1*f2a19305Safresh1# 2*f2a19305Safresh1# Trigonometric functions, mostly inherited from Math::Complex. 3*f2a19305Safresh1# -- Jarkko Hietaniemi, since April 1997 4*f2a19305Safresh1# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex) 5*f2a19305Safresh1# 6*f2a19305Safresh1 7*f2a19305Safresh1package Math::Trig; 8*f2a19305Safresh1 9*f2a19305Safresh1{ use 5.006; } 10*f2a19305Safresh1use strict; 11*f2a19305Safresh1 12*f2a19305Safresh1use Math::Complex 1.59; 13*f2a19305Safresh1use Math::Complex qw(:trig :pi); 14*f2a19305Safresh1require Exporter; 15*f2a19305Safresh1 16*f2a19305Safresh1our @ISA = qw(Exporter); 17*f2a19305Safresh1 18*f2a19305Safresh1our $VERSION = 1.62; 19*f2a19305Safresh1 20*f2a19305Safresh1my @angcnv = qw(rad2deg rad2grad 21*f2a19305Safresh1 deg2rad deg2grad 22*f2a19305Safresh1 grad2rad grad2deg); 23*f2a19305Safresh1 24*f2a19305Safresh1my @areal = qw(asin_real acos_real); 25*f2a19305Safresh1 26*f2a19305Safresh1our @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}}, 27*f2a19305Safresh1 @angcnv, @areal); 28*f2a19305Safresh1 29*f2a19305Safresh1my @rdlcnv = qw(cartesian_to_cylindrical 30*f2a19305Safresh1 cartesian_to_spherical 31*f2a19305Safresh1 cylindrical_to_cartesian 32*f2a19305Safresh1 cylindrical_to_spherical 33*f2a19305Safresh1 spherical_to_cartesian 34*f2a19305Safresh1 spherical_to_cylindrical); 35*f2a19305Safresh1 36*f2a19305Safresh1my @greatcircle = qw( 37*f2a19305Safresh1 great_circle_distance 38*f2a19305Safresh1 great_circle_direction 39*f2a19305Safresh1 great_circle_bearing 40*f2a19305Safresh1 great_circle_waypoint 41*f2a19305Safresh1 great_circle_midpoint 42*f2a19305Safresh1 great_circle_destination 43*f2a19305Safresh1 ); 44*f2a19305Safresh1 45*f2a19305Safresh1my @pi = qw(pi pi2 pi4 pip2 pip4); 46*f2a19305Safresh1 47*f2a19305Safresh1our @EXPORT_OK = (@rdlcnv, @greatcircle, @pi, 'Inf'); 48*f2a19305Safresh1 49*f2a19305Safresh1# See e.g. the following pages: 50*f2a19305Safresh1# https://www.movable-type.co.uk/scripts/latlong.html 51*f2a19305Safresh1# https://edwilliams.org/avform.htm 52*f2a19305Safresh1# https://en.wikipedia.org/wiki/Great-circle_distance 53*f2a19305Safresh1 54*f2a19305Safresh1our %EXPORT_TAGS = ('radial' => [ @rdlcnv ], 55*f2a19305Safresh1 'great_circle' => [ @greatcircle ], 56*f2a19305Safresh1 'pi' => [ @pi ]); 57*f2a19305Safresh1 58*f2a19305Safresh1sub _DR () { pi2/360 } 59*f2a19305Safresh1sub _RD () { 360/pi2 } 60*f2a19305Safresh1sub _DG () { 400/360 } 61*f2a19305Safresh1sub _GD () { 360/400 } 62*f2a19305Safresh1sub _RG () { 400/pi2 } 63*f2a19305Safresh1sub _GR () { pi2/400 } 64*f2a19305Safresh1 65*f2a19305Safresh1# 66*f2a19305Safresh1# Truncating remainder. 67*f2a19305Safresh1# 68*f2a19305Safresh1 69*f2a19305Safresh1sub _remt ($$) { 70*f2a19305Safresh1 # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available. 71*f2a19305Safresh1 $_[0] - $_[1] * int($_[0] / $_[1]); 72*f2a19305Safresh1} 73*f2a19305Safresh1 74*f2a19305Safresh1# 75*f2a19305Safresh1# Angle conversions. 76*f2a19305Safresh1# 77*f2a19305Safresh1 78*f2a19305Safresh1sub rad2rad($) { _remt($_[0], pi2) } 79*f2a19305Safresh1 80*f2a19305Safresh1sub deg2deg($) { _remt($_[0], 360) } 81*f2a19305Safresh1 82*f2a19305Safresh1sub grad2grad($) { _remt($_[0], 400) } 83*f2a19305Safresh1 84*f2a19305Safresh1sub rad2deg ($;$) { my $d = _RD * $_[0]; $_[1] ? $d : deg2deg($d) } 85*f2a19305Safresh1 86*f2a19305Safresh1sub deg2rad ($;$) { my $d = _DR * $_[0]; $_[1] ? $d : rad2rad($d) } 87*f2a19305Safresh1 88*f2a19305Safresh1sub grad2deg ($;$) { my $d = _GD * $_[0]; $_[1] ? $d : deg2deg($d) } 89*f2a19305Safresh1 90*f2a19305Safresh1sub deg2grad ($;$) { my $d = _DG * $_[0]; $_[1] ? $d : grad2grad($d) } 91*f2a19305Safresh1 92*f2a19305Safresh1sub rad2grad ($;$) { my $d = _RG * $_[0]; $_[1] ? $d : grad2grad($d) } 93*f2a19305Safresh1 94*f2a19305Safresh1sub grad2rad ($;$) { my $d = _GR * $_[0]; $_[1] ? $d : rad2rad($d) } 95*f2a19305Safresh1 96*f2a19305Safresh1# 97*f2a19305Safresh1# acos and asin functions which always return a real number 98*f2a19305Safresh1# 99*f2a19305Safresh1 100*f2a19305Safresh1sub acos_real { 101*f2a19305Safresh1 return 0 if $_[0] >= 1; 102*f2a19305Safresh1 return pi if $_[0] <= -1; 103*f2a19305Safresh1 return acos($_[0]); 104*f2a19305Safresh1} 105*f2a19305Safresh1 106*f2a19305Safresh1sub asin_real { 107*f2a19305Safresh1 return &pip2 if $_[0] >= 1; 108*f2a19305Safresh1 return -&pip2 if $_[0] <= -1; 109*f2a19305Safresh1 return asin($_[0]); 110*f2a19305Safresh1} 111*f2a19305Safresh1 112*f2a19305Safresh1sub cartesian_to_spherical { 113*f2a19305Safresh1 my ( $x, $y, $z ) = @_; 114*f2a19305Safresh1 115*f2a19305Safresh1 my $rho = sqrt( $x * $x + $y * $y + $z * $z ); 116*f2a19305Safresh1 117*f2a19305Safresh1 return ( $rho, 118*f2a19305Safresh1 atan2( $y, $x ), 119*f2a19305Safresh1 $rho ? acos_real( $z / $rho ) : 0 ); 120*f2a19305Safresh1} 121*f2a19305Safresh1 122*f2a19305Safresh1sub spherical_to_cartesian { 123*f2a19305Safresh1 my ( $rho, $theta, $phi ) = @_; 124*f2a19305Safresh1 125*f2a19305Safresh1 return ( $rho * cos( $theta ) * sin( $phi ), 126*f2a19305Safresh1 $rho * sin( $theta ) * sin( $phi ), 127*f2a19305Safresh1 $rho * cos( $phi ) ); 128*f2a19305Safresh1} 129*f2a19305Safresh1 130*f2a19305Safresh1sub spherical_to_cylindrical { 131*f2a19305Safresh1 my ( $x, $y, $z ) = spherical_to_cartesian( @_ ); 132*f2a19305Safresh1 133*f2a19305Safresh1 return ( sqrt( $x * $x + $y * $y ), $_[1], $z ); 134*f2a19305Safresh1} 135*f2a19305Safresh1 136*f2a19305Safresh1sub cartesian_to_cylindrical { 137*f2a19305Safresh1 my ( $x, $y, $z ) = @_; 138*f2a19305Safresh1 139*f2a19305Safresh1 return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z ); 140*f2a19305Safresh1} 141*f2a19305Safresh1 142*f2a19305Safresh1sub cylindrical_to_cartesian { 143*f2a19305Safresh1 my ( $rho, $theta, $z ) = @_; 144*f2a19305Safresh1 145*f2a19305Safresh1 return ( $rho * cos( $theta ), $rho * sin( $theta ), $z ); 146*f2a19305Safresh1} 147*f2a19305Safresh1 148*f2a19305Safresh1sub cylindrical_to_spherical { 149*f2a19305Safresh1 return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) ); 150*f2a19305Safresh1} 151*f2a19305Safresh1 152*f2a19305Safresh1sub great_circle_distance { 153*f2a19305Safresh1 my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_; 154*f2a19305Safresh1 155*f2a19305Safresh1 $rho = 1 unless defined $rho; # Default to the unit sphere. 156*f2a19305Safresh1 157*f2a19305Safresh1 my $dphi = $phi1 - $phi0; 158*f2a19305Safresh1 my $dtheta = $theta1 - $theta0; 159*f2a19305Safresh1 160*f2a19305Safresh1 # A formula that is accurate for all distances is the following special 161*f2a19305Safresh1 # case of the Vincenty formula for an ellipsoid with equal major and minor 162*f2a19305Safresh1 # axes. See 163*f2a19305Safresh1 # https://en.wikipedia.org/wiki/Great-circle_distance#Computational_formulas 164*f2a19305Safresh1 165*f2a19305Safresh1 my $c1 = sin($phi1) * sin($dtheta); 166*f2a19305Safresh1 my $c2 = sin($phi1) * cos($dtheta); 167*f2a19305Safresh1 my $c3 = sin($phi0) * cos($phi1) - cos($phi0) * $c2; 168*f2a19305Safresh1 my $c4 = cos($phi0) * cos($phi1) + sin($phi0) * $c2; 169*f2a19305Safresh1 return $rho * atan2(sqrt($c1 * $c1 + $c3 * $c3), $c4); 170*f2a19305Safresh1} 171*f2a19305Safresh1 172*f2a19305Safresh1sub great_circle_direction { 173*f2a19305Safresh1 my ( $theta0, $phi0, $theta1, $phi1 ) = @_; 174*f2a19305Safresh1 175*f2a19305Safresh1 my $lat0 = pip2 - $phi0; 176*f2a19305Safresh1 my $lat1 = pip2 - $phi1; 177*f2a19305Safresh1 178*f2a19305Safresh1 return rad2rad(pi2 - 179*f2a19305Safresh1 atan2(sin($theta0-$theta1) * cos($lat1), 180*f2a19305Safresh1 cos($lat0) * sin($lat1) - 181*f2a19305Safresh1 sin($lat0) * cos($lat1) * cos($theta0-$theta1))); 182*f2a19305Safresh1} 183*f2a19305Safresh1 184*f2a19305Safresh1*great_circle_bearing = \&great_circle_direction; 185*f2a19305Safresh1 186*f2a19305Safresh1sub great_circle_waypoint { 187*f2a19305Safresh1 my ( $theta0, $phi0, $theta1, $phi1, $point ) = @_; 188*f2a19305Safresh1 189*f2a19305Safresh1 $point = 0.5 unless defined $point; 190*f2a19305Safresh1 191*f2a19305Safresh1 my $d = great_circle_distance( $theta0, $phi0, $theta1, $phi1 ); 192*f2a19305Safresh1 193*f2a19305Safresh1 return undef if $d == pi; 194*f2a19305Safresh1 195*f2a19305Safresh1 my $sd = sin($d); 196*f2a19305Safresh1 197*f2a19305Safresh1 return ($theta0, $phi0) if $sd == 0; 198*f2a19305Safresh1 199*f2a19305Safresh1 my $A = sin((1 - $point) * $d) / $sd; 200*f2a19305Safresh1 my $B = sin( $point * $d) / $sd; 201*f2a19305Safresh1 202*f2a19305Safresh1 my $lat0 = pip2 - $phi0; 203*f2a19305Safresh1 my $lat1 = pip2 - $phi1; 204*f2a19305Safresh1 205*f2a19305Safresh1 my $x = $A * cos($lat0) * cos($theta0) + $B * cos($lat1) * cos($theta1); 206*f2a19305Safresh1 my $y = $A * cos($lat0) * sin($theta0) + $B * cos($lat1) * sin($theta1); 207*f2a19305Safresh1 my $z = $A * sin($lat0) + $B * sin($lat1); 208*f2a19305Safresh1 209*f2a19305Safresh1 my $theta = atan2($y, $x); 210*f2a19305Safresh1 my $phi = acos_real($z); 211*f2a19305Safresh1 212*f2a19305Safresh1 return ($theta, $phi); 213*f2a19305Safresh1} 214*f2a19305Safresh1 215*f2a19305Safresh1sub great_circle_midpoint { 216*f2a19305Safresh1 great_circle_waypoint(@_[0..3], 0.5); 217*f2a19305Safresh1} 218*f2a19305Safresh1 219*f2a19305Safresh1sub great_circle_destination { 220*f2a19305Safresh1 my ( $theta0, $phi0, $dir0, $dst ) = @_; 221*f2a19305Safresh1 222*f2a19305Safresh1 my $lat0 = pip2 - $phi0; 223*f2a19305Safresh1 224*f2a19305Safresh1 my $phi1 = asin_real(sin($lat0)*cos($dst) + 225*f2a19305Safresh1 cos($lat0)*sin($dst)*cos($dir0)); 226*f2a19305Safresh1 227*f2a19305Safresh1 my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0), 228*f2a19305Safresh1 cos($dst)-sin($lat0)*sin($phi1)); 229*f2a19305Safresh1 230*f2a19305Safresh1 my $dir1 = great_circle_bearing($theta1, $phi1, $theta0, $phi0) + pi; 231*f2a19305Safresh1 232*f2a19305Safresh1 $dir1 -= pi2 if $dir1 > pi2; 233*f2a19305Safresh1 234*f2a19305Safresh1 return ($theta1, $phi1, $dir1); 235*f2a19305Safresh1} 236*f2a19305Safresh1 237*f2a19305Safresh11; 238*f2a19305Safresh1 239*f2a19305Safresh1__END__ 240*f2a19305Safresh1=pod 241*f2a19305Safresh1 242*f2a19305Safresh1=head1 NAME 243*f2a19305Safresh1 244*f2a19305Safresh1Math::Trig - trigonometric functions 245*f2a19305Safresh1 246*f2a19305Safresh1=head1 SYNOPSIS 247*f2a19305Safresh1 248*f2a19305Safresh1 use Math::Trig; 249*f2a19305Safresh1 250*f2a19305Safresh1 $x = tan(0.9); 251*f2a19305Safresh1 $y = acos(3.7); 252*f2a19305Safresh1 $z = asin(2.4); 253*f2a19305Safresh1 254*f2a19305Safresh1 $halfpi = pi/2; 255*f2a19305Safresh1 256*f2a19305Safresh1 $rad = deg2rad(120); 257*f2a19305Safresh1 258*f2a19305Safresh1 # Import constants pi2, pi4, pip2, pip4 (2*pi, 4*pi, pi/2, pi/4). 259*f2a19305Safresh1 use Math::Trig ':pi'; 260*f2a19305Safresh1 261*f2a19305Safresh1 # Import the conversions between cartesian/spherical/cylindrical. 262*f2a19305Safresh1 use Math::Trig ':radial'; 263*f2a19305Safresh1 264*f2a19305Safresh1 # Import the great circle formulas. 265*f2a19305Safresh1 use Math::Trig ':great_circle'; 266*f2a19305Safresh1 267*f2a19305Safresh1=head1 DESCRIPTION 268*f2a19305Safresh1 269*f2a19305Safresh1C<Math::Trig> defines many trigonometric functions not defined by the 270*f2a19305Safresh1core Perl which defines only the C<sin()> and C<cos()>. The constant 271*f2a19305Safresh1B<pi> is also defined as are a few convenience functions for angle 272*f2a19305Safresh1conversions, and I<great circle formulas> for spherical movement. 273*f2a19305Safresh1 274*f2a19305Safresh1=head1 TRIGONOMETRIC FUNCTIONS 275*f2a19305Safresh1 276*f2a19305Safresh1The tangent 277*f2a19305Safresh1 278*f2a19305Safresh1=over 4 279*f2a19305Safresh1 280*f2a19305Safresh1=item B<tan> 281*f2a19305Safresh1 282*f2a19305Safresh1=back 283*f2a19305Safresh1 284*f2a19305Safresh1The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot 285*f2a19305Safresh1are aliases) 286*f2a19305Safresh1 287*f2a19305Safresh1B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan> 288*f2a19305Safresh1 289*f2a19305Safresh1The arcus (also known as the inverse) functions of the sine, cosine, 290*f2a19305Safresh1and tangent 291*f2a19305Safresh1 292*f2a19305Safresh1B<asin>, B<acos>, B<atan> 293*f2a19305Safresh1 294*f2a19305Safresh1The principal value of the arc tangent of y/x 295*f2a19305Safresh1 296*f2a19305Safresh1B<atan2>(y, x) 297*f2a19305Safresh1 298*f2a19305Safresh1The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc 299*f2a19305Safresh1and acotan/acot are aliases). Note that atan2(0, 0) is not well-defined. 300*f2a19305Safresh1 301*f2a19305Safresh1B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan> 302*f2a19305Safresh1 303*f2a19305Safresh1The hyperbolic sine, cosine, and tangent 304*f2a19305Safresh1 305*f2a19305Safresh1B<sinh>, B<cosh>, B<tanh> 306*f2a19305Safresh1 307*f2a19305Safresh1The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch 308*f2a19305Safresh1and cotanh/coth are aliases) 309*f2a19305Safresh1 310*f2a19305Safresh1B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh> 311*f2a19305Safresh1 312*f2a19305Safresh1The area (also known as the inverse) functions of the hyperbolic 313*f2a19305Safresh1sine, cosine, and tangent 314*f2a19305Safresh1 315*f2a19305Safresh1B<asinh>, B<acosh>, B<atanh> 316*f2a19305Safresh1 317*f2a19305Safresh1The area cofunctions of the hyperbolic sine, cosine, and tangent 318*f2a19305Safresh1(acsch/acosech and acoth/acotanh are aliases) 319*f2a19305Safresh1 320*f2a19305Safresh1B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh> 321*f2a19305Safresh1 322*f2a19305Safresh1The trigonometric constant B<pi> and some of handy multiples 323*f2a19305Safresh1of it are also defined. 324*f2a19305Safresh1 325*f2a19305Safresh1B<pi, pi2, pi4, pip2, pip4> 326*f2a19305Safresh1 327*f2a19305Safresh1=head2 ERRORS DUE TO DIVISION BY ZERO 328*f2a19305Safresh1 329*f2a19305Safresh1The following functions 330*f2a19305Safresh1 331*f2a19305Safresh1 acoth 332*f2a19305Safresh1 acsc 333*f2a19305Safresh1 acsch 334*f2a19305Safresh1 asec 335*f2a19305Safresh1 asech 336*f2a19305Safresh1 atanh 337*f2a19305Safresh1 cot 338*f2a19305Safresh1 coth 339*f2a19305Safresh1 csc 340*f2a19305Safresh1 csch 341*f2a19305Safresh1 sec 342*f2a19305Safresh1 sech 343*f2a19305Safresh1 tan 344*f2a19305Safresh1 tanh 345*f2a19305Safresh1 346*f2a19305Safresh1cannot be computed for all arguments because that would mean dividing 347*f2a19305Safresh1by zero or taking logarithm of zero. These situations cause fatal 348*f2a19305Safresh1runtime errors looking like this 349*f2a19305Safresh1 350*f2a19305Safresh1 cot(0): Division by zero. 351*f2a19305Safresh1 (Because in the definition of cot(0), the divisor sin(0) is 0) 352*f2a19305Safresh1 Died at ... 353*f2a19305Safresh1 354*f2a19305Safresh1or 355*f2a19305Safresh1 356*f2a19305Safresh1 atanh(-1): Logarithm of zero. 357*f2a19305Safresh1 Died at... 358*f2a19305Safresh1 359*f2a19305Safresh1For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, 360*f2a19305Safresh1C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the 361*f2a19305Safresh1C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the 362*f2a19305Safresh1C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the 363*f2a19305Safresh1C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k * 364*f2a19305Safresh1pi>, where I<k> is any integer. 365*f2a19305Safresh1 366*f2a19305Safresh1Note that atan2(0, 0) is not well-defined. 367*f2a19305Safresh1 368*f2a19305Safresh1=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS 369*f2a19305Safresh1 370*f2a19305Safresh1Please note that some of the trigonometric functions can break out 371*f2a19305Safresh1from the B<real axis> into the B<complex plane>. For example 372*f2a19305Safresh1C<asin(2)> has no definition for plain real numbers but it has 373*f2a19305Safresh1definition for complex numbers. 374*f2a19305Safresh1 375*f2a19305Safresh1In Perl terms this means that supplying the usual Perl numbers (also 376*f2a19305Safresh1known as scalars, please see L<perldata>) as input for the 377*f2a19305Safresh1trigonometric functions might produce as output results that no more 378*f2a19305Safresh1are simple real numbers: instead they are complex numbers. 379*f2a19305Safresh1 380*f2a19305Safresh1The C<Math::Trig> handles this by using the C<Math::Complex> package 381*f2a19305Safresh1which knows how to handle complex numbers, please see L<Math::Complex> 382*f2a19305Safresh1for more information. In practice you need not to worry about getting 383*f2a19305Safresh1complex numbers as results because the C<Math::Complex> takes care of 384*f2a19305Safresh1details like for example how to display complex numbers. For example: 385*f2a19305Safresh1 386*f2a19305Safresh1 print asin(2), "\n"; 387*f2a19305Safresh1 388*f2a19305Safresh1should produce something like this (take or leave few last decimals): 389*f2a19305Safresh1 390*f2a19305Safresh1 1.5707963267949-1.31695789692482i 391*f2a19305Safresh1 392*f2a19305Safresh1That is, a complex number with the real part of approximately C<1.571> 393*f2a19305Safresh1and the imaginary part of approximately C<-1.317>. 394*f2a19305Safresh1 395*f2a19305Safresh1=head1 PLANE ANGLE CONVERSIONS 396*f2a19305Safresh1 397*f2a19305Safresh1(Plane, 2-dimensional) angles may be converted with the following functions. 398*f2a19305Safresh1 399*f2a19305Safresh1=over 400*f2a19305Safresh1 401*f2a19305Safresh1=item deg2rad 402*f2a19305Safresh1 403*f2a19305Safresh1 $radians = deg2rad($degrees); 404*f2a19305Safresh1 405*f2a19305Safresh1=item grad2rad 406*f2a19305Safresh1 407*f2a19305Safresh1 $radians = grad2rad($gradians); 408*f2a19305Safresh1 409*f2a19305Safresh1=item rad2deg 410*f2a19305Safresh1 411*f2a19305Safresh1 $degrees = rad2deg($radians); 412*f2a19305Safresh1 413*f2a19305Safresh1=item grad2deg 414*f2a19305Safresh1 415*f2a19305Safresh1 $degrees = grad2deg($gradians); 416*f2a19305Safresh1 417*f2a19305Safresh1=item deg2grad 418*f2a19305Safresh1 419*f2a19305Safresh1 $gradians = deg2grad($degrees); 420*f2a19305Safresh1 421*f2a19305Safresh1=item rad2grad 422*f2a19305Safresh1 423*f2a19305Safresh1 $gradians = rad2grad($radians); 424*f2a19305Safresh1 425*f2a19305Safresh1=back 426*f2a19305Safresh1 427*f2a19305Safresh1The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians. 428*f2a19305Safresh1The result is by default wrapped to be inside the [0, {2pi,360,400}] circle. 429*f2a19305Safresh1If you don't want this, supply a true second argument: 430*f2a19305Safresh1 431*f2a19305Safresh1 $zillions_of_radians = deg2rad($zillions_of_degrees, 1); 432*f2a19305Safresh1 $negative_degrees = rad2deg($negative_radians, 1); 433*f2a19305Safresh1 434*f2a19305Safresh1You can also do the wrapping explicitly by rad2rad(), deg2deg(), and 435*f2a19305Safresh1grad2grad(). 436*f2a19305Safresh1 437*f2a19305Safresh1=over 4 438*f2a19305Safresh1 439*f2a19305Safresh1=item rad2rad 440*f2a19305Safresh1 441*f2a19305Safresh1 $radians_wrapped_by_2pi = rad2rad($radians); 442*f2a19305Safresh1 443*f2a19305Safresh1=item deg2deg 444*f2a19305Safresh1 445*f2a19305Safresh1 $degrees_wrapped_by_360 = deg2deg($degrees); 446*f2a19305Safresh1 447*f2a19305Safresh1=item grad2grad 448*f2a19305Safresh1 449*f2a19305Safresh1 $gradians_wrapped_by_400 = grad2grad($gradians); 450*f2a19305Safresh1 451*f2a19305Safresh1=back 452*f2a19305Safresh1 453*f2a19305Safresh1=head1 RADIAL COORDINATE CONVERSIONS 454*f2a19305Safresh1 455*f2a19305Safresh1B<Radial coordinate systems> are the B<spherical> and the B<cylindrical> 456*f2a19305Safresh1systems, explained shortly in more detail. 457*f2a19305Safresh1 458*f2a19305Safresh1You can import radial coordinate conversion functions by using the 459*f2a19305Safresh1C<:radial> tag: 460*f2a19305Safresh1 461*f2a19305Safresh1 use Math::Trig ':radial'; 462*f2a19305Safresh1 463*f2a19305Safresh1 ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); 464*f2a19305Safresh1 ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); 465*f2a19305Safresh1 ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); 466*f2a19305Safresh1 ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); 467*f2a19305Safresh1 ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); 468*f2a19305Safresh1 ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); 469*f2a19305Safresh1 470*f2a19305Safresh1B<All angles are in radians>. 471*f2a19305Safresh1 472*f2a19305Safresh1=head2 COORDINATE SYSTEMS 473*f2a19305Safresh1 474*f2a19305Safresh1B<Cartesian> coordinates are the usual rectangular I<(x, y, z)>-coordinates. 475*f2a19305Safresh1 476*f2a19305Safresh1Spherical coordinates, I<(rho, theta, phi)>, are three-dimensional 477*f2a19305Safresh1coordinates which define a point in three-dimensional space. They are 478*f2a19305Safresh1based on a sphere surface. The radius of the sphere is B<rho>, also 479*f2a19305Safresh1known as the I<radial> coordinate. The angle in the I<xy>-plane 480*f2a19305Safresh1(around the I<z>-axis) is B<theta>, also known as the I<azimuthal> 481*f2a19305Safresh1coordinate. The angle from the I<z>-axis is B<phi>, also known as the 482*f2a19305Safresh1I<polar> coordinate. The North Pole is therefore I<rho, 0, 0>, and 483*f2a19305Safresh1the Gulf of Guinea (think of the missing big chunk of Africa) I<rho, 484*f2a19305Safresh10, pi/2>. In geographical terms I<phi> is latitude (northward 485*f2a19305Safresh1positive, southward negative) and I<theta> is longitude (eastward 486*f2a19305Safresh1positive, westward negative). 487*f2a19305Safresh1 488*f2a19305Safresh1B<BEWARE>: some texts define I<theta> and I<phi> the other way round, 489*f2a19305Safresh1some texts define the I<phi> to start from the horizontal plane, some 490*f2a19305Safresh1texts use I<r> in place of I<rho>. 491*f2a19305Safresh1 492*f2a19305Safresh1Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional 493*f2a19305Safresh1coordinates which define a point in three-dimensional space. They are 494*f2a19305Safresh1based on a cylinder surface. The radius of the cylinder is B<rho>, 495*f2a19305Safresh1also known as the I<radial> coordinate. The angle in the I<xy>-plane 496*f2a19305Safresh1(around the I<z>-axis) is B<theta>, also known as the I<azimuthal> 497*f2a19305Safresh1coordinate. The third coordinate is the I<z>, pointing up from the 498*f2a19305Safresh1B<theta>-plane. 499*f2a19305Safresh1 500*f2a19305Safresh1=head2 3-D ANGLE CONVERSIONS 501*f2a19305Safresh1 502*f2a19305Safresh1Conversions to and from spherical and cylindrical coordinates are 503*f2a19305Safresh1available. Please notice that the conversions are not necessarily 504*f2a19305Safresh1reversible because of the equalities like I<pi> angles being equal to 505*f2a19305Safresh1I<-pi> angles. 506*f2a19305Safresh1 507*f2a19305Safresh1=over 4 508*f2a19305Safresh1 509*f2a19305Safresh1=item cartesian_to_cylindrical 510*f2a19305Safresh1 511*f2a19305Safresh1 ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); 512*f2a19305Safresh1 513*f2a19305Safresh1=item cartesian_to_spherical 514*f2a19305Safresh1 515*f2a19305Safresh1 ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); 516*f2a19305Safresh1 517*f2a19305Safresh1=item cylindrical_to_cartesian 518*f2a19305Safresh1 519*f2a19305Safresh1 ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); 520*f2a19305Safresh1 521*f2a19305Safresh1=item cylindrical_to_spherical 522*f2a19305Safresh1 523*f2a19305Safresh1 ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); 524*f2a19305Safresh1 525*f2a19305Safresh1Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>. 526*f2a19305Safresh1 527*f2a19305Safresh1=item spherical_to_cartesian 528*f2a19305Safresh1 529*f2a19305Safresh1 ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); 530*f2a19305Safresh1 531*f2a19305Safresh1=item spherical_to_cylindrical 532*f2a19305Safresh1 533*f2a19305Safresh1 ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); 534*f2a19305Safresh1 535*f2a19305Safresh1Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>. 536*f2a19305Safresh1 537*f2a19305Safresh1=back 538*f2a19305Safresh1 539*f2a19305Safresh1=head1 GREAT CIRCLE DISTANCES AND DIRECTIONS 540*f2a19305Safresh1 541*f2a19305Safresh1A great circle is section of a circle that contains the circle 542*f2a19305Safresh1diameter: the shortest distance between two (non-antipodal) points on 543*f2a19305Safresh1the spherical surface goes along the great circle connecting those two 544*f2a19305Safresh1points. 545*f2a19305Safresh1 546*f2a19305Safresh1=head2 great_circle_distance 547*f2a19305Safresh1 548*f2a19305Safresh1Returns the great circle distance between two points on a sphere. 549*f2a19305Safresh1 550*f2a19305Safresh1 $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]); 551*f2a19305Safresh1 552*f2a19305Safresh1Where ($theta0, $phi0) and ($theta1, $phi1) are the spherical coordinates of 553*f2a19305Safresh1the two points, respectively. The distance is in C<$rho> units. The C<$rho> 554*f2a19305Safresh1is optional. It defaults to 1 (the unit sphere). 555*f2a19305Safresh1 556*f2a19305Safresh1If you are using geographic coordinates, latitude and longitude, you need to 557*f2a19305Safresh1adjust for the fact that latitude is zero at the equator increasing towards 558*f2a19305Safresh1the north and decreasing towards the south. Assuming ($lat0, $lon0) and 559*f2a19305Safresh1($lat1, $lon1) are the geographic coordinates in radians of the two points, 560*f2a19305Safresh1the distance can be computed with 561*f2a19305Safresh1 562*f2a19305Safresh1 $distance = great_circle_distance($lon0, pi/2 - $lat0, 563*f2a19305Safresh1 $lon1, pi/2 - $lat1, $rho); 564*f2a19305Safresh1 565*f2a19305Safresh1=head2 great_circle_direction 566*f2a19305Safresh1 567*f2a19305Safresh1The direction you must follow the great circle (also known as I<bearing>) 568*f2a19305Safresh1can be computed by the great_circle_direction() function: 569*f2a19305Safresh1 570*f2a19305Safresh1 use Math::Trig 'great_circle_direction'; 571*f2a19305Safresh1 572*f2a19305Safresh1 $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1); 573*f2a19305Safresh1 574*f2a19305Safresh1=head2 great_circle_bearing 575*f2a19305Safresh1 576*f2a19305Safresh1Alias 'great_circle_bearing' for 'great_circle_direction' is also available. 577*f2a19305Safresh1 578*f2a19305Safresh1 use Math::Trig 'great_circle_bearing'; 579*f2a19305Safresh1 580*f2a19305Safresh1 $direction = great_circle_bearing($theta0, $phi0, $theta1, $phi1); 581*f2a19305Safresh1 582*f2a19305Safresh1The result of great_circle_direction is in radians, zero indicating 583*f2a19305Safresh1straight north, pi or -pi straight south, pi/2 straight west, and 584*f2a19305Safresh1-pi/2 straight east. 585*f2a19305Safresh1 586*f2a19305Safresh1=head2 great_circle_destination 587*f2a19305Safresh1 588*f2a19305Safresh1You can inversely compute the destination if you know the 589*f2a19305Safresh1starting point, direction, and distance: 590*f2a19305Safresh1 591*f2a19305Safresh1 use Math::Trig 'great_circle_destination'; 592*f2a19305Safresh1 593*f2a19305Safresh1 # $diro is the original direction, 594*f2a19305Safresh1 # for example from great_circle_bearing(). 595*f2a19305Safresh1 # $distance is the angular distance in radians, 596*f2a19305Safresh1 # for example from great_circle_distance(). 597*f2a19305Safresh1 # $thetad and $phid are the destination coordinates, 598*f2a19305Safresh1 # $dird is the final direction at the destination. 599*f2a19305Safresh1 600*f2a19305Safresh1 ($thetad, $phid, $dird) = 601*f2a19305Safresh1 great_circle_destination($theta, $phi, $diro, $distance); 602*f2a19305Safresh1 603*f2a19305Safresh1or the midpoint if you know the end points: 604*f2a19305Safresh1 605*f2a19305Safresh1=head2 great_circle_midpoint 606*f2a19305Safresh1 607*f2a19305Safresh1 use Math::Trig 'great_circle_midpoint'; 608*f2a19305Safresh1 609*f2a19305Safresh1 ($thetam, $phim) = 610*f2a19305Safresh1 great_circle_midpoint($theta0, $phi0, $theta1, $phi1); 611*f2a19305Safresh1 612*f2a19305Safresh1The great_circle_midpoint() is just a special case of 613*f2a19305Safresh1 614*f2a19305Safresh1=head2 great_circle_waypoint 615*f2a19305Safresh1 616*f2a19305Safresh1 use Math::Trig 'great_circle_waypoint'; 617*f2a19305Safresh1 618*f2a19305Safresh1 ($thetai, $phii) = 619*f2a19305Safresh1 great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way); 620*f2a19305Safresh1 621*f2a19305Safresh1Where $way indicates the position of the waypoint along the great 622*f2a19305Safresh1circle arc through the starting point ($theta0, $phi0) and the end 623*f2a19305Safresh1point ($theta1, $phi1) relative to the distance from the starting 624*f2a19305Safresh1point to the end point. So $way = 0 gives the starting point, $way = 1 625*f2a19305Safresh1gives the end point, $way < 0 gives a point "behind" the starting 626*f2a19305Safresh1point, and $way > 1 gives a point beyond the end point. $way defaults 627*f2a19305Safresh1to 0.5 if not given. 628*f2a19305Safresh1 629*f2a19305Safresh1Note that antipodal points (where their distance is I<pi> radians) do 630*f2a19305Safresh1not have unique waypoints between them, and therefore C<undef> is 631*f2a19305Safresh1returned in such cases. If the points are the same, so the distance 632*f2a19305Safresh1between them is zero, all waypoints are identical to the starting/end 633*f2a19305Safresh1point. 634*f2a19305Safresh1 635*f2a19305Safresh1The thetas, phis, direction, and distance in the above are all in 636*f2a19305Safresh1radians. 637*f2a19305Safresh1 638*f2a19305Safresh1You can import all the great circle formulas by 639*f2a19305Safresh1 640*f2a19305Safresh1 use Math::Trig ':great_circle'; 641*f2a19305Safresh1 642*f2a19305Safresh1Notice that the resulting directions might be somewhat surprising if 643*f2a19305Safresh1you are looking at a flat worldmap: in such map projections the great 644*f2a19305Safresh1circles quite often do not look like the shortest routes -- but for 645*f2a19305Safresh1example the shortest possible routes from Europe or North America to 646*f2a19305Safresh1Asia do often cross the polar regions. (The common Mercator projection 647*f2a19305Safresh1does B<not> show great circles as straight lines: straight lines in the 648*f2a19305Safresh1Mercator projection are lines of constant bearing.) 649*f2a19305Safresh1 650*f2a19305Safresh1=head1 EXAMPLES 651*f2a19305Safresh1 652*f2a19305Safresh1To calculate the distance between London (51.3N 0.5W) and Tokyo 653*f2a19305Safresh1(35.7N 139.8E) in kilometers: 654*f2a19305Safresh1 655*f2a19305Safresh1 use Math::Trig qw(great_circle_distance deg2rad); 656*f2a19305Safresh1 657*f2a19305Safresh1 # Notice the 90 - latitude: phi zero is at the North Pole. 658*f2a19305Safresh1 sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) } 659*f2a19305Safresh1 my @L = NESW( -0.5, 51.3); 660*f2a19305Safresh1 my @T = NESW(139.8, 35.7); 661*f2a19305Safresh1 my $km = great_circle_distance(@L, @T, 6378); # About 9600 km. 662*f2a19305Safresh1 663*f2a19305Safresh1The direction you would have to go from London to Tokyo (in radians, 664*f2a19305Safresh1straight north being zero, straight east being pi/2). 665*f2a19305Safresh1 666*f2a19305Safresh1 use Math::Trig qw(great_circle_direction); 667*f2a19305Safresh1 668*f2a19305Safresh1 my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi. 669*f2a19305Safresh1 670*f2a19305Safresh1The midpoint between London and Tokyo being 671*f2a19305Safresh1 672*f2a19305Safresh1 use Math::Trig qw(great_circle_midpoint rad2deg); 673*f2a19305Safresh1 674*f2a19305Safresh1 my @M = great_circle_midpoint(@L, @T); 675*f2a19305Safresh1 sub SWNE { rad2deg( $_[0] ), 90 - rad2deg( $_[1] ) } 676*f2a19305Safresh1 my @lonlat = SWNE(@M); 677*f2a19305Safresh1 678*f2a19305Safresh1or about 69 N 89 E, on the Putorana Plateau of Siberia. 679*f2a19305Safresh1 680*f2a19305Safresh1B<NOTE>: you B<cannot> get from A to B like this: 681*f2a19305Safresh1 682*f2a19305Safresh1 Dist = great_circle_distance(A, B) 683*f2a19305Safresh1 Dir = great_circle_direction(A, B) 684*f2a19305Safresh1 C = great_circle_destination(A, Dist, Dir) 685*f2a19305Safresh1 686*f2a19305Safresh1and expect C to be B, because the bearing constantly changes when 687*f2a19305Safresh1going from A to B (except in some special case like the meridians or 688*f2a19305Safresh1the circles of latitudes) and in great_circle_destination() one gives 689*f2a19305Safresh1a B<constant> bearing to follow. 690*f2a19305Safresh1 691*f2a19305Safresh1=head2 CAVEAT FOR GREAT CIRCLE FORMULAS 692*f2a19305Safresh1 693*f2a19305Safresh1The answers may be off by few percentages because of the irregular 694*f2a19305Safresh1(slightly aspherical) form of the Earth. The errors are at worst 695*f2a19305Safresh1about 0.55%, but generally below 0.3%. 696*f2a19305Safresh1 697*f2a19305Safresh1=head2 Real-valued asin and acos 698*f2a19305Safresh1 699*f2a19305Safresh1For small inputs asin() and acos() may return complex numbers even 700*f2a19305Safresh1when real numbers would be enough and correct, this happens because of 701*f2a19305Safresh1floating-point inaccuracies. You can see these inaccuracies for 702*f2a19305Safresh1example by trying theses: 703*f2a19305Safresh1 704*f2a19305Safresh1 print cos(1e-6)**2+sin(1e-6)**2 - 1,"\n"; 705*f2a19305Safresh1 printf "%.20f", cos(1e-6)**2+sin(1e-6)**2,"\n"; 706*f2a19305Safresh1 707*f2a19305Safresh1which will print something like this 708*f2a19305Safresh1 709*f2a19305Safresh1 -1.11022302462516e-16 710*f2a19305Safresh1 0.99999999999999988898 711*f2a19305Safresh1 712*f2a19305Safresh1even though the expected results are of course exactly zero and one. 713*f2a19305Safresh1The formulas used to compute asin() and acos() are quite sensitive to 714*f2a19305Safresh1this, and therefore they might accidentally slip into the complex 715*f2a19305Safresh1plane even when they should not. To counter this there are two 716*f2a19305Safresh1interfaces that are guaranteed to return a real-valued output. 717*f2a19305Safresh1 718*f2a19305Safresh1=over 4 719*f2a19305Safresh1 720*f2a19305Safresh1=item asin_real 721*f2a19305Safresh1 722*f2a19305Safresh1 use Math::Trig qw(asin_real); 723*f2a19305Safresh1 724*f2a19305Safresh1 $real_angle = asin_real($input_sin); 725*f2a19305Safresh1 726*f2a19305Safresh1Return a real-valued arcus sine if the input is between [-1, 1], 727*f2a19305Safresh1B<inclusive> the endpoints. For inputs greater than one, pi/2 728*f2a19305Safresh1is returned. For inputs less than minus one, -pi/2 is returned. 729*f2a19305Safresh1 730*f2a19305Safresh1=item acos_real 731*f2a19305Safresh1 732*f2a19305Safresh1 use Math::Trig qw(acos_real); 733*f2a19305Safresh1 734*f2a19305Safresh1 $real_angle = acos_real($input_cos); 735*f2a19305Safresh1 736*f2a19305Safresh1Return a real-valued arcus cosine if the input is between [-1, 1], 737*f2a19305Safresh1B<inclusive> the endpoints. For inputs greater than one, zero 738*f2a19305Safresh1is returned. For inputs less than minus one, pi is returned. 739*f2a19305Safresh1 740*f2a19305Safresh1=back 741*f2a19305Safresh1 742*f2a19305Safresh1=head1 BUGS 743*f2a19305Safresh1 744*f2a19305Safresh1Saying C<use Math::Trig;> exports many mathematical routines in the 745*f2a19305Safresh1caller environment and even overrides some (C<sin>, C<cos>). This is 746*f2a19305Safresh1construed as a feature by the Authors, actually... ;-) 747*f2a19305Safresh1 748*f2a19305Safresh1The code is not optimized for speed, especially because we use 749*f2a19305Safresh1C<Math::Complex> and thus go quite near complex numbers while doing 750*f2a19305Safresh1the computations even when the arguments are not. This, however, 751*f2a19305Safresh1cannot be completely avoided if we want things like C<asin(2)> to give 752*f2a19305Safresh1an answer instead of giving a fatal runtime error. 753*f2a19305Safresh1 754*f2a19305Safresh1Do not attempt navigation using these formulas. 755*f2a19305Safresh1 756*f2a19305Safresh1=head1 SEE ALSO 757*f2a19305Safresh1 758*f2a19305Safresh1L<Math::Complex> 759*f2a19305Safresh1 760*f2a19305Safresh1=head1 AUTHORS 761*f2a19305Safresh1 762*f2a19305Safresh1Jarkko Hietaniemi <F<jhi!at!iki.fi>>, 763*f2a19305Safresh1Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>, 764*f2a19305Safresh1Zefram <zefram@fysh.org> 765*f2a19305Safresh1 766*f2a19305Safresh1=head1 LICENSE 767*f2a19305Safresh1 768*f2a19305Safresh1This library is free software; you can redistribute it and/or modify 769*f2a19305Safresh1it under the same terms as Perl itself. 770*f2a19305Safresh1 771*f2a19305Safresh1=cut 772*f2a19305Safresh1 773*f2a19305Safresh1# eof 774