1 //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SchedClassResolution.h" 10 #include "BenchmarkResult.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/MC/MCAsmInfo.h" 13 #include "llvm/Support/FormatVariadic.h" 14 #include <limits> 15 #include <unordered_set> 16 #include <vector> 17 18 namespace llvm { 19 namespace exegesis { 20 21 // Return the non-redundant list of WriteProcRes used by the given sched class. 22 // The scheduling model for LLVM is such that each instruction has a certain 23 // number of uops which consume resources which are described by WriteProcRes 24 // entries. Each entry describe how many cycles are spent on a specific ProcRes 25 // kind. 26 // For example, an instruction might have 3 uOps, one dispatching on P0 27 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7). 28 // Note that LLVM additionally denormalizes resource consumption to include 29 // usage of super resources by subresources. So in practice if there exists a 30 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by 31 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed 32 // by P06 are also consumed by P016. In the figure below, parenthesized cycles 33 // denote implied usage of superresources by subresources: 34 // P0 P06 P016 35 // uOp1 1 (1) (1) 36 // uOp2 1 (1) 37 // uOp3 1 (1) 38 // ============================= 39 // 1 3 3 40 // Eventually we end up with three entries for the WriteProcRes of the 41 // instruction: 42 // {ProcResIdx=1, Cycles=1} // P0 43 // {ProcResIdx=7, Cycles=3} // P06 44 // {ProcResIdx=10, Cycles=3} // P016 45 // 46 // Note that in this case, P016 does not contribute any cycles, so it would 47 // be removed by this function. 48 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca. 49 static SmallVector<MCWriteProcResEntry, 8> 50 getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc, 51 const MCSubtargetInfo &STI) { 52 SmallVector<MCWriteProcResEntry, 8> Result; 53 const auto &SM = STI.getSchedModel(); 54 const unsigned NumProcRes = SM.getNumProcResourceKinds(); 55 56 // This assumes that the ProcResDescs are sorted in topological order, which 57 // is guaranteed by the tablegen backend. 58 SmallVector<float, 32> ProcResUnitUsage(NumProcRes); 59 for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc), 60 *const WPREnd = STI.getWriteProcResEnd(&SCDesc); 61 WPR != WPREnd; ++WPR) { 62 const MCProcResourceDesc *const ProcResDesc = 63 SM.getProcResource(WPR->ProcResourceIdx); 64 if (ProcResDesc->SubUnitsIdxBegin == nullptr) { 65 // This is a ProcResUnit. 66 Result.push_back({WPR->ProcResourceIdx, WPR->Cycles}); 67 ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles; 68 } else { 69 // This is a ProcResGroup. First see if it contributes any cycles or if 70 // it has cycles just from subunits. 71 float RemainingCycles = WPR->Cycles; 72 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; 73 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; 74 ++SubResIdx) { 75 RemainingCycles -= ProcResUnitUsage[*SubResIdx]; 76 } 77 if (RemainingCycles < 0.01f) { 78 // The ProcResGroup contributes no cycles of its own. 79 continue; 80 } 81 // The ProcResGroup contributes `RemainingCycles` cycles of its own. 82 Result.push_back({WPR->ProcResourceIdx, 83 static_cast<uint16_t>(std::round(RemainingCycles))}); 84 // Spread the remaining cycles over all subunits. 85 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; 86 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; 87 ++SubResIdx) { 88 ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits; 89 } 90 } 91 } 92 return Result; 93 } 94 95 // Distributes a pressure budget as evenly as possible on the provided subunits 96 // given the already existing port pressure distribution. 97 // 98 // The algorithm is as follows: while there is remaining pressure to 99 // distribute, find the subunits with minimal pressure, and distribute 100 // remaining pressure equally up to the pressure of the unit with 101 // second-to-minimal pressure. 102 // For example, let's assume we want to distribute 2*P1256 103 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is: 104 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7 105 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5 106 // RemainingPressure = 2.0 107 // We sort the subunits by pressure: 108 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)] 109 // We'll first start by the subunits with minimal pressure, which are at 110 // the beginning of the sorted array. In this example there is one (P2). 111 // The subunit with second-to-minimal pressure is the next one in the 112 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles 113 // from the budget. 114 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)] 115 // RemainingPressure = 1.9 116 // We repeat this process: distribute 0.2 pressure on each of the minimal 117 // P2 and P1, decrease budget by 2*0.2: 118 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)] 119 // RemainingPressure = 1.5 120 // There are no second-to-minimal subunits so we just share the remaining 121 // budget (1.5 cycles) equally: 122 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)] 123 // RemainingPressure = 0.0 124 // We stop as there is no remaining budget to distribute. 125 static void distributePressure(float RemainingPressure, 126 SmallVector<uint16_t, 32> Subunits, 127 SmallVector<float, 32> &DensePressure) { 128 // Find the number of subunits with minimal pressure (they are at the 129 // front). 130 sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) { 131 return DensePressure[A] < DensePressure[B]; 132 }); 133 const auto getPressureForSubunit = [&DensePressure, 134 &Subunits](size_t I) -> float & { 135 return DensePressure[Subunits[I]]; 136 }; 137 size_t NumMinimalSU = 1; 138 while (NumMinimalSU < Subunits.size() && 139 getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) { 140 ++NumMinimalSU; 141 } 142 while (RemainingPressure > 0.0f) { 143 if (NumMinimalSU == Subunits.size()) { 144 // All units are minimal, just distribute evenly and be done. 145 for (size_t I = 0; I < NumMinimalSU; ++I) { 146 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; 147 } 148 return; 149 } 150 // Distribute the remaining pressure equally. 151 const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1); 152 const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU); 153 assert(MinimalPressure < SecondToMinimalPressure); 154 const float Increment = SecondToMinimalPressure - MinimalPressure; 155 if (RemainingPressure <= NumMinimalSU * Increment) { 156 // There is not enough remaining pressure. 157 for (size_t I = 0; I < NumMinimalSU; ++I) { 158 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; 159 } 160 return; 161 } 162 // Bump all minimal pressure subunits to `SecondToMinimalPressure`. 163 for (size_t I = 0; I < NumMinimalSU; ++I) { 164 getPressureForSubunit(I) = SecondToMinimalPressure; 165 RemainingPressure -= SecondToMinimalPressure; 166 } 167 while (NumMinimalSU < Subunits.size() && 168 getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) { 169 ++NumMinimalSU; 170 } 171 } 172 } 173 174 std::vector<std::pair<uint16_t, float>> 175 computeIdealizedProcResPressure(const MCSchedModel &SM, 176 SmallVector<MCWriteProcResEntry, 8> WPRS) { 177 // DensePressure[I] is the port pressure for Proc Resource I. 178 SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds()); 179 sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) { 180 return A.ProcResourceIdx < B.ProcResourceIdx; 181 }); 182 for (const MCWriteProcResEntry &WPR : WPRS) { 183 // Get units for the entry. 184 const MCProcResourceDesc *const ProcResDesc = 185 SM.getProcResource(WPR.ProcResourceIdx); 186 if (ProcResDesc->SubUnitsIdxBegin == nullptr) { 187 // This is a ProcResUnit. 188 DensePressure[WPR.ProcResourceIdx] += WPR.Cycles; 189 } else { 190 // This is a ProcResGroup. 191 SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin, 192 ProcResDesc->SubUnitsIdxBegin + 193 ProcResDesc->NumUnits); 194 distributePressure(WPR.Cycles, Subunits, DensePressure); 195 } 196 } 197 // Turn dense pressure into sparse pressure by removing zero entries. 198 std::vector<std::pair<uint16_t, float>> Pressure; 199 for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { 200 if (DensePressure[I] > 0.0f) 201 Pressure.emplace_back(I, DensePressure[I]); 202 } 203 return Pressure; 204 } 205 206 ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI, 207 unsigned ResolvedSchedClassId, 208 bool WasVariant) 209 : SchedClassId(ResolvedSchedClassId), 210 SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)), 211 WasVariant(WasVariant), 212 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)), 213 IdealizedProcResPressure(computeIdealizedProcResPressure( 214 STI.getSchedModel(), NonRedundantWriteProcRes)) { 215 assert((SCDesc == nullptr || !SCDesc->isVariant()) && 216 "ResolvedSchedClass should never be variant"); 217 } 218 219 static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI, 220 unsigned SchedClassId, 221 const MCInst &MCI) { 222 const auto &SM = STI.getSchedModel(); 223 while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) 224 SchedClassId = 225 STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID()); 226 return SchedClassId; 227 } 228 229 std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/> 230 ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo, 231 const MCInstrInfo &InstrInfo, 232 const MCInst &MCI) { 233 unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass(); 234 const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel() 235 .getSchedClassDesc(SchedClassId) 236 ->isVariant(); 237 SchedClassId = ResolveVariantSchedClassId(SubtargetInfo, SchedClassId, MCI); 238 return std::make_pair(SchedClassId, WasVariant); 239 } 240 241 // Returns a ProxResIdx by id or name. 242 static unsigned findProcResIdx(const MCSubtargetInfo &STI, 243 const StringRef NameOrId) { 244 // Interpret the key as an ProcResIdx. 245 unsigned ProcResIdx = 0; 246 if (to_integer(NameOrId, ProcResIdx, 10)) 247 return ProcResIdx; 248 // Interpret the key as a ProcRes name. 249 const auto &SchedModel = STI.getSchedModel(); 250 for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) { 251 if (NameOrId == SchedModel.getProcResource(I)->Name) 252 return I; 253 } 254 return 0; 255 } 256 257 std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint( 258 InstructionBenchmark::ModeE Mode, const MCSubtargetInfo &STI, 259 ArrayRef<PerInstructionStats> Representative) const { 260 const size_t NumMeasurements = Representative.size(); 261 262 std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements); 263 264 if (Mode == InstructionBenchmark::Latency) { 265 assert(NumMeasurements == 1 && "Latency is a single measure."); 266 BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0]; 267 268 // Find the latency. 269 LatencyMeasure.PerInstructionValue = 0.0; 270 271 for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) { 272 const MCWriteLatencyEntry *const WLE = 273 STI.getWriteLatencyEntry(SCDesc, I); 274 LatencyMeasure.PerInstructionValue = 275 std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles); 276 } 277 } else if (Mode == InstructionBenchmark::Uops) { 278 for (auto I : zip(SchedClassPoint, Representative)) { 279 BenchmarkMeasure &Measure = std::get<0>(I); 280 const PerInstructionStats &Stats = std::get<1>(I); 281 282 StringRef Key = Stats.key(); 283 uint16_t ProcResIdx = findProcResIdx(STI, Key); 284 if (ProcResIdx > 0) { 285 // Find the pressure on ProcResIdx `Key`. 286 const auto ProcResPressureIt = std::find_if( 287 IdealizedProcResPressure.begin(), IdealizedProcResPressure.end(), 288 [ProcResIdx](const std::pair<uint16_t, float> &WPR) { 289 return WPR.first == ProcResIdx; 290 }); 291 Measure.PerInstructionValue = 292 ProcResPressureIt == IdealizedProcResPressure.end() 293 ? 0.0 294 : ProcResPressureIt->second; 295 } else if (Key == "NumMicroOps") { 296 Measure.PerInstructionValue = SCDesc->NumMicroOps; 297 } else { 298 errs() << "expected `key` to be either a ProcResIdx or a ProcRes " 299 "name, got " 300 << Key << "\n"; 301 return {}; 302 } 303 } 304 } else if (Mode == InstructionBenchmark::InverseThroughput) { 305 assert(NumMeasurements == 1 && "Inverse Throughput is a single measure."); 306 BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0]; 307 308 RThroughputMeasure.PerInstructionValue = 309 MCSchedModel::getReciprocalThroughput(STI, *SCDesc); 310 } else { 311 llvm_unreachable("unimplemented measurement matching mode"); 312 } 313 314 return SchedClassPoint; 315 } 316 317 } // namespace exegesis 318 } // namespace llvm 319