109467b48Spatrick //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
209467b48Spatrick //
309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
609467b48Spatrick //
709467b48Spatrick //===----------------------------------------------------------------------===//
809467b48Spatrick //
909467b48Spatrick // This file defines the X86-specific support for the FastISel class. Much
1009467b48Spatrick // of the target-specific code is generated by tablegen in the file
1109467b48Spatrick // X86GenFastISel.inc, which is #included here.
1209467b48Spatrick //
1309467b48Spatrick //===----------------------------------------------------------------------===//
1409467b48Spatrick
1509467b48Spatrick #include "X86.h"
1609467b48Spatrick #include "X86CallingConv.h"
1709467b48Spatrick #include "X86InstrBuilder.h"
1809467b48Spatrick #include "X86InstrInfo.h"
1909467b48Spatrick #include "X86MachineFunctionInfo.h"
2009467b48Spatrick #include "X86RegisterInfo.h"
2109467b48Spatrick #include "X86Subtarget.h"
2209467b48Spatrick #include "X86TargetMachine.h"
2309467b48Spatrick #include "llvm/Analysis/BranchProbabilityInfo.h"
2409467b48Spatrick #include "llvm/CodeGen/FastISel.h"
2509467b48Spatrick #include "llvm/CodeGen/FunctionLoweringInfo.h"
2609467b48Spatrick #include "llvm/CodeGen/MachineConstantPool.h"
2709467b48Spatrick #include "llvm/CodeGen/MachineFrameInfo.h"
2809467b48Spatrick #include "llvm/CodeGen/MachineRegisterInfo.h"
2909467b48Spatrick #include "llvm/IR/CallingConv.h"
3009467b48Spatrick #include "llvm/IR/DebugInfo.h"
3109467b48Spatrick #include "llvm/IR/DerivedTypes.h"
3209467b48Spatrick #include "llvm/IR/GetElementPtrTypeIterator.h"
3309467b48Spatrick #include "llvm/IR/GlobalAlias.h"
3409467b48Spatrick #include "llvm/IR/GlobalVariable.h"
3509467b48Spatrick #include "llvm/IR/Instructions.h"
3609467b48Spatrick #include "llvm/IR/IntrinsicInst.h"
3709467b48Spatrick #include "llvm/IR/IntrinsicsX86.h"
3809467b48Spatrick #include "llvm/IR/Operator.h"
3909467b48Spatrick #include "llvm/MC/MCAsmInfo.h"
4009467b48Spatrick #include "llvm/MC/MCSymbol.h"
4109467b48Spatrick #include "llvm/Support/ErrorHandling.h"
4209467b48Spatrick #include "llvm/Target/TargetOptions.h"
4309467b48Spatrick using namespace llvm;
4409467b48Spatrick
4509467b48Spatrick namespace {
4609467b48Spatrick
4709467b48Spatrick class X86FastISel final : public FastISel {
4809467b48Spatrick /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
4909467b48Spatrick /// make the right decision when generating code for different targets.
5009467b48Spatrick const X86Subtarget *Subtarget;
5109467b48Spatrick
5209467b48Spatrick public:
X86FastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)5309467b48Spatrick explicit X86FastISel(FunctionLoweringInfo &funcInfo,
5409467b48Spatrick const TargetLibraryInfo *libInfo)
5509467b48Spatrick : FastISel(funcInfo, libInfo) {
5609467b48Spatrick Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
5709467b48Spatrick }
5809467b48Spatrick
5909467b48Spatrick bool fastSelectInstruction(const Instruction *I) override;
6009467b48Spatrick
6109467b48Spatrick /// The specified machine instr operand is a vreg, and that
6209467b48Spatrick /// vreg is being provided by the specified load instruction. If possible,
6309467b48Spatrick /// try to fold the load as an operand to the instruction, returning true if
6409467b48Spatrick /// possible.
6509467b48Spatrick bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
6609467b48Spatrick const LoadInst *LI) override;
6709467b48Spatrick
6809467b48Spatrick bool fastLowerArguments() override;
6909467b48Spatrick bool fastLowerCall(CallLoweringInfo &CLI) override;
7009467b48Spatrick bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
7109467b48Spatrick
7209467b48Spatrick #include "X86GenFastISel.inc"
7309467b48Spatrick
7409467b48Spatrick private:
7509467b48Spatrick bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
7609467b48Spatrick const DebugLoc &DL);
7709467b48Spatrick
7809467b48Spatrick bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
7909467b48Spatrick unsigned &ResultReg, unsigned Alignment = 1);
8009467b48Spatrick
8109467b48Spatrick bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
8209467b48Spatrick MachineMemOperand *MMO = nullptr, bool Aligned = false);
8373471bf0Spatrick bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
8409467b48Spatrick MachineMemOperand *MMO = nullptr, bool Aligned = false);
8509467b48Spatrick
8609467b48Spatrick bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
8709467b48Spatrick unsigned &ResultReg);
8809467b48Spatrick
8909467b48Spatrick bool X86SelectAddress(const Value *V, X86AddressMode &AM);
9009467b48Spatrick bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
9109467b48Spatrick
9209467b48Spatrick bool X86SelectLoad(const Instruction *I);
9309467b48Spatrick
9409467b48Spatrick bool X86SelectStore(const Instruction *I);
9509467b48Spatrick
9609467b48Spatrick bool X86SelectRet(const Instruction *I);
9709467b48Spatrick
9809467b48Spatrick bool X86SelectCmp(const Instruction *I);
9909467b48Spatrick
10009467b48Spatrick bool X86SelectZExt(const Instruction *I);
10109467b48Spatrick
10209467b48Spatrick bool X86SelectSExt(const Instruction *I);
10309467b48Spatrick
10409467b48Spatrick bool X86SelectBranch(const Instruction *I);
10509467b48Spatrick
10609467b48Spatrick bool X86SelectShift(const Instruction *I);
10709467b48Spatrick
10809467b48Spatrick bool X86SelectDivRem(const Instruction *I);
10909467b48Spatrick
11009467b48Spatrick bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
11109467b48Spatrick
11209467b48Spatrick bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
11309467b48Spatrick
11409467b48Spatrick bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
11509467b48Spatrick
11609467b48Spatrick bool X86SelectSelect(const Instruction *I);
11709467b48Spatrick
11809467b48Spatrick bool X86SelectTrunc(const Instruction *I);
11909467b48Spatrick
12009467b48Spatrick bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
12109467b48Spatrick const TargetRegisterClass *RC);
12209467b48Spatrick
12309467b48Spatrick bool X86SelectFPExt(const Instruction *I);
12409467b48Spatrick bool X86SelectFPTrunc(const Instruction *I);
12509467b48Spatrick bool X86SelectSIToFP(const Instruction *I);
12609467b48Spatrick bool X86SelectUIToFP(const Instruction *I);
12709467b48Spatrick bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
12809467b48Spatrick
getInstrInfo() const12909467b48Spatrick const X86InstrInfo *getInstrInfo() const {
13009467b48Spatrick return Subtarget->getInstrInfo();
13109467b48Spatrick }
getTargetMachine() const13209467b48Spatrick const X86TargetMachine *getTargetMachine() const {
13309467b48Spatrick return static_cast<const X86TargetMachine *>(&TM);
13409467b48Spatrick }
13509467b48Spatrick
13609467b48Spatrick bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
13709467b48Spatrick
13809467b48Spatrick unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
13909467b48Spatrick unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
14009467b48Spatrick unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
14109467b48Spatrick unsigned fastMaterializeConstant(const Constant *C) override;
14209467b48Spatrick
14309467b48Spatrick unsigned fastMaterializeAlloca(const AllocaInst *C) override;
14409467b48Spatrick
14509467b48Spatrick unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
14609467b48Spatrick
14709467b48Spatrick /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
14809467b48Spatrick /// computed in an SSE register, not on the X87 floating point stack.
isScalarFPTypeInSSEReg(EVT VT) const14909467b48Spatrick bool isScalarFPTypeInSSEReg(EVT VT) const {
150*d415bd75Srobert return (VT == MVT::f64 && Subtarget->hasSSE2()) ||
151*d415bd75Srobert (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16;
15209467b48Spatrick }
15309467b48Spatrick
15409467b48Spatrick bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
15509467b48Spatrick
15609467b48Spatrick bool IsMemcpySmall(uint64_t Len);
15709467b48Spatrick
15809467b48Spatrick bool TryEmitSmallMemcpy(X86AddressMode DestAM,
15909467b48Spatrick X86AddressMode SrcAM, uint64_t Len);
16009467b48Spatrick
16109467b48Spatrick bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
16209467b48Spatrick const Value *Cond);
16309467b48Spatrick
16409467b48Spatrick const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
16509467b48Spatrick X86AddressMode &AM);
16609467b48Spatrick
16709467b48Spatrick unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
16809467b48Spatrick const TargetRegisterClass *RC, unsigned Op0,
16973471bf0Spatrick unsigned Op1, unsigned Op2, unsigned Op3);
17009467b48Spatrick };
17109467b48Spatrick
17209467b48Spatrick } // end anonymous namespace.
17309467b48Spatrick
17409467b48Spatrick static std::pair<unsigned, bool>
getX86SSEConditionCode(CmpInst::Predicate Predicate)17509467b48Spatrick getX86SSEConditionCode(CmpInst::Predicate Predicate) {
17609467b48Spatrick unsigned CC;
17709467b48Spatrick bool NeedSwap = false;
17809467b48Spatrick
17909467b48Spatrick // SSE Condition code mapping:
18009467b48Spatrick // 0 - EQ
18109467b48Spatrick // 1 - LT
18209467b48Spatrick // 2 - LE
18309467b48Spatrick // 3 - UNORD
18409467b48Spatrick // 4 - NEQ
18509467b48Spatrick // 5 - NLT
18609467b48Spatrick // 6 - NLE
18709467b48Spatrick // 7 - ORD
18809467b48Spatrick switch (Predicate) {
18909467b48Spatrick default: llvm_unreachable("Unexpected predicate");
19009467b48Spatrick case CmpInst::FCMP_OEQ: CC = 0; break;
191*d415bd75Srobert case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]];
19209467b48Spatrick case CmpInst::FCMP_OLT: CC = 1; break;
193*d415bd75Srobert case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]];
19409467b48Spatrick case CmpInst::FCMP_OLE: CC = 2; break;
19509467b48Spatrick case CmpInst::FCMP_UNO: CC = 3; break;
19609467b48Spatrick case CmpInst::FCMP_UNE: CC = 4; break;
197*d415bd75Srobert case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]];
19809467b48Spatrick case CmpInst::FCMP_UGE: CC = 5; break;
199*d415bd75Srobert case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]];
20009467b48Spatrick case CmpInst::FCMP_UGT: CC = 6; break;
20109467b48Spatrick case CmpInst::FCMP_ORD: CC = 7; break;
20209467b48Spatrick case CmpInst::FCMP_UEQ: CC = 8; break;
20309467b48Spatrick case CmpInst::FCMP_ONE: CC = 12; break;
20409467b48Spatrick }
20509467b48Spatrick
20609467b48Spatrick return std::make_pair(CC, NeedSwap);
20709467b48Spatrick }
20809467b48Spatrick
20909467b48Spatrick /// Adds a complex addressing mode to the given machine instr builder.
21009467b48Spatrick /// Note, this will constrain the index register. If its not possible to
21109467b48Spatrick /// constrain the given index register, then a new one will be created. The
21209467b48Spatrick /// IndexReg field of the addressing mode will be updated to match in this case.
21309467b48Spatrick const MachineInstrBuilder &
addFullAddress(const MachineInstrBuilder & MIB,X86AddressMode & AM)21409467b48Spatrick X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
21509467b48Spatrick X86AddressMode &AM) {
21609467b48Spatrick // First constrain the index register. It needs to be a GR64_NOSP.
21709467b48Spatrick AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
21809467b48Spatrick MIB->getNumOperands() +
21909467b48Spatrick X86::AddrIndexReg);
22009467b48Spatrick return ::addFullAddress(MIB, AM);
22109467b48Spatrick }
22209467b48Spatrick
22309467b48Spatrick /// Check if it is possible to fold the condition from the XALU intrinsic
22409467b48Spatrick /// into the user. The condition code will only be updated on success.
foldX86XALUIntrinsic(X86::CondCode & CC,const Instruction * I,const Value * Cond)22509467b48Spatrick bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
22609467b48Spatrick const Value *Cond) {
22709467b48Spatrick if (!isa<ExtractValueInst>(Cond))
22809467b48Spatrick return false;
22909467b48Spatrick
23009467b48Spatrick const auto *EV = cast<ExtractValueInst>(Cond);
23109467b48Spatrick if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
23209467b48Spatrick return false;
23309467b48Spatrick
23409467b48Spatrick const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
23509467b48Spatrick MVT RetVT;
23609467b48Spatrick const Function *Callee = II->getCalledFunction();
23709467b48Spatrick Type *RetTy =
23809467b48Spatrick cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
23909467b48Spatrick if (!isTypeLegal(RetTy, RetVT))
24009467b48Spatrick return false;
24109467b48Spatrick
24209467b48Spatrick if (RetVT != MVT::i32 && RetVT != MVT::i64)
24309467b48Spatrick return false;
24409467b48Spatrick
24509467b48Spatrick X86::CondCode TmpCC;
24609467b48Spatrick switch (II->getIntrinsicID()) {
24709467b48Spatrick default: return false;
24809467b48Spatrick case Intrinsic::sadd_with_overflow:
24909467b48Spatrick case Intrinsic::ssub_with_overflow:
25009467b48Spatrick case Intrinsic::smul_with_overflow:
25109467b48Spatrick case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
25209467b48Spatrick case Intrinsic::uadd_with_overflow:
25309467b48Spatrick case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
25409467b48Spatrick }
25509467b48Spatrick
25609467b48Spatrick // Check if both instructions are in the same basic block.
25709467b48Spatrick if (II->getParent() != I->getParent())
25809467b48Spatrick return false;
25909467b48Spatrick
26009467b48Spatrick // Make sure nothing is in the way
26109467b48Spatrick BasicBlock::const_iterator Start(I);
26209467b48Spatrick BasicBlock::const_iterator End(II);
26309467b48Spatrick for (auto Itr = std::prev(Start); Itr != End; --Itr) {
26409467b48Spatrick // We only expect extractvalue instructions between the intrinsic and the
26509467b48Spatrick // instruction to be selected.
26609467b48Spatrick if (!isa<ExtractValueInst>(Itr))
26709467b48Spatrick return false;
26809467b48Spatrick
26909467b48Spatrick // Check that the extractvalue operand comes from the intrinsic.
27009467b48Spatrick const auto *EVI = cast<ExtractValueInst>(Itr);
27109467b48Spatrick if (EVI->getAggregateOperand() != II)
27209467b48Spatrick return false;
27309467b48Spatrick }
27409467b48Spatrick
27573471bf0Spatrick // Make sure no potentially eflags clobbering phi moves can be inserted in
27673471bf0Spatrick // between.
277*d415bd75Srobert auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); };
27873471bf0Spatrick if (I->isTerminator() && llvm::any_of(successors(I), HasPhis))
27973471bf0Spatrick return false;
28073471bf0Spatrick
281*d415bd75Srobert // Make sure there are no potentially eflags clobbering constant
282*d415bd75Srobert // materializations in between.
283*d415bd75Srobert if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); }))
284*d415bd75Srobert return false;
285*d415bd75Srobert
28609467b48Spatrick CC = TmpCC;
28709467b48Spatrick return true;
28809467b48Spatrick }
28909467b48Spatrick
isTypeLegal(Type * Ty,MVT & VT,bool AllowI1)29009467b48Spatrick bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
29109467b48Spatrick EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
29209467b48Spatrick if (evt == MVT::Other || !evt.isSimple())
29309467b48Spatrick // Unhandled type. Halt "fast" selection and bail.
29409467b48Spatrick return false;
29509467b48Spatrick
29609467b48Spatrick VT = evt.getSimpleVT();
29709467b48Spatrick // For now, require SSE/SSE2 for performing floating-point operations,
29809467b48Spatrick // since x87 requires additional work.
299*d415bd75Srobert if (VT == MVT::f64 && !Subtarget->hasSSE2())
30009467b48Spatrick return false;
301*d415bd75Srobert if (VT == MVT::f32 && !Subtarget->hasSSE1())
30209467b48Spatrick return false;
30309467b48Spatrick // Similarly, no f80 support yet.
30409467b48Spatrick if (VT == MVT::f80)
30509467b48Spatrick return false;
30609467b48Spatrick // We only handle legal types. For example, on x86-32 the instruction
30709467b48Spatrick // selector contains all of the 64-bit instructions from x86-64,
30809467b48Spatrick // under the assumption that i64 won't be used if the target doesn't
30909467b48Spatrick // support it.
31009467b48Spatrick return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
31109467b48Spatrick }
31209467b48Spatrick
31309467b48Spatrick /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
31409467b48Spatrick /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
31509467b48Spatrick /// Return true and the result register by reference if it is possible.
X86FastEmitLoad(MVT VT,X86AddressMode & AM,MachineMemOperand * MMO,unsigned & ResultReg,unsigned Alignment)31609467b48Spatrick bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
31709467b48Spatrick MachineMemOperand *MMO, unsigned &ResultReg,
31809467b48Spatrick unsigned Alignment) {
319*d415bd75Srobert bool HasSSE1 = Subtarget->hasSSE1();
320*d415bd75Srobert bool HasSSE2 = Subtarget->hasSSE2();
32109467b48Spatrick bool HasSSE41 = Subtarget->hasSSE41();
32209467b48Spatrick bool HasAVX = Subtarget->hasAVX();
32309467b48Spatrick bool HasAVX2 = Subtarget->hasAVX2();
32409467b48Spatrick bool HasAVX512 = Subtarget->hasAVX512();
32509467b48Spatrick bool HasVLX = Subtarget->hasVLX();
32609467b48Spatrick bool IsNonTemporal = MMO && MMO->isNonTemporal();
32709467b48Spatrick
32809467b48Spatrick // Treat i1 loads the same as i8 loads. Masking will be done when storing.
32909467b48Spatrick if (VT == MVT::i1)
33009467b48Spatrick VT = MVT::i8;
33109467b48Spatrick
33209467b48Spatrick // Get opcode and regclass of the output for the given load instruction.
33309467b48Spatrick unsigned Opc = 0;
33409467b48Spatrick switch (VT.SimpleTy) {
33509467b48Spatrick default: return false;
33609467b48Spatrick case MVT::i8:
33709467b48Spatrick Opc = X86::MOV8rm;
33809467b48Spatrick break;
33909467b48Spatrick case MVT::i16:
34009467b48Spatrick Opc = X86::MOV16rm;
34109467b48Spatrick break;
34209467b48Spatrick case MVT::i32:
34309467b48Spatrick Opc = X86::MOV32rm;
34409467b48Spatrick break;
34509467b48Spatrick case MVT::i64:
34609467b48Spatrick // Must be in x86-64 mode.
34709467b48Spatrick Opc = X86::MOV64rm;
34809467b48Spatrick break;
34909467b48Spatrick case MVT::f32:
350*d415bd75Srobert Opc = HasAVX512 ? X86::VMOVSSZrm_alt
351*d415bd75Srobert : HasAVX ? X86::VMOVSSrm_alt
352*d415bd75Srobert : HasSSE1 ? X86::MOVSSrm_alt
353*d415bd75Srobert : X86::LD_Fp32m;
35409467b48Spatrick break;
35509467b48Spatrick case MVT::f64:
356*d415bd75Srobert Opc = HasAVX512 ? X86::VMOVSDZrm_alt
357*d415bd75Srobert : HasAVX ? X86::VMOVSDrm_alt
358*d415bd75Srobert : HasSSE2 ? X86::MOVSDrm_alt
359*d415bd75Srobert : X86::LD_Fp64m;
36009467b48Spatrick break;
36109467b48Spatrick case MVT::f80:
36209467b48Spatrick // No f80 support yet.
36309467b48Spatrick return false;
36409467b48Spatrick case MVT::v4f32:
36509467b48Spatrick if (IsNonTemporal && Alignment >= 16 && HasSSE41)
36609467b48Spatrick Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
36709467b48Spatrick HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
36809467b48Spatrick else if (Alignment >= 16)
36909467b48Spatrick Opc = HasVLX ? X86::VMOVAPSZ128rm :
37009467b48Spatrick HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
37109467b48Spatrick else
37209467b48Spatrick Opc = HasVLX ? X86::VMOVUPSZ128rm :
37309467b48Spatrick HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
37409467b48Spatrick break;
37509467b48Spatrick case MVT::v2f64:
37609467b48Spatrick if (IsNonTemporal && Alignment >= 16 && HasSSE41)
37709467b48Spatrick Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
37809467b48Spatrick HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
37909467b48Spatrick else if (Alignment >= 16)
38009467b48Spatrick Opc = HasVLX ? X86::VMOVAPDZ128rm :
38109467b48Spatrick HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
38209467b48Spatrick else
38309467b48Spatrick Opc = HasVLX ? X86::VMOVUPDZ128rm :
38409467b48Spatrick HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
38509467b48Spatrick break;
38609467b48Spatrick case MVT::v4i32:
38709467b48Spatrick case MVT::v2i64:
38809467b48Spatrick case MVT::v8i16:
38909467b48Spatrick case MVT::v16i8:
39009467b48Spatrick if (IsNonTemporal && Alignment >= 16 && HasSSE41)
39109467b48Spatrick Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
39209467b48Spatrick HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
39309467b48Spatrick else if (Alignment >= 16)
39409467b48Spatrick Opc = HasVLX ? X86::VMOVDQA64Z128rm :
39509467b48Spatrick HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
39609467b48Spatrick else
39709467b48Spatrick Opc = HasVLX ? X86::VMOVDQU64Z128rm :
39809467b48Spatrick HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
39909467b48Spatrick break;
40009467b48Spatrick case MVT::v8f32:
40109467b48Spatrick assert(HasAVX);
40209467b48Spatrick if (IsNonTemporal && Alignment >= 32 && HasAVX2)
40309467b48Spatrick Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
40409467b48Spatrick else if (IsNonTemporal && Alignment >= 16)
40509467b48Spatrick return false; // Force split for X86::VMOVNTDQArm
40609467b48Spatrick else if (Alignment >= 32)
40709467b48Spatrick Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
40809467b48Spatrick else
40909467b48Spatrick Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
41009467b48Spatrick break;
41109467b48Spatrick case MVT::v4f64:
41209467b48Spatrick assert(HasAVX);
41309467b48Spatrick if (IsNonTemporal && Alignment >= 32 && HasAVX2)
41409467b48Spatrick Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
41509467b48Spatrick else if (IsNonTemporal && Alignment >= 16)
41609467b48Spatrick return false; // Force split for X86::VMOVNTDQArm
41709467b48Spatrick else if (Alignment >= 32)
41809467b48Spatrick Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
41909467b48Spatrick else
42009467b48Spatrick Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
42109467b48Spatrick break;
42209467b48Spatrick case MVT::v8i32:
42309467b48Spatrick case MVT::v4i64:
42409467b48Spatrick case MVT::v16i16:
42509467b48Spatrick case MVT::v32i8:
42609467b48Spatrick assert(HasAVX);
42709467b48Spatrick if (IsNonTemporal && Alignment >= 32 && HasAVX2)
42809467b48Spatrick Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
42909467b48Spatrick else if (IsNonTemporal && Alignment >= 16)
43009467b48Spatrick return false; // Force split for X86::VMOVNTDQArm
43109467b48Spatrick else if (Alignment >= 32)
43209467b48Spatrick Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
43309467b48Spatrick else
43409467b48Spatrick Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
43509467b48Spatrick break;
43609467b48Spatrick case MVT::v16f32:
43709467b48Spatrick assert(HasAVX512);
43809467b48Spatrick if (IsNonTemporal && Alignment >= 64)
43909467b48Spatrick Opc = X86::VMOVNTDQAZrm;
44009467b48Spatrick else
44109467b48Spatrick Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
44209467b48Spatrick break;
44309467b48Spatrick case MVT::v8f64:
44409467b48Spatrick assert(HasAVX512);
44509467b48Spatrick if (IsNonTemporal && Alignment >= 64)
44609467b48Spatrick Opc = X86::VMOVNTDQAZrm;
44709467b48Spatrick else
44809467b48Spatrick Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
44909467b48Spatrick break;
45009467b48Spatrick case MVT::v8i64:
45109467b48Spatrick case MVT::v16i32:
45209467b48Spatrick case MVT::v32i16:
45309467b48Spatrick case MVT::v64i8:
45409467b48Spatrick assert(HasAVX512);
45509467b48Spatrick // Note: There are a lot more choices based on type with AVX-512, but
45609467b48Spatrick // there's really no advantage when the load isn't masked.
45709467b48Spatrick if (IsNonTemporal && Alignment >= 64)
45809467b48Spatrick Opc = X86::VMOVNTDQAZrm;
45909467b48Spatrick else
46009467b48Spatrick Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
46109467b48Spatrick break;
46209467b48Spatrick }
46309467b48Spatrick
46409467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
46509467b48Spatrick
46609467b48Spatrick ResultReg = createResultReg(RC);
46709467b48Spatrick MachineInstrBuilder MIB =
468*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
46909467b48Spatrick addFullAddress(MIB, AM);
47009467b48Spatrick if (MMO)
47109467b48Spatrick MIB->addMemOperand(*FuncInfo.MF, MMO);
47209467b48Spatrick return true;
47309467b48Spatrick }
47409467b48Spatrick
47509467b48Spatrick /// X86FastEmitStore - Emit a machine instruction to store a value Val of
47609467b48Spatrick /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
47709467b48Spatrick /// and a displacement offset, or a GlobalAddress,
47809467b48Spatrick /// i.e. V. Return true if it is possible.
X86FastEmitStore(EVT VT,unsigned ValReg,X86AddressMode & AM,MachineMemOperand * MMO,bool Aligned)47973471bf0Spatrick bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
48009467b48Spatrick MachineMemOperand *MMO, bool Aligned) {
48109467b48Spatrick bool HasSSE1 = Subtarget->hasSSE1();
48209467b48Spatrick bool HasSSE2 = Subtarget->hasSSE2();
48309467b48Spatrick bool HasSSE4A = Subtarget->hasSSE4A();
48409467b48Spatrick bool HasAVX = Subtarget->hasAVX();
48509467b48Spatrick bool HasAVX512 = Subtarget->hasAVX512();
48609467b48Spatrick bool HasVLX = Subtarget->hasVLX();
48709467b48Spatrick bool IsNonTemporal = MMO && MMO->isNonTemporal();
48809467b48Spatrick
48909467b48Spatrick // Get opcode and regclass of the output for the given store instruction.
49009467b48Spatrick unsigned Opc = 0;
49109467b48Spatrick switch (VT.getSimpleVT().SimpleTy) {
49209467b48Spatrick case MVT::f80: // No f80 support yet.
49309467b48Spatrick default: return false;
49409467b48Spatrick case MVT::i1: {
49509467b48Spatrick // Mask out all but lowest bit.
496097a140dSpatrick Register AndResult = createResultReg(&X86::GR8RegClass);
497*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
49809467b48Spatrick TII.get(X86::AND8ri), AndResult)
49973471bf0Spatrick .addReg(ValReg).addImm(1);
50009467b48Spatrick ValReg = AndResult;
501*d415bd75Srobert [[fallthrough]]; // handle i1 as i8.
50209467b48Spatrick }
50309467b48Spatrick case MVT::i8: Opc = X86::MOV8mr; break;
50409467b48Spatrick case MVT::i16: Opc = X86::MOV16mr; break;
50509467b48Spatrick case MVT::i32:
50609467b48Spatrick Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
50709467b48Spatrick break;
50809467b48Spatrick case MVT::i64:
50909467b48Spatrick // Must be in x86-64 mode.
51009467b48Spatrick Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
51109467b48Spatrick break;
51209467b48Spatrick case MVT::f32:
513*d415bd75Srobert if (HasSSE1) {
51409467b48Spatrick if (IsNonTemporal && HasSSE4A)
51509467b48Spatrick Opc = X86::MOVNTSS;
51609467b48Spatrick else
51709467b48Spatrick Opc = HasAVX512 ? X86::VMOVSSZmr :
51809467b48Spatrick HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
51909467b48Spatrick } else
52009467b48Spatrick Opc = X86::ST_Fp32m;
52109467b48Spatrick break;
52209467b48Spatrick case MVT::f64:
523*d415bd75Srobert if (HasSSE2) {
52409467b48Spatrick if (IsNonTemporal && HasSSE4A)
52509467b48Spatrick Opc = X86::MOVNTSD;
52609467b48Spatrick else
52709467b48Spatrick Opc = HasAVX512 ? X86::VMOVSDZmr :
52809467b48Spatrick HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
52909467b48Spatrick } else
53009467b48Spatrick Opc = X86::ST_Fp64m;
53109467b48Spatrick break;
53209467b48Spatrick case MVT::x86mmx:
53309467b48Spatrick Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
53409467b48Spatrick break;
53509467b48Spatrick case MVT::v4f32:
53609467b48Spatrick if (Aligned) {
53709467b48Spatrick if (IsNonTemporal)
53809467b48Spatrick Opc = HasVLX ? X86::VMOVNTPSZ128mr :
53909467b48Spatrick HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
54009467b48Spatrick else
54109467b48Spatrick Opc = HasVLX ? X86::VMOVAPSZ128mr :
54209467b48Spatrick HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
54309467b48Spatrick } else
54409467b48Spatrick Opc = HasVLX ? X86::VMOVUPSZ128mr :
54509467b48Spatrick HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
54609467b48Spatrick break;
54709467b48Spatrick case MVT::v2f64:
54809467b48Spatrick if (Aligned) {
54909467b48Spatrick if (IsNonTemporal)
55009467b48Spatrick Opc = HasVLX ? X86::VMOVNTPDZ128mr :
55109467b48Spatrick HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
55209467b48Spatrick else
55309467b48Spatrick Opc = HasVLX ? X86::VMOVAPDZ128mr :
55409467b48Spatrick HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
55509467b48Spatrick } else
55609467b48Spatrick Opc = HasVLX ? X86::VMOVUPDZ128mr :
55709467b48Spatrick HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
55809467b48Spatrick break;
55909467b48Spatrick case MVT::v4i32:
56009467b48Spatrick case MVT::v2i64:
56109467b48Spatrick case MVT::v8i16:
56209467b48Spatrick case MVT::v16i8:
56309467b48Spatrick if (Aligned) {
56409467b48Spatrick if (IsNonTemporal)
56509467b48Spatrick Opc = HasVLX ? X86::VMOVNTDQZ128mr :
56609467b48Spatrick HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
56709467b48Spatrick else
56809467b48Spatrick Opc = HasVLX ? X86::VMOVDQA64Z128mr :
56909467b48Spatrick HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
57009467b48Spatrick } else
57109467b48Spatrick Opc = HasVLX ? X86::VMOVDQU64Z128mr :
57209467b48Spatrick HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
57309467b48Spatrick break;
57409467b48Spatrick case MVT::v8f32:
57509467b48Spatrick assert(HasAVX);
57609467b48Spatrick if (Aligned) {
57709467b48Spatrick if (IsNonTemporal)
57809467b48Spatrick Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
57909467b48Spatrick else
58009467b48Spatrick Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
58109467b48Spatrick } else
58209467b48Spatrick Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
58309467b48Spatrick break;
58409467b48Spatrick case MVT::v4f64:
58509467b48Spatrick assert(HasAVX);
58609467b48Spatrick if (Aligned) {
58709467b48Spatrick if (IsNonTemporal)
58809467b48Spatrick Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
58909467b48Spatrick else
59009467b48Spatrick Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
59109467b48Spatrick } else
59209467b48Spatrick Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
59309467b48Spatrick break;
59409467b48Spatrick case MVT::v8i32:
59509467b48Spatrick case MVT::v4i64:
59609467b48Spatrick case MVT::v16i16:
59709467b48Spatrick case MVT::v32i8:
59809467b48Spatrick assert(HasAVX);
59909467b48Spatrick if (Aligned) {
60009467b48Spatrick if (IsNonTemporal)
60109467b48Spatrick Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
60209467b48Spatrick else
60309467b48Spatrick Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
60409467b48Spatrick } else
60509467b48Spatrick Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
60609467b48Spatrick break;
60709467b48Spatrick case MVT::v16f32:
60809467b48Spatrick assert(HasAVX512);
60909467b48Spatrick if (Aligned)
61009467b48Spatrick Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
61109467b48Spatrick else
61209467b48Spatrick Opc = X86::VMOVUPSZmr;
61309467b48Spatrick break;
61409467b48Spatrick case MVT::v8f64:
61509467b48Spatrick assert(HasAVX512);
61609467b48Spatrick if (Aligned) {
61709467b48Spatrick Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
61809467b48Spatrick } else
61909467b48Spatrick Opc = X86::VMOVUPDZmr;
62009467b48Spatrick break;
62109467b48Spatrick case MVT::v8i64:
62209467b48Spatrick case MVT::v16i32:
62309467b48Spatrick case MVT::v32i16:
62409467b48Spatrick case MVT::v64i8:
62509467b48Spatrick assert(HasAVX512);
62609467b48Spatrick // Note: There are a lot more choices based on type with AVX-512, but
62709467b48Spatrick // there's really no advantage when the store isn't masked.
62809467b48Spatrick if (Aligned)
62909467b48Spatrick Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
63009467b48Spatrick else
63109467b48Spatrick Opc = X86::VMOVDQU64Zmr;
63209467b48Spatrick break;
63309467b48Spatrick }
63409467b48Spatrick
63509467b48Spatrick const MCInstrDesc &Desc = TII.get(Opc);
63609467b48Spatrick // Some of the instructions in the previous switch use FR128 instead
63709467b48Spatrick // of FR32 for ValReg. Make sure the register we feed the instruction
63809467b48Spatrick // matches its register class constraints.
63909467b48Spatrick // Note: This is fine to do a copy from FR32 to FR128, this is the
64009467b48Spatrick // same registers behind the scene and actually why it did not trigger
64109467b48Spatrick // any bugs before.
64209467b48Spatrick ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
64309467b48Spatrick MachineInstrBuilder MIB =
644*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc);
64573471bf0Spatrick addFullAddress(MIB, AM).addReg(ValReg);
64609467b48Spatrick if (MMO)
64709467b48Spatrick MIB->addMemOperand(*FuncInfo.MF, MMO);
64809467b48Spatrick
64909467b48Spatrick return true;
65009467b48Spatrick }
65109467b48Spatrick
X86FastEmitStore(EVT VT,const Value * Val,X86AddressMode & AM,MachineMemOperand * MMO,bool Aligned)65209467b48Spatrick bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
65309467b48Spatrick X86AddressMode &AM,
65409467b48Spatrick MachineMemOperand *MMO, bool Aligned) {
65509467b48Spatrick // Handle 'null' like i32/i64 0.
65609467b48Spatrick if (isa<ConstantPointerNull>(Val))
65709467b48Spatrick Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
65809467b48Spatrick
65909467b48Spatrick // If this is a store of a simple constant, fold the constant into the store.
66009467b48Spatrick if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
66109467b48Spatrick unsigned Opc = 0;
66209467b48Spatrick bool Signed = true;
66309467b48Spatrick switch (VT.getSimpleVT().SimpleTy) {
66409467b48Spatrick default: break;
66509467b48Spatrick case MVT::i1:
66609467b48Spatrick Signed = false;
667*d415bd75Srobert [[fallthrough]]; // Handle as i8.
66809467b48Spatrick case MVT::i8: Opc = X86::MOV8mi; break;
66909467b48Spatrick case MVT::i16: Opc = X86::MOV16mi; break;
67009467b48Spatrick case MVT::i32: Opc = X86::MOV32mi; break;
67109467b48Spatrick case MVT::i64:
67209467b48Spatrick // Must be a 32-bit sign extended value.
67309467b48Spatrick if (isInt<32>(CI->getSExtValue()))
67409467b48Spatrick Opc = X86::MOV64mi32;
67509467b48Spatrick break;
67609467b48Spatrick }
67709467b48Spatrick
67809467b48Spatrick if (Opc) {
67909467b48Spatrick MachineInstrBuilder MIB =
680*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
68109467b48Spatrick addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
68209467b48Spatrick : CI->getZExtValue());
68309467b48Spatrick if (MMO)
68409467b48Spatrick MIB->addMemOperand(*FuncInfo.MF, MMO);
68509467b48Spatrick return true;
68609467b48Spatrick }
68709467b48Spatrick }
68809467b48Spatrick
689097a140dSpatrick Register ValReg = getRegForValue(Val);
69009467b48Spatrick if (ValReg == 0)
69109467b48Spatrick return false;
69209467b48Spatrick
69373471bf0Spatrick return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned);
69409467b48Spatrick }
69509467b48Spatrick
69609467b48Spatrick /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
69709467b48Spatrick /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
69809467b48Spatrick /// ISD::SIGN_EXTEND).
X86FastEmitExtend(ISD::NodeType Opc,EVT DstVT,unsigned Src,EVT SrcVT,unsigned & ResultReg)69909467b48Spatrick bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
70009467b48Spatrick unsigned Src, EVT SrcVT,
70109467b48Spatrick unsigned &ResultReg) {
70273471bf0Spatrick unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
70309467b48Spatrick if (RR == 0)
70409467b48Spatrick return false;
70509467b48Spatrick
70609467b48Spatrick ResultReg = RR;
70709467b48Spatrick return true;
70809467b48Spatrick }
70909467b48Spatrick
handleConstantAddresses(const Value * V,X86AddressMode & AM)71009467b48Spatrick bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
71109467b48Spatrick // Handle constant address.
71209467b48Spatrick if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
71309467b48Spatrick // Can't handle alternate code models yet.
71409467b48Spatrick if (TM.getCodeModel() != CodeModel::Small)
71509467b48Spatrick return false;
71609467b48Spatrick
71709467b48Spatrick // Can't handle TLS yet.
71809467b48Spatrick if (GV->isThreadLocal())
71909467b48Spatrick return false;
72009467b48Spatrick
72109467b48Spatrick // Can't handle !absolute_symbol references yet.
72209467b48Spatrick if (GV->isAbsoluteSymbolRef())
72309467b48Spatrick return false;
72409467b48Spatrick
72509467b48Spatrick // RIP-relative addresses can't have additional register operands, so if
72609467b48Spatrick // we've already folded stuff into the addressing mode, just force the
72709467b48Spatrick // global value into its own register, which we can use as the basereg.
72809467b48Spatrick if (!Subtarget->isPICStyleRIPRel() ||
72909467b48Spatrick (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
73009467b48Spatrick // Okay, we've committed to selecting this global. Set up the address.
73109467b48Spatrick AM.GV = GV;
73209467b48Spatrick
73309467b48Spatrick // Allow the subtarget to classify the global.
73409467b48Spatrick unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
73509467b48Spatrick
73609467b48Spatrick // If this reference is relative to the pic base, set it now.
73709467b48Spatrick if (isGlobalRelativeToPICBase(GVFlags)) {
73809467b48Spatrick // FIXME: How do we know Base.Reg is free??
73909467b48Spatrick AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
74009467b48Spatrick }
74109467b48Spatrick
74209467b48Spatrick // Unless the ABI requires an extra load, return a direct reference to
74309467b48Spatrick // the global.
74409467b48Spatrick if (!isGlobalStubReference(GVFlags)) {
74509467b48Spatrick if (Subtarget->isPICStyleRIPRel()) {
74609467b48Spatrick // Use rip-relative addressing if we can. Above we verified that the
74709467b48Spatrick // base and index registers are unused.
74809467b48Spatrick assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
74909467b48Spatrick AM.Base.Reg = X86::RIP;
75009467b48Spatrick }
75109467b48Spatrick AM.GVOpFlags = GVFlags;
75209467b48Spatrick return true;
75309467b48Spatrick }
75409467b48Spatrick
75509467b48Spatrick // Ok, we need to do a load from a stub. If we've already loaded from
75609467b48Spatrick // this stub, reuse the loaded pointer, otherwise emit the load now.
757097a140dSpatrick DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
758097a140dSpatrick Register LoadReg;
759097a140dSpatrick if (I != LocalValueMap.end() && I->second) {
76009467b48Spatrick LoadReg = I->second;
76109467b48Spatrick } else {
76209467b48Spatrick // Issue load from stub.
76309467b48Spatrick unsigned Opc = 0;
76409467b48Spatrick const TargetRegisterClass *RC = nullptr;
76509467b48Spatrick X86AddressMode StubAM;
76609467b48Spatrick StubAM.Base.Reg = AM.Base.Reg;
76709467b48Spatrick StubAM.GV = GV;
76809467b48Spatrick StubAM.GVOpFlags = GVFlags;
76909467b48Spatrick
77009467b48Spatrick // Prepare for inserting code in the local-value area.
77109467b48Spatrick SavePoint SaveInsertPt = enterLocalValueArea();
77209467b48Spatrick
77309467b48Spatrick if (TLI.getPointerTy(DL) == MVT::i64) {
77409467b48Spatrick Opc = X86::MOV64rm;
77509467b48Spatrick RC = &X86::GR64RegClass;
77609467b48Spatrick } else {
77709467b48Spatrick Opc = X86::MOV32rm;
77809467b48Spatrick RC = &X86::GR32RegClass;
77909467b48Spatrick }
78009467b48Spatrick
781*d415bd75Srobert if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL ||
782*d415bd75Srobert GVFlags == X86II::MO_GOTPCREL_NORELAX)
78373471bf0Spatrick StubAM.Base.Reg = X86::RIP;
78473471bf0Spatrick
78509467b48Spatrick LoadReg = createResultReg(RC);
78609467b48Spatrick MachineInstrBuilder LoadMI =
787*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg);
78809467b48Spatrick addFullAddress(LoadMI, StubAM);
78909467b48Spatrick
79009467b48Spatrick // Ok, back to normal mode.
79109467b48Spatrick leaveLocalValueArea(SaveInsertPt);
79209467b48Spatrick
79309467b48Spatrick // Prevent loading GV stub multiple times in same MBB.
79409467b48Spatrick LocalValueMap[V] = LoadReg;
79509467b48Spatrick }
79609467b48Spatrick
79709467b48Spatrick // Now construct the final address. Note that the Disp, Scale,
79809467b48Spatrick // and Index values may already be set here.
79909467b48Spatrick AM.Base.Reg = LoadReg;
80009467b48Spatrick AM.GV = nullptr;
80109467b48Spatrick return true;
80209467b48Spatrick }
80309467b48Spatrick }
80409467b48Spatrick
80509467b48Spatrick // If all else fails, try to materialize the value in a register.
80609467b48Spatrick if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
80709467b48Spatrick if (AM.Base.Reg == 0) {
80809467b48Spatrick AM.Base.Reg = getRegForValue(V);
80909467b48Spatrick return AM.Base.Reg != 0;
81009467b48Spatrick }
81109467b48Spatrick if (AM.IndexReg == 0) {
81209467b48Spatrick assert(AM.Scale == 1 && "Scale with no index!");
81309467b48Spatrick AM.IndexReg = getRegForValue(V);
81409467b48Spatrick return AM.IndexReg != 0;
81509467b48Spatrick }
81609467b48Spatrick }
81709467b48Spatrick
81809467b48Spatrick return false;
81909467b48Spatrick }
82009467b48Spatrick
82109467b48Spatrick /// X86SelectAddress - Attempt to fill in an address from the given value.
82209467b48Spatrick ///
X86SelectAddress(const Value * V,X86AddressMode & AM)82309467b48Spatrick bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
82409467b48Spatrick SmallVector<const Value *, 32> GEPs;
82509467b48Spatrick redo_gep:
82609467b48Spatrick const User *U = nullptr;
82709467b48Spatrick unsigned Opcode = Instruction::UserOp1;
82809467b48Spatrick if (const Instruction *I = dyn_cast<Instruction>(V)) {
82909467b48Spatrick // Don't walk into other basic blocks; it's possible we haven't
83009467b48Spatrick // visited them yet, so the instructions may not yet be assigned
83109467b48Spatrick // virtual registers.
83209467b48Spatrick if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
83309467b48Spatrick FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
83409467b48Spatrick Opcode = I->getOpcode();
83509467b48Spatrick U = I;
83609467b48Spatrick }
83709467b48Spatrick } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
83809467b48Spatrick Opcode = C->getOpcode();
83909467b48Spatrick U = C;
84009467b48Spatrick }
84109467b48Spatrick
84209467b48Spatrick if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
84309467b48Spatrick if (Ty->getAddressSpace() > 255)
84409467b48Spatrick // Fast instruction selection doesn't support the special
84509467b48Spatrick // address spaces.
84609467b48Spatrick return false;
84709467b48Spatrick
84809467b48Spatrick switch (Opcode) {
84909467b48Spatrick default: break;
85009467b48Spatrick case Instruction::BitCast:
85109467b48Spatrick // Look past bitcasts.
85209467b48Spatrick return X86SelectAddress(U->getOperand(0), AM);
85309467b48Spatrick
85409467b48Spatrick case Instruction::IntToPtr:
85509467b48Spatrick // Look past no-op inttoptrs.
85609467b48Spatrick if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
85709467b48Spatrick TLI.getPointerTy(DL))
85809467b48Spatrick return X86SelectAddress(U->getOperand(0), AM);
85909467b48Spatrick break;
86009467b48Spatrick
86109467b48Spatrick case Instruction::PtrToInt:
86209467b48Spatrick // Look past no-op ptrtoints.
86309467b48Spatrick if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
86409467b48Spatrick return X86SelectAddress(U->getOperand(0), AM);
86509467b48Spatrick break;
86609467b48Spatrick
86709467b48Spatrick case Instruction::Alloca: {
86809467b48Spatrick // Do static allocas.
86909467b48Spatrick const AllocaInst *A = cast<AllocaInst>(V);
87009467b48Spatrick DenseMap<const AllocaInst *, int>::iterator SI =
87109467b48Spatrick FuncInfo.StaticAllocaMap.find(A);
87209467b48Spatrick if (SI != FuncInfo.StaticAllocaMap.end()) {
87309467b48Spatrick AM.BaseType = X86AddressMode::FrameIndexBase;
87409467b48Spatrick AM.Base.FrameIndex = SI->second;
87509467b48Spatrick return true;
87609467b48Spatrick }
87709467b48Spatrick break;
87809467b48Spatrick }
87909467b48Spatrick
88009467b48Spatrick case Instruction::Add: {
88109467b48Spatrick // Adds of constants are common and easy enough.
88209467b48Spatrick if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
88309467b48Spatrick uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
88409467b48Spatrick // They have to fit in the 32-bit signed displacement field though.
88509467b48Spatrick if (isInt<32>(Disp)) {
88609467b48Spatrick AM.Disp = (uint32_t)Disp;
88709467b48Spatrick return X86SelectAddress(U->getOperand(0), AM);
88809467b48Spatrick }
88909467b48Spatrick }
89009467b48Spatrick break;
89109467b48Spatrick }
89209467b48Spatrick
89309467b48Spatrick case Instruction::GetElementPtr: {
89409467b48Spatrick X86AddressMode SavedAM = AM;
89509467b48Spatrick
89609467b48Spatrick // Pattern-match simple GEPs.
89709467b48Spatrick uint64_t Disp = (int32_t)AM.Disp;
89809467b48Spatrick unsigned IndexReg = AM.IndexReg;
89909467b48Spatrick unsigned Scale = AM.Scale;
90009467b48Spatrick gep_type_iterator GTI = gep_type_begin(U);
90109467b48Spatrick // Iterate through the indices, folding what we can. Constants can be
90209467b48Spatrick // folded, and one dynamic index can be handled, if the scale is supported.
90309467b48Spatrick for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
90409467b48Spatrick i != e; ++i, ++GTI) {
90509467b48Spatrick const Value *Op = *i;
90609467b48Spatrick if (StructType *STy = GTI.getStructTypeOrNull()) {
90709467b48Spatrick const StructLayout *SL = DL.getStructLayout(STy);
90809467b48Spatrick Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
90909467b48Spatrick continue;
91009467b48Spatrick }
91109467b48Spatrick
91209467b48Spatrick // A array/variable index is always of the form i*S where S is the
91309467b48Spatrick // constant scale size. See if we can push the scale into immediates.
91409467b48Spatrick uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
91509467b48Spatrick for (;;) {
91609467b48Spatrick if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
91709467b48Spatrick // Constant-offset addressing.
91809467b48Spatrick Disp += CI->getSExtValue() * S;
91909467b48Spatrick break;
92009467b48Spatrick }
92109467b48Spatrick if (canFoldAddIntoGEP(U, Op)) {
92209467b48Spatrick // A compatible add with a constant operand. Fold the constant.
92309467b48Spatrick ConstantInt *CI =
92409467b48Spatrick cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
92509467b48Spatrick Disp += CI->getSExtValue() * S;
92609467b48Spatrick // Iterate on the other operand.
92709467b48Spatrick Op = cast<AddOperator>(Op)->getOperand(0);
92809467b48Spatrick continue;
92909467b48Spatrick }
93009467b48Spatrick if (IndexReg == 0 &&
93109467b48Spatrick (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
93209467b48Spatrick (S == 1 || S == 2 || S == 4 || S == 8)) {
93309467b48Spatrick // Scaled-index addressing.
93409467b48Spatrick Scale = S;
93573471bf0Spatrick IndexReg = getRegForGEPIndex(Op);
93609467b48Spatrick if (IndexReg == 0)
93709467b48Spatrick return false;
93809467b48Spatrick break;
93909467b48Spatrick }
94009467b48Spatrick // Unsupported.
94109467b48Spatrick goto unsupported_gep;
94209467b48Spatrick }
94309467b48Spatrick }
94409467b48Spatrick
94509467b48Spatrick // Check for displacement overflow.
94609467b48Spatrick if (!isInt<32>(Disp))
94709467b48Spatrick break;
94809467b48Spatrick
94909467b48Spatrick AM.IndexReg = IndexReg;
95009467b48Spatrick AM.Scale = Scale;
95109467b48Spatrick AM.Disp = (uint32_t)Disp;
95209467b48Spatrick GEPs.push_back(V);
95309467b48Spatrick
95409467b48Spatrick if (const GetElementPtrInst *GEP =
95509467b48Spatrick dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
95609467b48Spatrick // Ok, the GEP indices were covered by constant-offset and scaled-index
95709467b48Spatrick // addressing. Update the address state and move on to examining the base.
95809467b48Spatrick V = GEP;
95909467b48Spatrick goto redo_gep;
96009467b48Spatrick } else if (X86SelectAddress(U->getOperand(0), AM)) {
96109467b48Spatrick return true;
96209467b48Spatrick }
96309467b48Spatrick
96409467b48Spatrick // If we couldn't merge the gep value into this addr mode, revert back to
96509467b48Spatrick // our address and just match the value instead of completely failing.
96609467b48Spatrick AM = SavedAM;
96709467b48Spatrick
96809467b48Spatrick for (const Value *I : reverse(GEPs))
96909467b48Spatrick if (handleConstantAddresses(I, AM))
97009467b48Spatrick return true;
97109467b48Spatrick
97209467b48Spatrick return false;
97309467b48Spatrick unsupported_gep:
97409467b48Spatrick // Ok, the GEP indices weren't all covered.
97509467b48Spatrick break;
97609467b48Spatrick }
97709467b48Spatrick }
97809467b48Spatrick
97909467b48Spatrick return handleConstantAddresses(V, AM);
98009467b48Spatrick }
98109467b48Spatrick
98209467b48Spatrick /// X86SelectCallAddress - Attempt to fill in an address from the given value.
98309467b48Spatrick ///
X86SelectCallAddress(const Value * V,X86AddressMode & AM)98409467b48Spatrick bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
98509467b48Spatrick const User *U = nullptr;
98609467b48Spatrick unsigned Opcode = Instruction::UserOp1;
98709467b48Spatrick const Instruction *I = dyn_cast<Instruction>(V);
98809467b48Spatrick // Record if the value is defined in the same basic block.
98909467b48Spatrick //
99009467b48Spatrick // This information is crucial to know whether or not folding an
99109467b48Spatrick // operand is valid.
99209467b48Spatrick // Indeed, FastISel generates or reuses a virtual register for all
99309467b48Spatrick // operands of all instructions it selects. Obviously, the definition and
99409467b48Spatrick // its uses must use the same virtual register otherwise the produced
99509467b48Spatrick // code is incorrect.
99609467b48Spatrick // Before instruction selection, FunctionLoweringInfo::set sets the virtual
99709467b48Spatrick // registers for values that are alive across basic blocks. This ensures
99809467b48Spatrick // that the values are consistently set between across basic block, even
99909467b48Spatrick // if different instruction selection mechanisms are used (e.g., a mix of
100009467b48Spatrick // SDISel and FastISel).
100109467b48Spatrick // For values local to a basic block, the instruction selection process
100209467b48Spatrick // generates these virtual registers with whatever method is appropriate
100309467b48Spatrick // for its needs. In particular, FastISel and SDISel do not share the way
100409467b48Spatrick // local virtual registers are set.
100509467b48Spatrick // Therefore, this is impossible (or at least unsafe) to share values
100609467b48Spatrick // between basic blocks unless they use the same instruction selection
100709467b48Spatrick // method, which is not guarantee for X86.
100809467b48Spatrick // Moreover, things like hasOneUse could not be used accurately, if we
100909467b48Spatrick // allow to reference values across basic blocks whereas they are not
101009467b48Spatrick // alive across basic blocks initially.
101109467b48Spatrick bool InMBB = true;
101209467b48Spatrick if (I) {
101309467b48Spatrick Opcode = I->getOpcode();
101409467b48Spatrick U = I;
101509467b48Spatrick InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
101609467b48Spatrick } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
101709467b48Spatrick Opcode = C->getOpcode();
101809467b48Spatrick U = C;
101909467b48Spatrick }
102009467b48Spatrick
102109467b48Spatrick switch (Opcode) {
102209467b48Spatrick default: break;
102309467b48Spatrick case Instruction::BitCast:
102409467b48Spatrick // Look past bitcasts if its operand is in the same BB.
102509467b48Spatrick if (InMBB)
102609467b48Spatrick return X86SelectCallAddress(U->getOperand(0), AM);
102709467b48Spatrick break;
102809467b48Spatrick
102909467b48Spatrick case Instruction::IntToPtr:
103009467b48Spatrick // Look past no-op inttoptrs if its operand is in the same BB.
103109467b48Spatrick if (InMBB &&
103209467b48Spatrick TLI.getValueType(DL, U->getOperand(0)->getType()) ==
103309467b48Spatrick TLI.getPointerTy(DL))
103409467b48Spatrick return X86SelectCallAddress(U->getOperand(0), AM);
103509467b48Spatrick break;
103609467b48Spatrick
103709467b48Spatrick case Instruction::PtrToInt:
103809467b48Spatrick // Look past no-op ptrtoints if its operand is in the same BB.
103909467b48Spatrick if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
104009467b48Spatrick return X86SelectCallAddress(U->getOperand(0), AM);
104109467b48Spatrick break;
104209467b48Spatrick }
104309467b48Spatrick
104409467b48Spatrick // Handle constant address.
104509467b48Spatrick if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104609467b48Spatrick // Can't handle alternate code models yet.
104709467b48Spatrick if (TM.getCodeModel() != CodeModel::Small)
104809467b48Spatrick return false;
104909467b48Spatrick
105009467b48Spatrick // RIP-relative addresses can't have additional register operands.
105109467b48Spatrick if (Subtarget->isPICStyleRIPRel() &&
105209467b48Spatrick (AM.Base.Reg != 0 || AM.IndexReg != 0))
105309467b48Spatrick return false;
105409467b48Spatrick
105509467b48Spatrick // Can't handle TLS.
105609467b48Spatrick if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
105709467b48Spatrick if (GVar->isThreadLocal())
105809467b48Spatrick return false;
105909467b48Spatrick
106009467b48Spatrick // Okay, we've committed to selecting this global. Set up the basic address.
106109467b48Spatrick AM.GV = GV;
106209467b48Spatrick
106309467b48Spatrick // Return a direct reference to the global. Fastisel can handle calls to
106409467b48Spatrick // functions that require loads, such as dllimport and nonlazybind
106509467b48Spatrick // functions.
106609467b48Spatrick if (Subtarget->isPICStyleRIPRel()) {
106709467b48Spatrick // Use rip-relative addressing if we can. Above we verified that the
106809467b48Spatrick // base and index registers are unused.
106909467b48Spatrick assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
107009467b48Spatrick AM.Base.Reg = X86::RIP;
107109467b48Spatrick } else {
107209467b48Spatrick AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
107309467b48Spatrick }
107409467b48Spatrick
107509467b48Spatrick return true;
107609467b48Spatrick }
107709467b48Spatrick
107809467b48Spatrick // If all else fails, try to materialize the value in a register.
107909467b48Spatrick if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
108073471bf0Spatrick auto GetCallRegForValue = [this](const Value *V) {
108173471bf0Spatrick Register Reg = getRegForValue(V);
108273471bf0Spatrick
108373471bf0Spatrick // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
108473471bf0Spatrick if (Reg && Subtarget->isTarget64BitILP32()) {
108573471bf0Spatrick Register CopyReg = createResultReg(&X86::GR32RegClass);
1086*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr),
108773471bf0Spatrick CopyReg)
108873471bf0Spatrick .addReg(Reg);
108973471bf0Spatrick
109073471bf0Spatrick Register ExtReg = createResultReg(&X86::GR64RegClass);
1091*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
109273471bf0Spatrick TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
109373471bf0Spatrick .addImm(0)
109473471bf0Spatrick .addReg(CopyReg)
109573471bf0Spatrick .addImm(X86::sub_32bit);
109673471bf0Spatrick Reg = ExtReg;
109773471bf0Spatrick }
109873471bf0Spatrick
109973471bf0Spatrick return Reg;
110073471bf0Spatrick };
110173471bf0Spatrick
110209467b48Spatrick if (AM.Base.Reg == 0) {
110373471bf0Spatrick AM.Base.Reg = GetCallRegForValue(V);
110409467b48Spatrick return AM.Base.Reg != 0;
110509467b48Spatrick }
110609467b48Spatrick if (AM.IndexReg == 0) {
110709467b48Spatrick assert(AM.Scale == 1 && "Scale with no index!");
110873471bf0Spatrick AM.IndexReg = GetCallRegForValue(V);
110909467b48Spatrick return AM.IndexReg != 0;
111009467b48Spatrick }
111109467b48Spatrick }
111209467b48Spatrick
111309467b48Spatrick return false;
111409467b48Spatrick }
111509467b48Spatrick
111609467b48Spatrick
111709467b48Spatrick /// X86SelectStore - Select and emit code to implement store instructions.
X86SelectStore(const Instruction * I)111809467b48Spatrick bool X86FastISel::X86SelectStore(const Instruction *I) {
111909467b48Spatrick // Atomic stores need special handling.
112009467b48Spatrick const StoreInst *S = cast<StoreInst>(I);
112109467b48Spatrick
112209467b48Spatrick if (S->isAtomic())
112309467b48Spatrick return false;
112409467b48Spatrick
112509467b48Spatrick const Value *PtrV = I->getOperand(1);
112609467b48Spatrick if (TLI.supportSwiftError()) {
112709467b48Spatrick // Swifterror values can come from either a function parameter with
112809467b48Spatrick // swifterror attribute or an alloca with swifterror attribute.
112909467b48Spatrick if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
113009467b48Spatrick if (Arg->hasSwiftErrorAttr())
113109467b48Spatrick return false;
113209467b48Spatrick }
113309467b48Spatrick
113409467b48Spatrick if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
113509467b48Spatrick if (Alloca->isSwiftError())
113609467b48Spatrick return false;
113709467b48Spatrick }
113809467b48Spatrick }
113909467b48Spatrick
114009467b48Spatrick const Value *Val = S->getValueOperand();
114109467b48Spatrick const Value *Ptr = S->getPointerOperand();
114209467b48Spatrick
114309467b48Spatrick MVT VT;
114409467b48Spatrick if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
114509467b48Spatrick return false;
114609467b48Spatrick
1147097a140dSpatrick Align Alignment = S->getAlign();
1148097a140dSpatrick Align ABIAlignment = DL.getABITypeAlign(Val->getType());
114909467b48Spatrick bool Aligned = Alignment >= ABIAlignment;
115009467b48Spatrick
115109467b48Spatrick X86AddressMode AM;
115209467b48Spatrick if (!X86SelectAddress(Ptr, AM))
115309467b48Spatrick return false;
115409467b48Spatrick
115509467b48Spatrick return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
115609467b48Spatrick }
115709467b48Spatrick
115809467b48Spatrick /// X86SelectRet - Select and emit code to implement ret instructions.
X86SelectRet(const Instruction * I)115909467b48Spatrick bool X86FastISel::X86SelectRet(const Instruction *I) {
116009467b48Spatrick const ReturnInst *Ret = cast<ReturnInst>(I);
116109467b48Spatrick const Function &F = *I->getParent()->getParent();
116209467b48Spatrick const X86MachineFunctionInfo *X86MFInfo =
116309467b48Spatrick FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
116409467b48Spatrick
116509467b48Spatrick if (!FuncInfo.CanLowerReturn)
116609467b48Spatrick return false;
116709467b48Spatrick
116809467b48Spatrick if (TLI.supportSwiftError() &&
116909467b48Spatrick F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
117009467b48Spatrick return false;
117109467b48Spatrick
117209467b48Spatrick if (TLI.supportSplitCSR(FuncInfo.MF))
117309467b48Spatrick return false;
117409467b48Spatrick
117509467b48Spatrick CallingConv::ID CC = F.getCallingConv();
117609467b48Spatrick if (CC != CallingConv::C &&
117709467b48Spatrick CC != CallingConv::Fast &&
117809467b48Spatrick CC != CallingConv::Tail &&
117973471bf0Spatrick CC != CallingConv::SwiftTail &&
118009467b48Spatrick CC != CallingConv::X86_FastCall &&
118109467b48Spatrick CC != CallingConv::X86_StdCall &&
118209467b48Spatrick CC != CallingConv::X86_ThisCall &&
118309467b48Spatrick CC != CallingConv::X86_64_SysV &&
118409467b48Spatrick CC != CallingConv::Win64)
118509467b48Spatrick return false;
118609467b48Spatrick
118709467b48Spatrick // Don't handle popping bytes if they don't fit the ret's immediate.
118809467b48Spatrick if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
118909467b48Spatrick return false;
119009467b48Spatrick
119109467b48Spatrick // fastcc with -tailcallopt is intended to provide a guaranteed
119209467b48Spatrick // tail call optimization. Fastisel doesn't know how to do that.
119309467b48Spatrick if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
119473471bf0Spatrick CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
119509467b48Spatrick return false;
119609467b48Spatrick
119709467b48Spatrick // Let SDISel handle vararg functions.
119809467b48Spatrick if (F.isVarArg())
119909467b48Spatrick return false;
120009467b48Spatrick
120109467b48Spatrick // Build a list of return value registers.
120209467b48Spatrick SmallVector<unsigned, 4> RetRegs;
120309467b48Spatrick
120409467b48Spatrick if (Ret->getNumOperands() > 0) {
120509467b48Spatrick SmallVector<ISD::OutputArg, 4> Outs;
120609467b48Spatrick GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
120709467b48Spatrick
120809467b48Spatrick // Analyze operands of the call, assigning locations to each operand.
120909467b48Spatrick SmallVector<CCValAssign, 16> ValLocs;
121009467b48Spatrick CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
121109467b48Spatrick CCInfo.AnalyzeReturn(Outs, RetCC_X86);
121209467b48Spatrick
121309467b48Spatrick const Value *RV = Ret->getOperand(0);
1214097a140dSpatrick Register Reg = getRegForValue(RV);
121509467b48Spatrick if (Reg == 0)
121609467b48Spatrick return false;
121709467b48Spatrick
121809467b48Spatrick // Only handle a single return value for now.
121909467b48Spatrick if (ValLocs.size() != 1)
122009467b48Spatrick return false;
122109467b48Spatrick
122209467b48Spatrick CCValAssign &VA = ValLocs[0];
122309467b48Spatrick
122409467b48Spatrick // Don't bother handling odd stuff for now.
122509467b48Spatrick if (VA.getLocInfo() != CCValAssign::Full)
122609467b48Spatrick return false;
122709467b48Spatrick // Only handle register returns for now.
122809467b48Spatrick if (!VA.isRegLoc())
122909467b48Spatrick return false;
123009467b48Spatrick
123109467b48Spatrick // The calling-convention tables for x87 returns don't tell
123209467b48Spatrick // the whole story.
123309467b48Spatrick if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
123409467b48Spatrick return false;
123509467b48Spatrick
123609467b48Spatrick unsigned SrcReg = Reg + VA.getValNo();
123709467b48Spatrick EVT SrcVT = TLI.getValueType(DL, RV->getType());
123809467b48Spatrick EVT DstVT = VA.getValVT();
123909467b48Spatrick // Special handling for extended integers.
124009467b48Spatrick if (SrcVT != DstVT) {
124109467b48Spatrick if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
124209467b48Spatrick return false;
124309467b48Spatrick
124409467b48Spatrick if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
124509467b48Spatrick return false;
124609467b48Spatrick
124709467b48Spatrick assert(DstVT == MVT::i32 && "X86 should always ext to i32");
124809467b48Spatrick
124909467b48Spatrick if (SrcVT == MVT::i1) {
125009467b48Spatrick if (Outs[0].Flags.isSExt())
125109467b48Spatrick return false;
125273471bf0Spatrick // TODO
125373471bf0Spatrick SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg);
125409467b48Spatrick SrcVT = MVT::i8;
125509467b48Spatrick }
125609467b48Spatrick unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
125709467b48Spatrick ISD::SIGN_EXTEND;
125873471bf0Spatrick // TODO
125973471bf0Spatrick SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg);
126009467b48Spatrick }
126109467b48Spatrick
126209467b48Spatrick // Make the copy.
126309467b48Spatrick Register DstReg = VA.getLocReg();
126409467b48Spatrick const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
126509467b48Spatrick // Avoid a cross-class copy. This is very unlikely.
126609467b48Spatrick if (!SrcRC->contains(DstReg))
126709467b48Spatrick return false;
1268*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
126909467b48Spatrick TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
127009467b48Spatrick
127109467b48Spatrick // Add register to return instruction.
127209467b48Spatrick RetRegs.push_back(VA.getLocReg());
127309467b48Spatrick }
127409467b48Spatrick
127509467b48Spatrick // Swift calling convention does not require we copy the sret argument
127609467b48Spatrick // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
127709467b48Spatrick
127809467b48Spatrick // All x86 ABIs require that for returning structs by value we copy
127909467b48Spatrick // the sret argument into %rax/%eax (depending on ABI) for the return.
128009467b48Spatrick // We saved the argument into a virtual register in the entry block,
128109467b48Spatrick // so now we copy the value out and into %rax/%eax.
128273471bf0Spatrick if (F.hasStructRetAttr() && CC != CallingConv::Swift &&
128373471bf0Spatrick CC != CallingConv::SwiftTail) {
1284097a140dSpatrick Register Reg = X86MFInfo->getSRetReturnReg();
128509467b48Spatrick assert(Reg &&
128609467b48Spatrick "SRetReturnReg should have been set in LowerFormalArguments()!");
128709467b48Spatrick unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1288*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
128909467b48Spatrick TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
129009467b48Spatrick RetRegs.push_back(RetReg);
129109467b48Spatrick }
129209467b48Spatrick
129309467b48Spatrick // Now emit the RET.
129409467b48Spatrick MachineInstrBuilder MIB;
129509467b48Spatrick if (X86MFInfo->getBytesToPopOnReturn()) {
1296*d415bd75Srobert MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1297*d415bd75Srobert TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32))
129809467b48Spatrick .addImm(X86MFInfo->getBytesToPopOnReturn());
129909467b48Spatrick } else {
1300*d415bd75Srobert MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1301*d415bd75Srobert TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32));
130209467b48Spatrick }
130309467b48Spatrick for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
130409467b48Spatrick MIB.addReg(RetRegs[i], RegState::Implicit);
130509467b48Spatrick return true;
130609467b48Spatrick }
130709467b48Spatrick
130809467b48Spatrick /// X86SelectLoad - Select and emit code to implement load instructions.
130909467b48Spatrick ///
X86SelectLoad(const Instruction * I)131009467b48Spatrick bool X86FastISel::X86SelectLoad(const Instruction *I) {
131109467b48Spatrick const LoadInst *LI = cast<LoadInst>(I);
131209467b48Spatrick
131309467b48Spatrick // Atomic loads need special handling.
131409467b48Spatrick if (LI->isAtomic())
131509467b48Spatrick return false;
131609467b48Spatrick
131709467b48Spatrick const Value *SV = I->getOperand(0);
131809467b48Spatrick if (TLI.supportSwiftError()) {
131909467b48Spatrick // Swifterror values can come from either a function parameter with
132009467b48Spatrick // swifterror attribute or an alloca with swifterror attribute.
132109467b48Spatrick if (const Argument *Arg = dyn_cast<Argument>(SV)) {
132209467b48Spatrick if (Arg->hasSwiftErrorAttr())
132309467b48Spatrick return false;
132409467b48Spatrick }
132509467b48Spatrick
132609467b48Spatrick if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
132709467b48Spatrick if (Alloca->isSwiftError())
132809467b48Spatrick return false;
132909467b48Spatrick }
133009467b48Spatrick }
133109467b48Spatrick
133209467b48Spatrick MVT VT;
133309467b48Spatrick if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
133409467b48Spatrick return false;
133509467b48Spatrick
133609467b48Spatrick const Value *Ptr = LI->getPointerOperand();
133709467b48Spatrick
133809467b48Spatrick X86AddressMode AM;
133909467b48Spatrick if (!X86SelectAddress(Ptr, AM))
134009467b48Spatrick return false;
134109467b48Spatrick
134209467b48Spatrick unsigned ResultReg = 0;
134309467b48Spatrick if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1344097a140dSpatrick LI->getAlign().value()))
134509467b48Spatrick return false;
134609467b48Spatrick
134709467b48Spatrick updateValueMap(I, ResultReg);
134809467b48Spatrick return true;
134909467b48Spatrick }
135009467b48Spatrick
X86ChooseCmpOpcode(EVT VT,const X86Subtarget * Subtarget)135109467b48Spatrick static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
135209467b48Spatrick bool HasAVX512 = Subtarget->hasAVX512();
135309467b48Spatrick bool HasAVX = Subtarget->hasAVX();
1354*d415bd75Srobert bool HasSSE1 = Subtarget->hasSSE1();
1355*d415bd75Srobert bool HasSSE2 = Subtarget->hasSSE2();
135609467b48Spatrick
135709467b48Spatrick switch (VT.getSimpleVT().SimpleTy) {
135809467b48Spatrick default: return 0;
135909467b48Spatrick case MVT::i8: return X86::CMP8rr;
136009467b48Spatrick case MVT::i16: return X86::CMP16rr;
136109467b48Spatrick case MVT::i32: return X86::CMP32rr;
136209467b48Spatrick case MVT::i64: return X86::CMP64rr;
136309467b48Spatrick case MVT::f32:
1364*d415bd75Srobert return HasAVX512 ? X86::VUCOMISSZrr
1365*d415bd75Srobert : HasAVX ? X86::VUCOMISSrr
1366*d415bd75Srobert : HasSSE1 ? X86::UCOMISSrr
136709467b48Spatrick : 0;
136809467b48Spatrick case MVT::f64:
1369*d415bd75Srobert return HasAVX512 ? X86::VUCOMISDZrr
1370*d415bd75Srobert : HasAVX ? X86::VUCOMISDrr
1371*d415bd75Srobert : HasSSE2 ? X86::UCOMISDrr
137209467b48Spatrick : 0;
137309467b48Spatrick }
137409467b48Spatrick }
137509467b48Spatrick
137609467b48Spatrick /// If we have a comparison with RHS as the RHS of the comparison, return an
137709467b48Spatrick /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
X86ChooseCmpImmediateOpcode(EVT VT,const ConstantInt * RHSC)137809467b48Spatrick static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
137909467b48Spatrick int64_t Val = RHSC->getSExtValue();
138009467b48Spatrick switch (VT.getSimpleVT().SimpleTy) {
138109467b48Spatrick // Otherwise, we can't fold the immediate into this comparison.
138209467b48Spatrick default:
138309467b48Spatrick return 0;
138409467b48Spatrick case MVT::i8:
138509467b48Spatrick return X86::CMP8ri;
138609467b48Spatrick case MVT::i16:
138709467b48Spatrick if (isInt<8>(Val))
138809467b48Spatrick return X86::CMP16ri8;
138909467b48Spatrick return X86::CMP16ri;
139009467b48Spatrick case MVT::i32:
139109467b48Spatrick if (isInt<8>(Val))
139209467b48Spatrick return X86::CMP32ri8;
139309467b48Spatrick return X86::CMP32ri;
139409467b48Spatrick case MVT::i64:
139509467b48Spatrick if (isInt<8>(Val))
139609467b48Spatrick return X86::CMP64ri8;
139709467b48Spatrick // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
139809467b48Spatrick // field.
139909467b48Spatrick if (isInt<32>(Val))
140009467b48Spatrick return X86::CMP64ri32;
140109467b48Spatrick return 0;
140209467b48Spatrick }
140309467b48Spatrick }
140409467b48Spatrick
X86FastEmitCompare(const Value * Op0,const Value * Op1,EVT VT,const DebugLoc & CurMIMD)140509467b48Spatrick bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1406*d415bd75Srobert const DebugLoc &CurMIMD) {
1407097a140dSpatrick Register Op0Reg = getRegForValue(Op0);
140809467b48Spatrick if (Op0Reg == 0) return false;
140909467b48Spatrick
141009467b48Spatrick // Handle 'null' like i32/i64 0.
141109467b48Spatrick if (isa<ConstantPointerNull>(Op1))
141209467b48Spatrick Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
141309467b48Spatrick
141409467b48Spatrick // We have two options: compare with register or immediate. If the RHS of
141509467b48Spatrick // the compare is an immediate that we can fold into this compare, use
141609467b48Spatrick // CMPri, otherwise use CMPrr.
141709467b48Spatrick if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
141809467b48Spatrick if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1419*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc))
142009467b48Spatrick .addReg(Op0Reg)
142109467b48Spatrick .addImm(Op1C->getSExtValue());
142209467b48Spatrick return true;
142309467b48Spatrick }
142409467b48Spatrick }
142509467b48Spatrick
142609467b48Spatrick unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
142709467b48Spatrick if (CompareOpc == 0) return false;
142809467b48Spatrick
1429097a140dSpatrick Register Op1Reg = getRegForValue(Op1);
143009467b48Spatrick if (Op1Reg == 0) return false;
1431*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc))
143209467b48Spatrick .addReg(Op0Reg)
143309467b48Spatrick .addReg(Op1Reg);
143409467b48Spatrick
143509467b48Spatrick return true;
143609467b48Spatrick }
143709467b48Spatrick
X86SelectCmp(const Instruction * I)143809467b48Spatrick bool X86FastISel::X86SelectCmp(const Instruction *I) {
143909467b48Spatrick const CmpInst *CI = cast<CmpInst>(I);
144009467b48Spatrick
144109467b48Spatrick MVT VT;
144209467b48Spatrick if (!isTypeLegal(I->getOperand(0)->getType(), VT))
144309467b48Spatrick return false;
144409467b48Spatrick
144573471bf0Spatrick // Below code only works for scalars.
144673471bf0Spatrick if (VT.isVector())
144773471bf0Spatrick return false;
144873471bf0Spatrick
144909467b48Spatrick // Try to optimize or fold the cmp.
145009467b48Spatrick CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
145109467b48Spatrick unsigned ResultReg = 0;
145209467b48Spatrick switch (Predicate) {
145309467b48Spatrick default: break;
145409467b48Spatrick case CmpInst::FCMP_FALSE: {
145509467b48Spatrick ResultReg = createResultReg(&X86::GR32RegClass);
1456*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0),
145709467b48Spatrick ResultReg);
145873471bf0Spatrick ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit);
145909467b48Spatrick if (!ResultReg)
146009467b48Spatrick return false;
146109467b48Spatrick break;
146209467b48Spatrick }
146309467b48Spatrick case CmpInst::FCMP_TRUE: {
146409467b48Spatrick ResultReg = createResultReg(&X86::GR8RegClass);
1465*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
146609467b48Spatrick ResultReg).addImm(1);
146709467b48Spatrick break;
146809467b48Spatrick }
146909467b48Spatrick }
147009467b48Spatrick
147109467b48Spatrick if (ResultReg) {
147209467b48Spatrick updateValueMap(I, ResultReg);
147309467b48Spatrick return true;
147409467b48Spatrick }
147509467b48Spatrick
147609467b48Spatrick const Value *LHS = CI->getOperand(0);
147709467b48Spatrick const Value *RHS = CI->getOperand(1);
147809467b48Spatrick
147909467b48Spatrick // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
148009467b48Spatrick // We don't have to materialize a zero constant for this case and can just use
148109467b48Spatrick // %x again on the RHS.
148209467b48Spatrick if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
148309467b48Spatrick const auto *RHSC = dyn_cast<ConstantFP>(RHS);
148409467b48Spatrick if (RHSC && RHSC->isNullValue())
148509467b48Spatrick RHS = LHS;
148609467b48Spatrick }
148709467b48Spatrick
148809467b48Spatrick // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
148909467b48Spatrick static const uint16_t SETFOpcTable[2][3] = {
149009467b48Spatrick { X86::COND_E, X86::COND_NP, X86::AND8rr },
149109467b48Spatrick { X86::COND_NE, X86::COND_P, X86::OR8rr }
149209467b48Spatrick };
149309467b48Spatrick const uint16_t *SETFOpc = nullptr;
149409467b48Spatrick switch (Predicate) {
149509467b48Spatrick default: break;
149609467b48Spatrick case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
149709467b48Spatrick case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
149809467b48Spatrick }
149909467b48Spatrick
150009467b48Spatrick ResultReg = createResultReg(&X86::GR8RegClass);
150109467b48Spatrick if (SETFOpc) {
150209467b48Spatrick if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
150309467b48Spatrick return false;
150409467b48Spatrick
1505097a140dSpatrick Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1506097a140dSpatrick Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1507*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
150809467b48Spatrick FlagReg1).addImm(SETFOpc[0]);
1509*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
151009467b48Spatrick FlagReg2).addImm(SETFOpc[1]);
1511*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]),
151209467b48Spatrick ResultReg).addReg(FlagReg1).addReg(FlagReg2);
151309467b48Spatrick updateValueMap(I, ResultReg);
151409467b48Spatrick return true;
151509467b48Spatrick }
151609467b48Spatrick
151709467b48Spatrick X86::CondCode CC;
151809467b48Spatrick bool SwapArgs;
151909467b48Spatrick std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
152009467b48Spatrick assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
152109467b48Spatrick
152209467b48Spatrick if (SwapArgs)
152309467b48Spatrick std::swap(LHS, RHS);
152409467b48Spatrick
152509467b48Spatrick // Emit a compare of LHS/RHS.
152609467b48Spatrick if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
152709467b48Spatrick return false;
152809467b48Spatrick
1529*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
153009467b48Spatrick ResultReg).addImm(CC);
153109467b48Spatrick updateValueMap(I, ResultReg);
153209467b48Spatrick return true;
153309467b48Spatrick }
153409467b48Spatrick
X86SelectZExt(const Instruction * I)153509467b48Spatrick bool X86FastISel::X86SelectZExt(const Instruction *I) {
153609467b48Spatrick EVT DstVT = TLI.getValueType(DL, I->getType());
153709467b48Spatrick if (!TLI.isTypeLegal(DstVT))
153809467b48Spatrick return false;
153909467b48Spatrick
1540097a140dSpatrick Register ResultReg = getRegForValue(I->getOperand(0));
154109467b48Spatrick if (ResultReg == 0)
154209467b48Spatrick return false;
154309467b48Spatrick
154409467b48Spatrick // Handle zero-extension from i1 to i8, which is common.
154509467b48Spatrick MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
154609467b48Spatrick if (SrcVT == MVT::i1) {
154709467b48Spatrick // Set the high bits to zero.
154873471bf0Spatrick ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
154909467b48Spatrick SrcVT = MVT::i8;
155009467b48Spatrick
155109467b48Spatrick if (ResultReg == 0)
155209467b48Spatrick return false;
155309467b48Spatrick }
155409467b48Spatrick
155509467b48Spatrick if (DstVT == MVT::i64) {
155609467b48Spatrick // Handle extension to 64-bits via sub-register shenanigans.
155709467b48Spatrick unsigned MovInst;
155809467b48Spatrick
155909467b48Spatrick switch (SrcVT.SimpleTy) {
156009467b48Spatrick case MVT::i8: MovInst = X86::MOVZX32rr8; break;
156109467b48Spatrick case MVT::i16: MovInst = X86::MOVZX32rr16; break;
156209467b48Spatrick case MVT::i32: MovInst = X86::MOV32rr; break;
156309467b48Spatrick default: llvm_unreachable("Unexpected zext to i64 source type");
156409467b48Spatrick }
156509467b48Spatrick
1566097a140dSpatrick Register Result32 = createResultReg(&X86::GR32RegClass);
1567*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32)
156809467b48Spatrick .addReg(ResultReg);
156909467b48Spatrick
157009467b48Spatrick ResultReg = createResultReg(&X86::GR64RegClass);
1571*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG),
157209467b48Spatrick ResultReg)
157309467b48Spatrick .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
157409467b48Spatrick } else if (DstVT == MVT::i16) {
157509467b48Spatrick // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
157609467b48Spatrick // extend to 32-bits and then extract down to 16-bits.
1577097a140dSpatrick Register Result32 = createResultReg(&X86::GR32RegClass);
1578*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8),
157909467b48Spatrick Result32).addReg(ResultReg);
158009467b48Spatrick
158173471bf0Spatrick ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
158209467b48Spatrick } else if (DstVT != MVT::i8) {
158309467b48Spatrick ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
158473471bf0Spatrick ResultReg);
158509467b48Spatrick if (ResultReg == 0)
158609467b48Spatrick return false;
158709467b48Spatrick }
158809467b48Spatrick
158909467b48Spatrick updateValueMap(I, ResultReg);
159009467b48Spatrick return true;
159109467b48Spatrick }
159209467b48Spatrick
X86SelectSExt(const Instruction * I)159309467b48Spatrick bool X86FastISel::X86SelectSExt(const Instruction *I) {
159409467b48Spatrick EVT DstVT = TLI.getValueType(DL, I->getType());
159509467b48Spatrick if (!TLI.isTypeLegal(DstVT))
159609467b48Spatrick return false;
159709467b48Spatrick
1598097a140dSpatrick Register ResultReg = getRegForValue(I->getOperand(0));
159909467b48Spatrick if (ResultReg == 0)
160009467b48Spatrick return false;
160109467b48Spatrick
160209467b48Spatrick // Handle sign-extension from i1 to i8.
160309467b48Spatrick MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
160409467b48Spatrick if (SrcVT == MVT::i1) {
160509467b48Spatrick // Set the high bits to zero.
160673471bf0Spatrick Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
160709467b48Spatrick if (ZExtReg == 0)
160809467b48Spatrick return false;
160909467b48Spatrick
161009467b48Spatrick // Negate the result to make an 8-bit sign extended value.
161109467b48Spatrick ResultReg = createResultReg(&X86::GR8RegClass);
1612*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r),
161309467b48Spatrick ResultReg).addReg(ZExtReg);
161409467b48Spatrick
161509467b48Spatrick SrcVT = MVT::i8;
161609467b48Spatrick }
161709467b48Spatrick
161809467b48Spatrick if (DstVT == MVT::i16) {
161909467b48Spatrick // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
162009467b48Spatrick // extend to 32-bits and then extract down to 16-bits.
1621097a140dSpatrick Register Result32 = createResultReg(&X86::GR32RegClass);
1622*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8),
162309467b48Spatrick Result32).addReg(ResultReg);
162409467b48Spatrick
162573471bf0Spatrick ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
162609467b48Spatrick } else if (DstVT != MVT::i8) {
162709467b48Spatrick ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
162873471bf0Spatrick ResultReg);
162909467b48Spatrick if (ResultReg == 0)
163009467b48Spatrick return false;
163109467b48Spatrick }
163209467b48Spatrick
163309467b48Spatrick updateValueMap(I, ResultReg);
163409467b48Spatrick return true;
163509467b48Spatrick }
163609467b48Spatrick
X86SelectBranch(const Instruction * I)163709467b48Spatrick bool X86FastISel::X86SelectBranch(const Instruction *I) {
163809467b48Spatrick // Unconditional branches are selected by tablegen-generated code.
163909467b48Spatrick // Handle a conditional branch.
164009467b48Spatrick const BranchInst *BI = cast<BranchInst>(I);
164109467b48Spatrick MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
164209467b48Spatrick MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
164309467b48Spatrick
164409467b48Spatrick // Fold the common case of a conditional branch with a comparison
164509467b48Spatrick // in the same block (values defined on other blocks may not have
164609467b48Spatrick // initialized registers).
164709467b48Spatrick X86::CondCode CC;
164809467b48Spatrick if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
164909467b48Spatrick if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
165009467b48Spatrick EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
165109467b48Spatrick
165209467b48Spatrick // Try to optimize or fold the cmp.
165309467b48Spatrick CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
165409467b48Spatrick switch (Predicate) {
165509467b48Spatrick default: break;
1656*d415bd75Srobert case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true;
1657*d415bd75Srobert case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, MIMD.getDL()); return true;
165809467b48Spatrick }
165909467b48Spatrick
166009467b48Spatrick const Value *CmpLHS = CI->getOperand(0);
166109467b48Spatrick const Value *CmpRHS = CI->getOperand(1);
166209467b48Spatrick
166309467b48Spatrick // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
166409467b48Spatrick // 0.0.
166509467b48Spatrick // We don't have to materialize a zero constant for this case and can just
166609467b48Spatrick // use %x again on the RHS.
166709467b48Spatrick if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
166809467b48Spatrick const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
166909467b48Spatrick if (CmpRHSC && CmpRHSC->isNullValue())
167009467b48Spatrick CmpRHS = CmpLHS;
167109467b48Spatrick }
167209467b48Spatrick
167309467b48Spatrick // Try to take advantage of fallthrough opportunities.
167409467b48Spatrick if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
167509467b48Spatrick std::swap(TrueMBB, FalseMBB);
167609467b48Spatrick Predicate = CmpInst::getInversePredicate(Predicate);
167709467b48Spatrick }
167809467b48Spatrick
167909467b48Spatrick // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
168009467b48Spatrick // code check. Instead two branch instructions are required to check all
168109467b48Spatrick // the flags. First we change the predicate to a supported condition code,
168209467b48Spatrick // which will be the first branch. Later one we will emit the second
168309467b48Spatrick // branch.
168409467b48Spatrick bool NeedExtraBranch = false;
168509467b48Spatrick switch (Predicate) {
168609467b48Spatrick default: break;
168709467b48Spatrick case CmpInst::FCMP_OEQ:
168809467b48Spatrick std::swap(TrueMBB, FalseMBB);
1689*d415bd75Srobert [[fallthrough]];
169009467b48Spatrick case CmpInst::FCMP_UNE:
169109467b48Spatrick NeedExtraBranch = true;
169209467b48Spatrick Predicate = CmpInst::FCMP_ONE;
169309467b48Spatrick break;
169409467b48Spatrick }
169509467b48Spatrick
169609467b48Spatrick bool SwapArgs;
169709467b48Spatrick std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
169809467b48Spatrick assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
169909467b48Spatrick
170009467b48Spatrick if (SwapArgs)
170109467b48Spatrick std::swap(CmpLHS, CmpRHS);
170209467b48Spatrick
170309467b48Spatrick // Emit a compare of the LHS and RHS, setting the flags.
170409467b48Spatrick if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
170509467b48Spatrick return false;
170609467b48Spatrick
1707*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
170809467b48Spatrick .addMBB(TrueMBB).addImm(CC);
170909467b48Spatrick
171009467b48Spatrick // X86 requires a second branch to handle UNE (and OEQ, which is mapped
171109467b48Spatrick // to UNE above).
171209467b48Spatrick if (NeedExtraBranch) {
1713*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
171409467b48Spatrick .addMBB(TrueMBB).addImm(X86::COND_P);
171509467b48Spatrick }
171609467b48Spatrick
171709467b48Spatrick finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
171809467b48Spatrick return true;
171909467b48Spatrick }
172009467b48Spatrick } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
172109467b48Spatrick // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
172209467b48Spatrick // typically happen for _Bool and C++ bools.
172309467b48Spatrick MVT SourceVT;
172409467b48Spatrick if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
172509467b48Spatrick isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
172609467b48Spatrick unsigned TestOpc = 0;
172709467b48Spatrick switch (SourceVT.SimpleTy) {
172809467b48Spatrick default: break;
172909467b48Spatrick case MVT::i8: TestOpc = X86::TEST8ri; break;
173009467b48Spatrick case MVT::i16: TestOpc = X86::TEST16ri; break;
173109467b48Spatrick case MVT::i32: TestOpc = X86::TEST32ri; break;
173209467b48Spatrick case MVT::i64: TestOpc = X86::TEST64ri32; break;
173309467b48Spatrick }
173409467b48Spatrick if (TestOpc) {
1735097a140dSpatrick Register OpReg = getRegForValue(TI->getOperand(0));
173609467b48Spatrick if (OpReg == 0) return false;
173709467b48Spatrick
1738*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc))
173909467b48Spatrick .addReg(OpReg).addImm(1);
174009467b48Spatrick
174109467b48Spatrick unsigned JmpCond = X86::COND_NE;
174209467b48Spatrick if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
174309467b48Spatrick std::swap(TrueMBB, FalseMBB);
174409467b48Spatrick JmpCond = X86::COND_E;
174509467b48Spatrick }
174609467b48Spatrick
1747*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
174809467b48Spatrick .addMBB(TrueMBB).addImm(JmpCond);
174909467b48Spatrick
175009467b48Spatrick finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
175109467b48Spatrick return true;
175209467b48Spatrick }
175309467b48Spatrick }
175409467b48Spatrick } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
175509467b48Spatrick // Fake request the condition, otherwise the intrinsic might be completely
175609467b48Spatrick // optimized away.
1757097a140dSpatrick Register TmpReg = getRegForValue(BI->getCondition());
175809467b48Spatrick if (TmpReg == 0)
175909467b48Spatrick return false;
176009467b48Spatrick
1761*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
176209467b48Spatrick .addMBB(TrueMBB).addImm(CC);
176309467b48Spatrick finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
176409467b48Spatrick return true;
176509467b48Spatrick }
176609467b48Spatrick
176709467b48Spatrick // Otherwise do a clumsy setcc and re-test it.
176809467b48Spatrick // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
176909467b48Spatrick // in an explicit cast, so make sure to handle that correctly.
1770097a140dSpatrick Register OpReg = getRegForValue(BI->getCondition());
177109467b48Spatrick if (OpReg == 0) return false;
177209467b48Spatrick
177309467b48Spatrick // In case OpReg is a K register, COPY to a GPR
177409467b48Spatrick if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
177509467b48Spatrick unsigned KOpReg = OpReg;
177609467b48Spatrick OpReg = createResultReg(&X86::GR32RegClass);
1777*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
177809467b48Spatrick TII.get(TargetOpcode::COPY), OpReg)
177909467b48Spatrick .addReg(KOpReg);
178073471bf0Spatrick OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit);
178109467b48Spatrick }
1782*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
178309467b48Spatrick .addReg(OpReg)
178409467b48Spatrick .addImm(1);
1785*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
178609467b48Spatrick .addMBB(TrueMBB).addImm(X86::COND_NE);
178709467b48Spatrick finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
178809467b48Spatrick return true;
178909467b48Spatrick }
179009467b48Spatrick
X86SelectShift(const Instruction * I)179109467b48Spatrick bool X86FastISel::X86SelectShift(const Instruction *I) {
179209467b48Spatrick unsigned CReg = 0, OpReg = 0;
179309467b48Spatrick const TargetRegisterClass *RC = nullptr;
179409467b48Spatrick if (I->getType()->isIntegerTy(8)) {
179509467b48Spatrick CReg = X86::CL;
179609467b48Spatrick RC = &X86::GR8RegClass;
179709467b48Spatrick switch (I->getOpcode()) {
179809467b48Spatrick case Instruction::LShr: OpReg = X86::SHR8rCL; break;
179909467b48Spatrick case Instruction::AShr: OpReg = X86::SAR8rCL; break;
180009467b48Spatrick case Instruction::Shl: OpReg = X86::SHL8rCL; break;
180109467b48Spatrick default: return false;
180209467b48Spatrick }
180309467b48Spatrick } else if (I->getType()->isIntegerTy(16)) {
180409467b48Spatrick CReg = X86::CX;
180509467b48Spatrick RC = &X86::GR16RegClass;
180609467b48Spatrick switch (I->getOpcode()) {
180709467b48Spatrick default: llvm_unreachable("Unexpected shift opcode");
180809467b48Spatrick case Instruction::LShr: OpReg = X86::SHR16rCL; break;
180909467b48Spatrick case Instruction::AShr: OpReg = X86::SAR16rCL; break;
181009467b48Spatrick case Instruction::Shl: OpReg = X86::SHL16rCL; break;
181109467b48Spatrick }
181209467b48Spatrick } else if (I->getType()->isIntegerTy(32)) {
181309467b48Spatrick CReg = X86::ECX;
181409467b48Spatrick RC = &X86::GR32RegClass;
181509467b48Spatrick switch (I->getOpcode()) {
181609467b48Spatrick default: llvm_unreachable("Unexpected shift opcode");
181709467b48Spatrick case Instruction::LShr: OpReg = X86::SHR32rCL; break;
181809467b48Spatrick case Instruction::AShr: OpReg = X86::SAR32rCL; break;
181909467b48Spatrick case Instruction::Shl: OpReg = X86::SHL32rCL; break;
182009467b48Spatrick }
182109467b48Spatrick } else if (I->getType()->isIntegerTy(64)) {
182209467b48Spatrick CReg = X86::RCX;
182309467b48Spatrick RC = &X86::GR64RegClass;
182409467b48Spatrick switch (I->getOpcode()) {
182509467b48Spatrick default: llvm_unreachable("Unexpected shift opcode");
182609467b48Spatrick case Instruction::LShr: OpReg = X86::SHR64rCL; break;
182709467b48Spatrick case Instruction::AShr: OpReg = X86::SAR64rCL; break;
182809467b48Spatrick case Instruction::Shl: OpReg = X86::SHL64rCL; break;
182909467b48Spatrick }
183009467b48Spatrick } else {
183109467b48Spatrick return false;
183209467b48Spatrick }
183309467b48Spatrick
183409467b48Spatrick MVT VT;
183509467b48Spatrick if (!isTypeLegal(I->getType(), VT))
183609467b48Spatrick return false;
183709467b48Spatrick
1838097a140dSpatrick Register Op0Reg = getRegForValue(I->getOperand(0));
183909467b48Spatrick if (Op0Reg == 0) return false;
184009467b48Spatrick
1841097a140dSpatrick Register Op1Reg = getRegForValue(I->getOperand(1));
184209467b48Spatrick if (Op1Reg == 0) return false;
1843*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
184409467b48Spatrick CReg).addReg(Op1Reg);
184509467b48Spatrick
184609467b48Spatrick // The shift instruction uses X86::CL. If we defined a super-register
184709467b48Spatrick // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
184809467b48Spatrick if (CReg != X86::CL)
1849*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
185009467b48Spatrick TII.get(TargetOpcode::KILL), X86::CL)
185109467b48Spatrick .addReg(CReg, RegState::Kill);
185209467b48Spatrick
1853097a140dSpatrick Register ResultReg = createResultReg(RC);
1854*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg)
185509467b48Spatrick .addReg(Op0Reg);
185609467b48Spatrick updateValueMap(I, ResultReg);
185709467b48Spatrick return true;
185809467b48Spatrick }
185909467b48Spatrick
X86SelectDivRem(const Instruction * I)186009467b48Spatrick bool X86FastISel::X86SelectDivRem(const Instruction *I) {
186109467b48Spatrick const static unsigned NumTypes = 4; // i8, i16, i32, i64
186209467b48Spatrick const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
186309467b48Spatrick const static bool S = true; // IsSigned
186409467b48Spatrick const static bool U = false; // !IsSigned
186509467b48Spatrick const static unsigned Copy = TargetOpcode::COPY;
186609467b48Spatrick // For the X86 DIV/IDIV instruction, in most cases the dividend
186709467b48Spatrick // (numerator) must be in a specific register pair highreg:lowreg,
186809467b48Spatrick // producing the quotient in lowreg and the remainder in highreg.
186909467b48Spatrick // For most data types, to set up the instruction, the dividend is
187009467b48Spatrick // copied into lowreg, and lowreg is sign-extended or zero-extended
187109467b48Spatrick // into highreg. The exception is i8, where the dividend is defined
187209467b48Spatrick // as a single register rather than a register pair, and we
187309467b48Spatrick // therefore directly sign-extend or zero-extend the dividend into
187409467b48Spatrick // lowreg, instead of copying, and ignore the highreg.
187509467b48Spatrick const static struct DivRemEntry {
187609467b48Spatrick // The following portion depends only on the data type.
187709467b48Spatrick const TargetRegisterClass *RC;
187809467b48Spatrick unsigned LowInReg; // low part of the register pair
187909467b48Spatrick unsigned HighInReg; // high part of the register pair
188009467b48Spatrick // The following portion depends on both the data type and the operation.
188109467b48Spatrick struct DivRemResult {
188209467b48Spatrick unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
188309467b48Spatrick unsigned OpSignExtend; // Opcode for sign-extending lowreg into
188409467b48Spatrick // highreg, or copying a zero into highreg.
188509467b48Spatrick unsigned OpCopy; // Opcode for copying dividend into lowreg, or
188609467b48Spatrick // zero/sign-extending into lowreg for i8.
188709467b48Spatrick unsigned DivRemResultReg; // Register containing the desired result.
188809467b48Spatrick bool IsOpSigned; // Whether to use signed or unsigned form.
188909467b48Spatrick } ResultTable[NumOps];
189009467b48Spatrick } OpTable[NumTypes] = {
189109467b48Spatrick { &X86::GR8RegClass, X86::AX, 0, {
189209467b48Spatrick { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
189309467b48Spatrick { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
189409467b48Spatrick { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
189509467b48Spatrick { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
189609467b48Spatrick }
189709467b48Spatrick }, // i8
189809467b48Spatrick { &X86::GR16RegClass, X86::AX, X86::DX, {
189909467b48Spatrick { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
190009467b48Spatrick { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
190109467b48Spatrick { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
190209467b48Spatrick { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
190309467b48Spatrick }
190409467b48Spatrick }, // i16
190509467b48Spatrick { &X86::GR32RegClass, X86::EAX, X86::EDX, {
190609467b48Spatrick { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
190709467b48Spatrick { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
190809467b48Spatrick { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
190909467b48Spatrick { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
191009467b48Spatrick }
191109467b48Spatrick }, // i32
191209467b48Spatrick { &X86::GR64RegClass, X86::RAX, X86::RDX, {
191309467b48Spatrick { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
191409467b48Spatrick { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
191509467b48Spatrick { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
191609467b48Spatrick { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
191709467b48Spatrick }
191809467b48Spatrick }, // i64
191909467b48Spatrick };
192009467b48Spatrick
192109467b48Spatrick MVT VT;
192209467b48Spatrick if (!isTypeLegal(I->getType(), VT))
192309467b48Spatrick return false;
192409467b48Spatrick
192509467b48Spatrick unsigned TypeIndex, OpIndex;
192609467b48Spatrick switch (VT.SimpleTy) {
192709467b48Spatrick default: return false;
192809467b48Spatrick case MVT::i8: TypeIndex = 0; break;
192909467b48Spatrick case MVT::i16: TypeIndex = 1; break;
193009467b48Spatrick case MVT::i32: TypeIndex = 2; break;
193109467b48Spatrick case MVT::i64: TypeIndex = 3;
193209467b48Spatrick if (!Subtarget->is64Bit())
193309467b48Spatrick return false;
193409467b48Spatrick break;
193509467b48Spatrick }
193609467b48Spatrick
193709467b48Spatrick switch (I->getOpcode()) {
193809467b48Spatrick default: llvm_unreachable("Unexpected div/rem opcode");
193909467b48Spatrick case Instruction::SDiv: OpIndex = 0; break;
194009467b48Spatrick case Instruction::SRem: OpIndex = 1; break;
194109467b48Spatrick case Instruction::UDiv: OpIndex = 2; break;
194209467b48Spatrick case Instruction::URem: OpIndex = 3; break;
194309467b48Spatrick }
194409467b48Spatrick
194509467b48Spatrick const DivRemEntry &TypeEntry = OpTable[TypeIndex];
194609467b48Spatrick const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1947097a140dSpatrick Register Op0Reg = getRegForValue(I->getOperand(0));
194809467b48Spatrick if (Op0Reg == 0)
194909467b48Spatrick return false;
1950097a140dSpatrick Register Op1Reg = getRegForValue(I->getOperand(1));
195109467b48Spatrick if (Op1Reg == 0)
195209467b48Spatrick return false;
195309467b48Spatrick
195409467b48Spatrick // Move op0 into low-order input register.
1955*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
195609467b48Spatrick TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
195709467b48Spatrick // Zero-extend or sign-extend into high-order input register.
195809467b48Spatrick if (OpEntry.OpSignExtend) {
195909467b48Spatrick if (OpEntry.IsOpSigned)
1960*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
196109467b48Spatrick TII.get(OpEntry.OpSignExtend));
196209467b48Spatrick else {
1963097a140dSpatrick Register Zero32 = createResultReg(&X86::GR32RegClass);
1964*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
196509467b48Spatrick TII.get(X86::MOV32r0), Zero32);
196609467b48Spatrick
196709467b48Spatrick // Copy the zero into the appropriate sub/super/identical physical
196809467b48Spatrick // register. Unfortunately the operations needed are not uniform enough
196909467b48Spatrick // to fit neatly into the table above.
197009467b48Spatrick if (VT == MVT::i16) {
1971*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
197209467b48Spatrick TII.get(Copy), TypeEntry.HighInReg)
197309467b48Spatrick .addReg(Zero32, 0, X86::sub_16bit);
197409467b48Spatrick } else if (VT == MVT::i32) {
1975*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
197609467b48Spatrick TII.get(Copy), TypeEntry.HighInReg)
197709467b48Spatrick .addReg(Zero32);
197809467b48Spatrick } else if (VT == MVT::i64) {
1979*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
198009467b48Spatrick TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
198109467b48Spatrick .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
198209467b48Spatrick }
198309467b48Spatrick }
198409467b48Spatrick }
198509467b48Spatrick // Generate the DIV/IDIV instruction.
1986*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
198709467b48Spatrick TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
198809467b48Spatrick // For i8 remainder, we can't reference ah directly, as we'll end
198909467b48Spatrick // up with bogus copies like %r9b = COPY %ah. Reference ax
199009467b48Spatrick // instead to prevent ah references in a rex instruction.
199109467b48Spatrick //
199209467b48Spatrick // The current assumption of the fast register allocator is that isel
199309467b48Spatrick // won't generate explicit references to the GR8_NOREX registers. If
199409467b48Spatrick // the allocator and/or the backend get enhanced to be more robust in
199509467b48Spatrick // that regard, this can be, and should be, removed.
199609467b48Spatrick unsigned ResultReg = 0;
199709467b48Spatrick if ((I->getOpcode() == Instruction::SRem ||
199809467b48Spatrick I->getOpcode() == Instruction::URem) &&
199909467b48Spatrick OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
2000097a140dSpatrick Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
2001097a140dSpatrick Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
2002*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
200309467b48Spatrick TII.get(Copy), SourceSuperReg).addReg(X86::AX);
200409467b48Spatrick
200509467b48Spatrick // Shift AX right by 8 bits instead of using AH.
2006*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri),
200709467b48Spatrick ResultSuperReg).addReg(SourceSuperReg).addImm(8);
200809467b48Spatrick
200909467b48Spatrick // Now reference the 8-bit subreg of the result.
201009467b48Spatrick ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
201173471bf0Spatrick X86::sub_8bit);
201209467b48Spatrick }
201309467b48Spatrick // Copy the result out of the physreg if we haven't already.
201409467b48Spatrick if (!ResultReg) {
201509467b48Spatrick ResultReg = createResultReg(TypeEntry.RC);
2016*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg)
201709467b48Spatrick .addReg(OpEntry.DivRemResultReg);
201809467b48Spatrick }
201909467b48Spatrick updateValueMap(I, ResultReg);
202009467b48Spatrick
202109467b48Spatrick return true;
202209467b48Spatrick }
202309467b48Spatrick
202409467b48Spatrick /// Emit a conditional move instruction (if the are supported) to lower
202509467b48Spatrick /// the select.
X86FastEmitCMoveSelect(MVT RetVT,const Instruction * I)202609467b48Spatrick bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
202709467b48Spatrick // Check if the subtarget supports these instructions.
2028*d415bd75Srobert if (!Subtarget->canUseCMOV())
202909467b48Spatrick return false;
203009467b48Spatrick
203109467b48Spatrick // FIXME: Add support for i8.
203209467b48Spatrick if (RetVT < MVT::i16 || RetVT > MVT::i64)
203309467b48Spatrick return false;
203409467b48Spatrick
203509467b48Spatrick const Value *Cond = I->getOperand(0);
203609467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
203709467b48Spatrick bool NeedTest = true;
203809467b48Spatrick X86::CondCode CC = X86::COND_NE;
203909467b48Spatrick
204009467b48Spatrick // Optimize conditions coming from a compare if both instructions are in the
204109467b48Spatrick // same basic block (values defined in other basic blocks may not have
204209467b48Spatrick // initialized registers).
204309467b48Spatrick const auto *CI = dyn_cast<CmpInst>(Cond);
204409467b48Spatrick if (CI && (CI->getParent() == I->getParent())) {
204509467b48Spatrick CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
204609467b48Spatrick
204709467b48Spatrick // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
204809467b48Spatrick static const uint16_t SETFOpcTable[2][3] = {
204909467b48Spatrick { X86::COND_NP, X86::COND_E, X86::TEST8rr },
205009467b48Spatrick { X86::COND_P, X86::COND_NE, X86::OR8rr }
205109467b48Spatrick };
205209467b48Spatrick const uint16_t *SETFOpc = nullptr;
205309467b48Spatrick switch (Predicate) {
205409467b48Spatrick default: break;
205509467b48Spatrick case CmpInst::FCMP_OEQ:
205609467b48Spatrick SETFOpc = &SETFOpcTable[0][0];
205709467b48Spatrick Predicate = CmpInst::ICMP_NE;
205809467b48Spatrick break;
205909467b48Spatrick case CmpInst::FCMP_UNE:
206009467b48Spatrick SETFOpc = &SETFOpcTable[1][0];
206109467b48Spatrick Predicate = CmpInst::ICMP_NE;
206209467b48Spatrick break;
206309467b48Spatrick }
206409467b48Spatrick
206509467b48Spatrick bool NeedSwap;
206609467b48Spatrick std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
206709467b48Spatrick assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
206809467b48Spatrick
206909467b48Spatrick const Value *CmpLHS = CI->getOperand(0);
207009467b48Spatrick const Value *CmpRHS = CI->getOperand(1);
207109467b48Spatrick if (NeedSwap)
207209467b48Spatrick std::swap(CmpLHS, CmpRHS);
207309467b48Spatrick
207409467b48Spatrick EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
207509467b48Spatrick // Emit a compare of the LHS and RHS, setting the flags.
207609467b48Spatrick if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
207709467b48Spatrick return false;
207809467b48Spatrick
207909467b48Spatrick if (SETFOpc) {
2080097a140dSpatrick Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2081097a140dSpatrick Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2082*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
208309467b48Spatrick FlagReg1).addImm(SETFOpc[0]);
2084*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
208509467b48Spatrick FlagReg2).addImm(SETFOpc[1]);
208609467b48Spatrick auto const &II = TII.get(SETFOpc[2]);
208709467b48Spatrick if (II.getNumDefs()) {
2088097a140dSpatrick Register TmpReg = createResultReg(&X86::GR8RegClass);
2089*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg)
209009467b48Spatrick .addReg(FlagReg2).addReg(FlagReg1);
209109467b48Spatrick } else {
2092*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
209309467b48Spatrick .addReg(FlagReg2).addReg(FlagReg1);
209409467b48Spatrick }
209509467b48Spatrick }
209609467b48Spatrick NeedTest = false;
209709467b48Spatrick } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
209809467b48Spatrick // Fake request the condition, otherwise the intrinsic might be completely
209909467b48Spatrick // optimized away.
2100097a140dSpatrick Register TmpReg = getRegForValue(Cond);
210109467b48Spatrick if (TmpReg == 0)
210209467b48Spatrick return false;
210309467b48Spatrick
210409467b48Spatrick NeedTest = false;
210509467b48Spatrick }
210609467b48Spatrick
210709467b48Spatrick if (NeedTest) {
210809467b48Spatrick // Selects operate on i1, however, CondReg is 8 bits width and may contain
210909467b48Spatrick // garbage. Indeed, only the less significant bit is supposed to be
211009467b48Spatrick // accurate. If we read more than the lsb, we may see non-zero values
211109467b48Spatrick // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
211209467b48Spatrick // the select. This is achieved by performing TEST against 1.
2113097a140dSpatrick Register CondReg = getRegForValue(Cond);
211409467b48Spatrick if (CondReg == 0)
211509467b48Spatrick return false;
211609467b48Spatrick
211709467b48Spatrick // In case OpReg is a K register, COPY to a GPR
211809467b48Spatrick if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
211909467b48Spatrick unsigned KCondReg = CondReg;
212009467b48Spatrick CondReg = createResultReg(&X86::GR32RegClass);
2121*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
212209467b48Spatrick TII.get(TargetOpcode::COPY), CondReg)
212373471bf0Spatrick .addReg(KCondReg);
212473471bf0Spatrick CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
212509467b48Spatrick }
2126*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
212773471bf0Spatrick .addReg(CondReg)
212809467b48Spatrick .addImm(1);
212909467b48Spatrick }
213009467b48Spatrick
213109467b48Spatrick const Value *LHS = I->getOperand(1);
213209467b48Spatrick const Value *RHS = I->getOperand(2);
213309467b48Spatrick
2134097a140dSpatrick Register RHSReg = getRegForValue(RHS);
2135097a140dSpatrick Register LHSReg = getRegForValue(LHS);
213609467b48Spatrick if (!LHSReg || !RHSReg)
213709467b48Spatrick return false;
213809467b48Spatrick
213909467b48Spatrick const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
214009467b48Spatrick unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
214173471bf0Spatrick Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
214209467b48Spatrick updateValueMap(I, ResultReg);
214309467b48Spatrick return true;
214409467b48Spatrick }
214509467b48Spatrick
214609467b48Spatrick /// Emit SSE or AVX instructions to lower the select.
214709467b48Spatrick ///
214809467b48Spatrick /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
214909467b48Spatrick /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
215009467b48Spatrick /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
X86FastEmitSSESelect(MVT RetVT,const Instruction * I)215109467b48Spatrick bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
215209467b48Spatrick // Optimize conditions coming from a compare if both instructions are in the
215309467b48Spatrick // same basic block (values defined in other basic blocks may not have
215409467b48Spatrick // initialized registers).
215509467b48Spatrick const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
215609467b48Spatrick if (!CI || (CI->getParent() != I->getParent()))
215709467b48Spatrick return false;
215809467b48Spatrick
215909467b48Spatrick if (I->getType() != CI->getOperand(0)->getType() ||
216009467b48Spatrick !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
216109467b48Spatrick (Subtarget->hasSSE2() && RetVT == MVT::f64)))
216209467b48Spatrick return false;
216309467b48Spatrick
216409467b48Spatrick const Value *CmpLHS = CI->getOperand(0);
216509467b48Spatrick const Value *CmpRHS = CI->getOperand(1);
216609467b48Spatrick CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
216709467b48Spatrick
216809467b48Spatrick // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
216909467b48Spatrick // We don't have to materialize a zero constant for this case and can just use
217009467b48Spatrick // %x again on the RHS.
217109467b48Spatrick if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
217209467b48Spatrick const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
217309467b48Spatrick if (CmpRHSC && CmpRHSC->isNullValue())
217409467b48Spatrick CmpRHS = CmpLHS;
217509467b48Spatrick }
217609467b48Spatrick
217709467b48Spatrick unsigned CC;
217809467b48Spatrick bool NeedSwap;
217909467b48Spatrick std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
218009467b48Spatrick if (CC > 7 && !Subtarget->hasAVX())
218109467b48Spatrick return false;
218209467b48Spatrick
218309467b48Spatrick if (NeedSwap)
218409467b48Spatrick std::swap(CmpLHS, CmpRHS);
218509467b48Spatrick
218609467b48Spatrick const Value *LHS = I->getOperand(1);
218709467b48Spatrick const Value *RHS = I->getOperand(2);
218809467b48Spatrick
2189097a140dSpatrick Register LHSReg = getRegForValue(LHS);
2190097a140dSpatrick Register RHSReg = getRegForValue(RHS);
2191097a140dSpatrick Register CmpLHSReg = getRegForValue(CmpLHS);
2192097a140dSpatrick Register CmpRHSReg = getRegForValue(CmpRHS);
2193097a140dSpatrick if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
219409467b48Spatrick return false;
219509467b48Spatrick
219609467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
219709467b48Spatrick unsigned ResultReg;
219809467b48Spatrick
219909467b48Spatrick if (Subtarget->hasAVX512()) {
220009467b48Spatrick // If we have AVX512 we can use a mask compare and masked movss/sd.
220109467b48Spatrick const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
220209467b48Spatrick const TargetRegisterClass *VK1 = &X86::VK1RegClass;
220309467b48Spatrick
220409467b48Spatrick unsigned CmpOpcode =
220509467b48Spatrick (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
220673471bf0Spatrick Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg,
220773471bf0Spatrick CC);
220809467b48Spatrick
220909467b48Spatrick // Need an IMPLICIT_DEF for the input that is used to generate the upper
221009467b48Spatrick // bits of the result register since its not based on any of the inputs.
2211097a140dSpatrick Register ImplicitDefReg = createResultReg(VR128X);
2212*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
221309467b48Spatrick TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
221409467b48Spatrick
221509467b48Spatrick // Place RHSReg is the passthru of the masked movss/sd operation and put
221609467b48Spatrick // LHS in the input. The mask input comes from the compare.
221709467b48Spatrick unsigned MovOpcode =
221809467b48Spatrick (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
221973471bf0Spatrick unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg,
222073471bf0Spatrick ImplicitDefReg, LHSReg);
222109467b48Spatrick
222209467b48Spatrick ResultReg = createResultReg(RC);
2223*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
222409467b48Spatrick TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
222509467b48Spatrick
222609467b48Spatrick } else if (Subtarget->hasAVX()) {
222709467b48Spatrick const TargetRegisterClass *VR128 = &X86::VR128RegClass;
222809467b48Spatrick
222909467b48Spatrick // If we have AVX, create 1 blendv instead of 3 logic instructions.
223009467b48Spatrick // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
223109467b48Spatrick // uses XMM0 as the selection register. That may need just as many
223209467b48Spatrick // instructions as the AND/ANDN/OR sequence due to register moves, so
223309467b48Spatrick // don't bother.
223409467b48Spatrick unsigned CmpOpcode =
223509467b48Spatrick (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
223609467b48Spatrick unsigned BlendOpcode =
223709467b48Spatrick (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
223809467b48Spatrick
223973471bf0Spatrick Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg,
224073471bf0Spatrick CC);
224173471bf0Spatrick Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg,
224273471bf0Spatrick CmpReg);
224309467b48Spatrick ResultReg = createResultReg(RC);
2244*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
224509467b48Spatrick TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
224609467b48Spatrick } else {
224709467b48Spatrick // Choose the SSE instruction sequence based on data type (float or double).
224809467b48Spatrick static const uint16_t OpcTable[2][4] = {
224909467b48Spatrick { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr },
225009467b48Spatrick { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr }
225109467b48Spatrick };
225209467b48Spatrick
225309467b48Spatrick const uint16_t *Opc = nullptr;
225409467b48Spatrick switch (RetVT.SimpleTy) {
225509467b48Spatrick default: return false;
225609467b48Spatrick case MVT::f32: Opc = &OpcTable[0][0]; break;
225709467b48Spatrick case MVT::f64: Opc = &OpcTable[1][0]; break;
225809467b48Spatrick }
225909467b48Spatrick
226009467b48Spatrick const TargetRegisterClass *VR128 = &X86::VR128RegClass;
226173471bf0Spatrick Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC);
226273471bf0Spatrick Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg);
226373471bf0Spatrick Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg);
226473471bf0Spatrick Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg);
226509467b48Spatrick ResultReg = createResultReg(RC);
2266*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
226709467b48Spatrick TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
226809467b48Spatrick }
226909467b48Spatrick updateValueMap(I, ResultReg);
227009467b48Spatrick return true;
227109467b48Spatrick }
227209467b48Spatrick
X86FastEmitPseudoSelect(MVT RetVT,const Instruction * I)227309467b48Spatrick bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
227409467b48Spatrick // These are pseudo CMOV instructions and will be later expanded into control-
227509467b48Spatrick // flow.
227609467b48Spatrick unsigned Opc;
227709467b48Spatrick switch (RetVT.SimpleTy) {
227809467b48Spatrick default: return false;
227909467b48Spatrick case MVT::i8: Opc = X86::CMOV_GR8; break;
228009467b48Spatrick case MVT::i16: Opc = X86::CMOV_GR16; break;
228109467b48Spatrick case MVT::i32: Opc = X86::CMOV_GR32; break;
2282*d415bd75Srobert case MVT::f16:
2283*d415bd75Srobert Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break;
2284*d415bd75Srobert case MVT::f32:
2285*d415bd75Srobert Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break;
2286*d415bd75Srobert case MVT::f64:
2287*d415bd75Srobert Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break;
228809467b48Spatrick }
228909467b48Spatrick
229009467b48Spatrick const Value *Cond = I->getOperand(0);
229109467b48Spatrick X86::CondCode CC = X86::COND_NE;
229209467b48Spatrick
229309467b48Spatrick // Optimize conditions coming from a compare if both instructions are in the
229409467b48Spatrick // same basic block (values defined in other basic blocks may not have
229509467b48Spatrick // initialized registers).
229609467b48Spatrick const auto *CI = dyn_cast<CmpInst>(Cond);
229709467b48Spatrick if (CI && (CI->getParent() == I->getParent())) {
229809467b48Spatrick bool NeedSwap;
229909467b48Spatrick std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
230009467b48Spatrick if (CC > X86::LAST_VALID_COND)
230109467b48Spatrick return false;
230209467b48Spatrick
230309467b48Spatrick const Value *CmpLHS = CI->getOperand(0);
230409467b48Spatrick const Value *CmpRHS = CI->getOperand(1);
230509467b48Spatrick
230609467b48Spatrick if (NeedSwap)
230709467b48Spatrick std::swap(CmpLHS, CmpRHS);
230809467b48Spatrick
230909467b48Spatrick EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
231009467b48Spatrick if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
231109467b48Spatrick return false;
231209467b48Spatrick } else {
2313097a140dSpatrick Register CondReg = getRegForValue(Cond);
231409467b48Spatrick if (CondReg == 0)
231509467b48Spatrick return false;
231609467b48Spatrick
231709467b48Spatrick // In case OpReg is a K register, COPY to a GPR
231809467b48Spatrick if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
231909467b48Spatrick unsigned KCondReg = CondReg;
232009467b48Spatrick CondReg = createResultReg(&X86::GR32RegClass);
2321*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
232209467b48Spatrick TII.get(TargetOpcode::COPY), CondReg)
232373471bf0Spatrick .addReg(KCondReg);
232473471bf0Spatrick CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
232509467b48Spatrick }
2326*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
232773471bf0Spatrick .addReg(CondReg)
232809467b48Spatrick .addImm(1);
232909467b48Spatrick }
233009467b48Spatrick
233109467b48Spatrick const Value *LHS = I->getOperand(1);
233209467b48Spatrick const Value *RHS = I->getOperand(2);
233309467b48Spatrick
2334097a140dSpatrick Register LHSReg = getRegForValue(LHS);
2335097a140dSpatrick Register RHSReg = getRegForValue(RHS);
233609467b48Spatrick if (!LHSReg || !RHSReg)
233709467b48Spatrick return false;
233809467b48Spatrick
233909467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
234009467b48Spatrick
2341097a140dSpatrick Register ResultReg =
234273471bf0Spatrick fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
234309467b48Spatrick updateValueMap(I, ResultReg);
234409467b48Spatrick return true;
234509467b48Spatrick }
234609467b48Spatrick
X86SelectSelect(const Instruction * I)234709467b48Spatrick bool X86FastISel::X86SelectSelect(const Instruction *I) {
234809467b48Spatrick MVT RetVT;
234909467b48Spatrick if (!isTypeLegal(I->getType(), RetVT))
235009467b48Spatrick return false;
235109467b48Spatrick
235209467b48Spatrick // Check if we can fold the select.
235309467b48Spatrick if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
235409467b48Spatrick CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
235509467b48Spatrick const Value *Opnd = nullptr;
235609467b48Spatrick switch (Predicate) {
235709467b48Spatrick default: break;
235809467b48Spatrick case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
235909467b48Spatrick case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
236009467b48Spatrick }
236109467b48Spatrick // No need for a select anymore - this is an unconditional move.
236209467b48Spatrick if (Opnd) {
2363097a140dSpatrick Register OpReg = getRegForValue(Opnd);
236409467b48Spatrick if (OpReg == 0)
236509467b48Spatrick return false;
236609467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2367097a140dSpatrick Register ResultReg = createResultReg(RC);
2368*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
236909467b48Spatrick TII.get(TargetOpcode::COPY), ResultReg)
237073471bf0Spatrick .addReg(OpReg);
237109467b48Spatrick updateValueMap(I, ResultReg);
237209467b48Spatrick return true;
237309467b48Spatrick }
237409467b48Spatrick }
237509467b48Spatrick
237609467b48Spatrick // First try to use real conditional move instructions.
237709467b48Spatrick if (X86FastEmitCMoveSelect(RetVT, I))
237809467b48Spatrick return true;
237909467b48Spatrick
238009467b48Spatrick // Try to use a sequence of SSE instructions to simulate a conditional move.
238109467b48Spatrick if (X86FastEmitSSESelect(RetVT, I))
238209467b48Spatrick return true;
238309467b48Spatrick
238409467b48Spatrick // Fall-back to pseudo conditional move instructions, which will be later
238509467b48Spatrick // converted to control-flow.
238609467b48Spatrick if (X86FastEmitPseudoSelect(RetVT, I))
238709467b48Spatrick return true;
238809467b48Spatrick
238909467b48Spatrick return false;
239009467b48Spatrick }
239109467b48Spatrick
239209467b48Spatrick // Common code for X86SelectSIToFP and X86SelectUIToFP.
X86SelectIntToFP(const Instruction * I,bool IsSigned)239309467b48Spatrick bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
239409467b48Spatrick // The target-independent selection algorithm in FastISel already knows how
239509467b48Spatrick // to select a SINT_TO_FP if the target is SSE but not AVX.
239609467b48Spatrick // Early exit if the subtarget doesn't have AVX.
239709467b48Spatrick // Unsigned conversion requires avx512.
239809467b48Spatrick bool HasAVX512 = Subtarget->hasAVX512();
239909467b48Spatrick if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
240009467b48Spatrick return false;
240109467b48Spatrick
240209467b48Spatrick // TODO: We could sign extend narrower types.
240309467b48Spatrick MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
240409467b48Spatrick if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
240509467b48Spatrick return false;
240609467b48Spatrick
240709467b48Spatrick // Select integer to float/double conversion.
2408097a140dSpatrick Register OpReg = getRegForValue(I->getOperand(0));
240909467b48Spatrick if (OpReg == 0)
241009467b48Spatrick return false;
241109467b48Spatrick
241209467b48Spatrick unsigned Opcode;
241309467b48Spatrick
241409467b48Spatrick static const uint16_t SCvtOpc[2][2][2] = {
241509467b48Spatrick { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr },
241609467b48Spatrick { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } },
241709467b48Spatrick { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
241809467b48Spatrick { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
241909467b48Spatrick };
242009467b48Spatrick static const uint16_t UCvtOpc[2][2] = {
242109467b48Spatrick { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
242209467b48Spatrick { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
242309467b48Spatrick };
242409467b48Spatrick bool Is64Bit = SrcVT == MVT::i64;
242509467b48Spatrick
242609467b48Spatrick if (I->getType()->isDoubleTy()) {
242709467b48Spatrick // s/uitofp int -> double
242809467b48Spatrick Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
242909467b48Spatrick } else if (I->getType()->isFloatTy()) {
243009467b48Spatrick // s/uitofp int -> float
243109467b48Spatrick Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
243209467b48Spatrick } else
243309467b48Spatrick return false;
243409467b48Spatrick
243509467b48Spatrick MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
243609467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2437097a140dSpatrick Register ImplicitDefReg = createResultReg(RC);
2438*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
243909467b48Spatrick TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
244073471bf0Spatrick Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg);
244109467b48Spatrick updateValueMap(I, ResultReg);
244209467b48Spatrick return true;
244309467b48Spatrick }
244409467b48Spatrick
X86SelectSIToFP(const Instruction * I)244509467b48Spatrick bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
244609467b48Spatrick return X86SelectIntToFP(I, /*IsSigned*/true);
244709467b48Spatrick }
244809467b48Spatrick
X86SelectUIToFP(const Instruction * I)244909467b48Spatrick bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
245009467b48Spatrick return X86SelectIntToFP(I, /*IsSigned*/false);
245109467b48Spatrick }
245209467b48Spatrick
245309467b48Spatrick // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
X86SelectFPExtOrFPTrunc(const Instruction * I,unsigned TargetOpc,const TargetRegisterClass * RC)245409467b48Spatrick bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
245509467b48Spatrick unsigned TargetOpc,
245609467b48Spatrick const TargetRegisterClass *RC) {
245709467b48Spatrick assert((I->getOpcode() == Instruction::FPExt ||
245809467b48Spatrick I->getOpcode() == Instruction::FPTrunc) &&
245909467b48Spatrick "Instruction must be an FPExt or FPTrunc!");
246009467b48Spatrick bool HasAVX = Subtarget->hasAVX();
246109467b48Spatrick
2462097a140dSpatrick Register OpReg = getRegForValue(I->getOperand(0));
246309467b48Spatrick if (OpReg == 0)
246409467b48Spatrick return false;
246509467b48Spatrick
246609467b48Spatrick unsigned ImplicitDefReg;
246709467b48Spatrick if (HasAVX) {
246809467b48Spatrick ImplicitDefReg = createResultReg(RC);
2469*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
247009467b48Spatrick TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
247109467b48Spatrick
247209467b48Spatrick }
247309467b48Spatrick
2474097a140dSpatrick Register ResultReg = createResultReg(RC);
247509467b48Spatrick MachineInstrBuilder MIB;
2476*d415bd75Srobert MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc),
247709467b48Spatrick ResultReg);
247809467b48Spatrick
247909467b48Spatrick if (HasAVX)
248009467b48Spatrick MIB.addReg(ImplicitDefReg);
248109467b48Spatrick
248209467b48Spatrick MIB.addReg(OpReg);
248309467b48Spatrick updateValueMap(I, ResultReg);
248409467b48Spatrick return true;
248509467b48Spatrick }
248609467b48Spatrick
X86SelectFPExt(const Instruction * I)248709467b48Spatrick bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2488*d415bd75Srobert if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() &&
248909467b48Spatrick I->getOperand(0)->getType()->isFloatTy()) {
249009467b48Spatrick bool HasAVX512 = Subtarget->hasAVX512();
249109467b48Spatrick // fpext from float to double.
249209467b48Spatrick unsigned Opc =
249309467b48Spatrick HasAVX512 ? X86::VCVTSS2SDZrr
249409467b48Spatrick : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
249509467b48Spatrick return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
249609467b48Spatrick }
249709467b48Spatrick
249809467b48Spatrick return false;
249909467b48Spatrick }
250009467b48Spatrick
X86SelectFPTrunc(const Instruction * I)250109467b48Spatrick bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2502*d415bd75Srobert if (Subtarget->hasSSE2() && I->getType()->isFloatTy() &&
250309467b48Spatrick I->getOperand(0)->getType()->isDoubleTy()) {
250409467b48Spatrick bool HasAVX512 = Subtarget->hasAVX512();
250509467b48Spatrick // fptrunc from double to float.
250609467b48Spatrick unsigned Opc =
250709467b48Spatrick HasAVX512 ? X86::VCVTSD2SSZrr
250809467b48Spatrick : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
250909467b48Spatrick return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
251009467b48Spatrick }
251109467b48Spatrick
251209467b48Spatrick return false;
251309467b48Spatrick }
251409467b48Spatrick
X86SelectTrunc(const Instruction * I)251509467b48Spatrick bool X86FastISel::X86SelectTrunc(const Instruction *I) {
251609467b48Spatrick EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
251709467b48Spatrick EVT DstVT = TLI.getValueType(DL, I->getType());
251809467b48Spatrick
251909467b48Spatrick // This code only handles truncation to byte.
252009467b48Spatrick if (DstVT != MVT::i8 && DstVT != MVT::i1)
252109467b48Spatrick return false;
252209467b48Spatrick if (!TLI.isTypeLegal(SrcVT))
252309467b48Spatrick return false;
252409467b48Spatrick
2525097a140dSpatrick Register InputReg = getRegForValue(I->getOperand(0));
252609467b48Spatrick if (!InputReg)
252709467b48Spatrick // Unhandled operand. Halt "fast" selection and bail.
252809467b48Spatrick return false;
252909467b48Spatrick
253009467b48Spatrick if (SrcVT == MVT::i8) {
253109467b48Spatrick // Truncate from i8 to i1; no code needed.
253209467b48Spatrick updateValueMap(I, InputReg);
253309467b48Spatrick return true;
253409467b48Spatrick }
253509467b48Spatrick
253609467b48Spatrick // Issue an extract_subreg.
253773471bf0Spatrick Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg,
253809467b48Spatrick X86::sub_8bit);
253909467b48Spatrick if (!ResultReg)
254009467b48Spatrick return false;
254109467b48Spatrick
254209467b48Spatrick updateValueMap(I, ResultReg);
254309467b48Spatrick return true;
254409467b48Spatrick }
254509467b48Spatrick
IsMemcpySmall(uint64_t Len)254609467b48Spatrick bool X86FastISel::IsMemcpySmall(uint64_t Len) {
254709467b48Spatrick return Len <= (Subtarget->is64Bit() ? 32 : 16);
254809467b48Spatrick }
254909467b48Spatrick
TryEmitSmallMemcpy(X86AddressMode DestAM,X86AddressMode SrcAM,uint64_t Len)255009467b48Spatrick bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
255109467b48Spatrick X86AddressMode SrcAM, uint64_t Len) {
255209467b48Spatrick
255309467b48Spatrick // Make sure we don't bloat code by inlining very large memcpy's.
255409467b48Spatrick if (!IsMemcpySmall(Len))
255509467b48Spatrick return false;
255609467b48Spatrick
255709467b48Spatrick bool i64Legal = Subtarget->is64Bit();
255809467b48Spatrick
255909467b48Spatrick // We don't care about alignment here since we just emit integer accesses.
256009467b48Spatrick while (Len) {
256109467b48Spatrick MVT VT;
256209467b48Spatrick if (Len >= 8 && i64Legal)
256309467b48Spatrick VT = MVT::i64;
256409467b48Spatrick else if (Len >= 4)
256509467b48Spatrick VT = MVT::i32;
256609467b48Spatrick else if (Len >= 2)
256709467b48Spatrick VT = MVT::i16;
256809467b48Spatrick else
256909467b48Spatrick VT = MVT::i8;
257009467b48Spatrick
257109467b48Spatrick unsigned Reg;
257209467b48Spatrick bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
257373471bf0Spatrick RV &= X86FastEmitStore(VT, Reg, DestAM);
257409467b48Spatrick assert(RV && "Failed to emit load or store??");
257573471bf0Spatrick (void)RV;
257609467b48Spatrick
257709467b48Spatrick unsigned Size = VT.getSizeInBits()/8;
257809467b48Spatrick Len -= Size;
257909467b48Spatrick DestAM.Disp += Size;
258009467b48Spatrick SrcAM.Disp += Size;
258109467b48Spatrick }
258209467b48Spatrick
258309467b48Spatrick return true;
258409467b48Spatrick }
258509467b48Spatrick
fastLowerIntrinsicCall(const IntrinsicInst * II)258609467b48Spatrick bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
258709467b48Spatrick // FIXME: Handle more intrinsics.
258809467b48Spatrick switch (II->getIntrinsicID()) {
258909467b48Spatrick default: return false;
259009467b48Spatrick case Intrinsic::convert_from_fp16:
259109467b48Spatrick case Intrinsic::convert_to_fp16: {
259209467b48Spatrick if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
259309467b48Spatrick return false;
259409467b48Spatrick
259509467b48Spatrick const Value *Op = II->getArgOperand(0);
2596097a140dSpatrick Register InputReg = getRegForValue(Op);
259709467b48Spatrick if (InputReg == 0)
259809467b48Spatrick return false;
259909467b48Spatrick
260009467b48Spatrick // F16C only allows converting from float to half and from half to float.
260109467b48Spatrick bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
260209467b48Spatrick if (IsFloatToHalf) {
260309467b48Spatrick if (!Op->getType()->isFloatTy())
260409467b48Spatrick return false;
260509467b48Spatrick } else {
260609467b48Spatrick if (!II->getType()->isFloatTy())
260709467b48Spatrick return false;
260809467b48Spatrick }
260909467b48Spatrick
261009467b48Spatrick unsigned ResultReg = 0;
261109467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
261209467b48Spatrick if (IsFloatToHalf) {
261309467b48Spatrick // 'InputReg' is implicitly promoted from register class FR32 to
261409467b48Spatrick // register class VR128 by method 'constrainOperandRegClass' which is
261509467b48Spatrick // directly called by 'fastEmitInst_ri'.
261609467b48Spatrick // Instruction VCVTPS2PHrr takes an extra immediate operand which is
261709467b48Spatrick // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
261809467b48Spatrick // It's consistent with the other FP instructions, which are usually
261909467b48Spatrick // controlled by MXCSR.
2620097a140dSpatrick unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2621097a140dSpatrick : X86::VCVTPS2PHrr;
262273471bf0Spatrick InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4);
262309467b48Spatrick
262409467b48Spatrick // Move the lower 32-bits of ResultReg to another register of class GR32.
2625097a140dSpatrick Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2626097a140dSpatrick : X86::VMOVPDI2DIrr;
262709467b48Spatrick ResultReg = createResultReg(&X86::GR32RegClass);
2628*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
262909467b48Spatrick .addReg(InputReg, RegState::Kill);
263009467b48Spatrick
263109467b48Spatrick // The result value is in the lower 16-bits of ResultReg.
263209467b48Spatrick unsigned RegIdx = X86::sub_16bit;
263373471bf0Spatrick ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx);
263409467b48Spatrick } else {
263509467b48Spatrick assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2636097a140dSpatrick // Explicitly zero-extend the input to 32-bit.
263773471bf0Spatrick InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg);
263809467b48Spatrick
263909467b48Spatrick // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
264009467b48Spatrick InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
264173471bf0Spatrick InputReg);
264209467b48Spatrick
2643097a140dSpatrick unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2644097a140dSpatrick : X86::VCVTPH2PSrr;
264573471bf0Spatrick InputReg = fastEmitInst_r(Opc, RC, InputReg);
264609467b48Spatrick
264709467b48Spatrick // The result value is in the lower 32-bits of ResultReg.
264809467b48Spatrick // Emit an explicit copy from register class VR128 to register class FR32.
2649097a140dSpatrick ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2650*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
265109467b48Spatrick TII.get(TargetOpcode::COPY), ResultReg)
265209467b48Spatrick .addReg(InputReg, RegState::Kill);
265309467b48Spatrick }
265409467b48Spatrick
265509467b48Spatrick updateValueMap(II, ResultReg);
265609467b48Spatrick return true;
265709467b48Spatrick }
265809467b48Spatrick case Intrinsic::frameaddress: {
265909467b48Spatrick MachineFunction *MF = FuncInfo.MF;
266009467b48Spatrick if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
266109467b48Spatrick return false;
266209467b48Spatrick
266309467b48Spatrick Type *RetTy = II->getCalledFunction()->getReturnType();
266409467b48Spatrick
266509467b48Spatrick MVT VT;
266609467b48Spatrick if (!isTypeLegal(RetTy, VT))
266709467b48Spatrick return false;
266809467b48Spatrick
266909467b48Spatrick unsigned Opc;
267009467b48Spatrick const TargetRegisterClass *RC = nullptr;
267109467b48Spatrick
267209467b48Spatrick switch (VT.SimpleTy) {
267309467b48Spatrick default: llvm_unreachable("Invalid result type for frameaddress.");
267409467b48Spatrick case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
267509467b48Spatrick case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
267609467b48Spatrick }
267709467b48Spatrick
267809467b48Spatrick // This needs to be set before we call getPtrSizedFrameRegister, otherwise
267909467b48Spatrick // we get the wrong frame register.
268009467b48Spatrick MachineFrameInfo &MFI = MF->getFrameInfo();
268109467b48Spatrick MFI.setFrameAddressIsTaken(true);
268209467b48Spatrick
268309467b48Spatrick const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
268409467b48Spatrick unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
268509467b48Spatrick assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
268609467b48Spatrick (FrameReg == X86::EBP && VT == MVT::i32)) &&
268709467b48Spatrick "Invalid Frame Register!");
268809467b48Spatrick
268909467b48Spatrick // Always make a copy of the frame register to a vreg first, so that we
269009467b48Spatrick // never directly reference the frame register (the TwoAddressInstruction-
269109467b48Spatrick // Pass doesn't like that).
2692097a140dSpatrick Register SrcReg = createResultReg(RC);
2693*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
269409467b48Spatrick TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
269509467b48Spatrick
269609467b48Spatrick // Now recursively load from the frame address.
269709467b48Spatrick // movq (%rbp), %rax
269809467b48Spatrick // movq (%rax), %rax
269909467b48Spatrick // movq (%rax), %rax
270009467b48Spatrick // ...
270109467b48Spatrick unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
270209467b48Spatrick while (Depth--) {
270373471bf0Spatrick Register DestReg = createResultReg(RC);
2704*d415bd75Srobert addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
270509467b48Spatrick TII.get(Opc), DestReg), SrcReg);
270609467b48Spatrick SrcReg = DestReg;
270709467b48Spatrick }
270809467b48Spatrick
270909467b48Spatrick updateValueMap(II, SrcReg);
271009467b48Spatrick return true;
271109467b48Spatrick }
271209467b48Spatrick case Intrinsic::memcpy: {
271309467b48Spatrick const MemCpyInst *MCI = cast<MemCpyInst>(II);
271409467b48Spatrick // Don't handle volatile or variable length memcpys.
271509467b48Spatrick if (MCI->isVolatile())
271609467b48Spatrick return false;
271709467b48Spatrick
271809467b48Spatrick if (isa<ConstantInt>(MCI->getLength())) {
271909467b48Spatrick // Small memcpy's are common enough that we want to do them
272009467b48Spatrick // without a call if possible.
272109467b48Spatrick uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
272209467b48Spatrick if (IsMemcpySmall(Len)) {
272309467b48Spatrick X86AddressMode DestAM, SrcAM;
272409467b48Spatrick if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
272509467b48Spatrick !X86SelectAddress(MCI->getRawSource(), SrcAM))
272609467b48Spatrick return false;
272709467b48Spatrick TryEmitSmallMemcpy(DestAM, SrcAM, Len);
272809467b48Spatrick return true;
272909467b48Spatrick }
273009467b48Spatrick }
273109467b48Spatrick
273209467b48Spatrick unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
273309467b48Spatrick if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
273409467b48Spatrick return false;
273509467b48Spatrick
273609467b48Spatrick if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
273709467b48Spatrick return false;
273809467b48Spatrick
2739*d415bd75Srobert return lowerCallTo(II, "memcpy", II->arg_size() - 1);
274009467b48Spatrick }
274109467b48Spatrick case Intrinsic::memset: {
274209467b48Spatrick const MemSetInst *MSI = cast<MemSetInst>(II);
274309467b48Spatrick
274409467b48Spatrick if (MSI->isVolatile())
274509467b48Spatrick return false;
274609467b48Spatrick
274709467b48Spatrick unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
274809467b48Spatrick if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
274909467b48Spatrick return false;
275009467b48Spatrick
275109467b48Spatrick if (MSI->getDestAddressSpace() > 255)
275209467b48Spatrick return false;
275309467b48Spatrick
2754*d415bd75Srobert return lowerCallTo(II, "memset", II->arg_size() - 1);
275509467b48Spatrick }
275609467b48Spatrick case Intrinsic::stackprotector: {
275709467b48Spatrick // Emit code to store the stack guard onto the stack.
275809467b48Spatrick EVT PtrTy = TLI.getPointerTy(DL);
275909467b48Spatrick
276009467b48Spatrick const Value *Op1 = II->getArgOperand(0); // The guard's value.
276109467b48Spatrick const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
276209467b48Spatrick
276309467b48Spatrick MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
276409467b48Spatrick
276509467b48Spatrick // Grab the frame index.
276609467b48Spatrick X86AddressMode AM;
276709467b48Spatrick if (!X86SelectAddress(Slot, AM)) return false;
276809467b48Spatrick if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
276909467b48Spatrick return true;
277009467b48Spatrick }
277109467b48Spatrick case Intrinsic::dbg_declare: {
277209467b48Spatrick const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
277309467b48Spatrick X86AddressMode AM;
277409467b48Spatrick assert(DI->getAddress() && "Null address should be checked earlier!");
277509467b48Spatrick if (!X86SelectAddress(DI->getAddress(), AM))
277609467b48Spatrick return false;
277709467b48Spatrick const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2778*d415bd75Srobert assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) &&
277909467b48Spatrick "Expected inlined-at fields to agree");
2780*d415bd75Srobert addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM)
278109467b48Spatrick .addImm(0)
278209467b48Spatrick .addMetadata(DI->getVariable())
278309467b48Spatrick .addMetadata(DI->getExpression());
278409467b48Spatrick return true;
278509467b48Spatrick }
278609467b48Spatrick case Intrinsic::trap: {
2787*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP));
278809467b48Spatrick return true;
278909467b48Spatrick }
279009467b48Spatrick case Intrinsic::sqrt: {
279109467b48Spatrick if (!Subtarget->hasSSE1())
279209467b48Spatrick return false;
279309467b48Spatrick
279409467b48Spatrick Type *RetTy = II->getCalledFunction()->getReturnType();
279509467b48Spatrick
279609467b48Spatrick MVT VT;
279709467b48Spatrick if (!isTypeLegal(RetTy, VT))
279809467b48Spatrick return false;
279909467b48Spatrick
280009467b48Spatrick // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
280109467b48Spatrick // is not generated by FastISel yet.
280209467b48Spatrick // FIXME: Update this code once tablegen can handle it.
280309467b48Spatrick static const uint16_t SqrtOpc[3][2] = {
280409467b48Spatrick { X86::SQRTSSr, X86::SQRTSDr },
280509467b48Spatrick { X86::VSQRTSSr, X86::VSQRTSDr },
280609467b48Spatrick { X86::VSQRTSSZr, X86::VSQRTSDZr },
280709467b48Spatrick };
280809467b48Spatrick unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
280909467b48Spatrick Subtarget->hasAVX() ? 1 :
281009467b48Spatrick 0;
281109467b48Spatrick unsigned Opc;
281209467b48Spatrick switch (VT.SimpleTy) {
281309467b48Spatrick default: return false;
281409467b48Spatrick case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
281509467b48Spatrick case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
281609467b48Spatrick }
281709467b48Spatrick
281809467b48Spatrick const Value *SrcVal = II->getArgOperand(0);
2819097a140dSpatrick Register SrcReg = getRegForValue(SrcVal);
282009467b48Spatrick
282109467b48Spatrick if (SrcReg == 0)
282209467b48Spatrick return false;
282309467b48Spatrick
282409467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
282509467b48Spatrick unsigned ImplicitDefReg = 0;
282609467b48Spatrick if (AVXLevel > 0) {
282709467b48Spatrick ImplicitDefReg = createResultReg(RC);
2828*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
282909467b48Spatrick TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
283009467b48Spatrick }
283109467b48Spatrick
2832097a140dSpatrick Register ResultReg = createResultReg(RC);
283309467b48Spatrick MachineInstrBuilder MIB;
2834*d415bd75Srobert MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
283509467b48Spatrick ResultReg);
283609467b48Spatrick
283709467b48Spatrick if (ImplicitDefReg)
283809467b48Spatrick MIB.addReg(ImplicitDefReg);
283909467b48Spatrick
284009467b48Spatrick MIB.addReg(SrcReg);
284109467b48Spatrick
284209467b48Spatrick updateValueMap(II, ResultReg);
284309467b48Spatrick return true;
284409467b48Spatrick }
284509467b48Spatrick case Intrinsic::sadd_with_overflow:
284609467b48Spatrick case Intrinsic::uadd_with_overflow:
284709467b48Spatrick case Intrinsic::ssub_with_overflow:
284809467b48Spatrick case Intrinsic::usub_with_overflow:
284909467b48Spatrick case Intrinsic::smul_with_overflow:
285009467b48Spatrick case Intrinsic::umul_with_overflow: {
285109467b48Spatrick // This implements the basic lowering of the xalu with overflow intrinsics
285209467b48Spatrick // into add/sub/mul followed by either seto or setb.
285309467b48Spatrick const Function *Callee = II->getCalledFunction();
285409467b48Spatrick auto *Ty = cast<StructType>(Callee->getReturnType());
285509467b48Spatrick Type *RetTy = Ty->getTypeAtIndex(0U);
285609467b48Spatrick assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
285709467b48Spatrick Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
285809467b48Spatrick "Overflow value expected to be an i1");
285909467b48Spatrick
286009467b48Spatrick MVT VT;
286109467b48Spatrick if (!isTypeLegal(RetTy, VT))
286209467b48Spatrick return false;
286309467b48Spatrick
286409467b48Spatrick if (VT < MVT::i8 || VT > MVT::i64)
286509467b48Spatrick return false;
286609467b48Spatrick
286709467b48Spatrick const Value *LHS = II->getArgOperand(0);
286809467b48Spatrick const Value *RHS = II->getArgOperand(1);
286909467b48Spatrick
287009467b48Spatrick // Canonicalize immediate to the RHS.
287173471bf0Spatrick if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
287209467b48Spatrick std::swap(LHS, RHS);
287309467b48Spatrick
287409467b48Spatrick unsigned BaseOpc, CondCode;
287509467b48Spatrick switch (II->getIntrinsicID()) {
287609467b48Spatrick default: llvm_unreachable("Unexpected intrinsic!");
287709467b48Spatrick case Intrinsic::sadd_with_overflow:
287809467b48Spatrick BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
287909467b48Spatrick case Intrinsic::uadd_with_overflow:
288009467b48Spatrick BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
288109467b48Spatrick case Intrinsic::ssub_with_overflow:
288209467b48Spatrick BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
288309467b48Spatrick case Intrinsic::usub_with_overflow:
288409467b48Spatrick BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
288509467b48Spatrick case Intrinsic::smul_with_overflow:
288609467b48Spatrick BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
288709467b48Spatrick case Intrinsic::umul_with_overflow:
288809467b48Spatrick BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
288909467b48Spatrick }
289009467b48Spatrick
2891097a140dSpatrick Register LHSReg = getRegForValue(LHS);
289209467b48Spatrick if (LHSReg == 0)
289309467b48Spatrick return false;
289409467b48Spatrick
289509467b48Spatrick unsigned ResultReg = 0;
289609467b48Spatrick // Check if we have an immediate version.
289709467b48Spatrick if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
289809467b48Spatrick static const uint16_t Opc[2][4] = {
289909467b48Spatrick { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
290009467b48Spatrick { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
290109467b48Spatrick };
290209467b48Spatrick
290309467b48Spatrick if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
290409467b48Spatrick CondCode == X86::COND_O) {
290509467b48Spatrick // We can use INC/DEC.
290609467b48Spatrick ResultReg = createResultReg(TLI.getRegClassFor(VT));
290709467b48Spatrick bool IsDec = BaseOpc == ISD::SUB;
2908*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
290909467b48Spatrick TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
291073471bf0Spatrick .addReg(LHSReg);
291109467b48Spatrick } else
291273471bf0Spatrick ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue());
291309467b48Spatrick }
291409467b48Spatrick
291509467b48Spatrick unsigned RHSReg;
291609467b48Spatrick if (!ResultReg) {
291709467b48Spatrick RHSReg = getRegForValue(RHS);
291809467b48Spatrick if (RHSReg == 0)
291909467b48Spatrick return false;
292073471bf0Spatrick ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg);
292109467b48Spatrick }
292209467b48Spatrick
292309467b48Spatrick // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
292409467b48Spatrick // it manually.
292509467b48Spatrick if (BaseOpc == X86ISD::UMUL && !ResultReg) {
292609467b48Spatrick static const uint16_t MULOpc[] =
292709467b48Spatrick { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
292809467b48Spatrick static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
292909467b48Spatrick // First copy the first operand into RAX, which is an implicit input to
293009467b48Spatrick // the X86::MUL*r instruction.
2931*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
293209467b48Spatrick TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
293373471bf0Spatrick .addReg(LHSReg);
293409467b48Spatrick ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
293573471bf0Spatrick TLI.getRegClassFor(VT), RHSReg);
293609467b48Spatrick } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
293709467b48Spatrick static const uint16_t MULOpc[] =
293809467b48Spatrick { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
293909467b48Spatrick if (VT == MVT::i8) {
294009467b48Spatrick // Copy the first operand into AL, which is an implicit input to the
294109467b48Spatrick // X86::IMUL8r instruction.
2942*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
294309467b48Spatrick TII.get(TargetOpcode::COPY), X86::AL)
294473471bf0Spatrick .addReg(LHSReg);
294573471bf0Spatrick ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg);
294609467b48Spatrick } else
294709467b48Spatrick ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
294873471bf0Spatrick TLI.getRegClassFor(VT), LHSReg, RHSReg);
294909467b48Spatrick }
295009467b48Spatrick
295109467b48Spatrick if (!ResultReg)
295209467b48Spatrick return false;
295309467b48Spatrick
295409467b48Spatrick // Assign to a GPR since the overflow return value is lowered to a SETcc.
2955097a140dSpatrick Register ResultReg2 = createResultReg(&X86::GR8RegClass);
295609467b48Spatrick assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2957*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
295809467b48Spatrick ResultReg2).addImm(CondCode);
295909467b48Spatrick
296009467b48Spatrick updateValueMap(II, ResultReg, 2);
296109467b48Spatrick return true;
296209467b48Spatrick }
296309467b48Spatrick case Intrinsic::x86_sse_cvttss2si:
296409467b48Spatrick case Intrinsic::x86_sse_cvttss2si64:
296509467b48Spatrick case Intrinsic::x86_sse2_cvttsd2si:
296609467b48Spatrick case Intrinsic::x86_sse2_cvttsd2si64: {
296709467b48Spatrick bool IsInputDouble;
296809467b48Spatrick switch (II->getIntrinsicID()) {
296909467b48Spatrick default: llvm_unreachable("Unexpected intrinsic.");
297009467b48Spatrick case Intrinsic::x86_sse_cvttss2si:
297109467b48Spatrick case Intrinsic::x86_sse_cvttss2si64:
297209467b48Spatrick if (!Subtarget->hasSSE1())
297309467b48Spatrick return false;
297409467b48Spatrick IsInputDouble = false;
297509467b48Spatrick break;
297609467b48Spatrick case Intrinsic::x86_sse2_cvttsd2si:
297709467b48Spatrick case Intrinsic::x86_sse2_cvttsd2si64:
297809467b48Spatrick if (!Subtarget->hasSSE2())
297909467b48Spatrick return false;
298009467b48Spatrick IsInputDouble = true;
298109467b48Spatrick break;
298209467b48Spatrick }
298309467b48Spatrick
298409467b48Spatrick Type *RetTy = II->getCalledFunction()->getReturnType();
298509467b48Spatrick MVT VT;
298609467b48Spatrick if (!isTypeLegal(RetTy, VT))
298709467b48Spatrick return false;
298809467b48Spatrick
298909467b48Spatrick static const uint16_t CvtOpc[3][2][2] = {
299009467b48Spatrick { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr },
299109467b48Spatrick { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } },
299209467b48Spatrick { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr },
299309467b48Spatrick { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } },
299409467b48Spatrick { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
299509467b48Spatrick { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
299609467b48Spatrick };
299709467b48Spatrick unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
299809467b48Spatrick Subtarget->hasAVX() ? 1 :
299909467b48Spatrick 0;
300009467b48Spatrick unsigned Opc;
300109467b48Spatrick switch (VT.SimpleTy) {
300209467b48Spatrick default: llvm_unreachable("Unexpected result type.");
300309467b48Spatrick case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
300409467b48Spatrick case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
300509467b48Spatrick }
300609467b48Spatrick
300709467b48Spatrick // Check if we can fold insertelement instructions into the convert.
300809467b48Spatrick const Value *Op = II->getArgOperand(0);
300909467b48Spatrick while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
301009467b48Spatrick const Value *Index = IE->getOperand(2);
301109467b48Spatrick if (!isa<ConstantInt>(Index))
301209467b48Spatrick break;
301309467b48Spatrick unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
301409467b48Spatrick
301509467b48Spatrick if (Idx == 0) {
301609467b48Spatrick Op = IE->getOperand(1);
301709467b48Spatrick break;
301809467b48Spatrick }
301909467b48Spatrick Op = IE->getOperand(0);
302009467b48Spatrick }
302109467b48Spatrick
3022097a140dSpatrick Register Reg = getRegForValue(Op);
302309467b48Spatrick if (Reg == 0)
302409467b48Spatrick return false;
302509467b48Spatrick
3026097a140dSpatrick Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3027*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
302809467b48Spatrick .addReg(Reg);
302909467b48Spatrick
303009467b48Spatrick updateValueMap(II, ResultReg);
303109467b48Spatrick return true;
303209467b48Spatrick }
303309467b48Spatrick }
303409467b48Spatrick }
303509467b48Spatrick
fastLowerArguments()303609467b48Spatrick bool X86FastISel::fastLowerArguments() {
303709467b48Spatrick if (!FuncInfo.CanLowerReturn)
303809467b48Spatrick return false;
303909467b48Spatrick
304009467b48Spatrick const Function *F = FuncInfo.Fn;
304109467b48Spatrick if (F->isVarArg())
304209467b48Spatrick return false;
304309467b48Spatrick
304409467b48Spatrick CallingConv::ID CC = F->getCallingConv();
304509467b48Spatrick if (CC != CallingConv::C)
304609467b48Spatrick return false;
304709467b48Spatrick
304809467b48Spatrick if (Subtarget->isCallingConvWin64(CC))
304909467b48Spatrick return false;
305009467b48Spatrick
305109467b48Spatrick if (!Subtarget->is64Bit())
305209467b48Spatrick return false;
305309467b48Spatrick
305409467b48Spatrick if (Subtarget->useSoftFloat())
305509467b48Spatrick return false;
305609467b48Spatrick
305709467b48Spatrick // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
305809467b48Spatrick unsigned GPRCnt = 0;
305909467b48Spatrick unsigned FPRCnt = 0;
306009467b48Spatrick for (auto const &Arg : F->args()) {
306109467b48Spatrick if (Arg.hasAttribute(Attribute::ByVal) ||
306209467b48Spatrick Arg.hasAttribute(Attribute::InReg) ||
306309467b48Spatrick Arg.hasAttribute(Attribute::StructRet) ||
306409467b48Spatrick Arg.hasAttribute(Attribute::SwiftSelf) ||
306573471bf0Spatrick Arg.hasAttribute(Attribute::SwiftAsync) ||
306609467b48Spatrick Arg.hasAttribute(Attribute::SwiftError) ||
306709467b48Spatrick Arg.hasAttribute(Attribute::Nest))
306809467b48Spatrick return false;
306909467b48Spatrick
307009467b48Spatrick Type *ArgTy = Arg.getType();
307109467b48Spatrick if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
307209467b48Spatrick return false;
307309467b48Spatrick
307409467b48Spatrick EVT ArgVT = TLI.getValueType(DL, ArgTy);
307509467b48Spatrick if (!ArgVT.isSimple()) return false;
307609467b48Spatrick switch (ArgVT.getSimpleVT().SimpleTy) {
307709467b48Spatrick default: return false;
307809467b48Spatrick case MVT::i32:
307909467b48Spatrick case MVT::i64:
308009467b48Spatrick ++GPRCnt;
308109467b48Spatrick break;
308209467b48Spatrick case MVT::f32:
308309467b48Spatrick case MVT::f64:
308409467b48Spatrick if (!Subtarget->hasSSE1())
308509467b48Spatrick return false;
308609467b48Spatrick ++FPRCnt;
308709467b48Spatrick break;
308809467b48Spatrick }
308909467b48Spatrick
309009467b48Spatrick if (GPRCnt > 6)
309109467b48Spatrick return false;
309209467b48Spatrick
309309467b48Spatrick if (FPRCnt > 8)
309409467b48Spatrick return false;
309509467b48Spatrick }
309609467b48Spatrick
309709467b48Spatrick static const MCPhysReg GPR32ArgRegs[] = {
309809467b48Spatrick X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
309909467b48Spatrick };
310009467b48Spatrick static const MCPhysReg GPR64ArgRegs[] = {
310109467b48Spatrick X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
310209467b48Spatrick };
310309467b48Spatrick static const MCPhysReg XMMArgRegs[] = {
310409467b48Spatrick X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
310509467b48Spatrick X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
310609467b48Spatrick };
310709467b48Spatrick
310809467b48Spatrick unsigned GPRIdx = 0;
310909467b48Spatrick unsigned FPRIdx = 0;
311009467b48Spatrick for (auto const &Arg : F->args()) {
311109467b48Spatrick MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
311209467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
311309467b48Spatrick unsigned SrcReg;
311409467b48Spatrick switch (VT.SimpleTy) {
311509467b48Spatrick default: llvm_unreachable("Unexpected value type.");
311609467b48Spatrick case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
311709467b48Spatrick case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3118*d415bd75Srobert case MVT::f32: [[fallthrough]];
311909467b48Spatrick case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
312009467b48Spatrick }
3121097a140dSpatrick Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
312209467b48Spatrick // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
312309467b48Spatrick // Without this, EmitLiveInCopies may eliminate the livein if its only
312409467b48Spatrick // use is a bitcast (which isn't turned into an instruction).
3125097a140dSpatrick Register ResultReg = createResultReg(RC);
3126*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
312709467b48Spatrick TII.get(TargetOpcode::COPY), ResultReg)
312809467b48Spatrick .addReg(DstReg, getKillRegState(true));
312909467b48Spatrick updateValueMap(&Arg, ResultReg);
313009467b48Spatrick }
313109467b48Spatrick return true;
313209467b48Spatrick }
313309467b48Spatrick
computeBytesPoppedByCalleeForSRet(const X86Subtarget * Subtarget,CallingConv::ID CC,const CallBase * CB)313409467b48Spatrick static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
313509467b48Spatrick CallingConv::ID CC,
3136097a140dSpatrick const CallBase *CB) {
313709467b48Spatrick if (Subtarget->is64Bit())
313809467b48Spatrick return 0;
313909467b48Spatrick if (Subtarget->getTargetTriple().isOSMSVCRT())
314009467b48Spatrick return 0;
314109467b48Spatrick if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
314273471bf0Spatrick CC == CallingConv::HiPE || CC == CallingConv::Tail ||
314373471bf0Spatrick CC == CallingConv::SwiftTail)
314409467b48Spatrick return 0;
314509467b48Spatrick
3146097a140dSpatrick if (CB)
3147097a140dSpatrick if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3148097a140dSpatrick CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
314909467b48Spatrick return 0;
315009467b48Spatrick
315109467b48Spatrick return 4;
315209467b48Spatrick }
315309467b48Spatrick
fastLowerCall(CallLoweringInfo & CLI)315409467b48Spatrick bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
315509467b48Spatrick auto &OutVals = CLI.OutVals;
315609467b48Spatrick auto &OutFlags = CLI.OutFlags;
315709467b48Spatrick auto &OutRegs = CLI.OutRegs;
315809467b48Spatrick auto &Ins = CLI.Ins;
315909467b48Spatrick auto &InRegs = CLI.InRegs;
316009467b48Spatrick CallingConv::ID CC = CLI.CallConv;
316109467b48Spatrick bool &IsTailCall = CLI.IsTailCall;
316209467b48Spatrick bool IsVarArg = CLI.IsVarArg;
316309467b48Spatrick const Value *Callee = CLI.Callee;
316409467b48Spatrick MCSymbol *Symbol = CLI.Symbol;
316573471bf0Spatrick const auto *CB = CLI.CB;
316609467b48Spatrick
316709467b48Spatrick bool Is64Bit = Subtarget->is64Bit();
316809467b48Spatrick bool IsWin64 = Subtarget->isCallingConvWin64(CC);
316909467b48Spatrick
317009467b48Spatrick // Call / invoke instructions with NoCfCheck attribute require special
317109467b48Spatrick // handling.
317273471bf0Spatrick if (CB && CB->doesNoCfCheck())
317309467b48Spatrick return false;
317409467b48Spatrick
317509467b48Spatrick // Functions with no_caller_saved_registers that need special handling.
317673471bf0Spatrick if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers")))
317773471bf0Spatrick return false;
317873471bf0Spatrick
317973471bf0Spatrick // Functions with no_callee_saved_registers that need special handling.
318073471bf0Spatrick if ((CB && CB->hasFnAttr("no_callee_saved_registers")))
318109467b48Spatrick return false;
318209467b48Spatrick
3183*d415bd75Srobert // Indirect calls with CFI checks need special handling.
3184*d415bd75Srobert if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi))
3185*d415bd75Srobert return false;
3186*d415bd75Srobert
31877299aa8dSpatrick // Functions using thunks for indirect calls need to use SDISel.
31887299aa8dSpatrick if (Subtarget->useIndirectThunkCalls())
318909467b48Spatrick return false;
319009467b48Spatrick
319109467b48Spatrick // Handle only C, fastcc, and webkit_js calling conventions for now.
319209467b48Spatrick switch (CC) {
319309467b48Spatrick default: return false;
319409467b48Spatrick case CallingConv::C:
319509467b48Spatrick case CallingConv::Fast:
319609467b48Spatrick case CallingConv::Tail:
319709467b48Spatrick case CallingConv::WebKit_JS:
319809467b48Spatrick case CallingConv::Swift:
319973471bf0Spatrick case CallingConv::SwiftTail:
320009467b48Spatrick case CallingConv::X86_FastCall:
320109467b48Spatrick case CallingConv::X86_StdCall:
320209467b48Spatrick case CallingConv::X86_ThisCall:
320309467b48Spatrick case CallingConv::Win64:
320409467b48Spatrick case CallingConv::X86_64_SysV:
320509467b48Spatrick case CallingConv::CFGuard_Check:
320609467b48Spatrick break;
320709467b48Spatrick }
320809467b48Spatrick
320909467b48Spatrick // Allow SelectionDAG isel to handle tail calls.
321009467b48Spatrick if (IsTailCall)
321109467b48Spatrick return false;
321209467b48Spatrick
321309467b48Spatrick // fastcc with -tailcallopt is intended to provide a guaranteed
321409467b48Spatrick // tail call optimization. Fastisel doesn't know how to do that.
321509467b48Spatrick if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
321673471bf0Spatrick CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
321709467b48Spatrick return false;
321809467b48Spatrick
321909467b48Spatrick // Don't know how to handle Win64 varargs yet. Nothing special needed for
322009467b48Spatrick // x86-32. Special handling for x86-64 is implemented.
322109467b48Spatrick if (IsVarArg && IsWin64)
322209467b48Spatrick return false;
322309467b48Spatrick
322409467b48Spatrick // Don't know about inalloca yet.
3225097a140dSpatrick if (CLI.CB && CLI.CB->hasInAllocaArgument())
322609467b48Spatrick return false;
322709467b48Spatrick
322809467b48Spatrick for (auto Flag : CLI.OutFlags)
3229097a140dSpatrick if (Flag.isSwiftError() || Flag.isPreallocated())
323009467b48Spatrick return false;
323109467b48Spatrick
323209467b48Spatrick SmallVector<MVT, 16> OutVTs;
323309467b48Spatrick SmallVector<unsigned, 16> ArgRegs;
323409467b48Spatrick
323509467b48Spatrick // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
323609467b48Spatrick // instruction. This is safe because it is common to all FastISel supported
323709467b48Spatrick // calling conventions on x86.
323809467b48Spatrick for (int i = 0, e = OutVals.size(); i != e; ++i) {
323909467b48Spatrick Value *&Val = OutVals[i];
324009467b48Spatrick ISD::ArgFlagsTy Flags = OutFlags[i];
324109467b48Spatrick if (auto *CI = dyn_cast<ConstantInt>(Val)) {
324209467b48Spatrick if (CI->getBitWidth() < 32) {
324309467b48Spatrick if (Flags.isSExt())
324409467b48Spatrick Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
324509467b48Spatrick else
324609467b48Spatrick Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
324709467b48Spatrick }
324809467b48Spatrick }
324909467b48Spatrick
325009467b48Spatrick // Passing bools around ends up doing a trunc to i1 and passing it.
325109467b48Spatrick // Codegen this as an argument + "and 1".
325209467b48Spatrick MVT VT;
325309467b48Spatrick auto *TI = dyn_cast<TruncInst>(Val);
325409467b48Spatrick unsigned ResultReg;
3255097a140dSpatrick if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3256097a140dSpatrick (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
325709467b48Spatrick Value *PrevVal = TI->getOperand(0);
325809467b48Spatrick ResultReg = getRegForValue(PrevVal);
325909467b48Spatrick
326009467b48Spatrick if (!ResultReg)
326109467b48Spatrick return false;
326209467b48Spatrick
326309467b48Spatrick if (!isTypeLegal(PrevVal->getType(), VT))
326409467b48Spatrick return false;
326509467b48Spatrick
326673471bf0Spatrick ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1);
326709467b48Spatrick } else {
3268097a140dSpatrick if (!isTypeLegal(Val->getType(), VT) ||
3269097a140dSpatrick (VT.isVector() && VT.getVectorElementType() == MVT::i1))
327009467b48Spatrick return false;
327109467b48Spatrick ResultReg = getRegForValue(Val);
327209467b48Spatrick }
327309467b48Spatrick
327409467b48Spatrick if (!ResultReg)
327509467b48Spatrick return false;
327609467b48Spatrick
327709467b48Spatrick ArgRegs.push_back(ResultReg);
327809467b48Spatrick OutVTs.push_back(VT);
327909467b48Spatrick }
328009467b48Spatrick
328109467b48Spatrick // Analyze operands of the call, assigning locations to each operand.
328209467b48Spatrick SmallVector<CCValAssign, 16> ArgLocs;
328309467b48Spatrick CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
328409467b48Spatrick
328509467b48Spatrick // Allocate shadow area for Win64
328609467b48Spatrick if (IsWin64)
3287097a140dSpatrick CCInfo.AllocateStack(32, Align(8));
328809467b48Spatrick
328909467b48Spatrick CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
329009467b48Spatrick
329109467b48Spatrick // Get a count of how many bytes are to be pushed on the stack.
329209467b48Spatrick unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
329309467b48Spatrick
329409467b48Spatrick // Issue CALLSEQ_START
329509467b48Spatrick unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3296*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown))
329709467b48Spatrick .addImm(NumBytes).addImm(0).addImm(0);
329809467b48Spatrick
329909467b48Spatrick // Walk the register/memloc assignments, inserting copies/loads.
330009467b48Spatrick const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
330109467b48Spatrick for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
330209467b48Spatrick CCValAssign const &VA = ArgLocs[i];
330309467b48Spatrick const Value *ArgVal = OutVals[VA.getValNo()];
330409467b48Spatrick MVT ArgVT = OutVTs[VA.getValNo()];
330509467b48Spatrick
330609467b48Spatrick if (ArgVT == MVT::x86mmx)
330709467b48Spatrick return false;
330809467b48Spatrick
330909467b48Spatrick unsigned ArgReg = ArgRegs[VA.getValNo()];
331009467b48Spatrick
331109467b48Spatrick // Promote the value if needed.
331209467b48Spatrick switch (VA.getLocInfo()) {
331309467b48Spatrick case CCValAssign::Full: break;
331409467b48Spatrick case CCValAssign::SExt: {
331509467b48Spatrick assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
331609467b48Spatrick "Unexpected extend");
331709467b48Spatrick
331809467b48Spatrick if (ArgVT == MVT::i1)
331909467b48Spatrick return false;
332009467b48Spatrick
332109467b48Spatrick bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
332209467b48Spatrick ArgVT, ArgReg);
332309467b48Spatrick assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
332409467b48Spatrick ArgVT = VA.getLocVT();
332509467b48Spatrick break;
332609467b48Spatrick }
332709467b48Spatrick case CCValAssign::ZExt: {
332809467b48Spatrick assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
332909467b48Spatrick "Unexpected extend");
333009467b48Spatrick
333109467b48Spatrick // Handle zero-extension from i1 to i8, which is common.
333209467b48Spatrick if (ArgVT == MVT::i1) {
333309467b48Spatrick // Set the high bits to zero.
333473471bf0Spatrick ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg);
333509467b48Spatrick ArgVT = MVT::i8;
333609467b48Spatrick
333709467b48Spatrick if (ArgReg == 0)
333809467b48Spatrick return false;
333909467b48Spatrick }
334009467b48Spatrick
334109467b48Spatrick bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
334209467b48Spatrick ArgVT, ArgReg);
334309467b48Spatrick assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
334409467b48Spatrick ArgVT = VA.getLocVT();
334509467b48Spatrick break;
334609467b48Spatrick }
334709467b48Spatrick case CCValAssign::AExt: {
334809467b48Spatrick assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
334909467b48Spatrick "Unexpected extend");
335009467b48Spatrick bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
335109467b48Spatrick ArgVT, ArgReg);
335209467b48Spatrick if (!Emitted)
335309467b48Spatrick Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
335409467b48Spatrick ArgVT, ArgReg);
335509467b48Spatrick if (!Emitted)
335609467b48Spatrick Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
335709467b48Spatrick ArgVT, ArgReg);
335809467b48Spatrick
335909467b48Spatrick assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
336009467b48Spatrick ArgVT = VA.getLocVT();
336109467b48Spatrick break;
336209467b48Spatrick }
336309467b48Spatrick case CCValAssign::BCvt: {
336473471bf0Spatrick ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg);
336509467b48Spatrick assert(ArgReg && "Failed to emit a bitcast!");
336609467b48Spatrick ArgVT = VA.getLocVT();
336709467b48Spatrick break;
336809467b48Spatrick }
336909467b48Spatrick case CCValAssign::VExt:
337009467b48Spatrick // VExt has not been implemented, so this should be impossible to reach
337109467b48Spatrick // for now. However, fallback to Selection DAG isel once implemented.
337209467b48Spatrick return false;
337309467b48Spatrick case CCValAssign::AExtUpper:
337409467b48Spatrick case CCValAssign::SExtUpper:
337509467b48Spatrick case CCValAssign::ZExtUpper:
337609467b48Spatrick case CCValAssign::FPExt:
337709467b48Spatrick case CCValAssign::Trunc:
337809467b48Spatrick llvm_unreachable("Unexpected loc info!");
337909467b48Spatrick case CCValAssign::Indirect:
338009467b48Spatrick // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
338109467b48Spatrick // support this.
338209467b48Spatrick return false;
338309467b48Spatrick }
338409467b48Spatrick
338509467b48Spatrick if (VA.isRegLoc()) {
3386*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
338709467b48Spatrick TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
338809467b48Spatrick OutRegs.push_back(VA.getLocReg());
338909467b48Spatrick } else {
3390097a140dSpatrick assert(VA.isMemLoc() && "Unknown value location!");
339109467b48Spatrick
339209467b48Spatrick // Don't emit stores for undef values.
339309467b48Spatrick if (isa<UndefValue>(ArgVal))
339409467b48Spatrick continue;
339509467b48Spatrick
339609467b48Spatrick unsigned LocMemOffset = VA.getLocMemOffset();
339709467b48Spatrick X86AddressMode AM;
339809467b48Spatrick AM.Base.Reg = RegInfo->getStackRegister();
339909467b48Spatrick AM.Disp = LocMemOffset;
340009467b48Spatrick ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3401097a140dSpatrick Align Alignment = DL.getABITypeAlign(ArgVal->getType());
340209467b48Spatrick MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
340309467b48Spatrick MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
340409467b48Spatrick MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
340509467b48Spatrick if (Flags.isByVal()) {
340609467b48Spatrick X86AddressMode SrcAM;
340709467b48Spatrick SrcAM.Base.Reg = ArgReg;
340809467b48Spatrick if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
340909467b48Spatrick return false;
341009467b48Spatrick } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
341109467b48Spatrick // If this is a really simple value, emit this with the Value* version
341209467b48Spatrick // of X86FastEmitStore. If it isn't simple, we don't want to do this,
341309467b48Spatrick // as it can cause us to reevaluate the argument.
341409467b48Spatrick if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
341509467b48Spatrick return false;
341609467b48Spatrick } else {
341773471bf0Spatrick if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO))
341809467b48Spatrick return false;
341909467b48Spatrick }
342009467b48Spatrick }
342109467b48Spatrick }
342209467b48Spatrick
342309467b48Spatrick // ELF / PIC requires GOT in the EBX register before function calls via PLT
342409467b48Spatrick // GOT pointer.
342509467b48Spatrick if (Subtarget->isPICStyleGOT()) {
342609467b48Spatrick unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3427*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
342809467b48Spatrick TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
342909467b48Spatrick }
343009467b48Spatrick
343109467b48Spatrick if (Is64Bit && IsVarArg && !IsWin64) {
343209467b48Spatrick // From AMD64 ABI document:
343309467b48Spatrick // For calls that may call functions that use varargs or stdargs
343409467b48Spatrick // (prototype-less calls or calls to functions containing ellipsis (...) in
343509467b48Spatrick // the declaration) %al is used as hidden argument to specify the number
343609467b48Spatrick // of SSE registers used. The contents of %al do not need to match exactly
343709467b48Spatrick // the number of registers, but must be an ubound on the number of SSE
343809467b48Spatrick // registers used and is in the range 0 - 8 inclusive.
343909467b48Spatrick
344009467b48Spatrick // Count the number of XMM registers allocated.
344109467b48Spatrick static const MCPhysReg XMMArgRegs[] = {
344209467b48Spatrick X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
344309467b48Spatrick X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
344409467b48Spatrick };
344509467b48Spatrick unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
344609467b48Spatrick assert((Subtarget->hasSSE1() || !NumXMMRegs)
344709467b48Spatrick && "SSE registers cannot be used when SSE is disabled");
3448*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
344909467b48Spatrick X86::AL).addImm(NumXMMRegs);
345009467b48Spatrick }
345109467b48Spatrick
345209467b48Spatrick // Materialize callee address in a register. FIXME: GV address can be
345309467b48Spatrick // handled with a CALLpcrel32 instead.
345409467b48Spatrick X86AddressMode CalleeAM;
345509467b48Spatrick if (!X86SelectCallAddress(Callee, CalleeAM))
345609467b48Spatrick return false;
345709467b48Spatrick
345809467b48Spatrick unsigned CalleeOp = 0;
345909467b48Spatrick const GlobalValue *GV = nullptr;
346009467b48Spatrick if (CalleeAM.GV != nullptr) {
346109467b48Spatrick GV = CalleeAM.GV;
346209467b48Spatrick } else if (CalleeAM.Base.Reg != 0) {
346309467b48Spatrick CalleeOp = CalleeAM.Base.Reg;
346409467b48Spatrick } else
346509467b48Spatrick return false;
346609467b48Spatrick
346709467b48Spatrick // Issue the call.
346809467b48Spatrick MachineInstrBuilder MIB;
346909467b48Spatrick if (CalleeOp) {
347009467b48Spatrick // Register-indirect call.
347109467b48Spatrick unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3472*d415bd75Srobert MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc))
347309467b48Spatrick .addReg(CalleeOp);
347409467b48Spatrick } else {
347509467b48Spatrick // Direct call.
347609467b48Spatrick assert(GV && "Not a direct call");
347709467b48Spatrick // See if we need any target-specific flags on the GV operand.
347809467b48Spatrick unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
347909467b48Spatrick
348009467b48Spatrick // This will be a direct call, or an indirect call through memory for
348109467b48Spatrick // NonLazyBind calls or dllimport calls.
348209467b48Spatrick bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
348309467b48Spatrick OpFlags == X86II::MO_GOTPCREL ||
3484*d415bd75Srobert OpFlags == X86II::MO_GOTPCREL_NORELAX ||
348509467b48Spatrick OpFlags == X86II::MO_COFFSTUB;
348609467b48Spatrick unsigned CallOpc = NeedLoad
348709467b48Spatrick ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
348809467b48Spatrick : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
348909467b48Spatrick
3490*d415bd75Srobert MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc));
349109467b48Spatrick if (NeedLoad)
349209467b48Spatrick MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
349309467b48Spatrick if (Symbol)
349409467b48Spatrick MIB.addSym(Symbol, OpFlags);
349509467b48Spatrick else
349609467b48Spatrick MIB.addGlobalAddress(GV, 0, OpFlags);
349709467b48Spatrick if (NeedLoad)
349809467b48Spatrick MIB.addReg(0);
349909467b48Spatrick }
350009467b48Spatrick
350109467b48Spatrick // Add a register mask operand representing the call-preserved registers.
350209467b48Spatrick // Proper defs for return values will be added by setPhysRegsDeadExcept().
350309467b48Spatrick MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
350409467b48Spatrick
350509467b48Spatrick // Add an implicit use GOT pointer in EBX.
350609467b48Spatrick if (Subtarget->isPICStyleGOT())
350709467b48Spatrick MIB.addReg(X86::EBX, RegState::Implicit);
350809467b48Spatrick
350909467b48Spatrick if (Is64Bit && IsVarArg && !IsWin64)
351009467b48Spatrick MIB.addReg(X86::AL, RegState::Implicit);
351109467b48Spatrick
351209467b48Spatrick // Add implicit physical register uses to the call.
351309467b48Spatrick for (auto Reg : OutRegs)
351409467b48Spatrick MIB.addReg(Reg, RegState::Implicit);
351509467b48Spatrick
351609467b48Spatrick // Issue CALLSEQ_END
351709467b48Spatrick unsigned NumBytesForCalleeToPop =
351809467b48Spatrick X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
351909467b48Spatrick TM.Options.GuaranteedTailCallOpt)
352009467b48Spatrick ? NumBytes // Callee pops everything.
3521097a140dSpatrick : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
352209467b48Spatrick unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3523*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
352409467b48Spatrick .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
352509467b48Spatrick
352609467b48Spatrick // Now handle call return values.
352709467b48Spatrick SmallVector<CCValAssign, 16> RVLocs;
352809467b48Spatrick CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
352909467b48Spatrick CLI.RetTy->getContext());
353009467b48Spatrick CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
353109467b48Spatrick
353209467b48Spatrick // Copy all of the result registers out of their specified physreg.
3533097a140dSpatrick Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
353409467b48Spatrick for (unsigned i = 0; i != RVLocs.size(); ++i) {
353509467b48Spatrick CCValAssign &VA = RVLocs[i];
353609467b48Spatrick EVT CopyVT = VA.getValVT();
353709467b48Spatrick unsigned CopyReg = ResultReg + i;
353809467b48Spatrick Register SrcReg = VA.getLocReg();
353909467b48Spatrick
354009467b48Spatrick // If this is x86-64, and we disabled SSE, we can't return FP values
354109467b48Spatrick if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
354209467b48Spatrick ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
354309467b48Spatrick report_fatal_error("SSE register return with SSE disabled");
354409467b48Spatrick }
354509467b48Spatrick
354609467b48Spatrick // If we prefer to use the value in xmm registers, copy it out as f80 and
354709467b48Spatrick // use a truncate to move it from fp stack reg to xmm reg.
354809467b48Spatrick if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
354909467b48Spatrick isScalarFPTypeInSSEReg(VA.getValVT())) {
355009467b48Spatrick CopyVT = MVT::f80;
355109467b48Spatrick CopyReg = createResultReg(&X86::RFP80RegClass);
355209467b48Spatrick }
355309467b48Spatrick
355409467b48Spatrick // Copy out the result.
3555*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
355609467b48Spatrick TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
355709467b48Spatrick InRegs.push_back(VA.getLocReg());
355809467b48Spatrick
355909467b48Spatrick // Round the f80 to the right size, which also moves it to the appropriate
356009467b48Spatrick // xmm register. This is accomplished by storing the f80 value in memory
356109467b48Spatrick // and then loading it back.
356209467b48Spatrick if (CopyVT != VA.getValVT()) {
356309467b48Spatrick EVT ResVT = VA.getValVT();
356409467b48Spatrick unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
356509467b48Spatrick unsigned MemSize = ResVT.getSizeInBits()/8;
3566097a140dSpatrick int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3567*d415bd75Srobert addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
356809467b48Spatrick TII.get(Opc)), FI)
356909467b48Spatrick .addReg(CopyReg);
357009467b48Spatrick Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3571*d415bd75Srobert addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
357209467b48Spatrick TII.get(Opc), ResultReg + i), FI);
357309467b48Spatrick }
357409467b48Spatrick }
357509467b48Spatrick
357609467b48Spatrick CLI.ResultReg = ResultReg;
357709467b48Spatrick CLI.NumResultRegs = RVLocs.size();
357809467b48Spatrick CLI.Call = MIB;
357909467b48Spatrick
358009467b48Spatrick return true;
358109467b48Spatrick }
358209467b48Spatrick
358309467b48Spatrick bool
fastSelectInstruction(const Instruction * I)358409467b48Spatrick X86FastISel::fastSelectInstruction(const Instruction *I) {
358509467b48Spatrick switch (I->getOpcode()) {
358609467b48Spatrick default: break;
358709467b48Spatrick case Instruction::Load:
358809467b48Spatrick return X86SelectLoad(I);
358909467b48Spatrick case Instruction::Store:
359009467b48Spatrick return X86SelectStore(I);
359109467b48Spatrick case Instruction::Ret:
359209467b48Spatrick return X86SelectRet(I);
359309467b48Spatrick case Instruction::ICmp:
359409467b48Spatrick case Instruction::FCmp:
359509467b48Spatrick return X86SelectCmp(I);
359609467b48Spatrick case Instruction::ZExt:
359709467b48Spatrick return X86SelectZExt(I);
359809467b48Spatrick case Instruction::SExt:
359909467b48Spatrick return X86SelectSExt(I);
360009467b48Spatrick case Instruction::Br:
360109467b48Spatrick return X86SelectBranch(I);
360209467b48Spatrick case Instruction::LShr:
360309467b48Spatrick case Instruction::AShr:
360409467b48Spatrick case Instruction::Shl:
360509467b48Spatrick return X86SelectShift(I);
360609467b48Spatrick case Instruction::SDiv:
360709467b48Spatrick case Instruction::UDiv:
360809467b48Spatrick case Instruction::SRem:
360909467b48Spatrick case Instruction::URem:
361009467b48Spatrick return X86SelectDivRem(I);
361109467b48Spatrick case Instruction::Select:
361209467b48Spatrick return X86SelectSelect(I);
361309467b48Spatrick case Instruction::Trunc:
361409467b48Spatrick return X86SelectTrunc(I);
361509467b48Spatrick case Instruction::FPExt:
361609467b48Spatrick return X86SelectFPExt(I);
361709467b48Spatrick case Instruction::FPTrunc:
361809467b48Spatrick return X86SelectFPTrunc(I);
361909467b48Spatrick case Instruction::SIToFP:
362009467b48Spatrick return X86SelectSIToFP(I);
362109467b48Spatrick case Instruction::UIToFP:
362209467b48Spatrick return X86SelectUIToFP(I);
362309467b48Spatrick case Instruction::IntToPtr: // Deliberate fall-through.
362409467b48Spatrick case Instruction::PtrToInt: {
362509467b48Spatrick EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
362609467b48Spatrick EVT DstVT = TLI.getValueType(DL, I->getType());
362709467b48Spatrick if (DstVT.bitsGT(SrcVT))
362809467b48Spatrick return X86SelectZExt(I);
362909467b48Spatrick if (DstVT.bitsLT(SrcVT))
363009467b48Spatrick return X86SelectTrunc(I);
3631097a140dSpatrick Register Reg = getRegForValue(I->getOperand(0));
363209467b48Spatrick if (Reg == 0) return false;
363309467b48Spatrick updateValueMap(I, Reg);
363409467b48Spatrick return true;
363509467b48Spatrick }
363609467b48Spatrick case Instruction::BitCast: {
363709467b48Spatrick // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
363809467b48Spatrick if (!Subtarget->hasSSE2())
363909467b48Spatrick return false;
364009467b48Spatrick
364109467b48Spatrick MVT SrcVT, DstVT;
364209467b48Spatrick if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
364309467b48Spatrick !isTypeLegal(I->getType(), DstVT))
364409467b48Spatrick return false;
364509467b48Spatrick
364609467b48Spatrick // Only allow vectors that use xmm/ymm/zmm.
364709467b48Spatrick if (!SrcVT.isVector() || !DstVT.isVector() ||
364809467b48Spatrick SrcVT.getVectorElementType() == MVT::i1 ||
364909467b48Spatrick DstVT.getVectorElementType() == MVT::i1)
365009467b48Spatrick return false;
365109467b48Spatrick
3652097a140dSpatrick Register Reg = getRegForValue(I->getOperand(0));
3653097a140dSpatrick if (!Reg)
365409467b48Spatrick return false;
365509467b48Spatrick
3656097a140dSpatrick // Emit a reg-reg copy so we don't propagate cached known bits information
3657097a140dSpatrick // with the wrong VT if we fall out of fast isel after selecting this.
3658097a140dSpatrick const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3659097a140dSpatrick Register ResultReg = createResultReg(DstClass);
3660*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3661097a140dSpatrick TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3662097a140dSpatrick
3663097a140dSpatrick updateValueMap(I, ResultReg);
366409467b48Spatrick return true;
366509467b48Spatrick }
366609467b48Spatrick }
366709467b48Spatrick
366809467b48Spatrick return false;
366909467b48Spatrick }
367009467b48Spatrick
X86MaterializeInt(const ConstantInt * CI,MVT VT)367109467b48Spatrick unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
367209467b48Spatrick if (VT > MVT::i64)
367309467b48Spatrick return 0;
367409467b48Spatrick
367509467b48Spatrick uint64_t Imm = CI->getZExtValue();
367609467b48Spatrick if (Imm == 0) {
3677097a140dSpatrick Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
367809467b48Spatrick switch (VT.SimpleTy) {
367909467b48Spatrick default: llvm_unreachable("Unexpected value type");
368009467b48Spatrick case MVT::i1:
368109467b48Spatrick case MVT::i8:
368273471bf0Spatrick return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit);
368309467b48Spatrick case MVT::i16:
368473471bf0Spatrick return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit);
368509467b48Spatrick case MVT::i32:
368609467b48Spatrick return SrcReg;
368709467b48Spatrick case MVT::i64: {
3688097a140dSpatrick Register ResultReg = createResultReg(&X86::GR64RegClass);
3689*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
369009467b48Spatrick TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
369109467b48Spatrick .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
369209467b48Spatrick return ResultReg;
369309467b48Spatrick }
369409467b48Spatrick }
369509467b48Spatrick }
369609467b48Spatrick
369709467b48Spatrick unsigned Opc = 0;
369809467b48Spatrick switch (VT.SimpleTy) {
369909467b48Spatrick default: llvm_unreachable("Unexpected value type");
370009467b48Spatrick case MVT::i1:
370109467b48Spatrick VT = MVT::i8;
3702*d415bd75Srobert [[fallthrough]];
370309467b48Spatrick case MVT::i8: Opc = X86::MOV8ri; break;
370409467b48Spatrick case MVT::i16: Opc = X86::MOV16ri; break;
370509467b48Spatrick case MVT::i32: Opc = X86::MOV32ri; break;
370609467b48Spatrick case MVT::i64: {
370709467b48Spatrick if (isUInt<32>(Imm))
370809467b48Spatrick Opc = X86::MOV32ri64;
370909467b48Spatrick else if (isInt<32>(Imm))
371009467b48Spatrick Opc = X86::MOV64ri32;
371109467b48Spatrick else
371209467b48Spatrick Opc = X86::MOV64ri;
371309467b48Spatrick break;
371409467b48Spatrick }
371509467b48Spatrick }
371609467b48Spatrick return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
371709467b48Spatrick }
371809467b48Spatrick
X86MaterializeFP(const ConstantFP * CFP,MVT VT)371909467b48Spatrick unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
372009467b48Spatrick if (CFP->isNullValue())
372109467b48Spatrick return fastMaterializeFloatZero(CFP);
372209467b48Spatrick
372309467b48Spatrick // Can't handle alternate code models yet.
372409467b48Spatrick CodeModel::Model CM = TM.getCodeModel();
372509467b48Spatrick if (CM != CodeModel::Small && CM != CodeModel::Large)
372609467b48Spatrick return 0;
372709467b48Spatrick
372809467b48Spatrick // Get opcode and regclass of the output for the given load instruction.
372909467b48Spatrick unsigned Opc = 0;
3730*d415bd75Srobert bool HasSSE1 = Subtarget->hasSSE1();
3731*d415bd75Srobert bool HasSSE2 = Subtarget->hasSSE2();
373209467b48Spatrick bool HasAVX = Subtarget->hasAVX();
373309467b48Spatrick bool HasAVX512 = Subtarget->hasAVX512();
373409467b48Spatrick switch (VT.SimpleTy) {
373509467b48Spatrick default: return 0;
373609467b48Spatrick case MVT::f32:
3737*d415bd75Srobert Opc = HasAVX512 ? X86::VMOVSSZrm_alt
3738*d415bd75Srobert : HasAVX ? X86::VMOVSSrm_alt
3739*d415bd75Srobert : HasSSE1 ? X86::MOVSSrm_alt
3740*d415bd75Srobert : X86::LD_Fp32m;
374109467b48Spatrick break;
374209467b48Spatrick case MVT::f64:
3743*d415bd75Srobert Opc = HasAVX512 ? X86::VMOVSDZrm_alt
3744*d415bd75Srobert : HasAVX ? X86::VMOVSDrm_alt
3745*d415bd75Srobert : HasSSE2 ? X86::MOVSDrm_alt
3746*d415bd75Srobert : X86::LD_Fp64m;
374709467b48Spatrick break;
374809467b48Spatrick case MVT::f80:
374909467b48Spatrick // No f80 support yet.
375009467b48Spatrick return 0;
375109467b48Spatrick }
375209467b48Spatrick
375309467b48Spatrick // MachineConstantPool wants an explicit alignment.
3754097a140dSpatrick Align Alignment = DL.getPrefTypeAlign(CFP->getType());
375509467b48Spatrick
375609467b48Spatrick // x86-32 PIC requires a PIC base register for constant pools.
375709467b48Spatrick unsigned PICBase = 0;
375809467b48Spatrick unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
375909467b48Spatrick if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
376009467b48Spatrick PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
376109467b48Spatrick else if (OpFlag == X86II::MO_GOTOFF)
376209467b48Spatrick PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
376309467b48Spatrick else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
376409467b48Spatrick PICBase = X86::RIP;
376509467b48Spatrick
376609467b48Spatrick // Create the load from the constant pool.
3767097a140dSpatrick unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3768097a140dSpatrick Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
376909467b48Spatrick
3770097a140dSpatrick // Large code model only applies to 64-bit mode.
3771097a140dSpatrick if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3772097a140dSpatrick Register AddrReg = createResultReg(&X86::GR64RegClass);
3773*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
377409467b48Spatrick AddrReg)
377509467b48Spatrick .addConstantPoolIndex(CPI, 0, OpFlag);
3776*d415bd75Srobert MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
377709467b48Spatrick TII.get(Opc), ResultReg);
377873471bf0Spatrick addRegReg(MIB, AddrReg, false, PICBase, false);
377909467b48Spatrick MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
378009467b48Spatrick MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3781097a140dSpatrick MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
378209467b48Spatrick MIB->addMemOperand(*FuncInfo.MF, MMO);
378309467b48Spatrick return ResultReg;
378409467b48Spatrick }
378509467b48Spatrick
3786*d415bd75Srobert addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
378709467b48Spatrick TII.get(Opc), ResultReg),
378809467b48Spatrick CPI, PICBase, OpFlag);
378909467b48Spatrick return ResultReg;
379009467b48Spatrick }
379109467b48Spatrick
X86MaterializeGV(const GlobalValue * GV,MVT VT)379209467b48Spatrick unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
379309467b48Spatrick // Can't handle alternate code models yet.
379409467b48Spatrick if (TM.getCodeModel() != CodeModel::Small)
379509467b48Spatrick return 0;
379609467b48Spatrick
379709467b48Spatrick // Materialize addresses with LEA/MOV instructions.
379809467b48Spatrick X86AddressMode AM;
379909467b48Spatrick if (X86SelectAddress(GV, AM)) {
380009467b48Spatrick // If the expression is just a basereg, then we're done, otherwise we need
380109467b48Spatrick // to emit an LEA.
380209467b48Spatrick if (AM.BaseType == X86AddressMode::RegBase &&
380309467b48Spatrick AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
380409467b48Spatrick return AM.Base.Reg;
380509467b48Spatrick
3806097a140dSpatrick Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
380709467b48Spatrick if (TM.getRelocationModel() == Reloc::Static &&
380809467b48Spatrick TLI.getPointerTy(DL) == MVT::i64) {
380909467b48Spatrick // The displacement code could be more than 32 bits away so we need to use
381009467b48Spatrick // an instruction with a 64 bit immediate
3811*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
381209467b48Spatrick ResultReg)
381309467b48Spatrick .addGlobalAddress(GV);
381409467b48Spatrick } else {
381509467b48Spatrick unsigned Opc =
381609467b48Spatrick TLI.getPointerTy(DL) == MVT::i32
381709467b48Spatrick ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
381809467b48Spatrick : X86::LEA64r;
3819*d415bd75Srobert addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
382009467b48Spatrick TII.get(Opc), ResultReg), AM);
382109467b48Spatrick }
382209467b48Spatrick return ResultReg;
382309467b48Spatrick }
382409467b48Spatrick return 0;
382509467b48Spatrick }
382609467b48Spatrick
fastMaterializeConstant(const Constant * C)382709467b48Spatrick unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
382809467b48Spatrick EVT CEVT = TLI.getValueType(DL, C->getType(), true);
382909467b48Spatrick
383009467b48Spatrick // Only handle simple types.
383109467b48Spatrick if (!CEVT.isSimple())
383209467b48Spatrick return 0;
383309467b48Spatrick MVT VT = CEVT.getSimpleVT();
383409467b48Spatrick
383509467b48Spatrick if (const auto *CI = dyn_cast<ConstantInt>(C))
383609467b48Spatrick return X86MaterializeInt(CI, VT);
3837*d415bd75Srobert if (const auto *CFP = dyn_cast<ConstantFP>(C))
383809467b48Spatrick return X86MaterializeFP(CFP, VT);
3839*d415bd75Srobert if (const auto *GV = dyn_cast<GlobalValue>(C))
384009467b48Spatrick return X86MaterializeGV(GV, VT);
3841*d415bd75Srobert if (isa<UndefValue>(C)) {
384273471bf0Spatrick unsigned Opc = 0;
384373471bf0Spatrick switch (VT.SimpleTy) {
384473471bf0Spatrick default:
384573471bf0Spatrick break;
384673471bf0Spatrick case MVT::f32:
3847*d415bd75Srobert if (!Subtarget->hasSSE1())
384873471bf0Spatrick Opc = X86::LD_Fp032;
384973471bf0Spatrick break;
385073471bf0Spatrick case MVT::f64:
3851*d415bd75Srobert if (!Subtarget->hasSSE2())
385273471bf0Spatrick Opc = X86::LD_Fp064;
385373471bf0Spatrick break;
385473471bf0Spatrick case MVT::f80:
385573471bf0Spatrick Opc = X86::LD_Fp080;
385673471bf0Spatrick break;
385773471bf0Spatrick }
385873471bf0Spatrick
385973471bf0Spatrick if (Opc) {
386073471bf0Spatrick Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3861*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
386273471bf0Spatrick ResultReg);
386373471bf0Spatrick return ResultReg;
386473471bf0Spatrick }
386573471bf0Spatrick }
386609467b48Spatrick
386709467b48Spatrick return 0;
386809467b48Spatrick }
386909467b48Spatrick
fastMaterializeAlloca(const AllocaInst * C)387009467b48Spatrick unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
387109467b48Spatrick // Fail on dynamic allocas. At this point, getRegForValue has already
387209467b48Spatrick // checked its CSE maps, so if we're here trying to handle a dynamic
387309467b48Spatrick // alloca, we're not going to succeed. X86SelectAddress has a
387409467b48Spatrick // check for dynamic allocas, because it's called directly from
387509467b48Spatrick // various places, but targetMaterializeAlloca also needs a check
387609467b48Spatrick // in order to avoid recursion between getRegForValue,
387709467b48Spatrick // X86SelectAddrss, and targetMaterializeAlloca.
387809467b48Spatrick if (!FuncInfo.StaticAllocaMap.count(C))
387909467b48Spatrick return 0;
388009467b48Spatrick assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
388109467b48Spatrick
388209467b48Spatrick X86AddressMode AM;
388309467b48Spatrick if (!X86SelectAddress(C, AM))
388409467b48Spatrick return 0;
388509467b48Spatrick unsigned Opc =
388609467b48Spatrick TLI.getPointerTy(DL) == MVT::i32
388709467b48Spatrick ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
388809467b48Spatrick : X86::LEA64r;
388909467b48Spatrick const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3890097a140dSpatrick Register ResultReg = createResultReg(RC);
3891*d415bd75Srobert addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
389209467b48Spatrick TII.get(Opc), ResultReg), AM);
389309467b48Spatrick return ResultReg;
389409467b48Spatrick }
389509467b48Spatrick
fastMaterializeFloatZero(const ConstantFP * CF)389609467b48Spatrick unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
389709467b48Spatrick MVT VT;
389809467b48Spatrick if (!isTypeLegal(CF->getType(), VT))
389909467b48Spatrick return 0;
390009467b48Spatrick
390109467b48Spatrick // Get opcode and regclass for the given zero.
3902*d415bd75Srobert bool HasSSE1 = Subtarget->hasSSE1();
3903*d415bd75Srobert bool HasSSE2 = Subtarget->hasSSE2();
390409467b48Spatrick bool HasAVX512 = Subtarget->hasAVX512();
390509467b48Spatrick unsigned Opc = 0;
390609467b48Spatrick switch (VT.SimpleTy) {
390709467b48Spatrick default: return 0;
3908*d415bd75Srobert case MVT::f16:
3909*d415bd75Srobert Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH;
3910*d415bd75Srobert break;
391109467b48Spatrick case MVT::f32:
3912*d415bd75Srobert Opc = HasAVX512 ? X86::AVX512_FsFLD0SS
3913*d415bd75Srobert : HasSSE1 ? X86::FsFLD0SS
3914*d415bd75Srobert : X86::LD_Fp032;
391509467b48Spatrick break;
391609467b48Spatrick case MVT::f64:
3917*d415bd75Srobert Opc = HasAVX512 ? X86::AVX512_FsFLD0SD
3918*d415bd75Srobert : HasSSE2 ? X86::FsFLD0SD
3919*d415bd75Srobert : X86::LD_Fp064;
392009467b48Spatrick break;
392109467b48Spatrick case MVT::f80:
392209467b48Spatrick // No f80 support yet.
392309467b48Spatrick return 0;
392409467b48Spatrick }
392509467b48Spatrick
3926097a140dSpatrick Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3927*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
392809467b48Spatrick return ResultReg;
392909467b48Spatrick }
393009467b48Spatrick
393109467b48Spatrick
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)393209467b48Spatrick bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
393309467b48Spatrick const LoadInst *LI) {
393409467b48Spatrick const Value *Ptr = LI->getPointerOperand();
393509467b48Spatrick X86AddressMode AM;
393609467b48Spatrick if (!X86SelectAddress(Ptr, AM))
393709467b48Spatrick return false;
393809467b48Spatrick
393909467b48Spatrick const X86InstrInfo &XII = (const X86InstrInfo &)TII;
394009467b48Spatrick
394109467b48Spatrick unsigned Size = DL.getTypeAllocSize(LI->getType());
394209467b48Spatrick
394309467b48Spatrick SmallVector<MachineOperand, 8> AddrOps;
394409467b48Spatrick AM.getFullAddress(AddrOps);
394509467b48Spatrick
394609467b48Spatrick MachineInstr *Result = XII.foldMemoryOperandImpl(
3947097a140dSpatrick *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
394809467b48Spatrick /*AllowCommute=*/true);
394909467b48Spatrick if (!Result)
395009467b48Spatrick return false;
395109467b48Spatrick
395209467b48Spatrick // The index register could be in the wrong register class. Unfortunately,
395309467b48Spatrick // foldMemoryOperandImpl could have commuted the instruction so its not enough
395409467b48Spatrick // to just look at OpNo + the offset to the index reg. We actually need to
395509467b48Spatrick // scan the instruction to find the index reg and see if its the correct reg
395609467b48Spatrick // class.
395709467b48Spatrick unsigned OperandNo = 0;
395809467b48Spatrick for (MachineInstr::mop_iterator I = Result->operands_begin(),
395909467b48Spatrick E = Result->operands_end(); I != E; ++I, ++OperandNo) {
396009467b48Spatrick MachineOperand &MO = *I;
396109467b48Spatrick if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
396209467b48Spatrick continue;
396309467b48Spatrick // Found the index reg, now try to rewrite it.
3964097a140dSpatrick Register IndexReg = constrainOperandRegClass(Result->getDesc(),
396509467b48Spatrick MO.getReg(), OperandNo);
396609467b48Spatrick if (IndexReg == MO.getReg())
396709467b48Spatrick continue;
396809467b48Spatrick MO.setReg(IndexReg);
396909467b48Spatrick }
397009467b48Spatrick
397109467b48Spatrick Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
397209467b48Spatrick Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
397309467b48Spatrick MachineBasicBlock::iterator I(MI);
397409467b48Spatrick removeDeadCode(I, std::next(I));
397509467b48Spatrick return true;
397609467b48Spatrick }
397709467b48Spatrick
fastEmitInst_rrrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,unsigned Op1,unsigned Op2,unsigned Op3)397809467b48Spatrick unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
397909467b48Spatrick const TargetRegisterClass *RC,
398073471bf0Spatrick unsigned Op0, unsigned Op1,
398173471bf0Spatrick unsigned Op2, unsigned Op3) {
398209467b48Spatrick const MCInstrDesc &II = TII.get(MachineInstOpcode);
398309467b48Spatrick
3984097a140dSpatrick Register ResultReg = createResultReg(RC);
398509467b48Spatrick Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
398609467b48Spatrick Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
398709467b48Spatrick Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
398809467b48Spatrick Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
398909467b48Spatrick
399009467b48Spatrick if (II.getNumDefs() >= 1)
3991*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
399273471bf0Spatrick .addReg(Op0)
399373471bf0Spatrick .addReg(Op1)
399473471bf0Spatrick .addReg(Op2)
399573471bf0Spatrick .addReg(Op3);
399609467b48Spatrick else {
3997*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
399873471bf0Spatrick .addReg(Op0)
399973471bf0Spatrick .addReg(Op1)
400073471bf0Spatrick .addReg(Op2)
400173471bf0Spatrick .addReg(Op3);
4002*d415bd75Srobert BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
4003*d415bd75Srobert ResultReg)
4004*d415bd75Srobert .addReg(II.implicit_defs()[0]);
400509467b48Spatrick }
400609467b48Spatrick return ResultReg;
400709467b48Spatrick }
400809467b48Spatrick
400909467b48Spatrick
401009467b48Spatrick namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)401109467b48Spatrick FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
401209467b48Spatrick const TargetLibraryInfo *libInfo) {
401309467b48Spatrick return new X86FastISel(funcInfo, libInfo);
401409467b48Spatrick }
401509467b48Spatrick }
4016