xref: /openbsd-src/gnu/llvm/compiler-rt/lib/memprof/memprof_allocator.cpp (revision 810390e339a5425391477d5d41c78d7cab2424ac)
1d89ec533Spatrick //===-- memprof_allocator.cpp --------------------------------------------===//
2d89ec533Spatrick //
3d89ec533Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4d89ec533Spatrick // See https://llvm.org/LICENSE.txt for license information.
5d89ec533Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6d89ec533Spatrick //
7d89ec533Spatrick //===----------------------------------------------------------------------===//
8d89ec533Spatrick //
9d89ec533Spatrick // This file is a part of MemProfiler, a memory profiler.
10d89ec533Spatrick //
11d89ec533Spatrick // Implementation of MemProf's memory allocator, which uses the allocator
12d89ec533Spatrick // from sanitizer_common.
13d89ec533Spatrick //
14d89ec533Spatrick //===----------------------------------------------------------------------===//
15d89ec533Spatrick 
16d89ec533Spatrick #include "memprof_allocator.h"
17d89ec533Spatrick #include "memprof_mapping.h"
18*810390e3Srobert #include "memprof_mibmap.h"
19*810390e3Srobert #include "memprof_rawprofile.h"
20d89ec533Spatrick #include "memprof_stack.h"
21d89ec533Spatrick #include "memprof_thread.h"
22*810390e3Srobert #include "profile/MemProfData.inc"
23d89ec533Spatrick #include "sanitizer_common/sanitizer_allocator_checks.h"
24d89ec533Spatrick #include "sanitizer_common/sanitizer_allocator_interface.h"
25d89ec533Spatrick #include "sanitizer_common/sanitizer_allocator_report.h"
26d89ec533Spatrick #include "sanitizer_common/sanitizer_errno.h"
27d89ec533Spatrick #include "sanitizer_common/sanitizer_file.h"
28d89ec533Spatrick #include "sanitizer_common/sanitizer_flags.h"
29d89ec533Spatrick #include "sanitizer_common/sanitizer_internal_defs.h"
30*810390e3Srobert #include "sanitizer_common/sanitizer_procmaps.h"
31d89ec533Spatrick #include "sanitizer_common/sanitizer_stackdepot.h"
32d89ec533Spatrick 
33d89ec533Spatrick #include <sched.h>
34d89ec533Spatrick #include <time.h>
35d89ec533Spatrick 
36d89ec533Spatrick namespace __memprof {
37*810390e3Srobert namespace {
38*810390e3Srobert using ::llvm::memprof::MemInfoBlock;
39*810390e3Srobert 
Print(const MemInfoBlock & M,const u64 id,bool print_terse)40*810390e3Srobert void Print(const MemInfoBlock &M, const u64 id, bool print_terse) {
41*810390e3Srobert   u64 p;
42*810390e3Srobert 
43*810390e3Srobert   if (print_terse) {
44*810390e3Srobert     p = M.TotalSize * 100 / M.AllocCount;
45*810390e3Srobert     Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100,
46*810390e3Srobert            M.MinSize, M.MaxSize);
47*810390e3Srobert     p = M.TotalAccessCount * 100 / M.AllocCount;
48*810390e3Srobert     Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount,
49*810390e3Srobert            M.MaxAccessCount);
50*810390e3Srobert     p = M.TotalLifetime * 100 / M.AllocCount;
51*810390e3Srobert     Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime,
52*810390e3Srobert            M.MaxLifetime);
53*810390e3Srobert     Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps,
54*810390e3Srobert            M.NumSameAllocCpu, M.NumSameDeallocCpu);
55*810390e3Srobert   } else {
56*810390e3Srobert     p = M.TotalSize * 100 / M.AllocCount;
57*810390e3Srobert     Printf("Memory allocation stack id = %llu\n", id);
58*810390e3Srobert     Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n",
59*810390e3Srobert            M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize);
60*810390e3Srobert     p = M.TotalAccessCount * 100 / M.AllocCount;
61*810390e3Srobert     Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100,
62*810390e3Srobert            p % 100, M.MinAccessCount, M.MaxAccessCount);
63*810390e3Srobert     p = M.TotalLifetime * 100 / M.AllocCount;
64*810390e3Srobert     Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100,
65*810390e3Srobert            p % 100, M.MinLifetime, M.MaxLifetime);
66*810390e3Srobert     Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc "
67*810390e3Srobert            "cpu: %u, num same dealloc_cpu: %u\n",
68*810390e3Srobert            M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu,
69*810390e3Srobert            M.NumSameDeallocCpu);
70*810390e3Srobert   }
71*810390e3Srobert }
72*810390e3Srobert } // namespace
73d89ec533Spatrick 
GetCpuId(void)74d89ec533Spatrick static int GetCpuId(void) {
75d89ec533Spatrick   // _memprof_preinit is called via the preinit_array, which subsequently calls
76d89ec533Spatrick   // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu
77d89ec533Spatrick   // will seg fault as the address of __vdso_getcpu will be null.
78d89ec533Spatrick   if (!memprof_init_done)
79d89ec533Spatrick     return -1;
80d89ec533Spatrick   return sched_getcpu();
81d89ec533Spatrick }
82d89ec533Spatrick 
83d89ec533Spatrick // Compute the timestamp in ms.
GetTimestamp(void)84d89ec533Spatrick static int GetTimestamp(void) {
85d89ec533Spatrick   // timespec_get will segfault if called from dl_init
86d89ec533Spatrick   if (!memprof_timestamp_inited) {
87d89ec533Spatrick     // By returning 0, this will be effectively treated as being
88d89ec533Spatrick     // timestamped at memprof init time (when memprof_init_timestamp_s
89d89ec533Spatrick     // is initialized).
90d89ec533Spatrick     return 0;
91d89ec533Spatrick   }
92d89ec533Spatrick   timespec ts;
93d89ec533Spatrick   clock_gettime(CLOCK_REALTIME, &ts);
94d89ec533Spatrick   return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000;
95d89ec533Spatrick }
96d89ec533Spatrick 
97d89ec533Spatrick static MemprofAllocator &get_allocator();
98d89ec533Spatrick 
99d89ec533Spatrick // The memory chunk allocated from the underlying allocator looks like this:
100d89ec533Spatrick // H H U U U U U U
101d89ec533Spatrick //   H -- ChunkHeader (32 bytes)
102d89ec533Spatrick //   U -- user memory.
103d89ec533Spatrick 
104d89ec533Spatrick // If there is left padding before the ChunkHeader (due to use of memalign),
105d89ec533Spatrick // we store a magic value in the first uptr word of the memory block and
106d89ec533Spatrick // store the address of ChunkHeader in the next uptr.
107d89ec533Spatrick // M B L L L L L L L L L  H H U U U U U U
108d89ec533Spatrick //   |                    ^
109d89ec533Spatrick //   ---------------------|
110d89ec533Spatrick //   M -- magic value kAllocBegMagic
111d89ec533Spatrick //   B -- address of ChunkHeader pointing to the first 'H'
112d89ec533Spatrick 
113d89ec533Spatrick constexpr uptr kMaxAllowedMallocBits = 40;
114d89ec533Spatrick 
115d89ec533Spatrick // Should be no more than 32-bytes
116d89ec533Spatrick struct ChunkHeader {
117d89ec533Spatrick   // 1-st 4 bytes.
118d89ec533Spatrick   u32 alloc_context_id;
119d89ec533Spatrick   // 2-nd 4 bytes
120d89ec533Spatrick   u32 cpu_id;
121d89ec533Spatrick   // 3-rd 4 bytes
122d89ec533Spatrick   u32 timestamp_ms;
123d89ec533Spatrick   // 4-th 4 bytes
124d89ec533Spatrick   // Note only 1 bit is needed for this flag if we need space in the future for
125d89ec533Spatrick   // more fields.
126d89ec533Spatrick   u32 from_memalign;
127d89ec533Spatrick   // 5-th and 6-th 4 bytes
128d89ec533Spatrick   // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this
129d89ec533Spatrick   // could be shrunk to kMaxAllowedMallocBits if we need space in the future for
130d89ec533Spatrick   // more fields.
131d89ec533Spatrick   atomic_uint64_t user_requested_size;
132d89ec533Spatrick   // 23 bits available
133d89ec533Spatrick   // 7-th and 8-th 4 bytes
134d89ec533Spatrick   u64 data_type_id; // TODO: hash of type name
135d89ec533Spatrick };
136d89ec533Spatrick 
137d89ec533Spatrick static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
138d89ec533Spatrick COMPILER_CHECK(kChunkHeaderSize == 32);
139d89ec533Spatrick 
140d89ec533Spatrick struct MemprofChunk : ChunkHeader {
Beg__memprof::MemprofChunk141d89ec533Spatrick   uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
UsedSize__memprof::MemprofChunk142d89ec533Spatrick   uptr UsedSize() {
143d89ec533Spatrick     return atomic_load(&user_requested_size, memory_order_relaxed);
144d89ec533Spatrick   }
AllocBeg__memprof::MemprofChunk145d89ec533Spatrick   void *AllocBeg() {
146d89ec533Spatrick     if (from_memalign)
147d89ec533Spatrick       return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
148d89ec533Spatrick     return reinterpret_cast<void *>(this);
149d89ec533Spatrick   }
150d89ec533Spatrick };
151d89ec533Spatrick 
152d89ec533Spatrick class LargeChunkHeader {
153d89ec533Spatrick   static constexpr uptr kAllocBegMagic =
154d89ec533Spatrick       FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
155d89ec533Spatrick   atomic_uintptr_t magic;
156d89ec533Spatrick   MemprofChunk *chunk_header;
157d89ec533Spatrick 
158d89ec533Spatrick public:
Get() const159d89ec533Spatrick   MemprofChunk *Get() const {
160d89ec533Spatrick     return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
161d89ec533Spatrick                ? chunk_header
162d89ec533Spatrick                : nullptr;
163d89ec533Spatrick   }
164d89ec533Spatrick 
Set(MemprofChunk * p)165d89ec533Spatrick   void Set(MemprofChunk *p) {
166d89ec533Spatrick     if (p) {
167d89ec533Spatrick       chunk_header = p;
168d89ec533Spatrick       atomic_store(&magic, kAllocBegMagic, memory_order_release);
169d89ec533Spatrick       return;
170d89ec533Spatrick     }
171d89ec533Spatrick 
172d89ec533Spatrick     uptr old = kAllocBegMagic;
173d89ec533Spatrick     if (!atomic_compare_exchange_strong(&magic, &old, 0,
174d89ec533Spatrick                                         memory_order_release)) {
175d89ec533Spatrick       CHECK_EQ(old, kAllocBegMagic);
176d89ec533Spatrick     }
177d89ec533Spatrick   }
178d89ec533Spatrick };
179d89ec533Spatrick 
FlushUnneededMemProfShadowMemory(uptr p,uptr size)180d89ec533Spatrick void FlushUnneededMemProfShadowMemory(uptr p, uptr size) {
181d89ec533Spatrick   // Since memprof's mapping is compacting, the shadow chunk may be
182d89ec533Spatrick   // not page-aligned, so we only flush the page-aligned portion.
183d89ec533Spatrick   ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size));
184d89ec533Spatrick }
185d89ec533Spatrick 
OnMap(uptr p,uptr size) const186d89ec533Spatrick void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const {
187d89ec533Spatrick   // Statistics.
188d89ec533Spatrick   MemprofStats &thread_stats = GetCurrentThreadStats();
189d89ec533Spatrick   thread_stats.mmaps++;
190d89ec533Spatrick   thread_stats.mmaped += size;
191d89ec533Spatrick }
OnUnmap(uptr p,uptr size) const192d89ec533Spatrick void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
193d89ec533Spatrick   // We are about to unmap a chunk of user memory.
194d89ec533Spatrick   // Mark the corresponding shadow memory as not needed.
195d89ec533Spatrick   FlushUnneededMemProfShadowMemory(p, size);
196d89ec533Spatrick   // Statistics.
197d89ec533Spatrick   MemprofStats &thread_stats = GetCurrentThreadStats();
198d89ec533Spatrick   thread_stats.munmaps++;
199d89ec533Spatrick   thread_stats.munmaped += size;
200d89ec533Spatrick }
201d89ec533Spatrick 
GetAllocatorCache(MemprofThreadLocalMallocStorage * ms)202d89ec533Spatrick AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) {
203d89ec533Spatrick   CHECK(ms);
204d89ec533Spatrick   return &ms->allocator_cache;
205d89ec533Spatrick }
206d89ec533Spatrick 
207d89ec533Spatrick // Accumulates the access count from the shadow for the given pointer and size.
GetShadowCount(uptr p,u32 size)208d89ec533Spatrick u64 GetShadowCount(uptr p, u32 size) {
209d89ec533Spatrick   u64 *shadow = (u64 *)MEM_TO_SHADOW(p);
210d89ec533Spatrick   u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size);
211d89ec533Spatrick   u64 count = 0;
212d89ec533Spatrick   for (; shadow <= shadow_end; shadow++)
213d89ec533Spatrick     count += *shadow;
214d89ec533Spatrick   return count;
215d89ec533Spatrick }
216d89ec533Spatrick 
217d89ec533Spatrick // Clears the shadow counters (when memory is allocated).
ClearShadow(uptr addr,uptr size)218d89ec533Spatrick void ClearShadow(uptr addr, uptr size) {
219d89ec533Spatrick   CHECK(AddrIsAlignedByGranularity(addr));
220d89ec533Spatrick   CHECK(AddrIsInMem(addr));
221d89ec533Spatrick   CHECK(AddrIsAlignedByGranularity(addr + size));
222d89ec533Spatrick   CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY));
223d89ec533Spatrick   CHECK(REAL(memset));
224d89ec533Spatrick   uptr shadow_beg = MEM_TO_SHADOW(addr);
225d89ec533Spatrick   uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1;
226d89ec533Spatrick   if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) {
227d89ec533Spatrick     REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
228d89ec533Spatrick   } else {
229d89ec533Spatrick     uptr page_size = GetPageSizeCached();
230d89ec533Spatrick     uptr page_beg = RoundUpTo(shadow_beg, page_size);
231d89ec533Spatrick     uptr page_end = RoundDownTo(shadow_end, page_size);
232d89ec533Spatrick 
233d89ec533Spatrick     if (page_beg >= page_end) {
234d89ec533Spatrick       REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
235d89ec533Spatrick     } else {
236d89ec533Spatrick       if (page_beg != shadow_beg) {
237d89ec533Spatrick         REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg);
238d89ec533Spatrick       }
239d89ec533Spatrick       if (page_end != shadow_end) {
240d89ec533Spatrick         REAL(memset)((void *)page_end, 0, shadow_end - page_end);
241d89ec533Spatrick       }
242d89ec533Spatrick       ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr);
243d89ec533Spatrick     }
244d89ec533Spatrick   }
245d89ec533Spatrick }
246d89ec533Spatrick 
247d89ec533Spatrick struct Allocator {
248d89ec533Spatrick   static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits;
249d89ec533Spatrick 
250d89ec533Spatrick   MemprofAllocator allocator;
251d89ec533Spatrick   StaticSpinMutex fallback_mutex;
252d89ec533Spatrick   AllocatorCache fallback_allocator_cache;
253d89ec533Spatrick 
254d89ec533Spatrick   uptr max_user_defined_malloc_size;
255d89ec533Spatrick 
256*810390e3Srobert   // Holds the mapping of stack ids to MemInfoBlocks.
257*810390e3Srobert   MIBMapTy MIBMap;
258*810390e3Srobert 
259*810390e3Srobert   atomic_uint8_t destructing;
260*810390e3Srobert   atomic_uint8_t constructed;
261*810390e3Srobert   bool print_text;
262d89ec533Spatrick 
263d89ec533Spatrick   // ------------------- Initialization ------------------------
Allocator__memprof::Allocator264*810390e3Srobert   explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) {
265*810390e3Srobert     atomic_store_relaxed(&destructing, 0);
266*810390e3Srobert     atomic_store_relaxed(&constructed, 1);
267*810390e3Srobert   }
268d89ec533Spatrick 
~Allocator__memprof::Allocator269*810390e3Srobert   ~Allocator() {
270*810390e3Srobert     atomic_store_relaxed(&destructing, 1);
271*810390e3Srobert     FinishAndWrite();
272*810390e3Srobert   }
273d89ec533Spatrick 
PrintCallback__memprof::Allocator274*810390e3Srobert   static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value,
275*810390e3Srobert                             void *Arg) {
276*810390e3Srobert     SpinMutexLock l(&Value->mutex);
277*810390e3Srobert     Print(Value->mib, Key, bool(Arg));
278*810390e3Srobert   }
279*810390e3Srobert 
FinishAndWrite__memprof::Allocator280*810390e3Srobert   void FinishAndWrite() {
281*810390e3Srobert     if (print_text && common_flags()->print_module_map)
282*810390e3Srobert       DumpProcessMap();
283*810390e3Srobert 
284d89ec533Spatrick     allocator.ForceLock();
285*810390e3Srobert 
286*810390e3Srobert     InsertLiveBlocks();
287*810390e3Srobert     if (print_text) {
288*810390e3Srobert       if (!flags()->print_terse)
289*810390e3Srobert         Printf("Recorded MIBs (incl. live on exit):\n");
290*810390e3Srobert       MIBMap.ForEach(PrintCallback,
291*810390e3Srobert                      reinterpret_cast<void *>(flags()->print_terse));
292*810390e3Srobert       StackDepotPrintAll();
293*810390e3Srobert     } else {
294*810390e3Srobert       // Serialize the contents to a raw profile. Format documented in
295*810390e3Srobert       // memprof_rawprofile.h.
296*810390e3Srobert       char *Buffer = nullptr;
297*810390e3Srobert 
298*810390e3Srobert       MemoryMappingLayout Layout(/*cache_enabled=*/true);
299*810390e3Srobert       u64 BytesSerialized = SerializeToRawProfile(MIBMap, Layout, Buffer);
300*810390e3Srobert       CHECK(Buffer && BytesSerialized && "could not serialize to buffer");
301*810390e3Srobert       report_file.Write(Buffer, BytesSerialized);
302*810390e3Srobert     }
303*810390e3Srobert 
304*810390e3Srobert     allocator.ForceUnlock();
305*810390e3Srobert   }
306*810390e3Srobert 
307*810390e3Srobert   // Inserts any blocks which have been allocated but not yet deallocated.
InsertLiveBlocks__memprof::Allocator308*810390e3Srobert   void InsertLiveBlocks() {
309d89ec533Spatrick     allocator.ForEachChunk(
310d89ec533Spatrick         [](uptr chunk, void *alloc) {
311d89ec533Spatrick           u64 user_requested_size;
312*810390e3Srobert           Allocator *A = (Allocator *)alloc;
313d89ec533Spatrick           MemprofChunk *m =
314*810390e3Srobert               A->GetMemprofChunk((void *)chunk, user_requested_size);
315d89ec533Spatrick           if (!m)
316d89ec533Spatrick             return;
317d89ec533Spatrick           uptr user_beg = ((uptr)m) + kChunkHeaderSize;
318d89ec533Spatrick           u64 c = GetShadowCount(user_beg, user_requested_size);
319d89ec533Spatrick           long curtime = GetTimestamp();
320d89ec533Spatrick           MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
321d89ec533Spatrick                               m->cpu_id, GetCpuId());
322*810390e3Srobert           InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap);
323d89ec533Spatrick         },
324d89ec533Spatrick         this);
325d89ec533Spatrick   }
326d89ec533Spatrick 
InitLinkerInitialized__memprof::Allocator327d89ec533Spatrick   void InitLinkerInitialized() {
328d89ec533Spatrick     SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
329d89ec533Spatrick     allocator.InitLinkerInitialized(
330d89ec533Spatrick         common_flags()->allocator_release_to_os_interval_ms);
331d89ec533Spatrick     max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
332d89ec533Spatrick                                        ? common_flags()->max_allocation_size_mb
333d89ec533Spatrick                                              << 20
334d89ec533Spatrick                                        : kMaxAllowedMallocSize;
335d89ec533Spatrick   }
336d89ec533Spatrick 
337d89ec533Spatrick   // -------------------- Allocation/Deallocation routines ---------------
Allocate__memprof::Allocator338d89ec533Spatrick   void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
339d89ec533Spatrick                  AllocType alloc_type) {
340d89ec533Spatrick     if (UNLIKELY(!memprof_inited))
341d89ec533Spatrick       MemprofInitFromRtl();
342*810390e3Srobert     if (UNLIKELY(IsRssLimitExceeded())) {
343d89ec533Spatrick       if (AllocatorMayReturnNull())
344d89ec533Spatrick         return nullptr;
345d89ec533Spatrick       ReportRssLimitExceeded(stack);
346d89ec533Spatrick     }
347d89ec533Spatrick     CHECK(stack);
348d89ec533Spatrick     const uptr min_alignment = MEMPROF_ALIGNMENT;
349d89ec533Spatrick     if (alignment < min_alignment)
350d89ec533Spatrick       alignment = min_alignment;
351d89ec533Spatrick     if (size == 0) {
352d89ec533Spatrick       // We'd be happy to avoid allocating memory for zero-size requests, but
353d89ec533Spatrick       // some programs/tests depend on this behavior and assume that malloc
354d89ec533Spatrick       // would not return NULL even for zero-size allocations. Moreover, it
355d89ec533Spatrick       // looks like operator new should never return NULL, and results of
356d89ec533Spatrick       // consecutive "new" calls must be different even if the allocated size
357d89ec533Spatrick       // is zero.
358d89ec533Spatrick       size = 1;
359d89ec533Spatrick     }
360d89ec533Spatrick     CHECK(IsPowerOfTwo(alignment));
361d89ec533Spatrick     uptr rounded_size = RoundUpTo(size, alignment);
362d89ec533Spatrick     uptr needed_size = rounded_size + kChunkHeaderSize;
363d89ec533Spatrick     if (alignment > min_alignment)
364d89ec533Spatrick       needed_size += alignment;
365d89ec533Spatrick     CHECK(IsAligned(needed_size, min_alignment));
366d89ec533Spatrick     if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
367d89ec533Spatrick         size > max_user_defined_malloc_size) {
368d89ec533Spatrick       if (AllocatorMayReturnNull()) {
369*810390e3Srobert         Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size);
370d89ec533Spatrick         return nullptr;
371d89ec533Spatrick       }
372d89ec533Spatrick       uptr malloc_limit =
373d89ec533Spatrick           Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
374d89ec533Spatrick       ReportAllocationSizeTooBig(size, malloc_limit, stack);
375d89ec533Spatrick     }
376d89ec533Spatrick 
377d89ec533Spatrick     MemprofThread *t = GetCurrentThread();
378d89ec533Spatrick     void *allocated;
379d89ec533Spatrick     if (t) {
380d89ec533Spatrick       AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
381d89ec533Spatrick       allocated = allocator.Allocate(cache, needed_size, 8);
382d89ec533Spatrick     } else {
383d89ec533Spatrick       SpinMutexLock l(&fallback_mutex);
384d89ec533Spatrick       AllocatorCache *cache = &fallback_allocator_cache;
385d89ec533Spatrick       allocated = allocator.Allocate(cache, needed_size, 8);
386d89ec533Spatrick     }
387d89ec533Spatrick     if (UNLIKELY(!allocated)) {
388d89ec533Spatrick       SetAllocatorOutOfMemory();
389d89ec533Spatrick       if (AllocatorMayReturnNull())
390d89ec533Spatrick         return nullptr;
391d89ec533Spatrick       ReportOutOfMemory(size, stack);
392d89ec533Spatrick     }
393d89ec533Spatrick 
394d89ec533Spatrick     uptr alloc_beg = reinterpret_cast<uptr>(allocated);
395d89ec533Spatrick     uptr alloc_end = alloc_beg + needed_size;
396d89ec533Spatrick     uptr beg_plus_header = alloc_beg + kChunkHeaderSize;
397d89ec533Spatrick     uptr user_beg = beg_plus_header;
398d89ec533Spatrick     if (!IsAligned(user_beg, alignment))
399d89ec533Spatrick       user_beg = RoundUpTo(user_beg, alignment);
400d89ec533Spatrick     uptr user_end = user_beg + size;
401d89ec533Spatrick     CHECK_LE(user_end, alloc_end);
402d89ec533Spatrick     uptr chunk_beg = user_beg - kChunkHeaderSize;
403d89ec533Spatrick     MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
404d89ec533Spatrick     m->from_memalign = alloc_beg != chunk_beg;
405d89ec533Spatrick     CHECK(size);
406d89ec533Spatrick 
407d89ec533Spatrick     m->cpu_id = GetCpuId();
408d89ec533Spatrick     m->timestamp_ms = GetTimestamp();
409d89ec533Spatrick     m->alloc_context_id = StackDepotPut(*stack);
410d89ec533Spatrick 
411d89ec533Spatrick     uptr size_rounded_down_to_granularity =
412d89ec533Spatrick         RoundDownTo(size, SHADOW_GRANULARITY);
413d89ec533Spatrick     if (size_rounded_down_to_granularity)
414d89ec533Spatrick       ClearShadow(user_beg, size_rounded_down_to_granularity);
415d89ec533Spatrick 
416d89ec533Spatrick     MemprofStats &thread_stats = GetCurrentThreadStats();
417d89ec533Spatrick     thread_stats.mallocs++;
418d89ec533Spatrick     thread_stats.malloced += size;
419d89ec533Spatrick     thread_stats.malloced_overhead += needed_size - size;
420d89ec533Spatrick     if (needed_size > SizeClassMap::kMaxSize)
421d89ec533Spatrick       thread_stats.malloc_large++;
422d89ec533Spatrick     else
423d89ec533Spatrick       thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
424d89ec533Spatrick 
425d89ec533Spatrick     void *res = reinterpret_cast<void *>(user_beg);
426d89ec533Spatrick     atomic_store(&m->user_requested_size, size, memory_order_release);
427d89ec533Spatrick     if (alloc_beg != chunk_beg) {
428d89ec533Spatrick       CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
429d89ec533Spatrick       reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
430d89ec533Spatrick     }
431*810390e3Srobert     RunMallocHooks(res, size);
432d89ec533Spatrick     return res;
433d89ec533Spatrick   }
434d89ec533Spatrick 
Deallocate__memprof::Allocator435d89ec533Spatrick   void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
436d89ec533Spatrick                   BufferedStackTrace *stack, AllocType alloc_type) {
437d89ec533Spatrick     uptr p = reinterpret_cast<uptr>(ptr);
438d89ec533Spatrick     if (p == 0)
439d89ec533Spatrick       return;
440d89ec533Spatrick 
441*810390e3Srobert     RunFreeHooks(ptr);
442d89ec533Spatrick 
443d89ec533Spatrick     uptr chunk_beg = p - kChunkHeaderSize;
444d89ec533Spatrick     MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
445d89ec533Spatrick 
446d89ec533Spatrick     u64 user_requested_size =
447d89ec533Spatrick         atomic_exchange(&m->user_requested_size, 0, memory_order_acquire);
448*810390e3Srobert     if (memprof_inited && memprof_init_done &&
449*810390e3Srobert         atomic_load_relaxed(&constructed) &&
450*810390e3Srobert         !atomic_load_relaxed(&destructing)) {
451d89ec533Spatrick       u64 c = GetShadowCount(p, user_requested_size);
452d89ec533Spatrick       long curtime = GetTimestamp();
453d89ec533Spatrick 
454d89ec533Spatrick       MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
455d89ec533Spatrick                           m->cpu_id, GetCpuId());
456*810390e3Srobert       InsertOrMerge(m->alloc_context_id, newMIB, MIBMap);
457d89ec533Spatrick     }
458d89ec533Spatrick 
459d89ec533Spatrick     MemprofStats &thread_stats = GetCurrentThreadStats();
460d89ec533Spatrick     thread_stats.frees++;
461d89ec533Spatrick     thread_stats.freed += user_requested_size;
462d89ec533Spatrick 
463d89ec533Spatrick     void *alloc_beg = m->AllocBeg();
464d89ec533Spatrick     if (alloc_beg != m) {
465d89ec533Spatrick       // Clear the magic value, as allocator internals may overwrite the
466d89ec533Spatrick       // contents of deallocated chunk, confusing GetMemprofChunk lookup.
467d89ec533Spatrick       reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr);
468d89ec533Spatrick     }
469d89ec533Spatrick 
470d89ec533Spatrick     MemprofThread *t = GetCurrentThread();
471d89ec533Spatrick     if (t) {
472d89ec533Spatrick       AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
473d89ec533Spatrick       allocator.Deallocate(cache, alloc_beg);
474d89ec533Spatrick     } else {
475d89ec533Spatrick       SpinMutexLock l(&fallback_mutex);
476d89ec533Spatrick       AllocatorCache *cache = &fallback_allocator_cache;
477d89ec533Spatrick       allocator.Deallocate(cache, alloc_beg);
478d89ec533Spatrick     }
479d89ec533Spatrick   }
480d89ec533Spatrick 
Reallocate__memprof::Allocator481d89ec533Spatrick   void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
482d89ec533Spatrick     CHECK(old_ptr && new_size);
483d89ec533Spatrick     uptr p = reinterpret_cast<uptr>(old_ptr);
484d89ec533Spatrick     uptr chunk_beg = p - kChunkHeaderSize;
485d89ec533Spatrick     MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
486d89ec533Spatrick 
487d89ec533Spatrick     MemprofStats &thread_stats = GetCurrentThreadStats();
488d89ec533Spatrick     thread_stats.reallocs++;
489d89ec533Spatrick     thread_stats.realloced += new_size;
490d89ec533Spatrick 
491d89ec533Spatrick     void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
492d89ec533Spatrick     if (new_ptr) {
493d89ec533Spatrick       CHECK_NE(REAL(memcpy), nullptr);
494d89ec533Spatrick       uptr memcpy_size = Min(new_size, m->UsedSize());
495d89ec533Spatrick       REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
496d89ec533Spatrick       Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
497d89ec533Spatrick     }
498d89ec533Spatrick     return new_ptr;
499d89ec533Spatrick   }
500d89ec533Spatrick 
Calloc__memprof::Allocator501d89ec533Spatrick   void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
502d89ec533Spatrick     if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
503d89ec533Spatrick       if (AllocatorMayReturnNull())
504d89ec533Spatrick         return nullptr;
505d89ec533Spatrick       ReportCallocOverflow(nmemb, size, stack);
506d89ec533Spatrick     }
507d89ec533Spatrick     void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
508d89ec533Spatrick     // If the memory comes from the secondary allocator no need to clear it
509d89ec533Spatrick     // as it comes directly from mmap.
510d89ec533Spatrick     if (ptr && allocator.FromPrimary(ptr))
511d89ec533Spatrick       REAL(memset)(ptr, 0, nmemb * size);
512d89ec533Spatrick     return ptr;
513d89ec533Spatrick   }
514d89ec533Spatrick 
CommitBack__memprof::Allocator515d89ec533Spatrick   void CommitBack(MemprofThreadLocalMallocStorage *ms,
516d89ec533Spatrick                   BufferedStackTrace *stack) {
517d89ec533Spatrick     AllocatorCache *ac = GetAllocatorCache(ms);
518d89ec533Spatrick     allocator.SwallowCache(ac);
519d89ec533Spatrick   }
520d89ec533Spatrick 
521d89ec533Spatrick   // -------------------------- Chunk lookup ----------------------
522d89ec533Spatrick 
523d89ec533Spatrick   // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
GetMemprofChunk__memprof::Allocator524d89ec533Spatrick   MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) {
525d89ec533Spatrick     if (!alloc_beg)
526d89ec533Spatrick       return nullptr;
527d89ec533Spatrick     MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
528d89ec533Spatrick     if (!p) {
529d89ec533Spatrick       if (!allocator.FromPrimary(alloc_beg))
530d89ec533Spatrick         return nullptr;
531d89ec533Spatrick       p = reinterpret_cast<MemprofChunk *>(alloc_beg);
532d89ec533Spatrick     }
533d89ec533Spatrick     // The size is reset to 0 on deallocation (and a min of 1 on
534d89ec533Spatrick     // allocation).
535d89ec533Spatrick     user_requested_size =
536d89ec533Spatrick         atomic_load(&p->user_requested_size, memory_order_acquire);
537d89ec533Spatrick     if (user_requested_size)
538d89ec533Spatrick       return p;
539d89ec533Spatrick     return nullptr;
540d89ec533Spatrick   }
541d89ec533Spatrick 
GetMemprofChunkByAddr__memprof::Allocator542d89ec533Spatrick   MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) {
543d89ec533Spatrick     void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
544d89ec533Spatrick     return GetMemprofChunk(alloc_beg, user_requested_size);
545d89ec533Spatrick   }
546d89ec533Spatrick 
AllocationSize__memprof::Allocator547d89ec533Spatrick   uptr AllocationSize(uptr p) {
548d89ec533Spatrick     u64 user_requested_size;
549d89ec533Spatrick     MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size);
550d89ec533Spatrick     if (!m)
551d89ec533Spatrick       return 0;
552d89ec533Spatrick     if (m->Beg() != p)
553d89ec533Spatrick       return 0;
554d89ec533Spatrick     return user_requested_size;
555d89ec533Spatrick   }
556d89ec533Spatrick 
Purge__memprof::Allocator557d89ec533Spatrick   void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); }
558d89ec533Spatrick 
PrintStats__memprof::Allocator559d89ec533Spatrick   void PrintStats() { allocator.PrintStats(); }
560d89ec533Spatrick 
ForceLock__memprof::Allocator561*810390e3Srobert   void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
562d89ec533Spatrick     allocator.ForceLock();
563d89ec533Spatrick     fallback_mutex.Lock();
564d89ec533Spatrick   }
565d89ec533Spatrick 
ForceUnlock__memprof::Allocator566*810390e3Srobert   void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
567d89ec533Spatrick     fallback_mutex.Unlock();
568d89ec533Spatrick     allocator.ForceUnlock();
569d89ec533Spatrick   }
570d89ec533Spatrick };
571d89ec533Spatrick 
572d89ec533Spatrick static Allocator instance(LINKER_INITIALIZED);
573d89ec533Spatrick 
get_allocator()574d89ec533Spatrick static MemprofAllocator &get_allocator() { return instance.allocator; }
575d89ec533Spatrick 
InitializeAllocator()576d89ec533Spatrick void InitializeAllocator() { instance.InitLinkerInitialized(); }
577d89ec533Spatrick 
CommitBack()578d89ec533Spatrick void MemprofThreadLocalMallocStorage::CommitBack() {
579d89ec533Spatrick   GET_STACK_TRACE_MALLOC;
580d89ec533Spatrick   instance.CommitBack(this, &stack);
581d89ec533Spatrick }
582d89ec533Spatrick 
PrintInternalAllocatorStats()583d89ec533Spatrick void PrintInternalAllocatorStats() { instance.PrintStats(); }
584d89ec533Spatrick 
memprof_free(void * ptr,BufferedStackTrace * stack,AllocType alloc_type)585d89ec533Spatrick void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
586d89ec533Spatrick   instance.Deallocate(ptr, 0, 0, stack, alloc_type);
587d89ec533Spatrick }
588d89ec533Spatrick 
memprof_delete(void * ptr,uptr size,uptr alignment,BufferedStackTrace * stack,AllocType alloc_type)589d89ec533Spatrick void memprof_delete(void *ptr, uptr size, uptr alignment,
590d89ec533Spatrick                     BufferedStackTrace *stack, AllocType alloc_type) {
591d89ec533Spatrick   instance.Deallocate(ptr, size, alignment, stack, alloc_type);
592d89ec533Spatrick }
593d89ec533Spatrick 
memprof_malloc(uptr size,BufferedStackTrace * stack)594d89ec533Spatrick void *memprof_malloc(uptr size, BufferedStackTrace *stack) {
595d89ec533Spatrick   return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
596d89ec533Spatrick }
597d89ec533Spatrick 
memprof_calloc(uptr nmemb,uptr size,BufferedStackTrace * stack)598d89ec533Spatrick void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
599d89ec533Spatrick   return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
600d89ec533Spatrick }
601d89ec533Spatrick 
memprof_reallocarray(void * p,uptr nmemb,uptr size,BufferedStackTrace * stack)602d89ec533Spatrick void *memprof_reallocarray(void *p, uptr nmemb, uptr size,
603d89ec533Spatrick                            BufferedStackTrace *stack) {
604d89ec533Spatrick   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
605d89ec533Spatrick     errno = errno_ENOMEM;
606d89ec533Spatrick     if (AllocatorMayReturnNull())
607d89ec533Spatrick       return nullptr;
608d89ec533Spatrick     ReportReallocArrayOverflow(nmemb, size, stack);
609d89ec533Spatrick   }
610d89ec533Spatrick   return memprof_realloc(p, nmemb * size, stack);
611d89ec533Spatrick }
612d89ec533Spatrick 
memprof_realloc(void * p,uptr size,BufferedStackTrace * stack)613d89ec533Spatrick void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) {
614d89ec533Spatrick   if (!p)
615d89ec533Spatrick     return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
616d89ec533Spatrick   if (size == 0) {
617d89ec533Spatrick     if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
618d89ec533Spatrick       instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
619d89ec533Spatrick       return nullptr;
620d89ec533Spatrick     }
621d89ec533Spatrick     // Allocate a size of 1 if we shouldn't free() on Realloc to 0
622d89ec533Spatrick     size = 1;
623d89ec533Spatrick   }
624d89ec533Spatrick   return SetErrnoOnNull(instance.Reallocate(p, size, stack));
625d89ec533Spatrick }
626d89ec533Spatrick 
memprof_valloc(uptr size,BufferedStackTrace * stack)627d89ec533Spatrick void *memprof_valloc(uptr size, BufferedStackTrace *stack) {
628d89ec533Spatrick   return SetErrnoOnNull(
629d89ec533Spatrick       instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC));
630d89ec533Spatrick }
631d89ec533Spatrick 
memprof_pvalloc(uptr size,BufferedStackTrace * stack)632d89ec533Spatrick void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) {
633d89ec533Spatrick   uptr PageSize = GetPageSizeCached();
634d89ec533Spatrick   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
635d89ec533Spatrick     errno = errno_ENOMEM;
636d89ec533Spatrick     if (AllocatorMayReturnNull())
637d89ec533Spatrick       return nullptr;
638d89ec533Spatrick     ReportPvallocOverflow(size, stack);
639d89ec533Spatrick   }
640d89ec533Spatrick   // pvalloc(0) should allocate one page.
641d89ec533Spatrick   size = size ? RoundUpTo(size, PageSize) : PageSize;
642d89ec533Spatrick   return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC));
643d89ec533Spatrick }
644d89ec533Spatrick 
memprof_memalign(uptr alignment,uptr size,BufferedStackTrace * stack,AllocType alloc_type)645d89ec533Spatrick void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
646d89ec533Spatrick                        AllocType alloc_type) {
647d89ec533Spatrick   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
648d89ec533Spatrick     errno = errno_EINVAL;
649d89ec533Spatrick     if (AllocatorMayReturnNull())
650d89ec533Spatrick       return nullptr;
651d89ec533Spatrick     ReportInvalidAllocationAlignment(alignment, stack);
652d89ec533Spatrick   }
653d89ec533Spatrick   return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type));
654d89ec533Spatrick }
655d89ec533Spatrick 
memprof_aligned_alloc(uptr alignment,uptr size,BufferedStackTrace * stack)656d89ec533Spatrick void *memprof_aligned_alloc(uptr alignment, uptr size,
657d89ec533Spatrick                             BufferedStackTrace *stack) {
658d89ec533Spatrick   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
659d89ec533Spatrick     errno = errno_EINVAL;
660d89ec533Spatrick     if (AllocatorMayReturnNull())
661d89ec533Spatrick       return nullptr;
662d89ec533Spatrick     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
663d89ec533Spatrick   }
664d89ec533Spatrick   return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC));
665d89ec533Spatrick }
666d89ec533Spatrick 
memprof_posix_memalign(void ** memptr,uptr alignment,uptr size,BufferedStackTrace * stack)667d89ec533Spatrick int memprof_posix_memalign(void **memptr, uptr alignment, uptr size,
668d89ec533Spatrick                            BufferedStackTrace *stack) {
669d89ec533Spatrick   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
670d89ec533Spatrick     if (AllocatorMayReturnNull())
671d89ec533Spatrick       return errno_EINVAL;
672d89ec533Spatrick     ReportInvalidPosixMemalignAlignment(alignment, stack);
673d89ec533Spatrick   }
674d89ec533Spatrick   void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC);
675d89ec533Spatrick   if (UNLIKELY(!ptr))
676d89ec533Spatrick     // OOM error is already taken care of by Allocate.
677d89ec533Spatrick     return errno_ENOMEM;
678d89ec533Spatrick   CHECK(IsAligned((uptr)ptr, alignment));
679d89ec533Spatrick   *memptr = ptr;
680d89ec533Spatrick   return 0;
681d89ec533Spatrick }
682d89ec533Spatrick 
memprof_malloc_usable_size(const void * ptr,uptr pc,uptr bp)683d89ec533Spatrick uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
684d89ec533Spatrick   if (!ptr)
685d89ec533Spatrick     return 0;
686d89ec533Spatrick   uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
687d89ec533Spatrick   return usable_size;
688d89ec533Spatrick }
689d89ec533Spatrick 
690d89ec533Spatrick } // namespace __memprof
691d89ec533Spatrick 
692d89ec533Spatrick // ---------------------- Interface ---------------- {{{1
693d89ec533Spatrick using namespace __memprof;
694d89ec533Spatrick 
__sanitizer_get_estimated_allocated_size(uptr size)695d89ec533Spatrick uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
696d89ec533Spatrick 
__sanitizer_get_ownership(const void * p)697d89ec533Spatrick int __sanitizer_get_ownership(const void *p) {
698d89ec533Spatrick   return memprof_malloc_usable_size(p, 0, 0) != 0;
699d89ec533Spatrick }
700d89ec533Spatrick 
__sanitizer_get_allocated_size(const void * p)701d89ec533Spatrick uptr __sanitizer_get_allocated_size(const void *p) {
702d89ec533Spatrick   return memprof_malloc_usable_size(p, 0, 0);
703d89ec533Spatrick }
704d89ec533Spatrick 
__memprof_profile_dump()705d89ec533Spatrick int __memprof_profile_dump() {
706*810390e3Srobert   instance.FinishAndWrite();
707d89ec533Spatrick   // In the future we may want to return non-zero if there are any errors
708d89ec533Spatrick   // detected during the dumping process.
709d89ec533Spatrick   return 0;
710d89ec533Spatrick }
711