, and s2 doesn't have to be UTF-8 encoded. 4208 * This introduces an asymmetry to save a few branches 4209 * in a loop. Currently, this is not a problem, as 4210 * never are both inputs pre-folded. Simply call this 4211 * function with the pre-folded one as the second 4212 * string. 4213 * FOLDEQ_S2_FOLDS_SANE 4214 */ 4215 I32 4216 Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1, 4217 const char *s2, char **pe2, UV l2, bool u2, 4218 U32 flags) 4219 { 4220 const U8 *p1 = (const U8*)s1; /* Point to current char */ 4221 const U8 *p2 = (const U8*)s2; 4222 const U8 *g1 = NULL; /* goal for s1 */ 4223 const U8 *g2 = NULL; 4224 const U8 *e1 = NULL; /* Don't scan s1 past this */ 4225 U8 *f1 = NULL; /* Point to current folded */ 4226 const U8 *e2 = NULL; 4227 U8 *f2 = NULL; 4228 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */ 4229 U8 foldbuf1[UTF8_MAXBYTES_CASE+1]; 4230 U8 foldbuf2[UTF8_MAXBYTES_CASE+1]; 4231 U8 flags_for_folder = FOLD_FLAGS_FULL; 4232 4233 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS; 4234 4235 assert( ! ( (flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE)) 4236 && (( (flags & FOLDEQ_S1_ALREADY_FOLDED) 4237 && !(flags & FOLDEQ_S1_FOLDS_SANE)) 4238 || ( (flags & FOLDEQ_S2_ALREADY_FOLDED) 4239 && !(flags & FOLDEQ_S2_FOLDS_SANE))))); 4240 /* The algorithm is to trial the folds without regard to the flags on 4241 * the first line of the above assert(), and then see if the result 4242 * violates them. This means that the inputs can't be pre-folded to a 4243 * violating result, hence the assert. This could be changed, with the 4244 * addition of extra tests here for the already-folded case, which would 4245 * slow it down. That cost is more than any possible gain for when these 4246 * flags are specified, as the flags indicate /il or /iaa matching which 4247 * is less common than /iu, and I (khw) also believe that real-world /il 4248 * and /iaa matches are most likely to involve code points 0-255, and this 4249 * function only under rare conditions gets called for 0-255. */ 4250 4251 if (flags & FOLDEQ_LOCALE) { 4252 if (IN_UTF8_CTYPE_LOCALE) { 4253 if (UNLIKELY(PL_in_utf8_turkic_locale)) { 4254 flags_for_folder |= FOLD_FLAGS_LOCALE; 4255 } 4256 else { 4257 flags &= ~FOLDEQ_LOCALE; 4258 } 4259 } 4260 else { 4261 flags_for_folder |= FOLD_FLAGS_LOCALE; 4262 } 4263 } 4264 if (flags & FOLDEQ_UTF8_NOMIX_ASCII) { 4265 flags_for_folder |= FOLD_FLAGS_NOMIX_ASCII; 4266 } 4267 4268 if (pe1) { 4269 e1 = *(U8**)pe1; 4270 } 4271 4272 if (l1) { 4273 g1 = (const U8*)s1 + l1; 4274 } 4275 4276 if (pe2) { 4277 e2 = *(U8**)pe2; 4278 } 4279 4280 if (l2) { 4281 g2 = (const U8*)s2 + l2; 4282 } 4283 4284 /* Must have at least one goal */ 4285 assert(g1 || g2); 4286 4287 if (g1) { 4288 4289 /* Will never match if goal is out-of-bounds */ 4290 assert(! e1 || e1 >= g1); 4291 4292 /* Here, there isn't an end pointer, or it is beyond the goal. We 4293 * only go as far as the goal */ 4294 e1 = g1; 4295 } 4296 else { 4297 assert(e1); /* Must have an end for looking at s1 */ 4298 } 4299 4300 /* Same for goal for s2 */ 4301 if (g2) { 4302 assert(! e2 || e2 >= g2); 4303 e2 = g2; 4304 } 4305 else { 4306 assert(e2); 4307 } 4308 4309 /* If both operands are already folded, we could just do a memEQ on the 4310 * whole strings at once, but it would be better if the caller realized 4311 * this and didn't even call us */ 4312 4313 /* Look through both strings, a character at a time */ 4314 while (p1 < e1 && p2 < e2) { 4315 4316 /* If at the beginning of a new character in s1, get its fold to use 4317 * and the length of the fold. */ 4318 if (n1 == 0) { 4319 if (flags & FOLDEQ_S1_ALREADY_FOLDED) { 4320 f1 = (U8 *) p1; 4321 assert(u1); 4322 n1 = UTF8SKIP(f1); 4323 } 4324 else { 4325 if (isASCII(*p1) && ! (flags & FOLDEQ_LOCALE)) { 4326 4327 /* We have to forbid mixing ASCII with non-ASCII if the 4328 * flags so indicate. And, we can short circuit having to 4329 * call the general functions for this common ASCII case, 4330 * all of whose non-locale folds are also ASCII, and hence 4331 * UTF-8 invariants, so the UTF8ness of the strings is not 4332 * relevant. */ 4333 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) { 4334 return 0; 4335 } 4336 n1 = 1; 4337 *foldbuf1 = toFOLD(*p1); 4338 } 4339 else if (u1) { 4340 _toFOLD_utf8_flags(p1, e1, foldbuf1, &n1, flags_for_folder); 4341 } 4342 else { /* Not UTF-8, get UTF-8 fold */ 4343 _to_uni_fold_flags(*p1, foldbuf1, &n1, flags_for_folder); 4344 } 4345 f1 = foldbuf1; 4346 } 4347 } 4348 4349 if (n2 == 0) { /* Same for s2 */ 4350 if (flags & FOLDEQ_S2_ALREADY_FOLDED) { 4351 4352 /* Point to the already-folded character. But for non-UTF-8 4353 * variants, convert to UTF-8 for the algorithm below */ 4354 if (UTF8_IS_INVARIANT(*p2)) { 4355 f2 = (U8 *) p2; 4356 n2 = 1; 4357 } 4358 else if (u2) { 4359 f2 = (U8 *) p2; 4360 n2 = UTF8SKIP(f2); 4361 } 4362 else { 4363 foldbuf2[0] = UTF8_EIGHT_BIT_HI(*p2); 4364 foldbuf2[1] = UTF8_EIGHT_BIT_LO(*p2); 4365 f2 = foldbuf2; 4366 n2 = 2; 4367 } 4368 } 4369 else { 4370 if (isASCII(*p2) && ! (flags & FOLDEQ_LOCALE)) { 4371 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) { 4372 return 0; 4373 } 4374 n2 = 1; 4375 *foldbuf2 = toFOLD(*p2); 4376 } 4377 else if (u2) { 4378 _toFOLD_utf8_flags(p2, e2, foldbuf2, &n2, flags_for_folder); 4379 } 4380 else { 4381 _to_uni_fold_flags(*p2, foldbuf2, &n2, flags_for_folder); 4382 } 4383 f2 = foldbuf2; 4384 } 4385 } 4386 4387 /* Here f1 and f2 point to the beginning of the strings to compare. 4388 * These strings are the folds of the next character from each input 4389 * string, stored in UTF-8. */ 4390 4391 /* While there is more to look for in both folds, see if they 4392 * continue to match */ 4393 while (n1 && n2) { 4394 U8 fold_length = UTF8SKIP(f1); 4395 if (fold_length != UTF8SKIP(f2) 4396 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE 4397 function call for single 4398 byte */ 4399 || memNE((char*)f1, (char*)f2, fold_length)) 4400 { 4401 return 0; /* mismatch */ 4402 } 4403 4404 /* Here, they matched, advance past them */ 4405 n1 -= fold_length; 4406 f1 += fold_length; 4407 n2 -= fold_length; 4408 f2 += fold_length; 4409 } 4410 4411 /* When reach the end of any fold, advance the input past it */ 4412 if (n1 == 0) { 4413 p1 += u1 ? UTF8SKIP(p1) : 1; 4414 } 4415 if (n2 == 0) { 4416 p2 += u2 ? UTF8SKIP(p2) : 1; 4417 } 4418 } /* End of loop through both strings */ 4419 4420 /* A match is defined by each scan that specified an explicit length 4421 * reaching its final goal, and the other not having matched a partial 4422 * character (which can happen when the fold of a character is more than one 4423 * character). */ 4424 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) { 4425 return 0; 4426 } 4427 4428 /* Successful match. Set output pointers */ 4429 if (pe1) { 4430 *pe1 = (char*)p1; 4431 } 4432 if (pe2) { 4433 *pe2 = (char*)p2; 4434 } 4435 return 1; 4436 } 4437 4438 /* 4439 * ex: set ts=8 sts=4 sw=4 et: 4440 */ 4441