xref: /openbsd-src/gnu/llvm/clang/lib/Sema/SemaDeclAttr.cpp (revision fcde59b201a29a2b4570b00b71e7aa25d61cb5c1)
1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements decl-related attribute processing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/Basic/CharInfo.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/DelayedDiagnostic.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/Support/MathExtras.h"
39 
40 using namespace clang;
41 using namespace sema;
42 
43 namespace AttributeLangSupport {
44   enum LANG {
45     C,
46     Cpp,
47     ObjC
48   };
49 } // end namespace AttributeLangSupport
50 
51 //===----------------------------------------------------------------------===//
52 //  Helper functions
53 //===----------------------------------------------------------------------===//
54 
55 /// isFunctionOrMethod - Return true if the given decl has function
56 /// type (function or function-typed variable) or an Objective-C
57 /// method.
58 static bool isFunctionOrMethod(const Decl *D) {
59   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
60 }
61 
62 /// Return true if the given decl has function type (function or
63 /// function-typed variable) or an Objective-C method or a block.
64 static bool isFunctionOrMethodOrBlock(const Decl *D) {
65   return isFunctionOrMethod(D) || isa<BlockDecl>(D);
66 }
67 
68 /// Return true if the given decl has a declarator that should have
69 /// been processed by Sema::GetTypeForDeclarator.
70 static bool hasDeclarator(const Decl *D) {
71   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
72   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
73          isa<ObjCPropertyDecl>(D);
74 }
75 
76 /// hasFunctionProto - Return true if the given decl has a argument
77 /// information. This decl should have already passed
78 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
79 static bool hasFunctionProto(const Decl *D) {
80   if (const FunctionType *FnTy = D->getFunctionType())
81     return isa<FunctionProtoType>(FnTy);
82   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
83 }
84 
85 /// getFunctionOrMethodNumParams - Return number of function or method
86 /// parameters. It is an error to call this on a K&R function (use
87 /// hasFunctionProto first).
88 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
89   if (const FunctionType *FnTy = D->getFunctionType())
90     return cast<FunctionProtoType>(FnTy)->getNumParams();
91   if (const auto *BD = dyn_cast<BlockDecl>(D))
92     return BD->getNumParams();
93   return cast<ObjCMethodDecl>(D)->param_size();
94 }
95 
96 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
97                                                    unsigned Idx) {
98   if (const auto *FD = dyn_cast<FunctionDecl>(D))
99     return FD->getParamDecl(Idx);
100   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
101     return MD->getParamDecl(Idx);
102   if (const auto *BD = dyn_cast<BlockDecl>(D))
103     return BD->getParamDecl(Idx);
104   return nullptr;
105 }
106 
107 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
108   if (const FunctionType *FnTy = D->getFunctionType())
109     return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
110   if (const auto *BD = dyn_cast<BlockDecl>(D))
111     return BD->getParamDecl(Idx)->getType();
112 
113   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
114 }
115 
116 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
117   if (auto *PVD = getFunctionOrMethodParam(D, Idx))
118     return PVD->getSourceRange();
119   return SourceRange();
120 }
121 
122 static QualType getFunctionOrMethodResultType(const Decl *D) {
123   if (const FunctionType *FnTy = D->getFunctionType())
124     return FnTy->getReturnType();
125   return cast<ObjCMethodDecl>(D)->getReturnType();
126 }
127 
128 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
129   if (const auto *FD = dyn_cast<FunctionDecl>(D))
130     return FD->getReturnTypeSourceRange();
131   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
132     return MD->getReturnTypeSourceRange();
133   return SourceRange();
134 }
135 
136 static bool isFunctionOrMethodVariadic(const Decl *D) {
137   if (const FunctionType *FnTy = D->getFunctionType())
138     return cast<FunctionProtoType>(FnTy)->isVariadic();
139   if (const auto *BD = dyn_cast<BlockDecl>(D))
140     return BD->isVariadic();
141   return cast<ObjCMethodDecl>(D)->isVariadic();
142 }
143 
144 static bool isInstanceMethod(const Decl *D) {
145   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
146     return MethodDecl->isInstance();
147   return false;
148 }
149 
150 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
151   const auto *PT = T->getAs<ObjCObjectPointerType>();
152   if (!PT)
153     return false;
154 
155   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
156   if (!Cls)
157     return false;
158 
159   IdentifierInfo* ClsName = Cls->getIdentifier();
160 
161   // FIXME: Should we walk the chain of classes?
162   return ClsName == &Ctx.Idents.get("NSString") ||
163          ClsName == &Ctx.Idents.get("NSMutableString");
164 }
165 
166 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
167   const auto *PT = T->getAs<PointerType>();
168   if (!PT)
169     return false;
170 
171   const auto *RT = PT->getPointeeType()->getAs<RecordType>();
172   if (!RT)
173     return false;
174 
175   const RecordDecl *RD = RT->getDecl();
176   if (RD->getTagKind() != TTK_Struct)
177     return false;
178 
179   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
180 }
181 
182 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
183   // FIXME: Include the type in the argument list.
184   return AL.getNumArgs() + AL.hasParsedType();
185 }
186 
187 template <typename Compare>
188 static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL,
189                                       unsigned Num, unsigned Diag,
190                                       Compare Comp) {
191   if (Comp(getNumAttributeArgs(AL), Num)) {
192     S.Diag(AL.getLoc(), Diag) << AL << Num;
193     return false;
194   }
195 
196   return true;
197 }
198 
199 /// Check if the attribute has exactly as many args as Num. May
200 /// output an error.
201 static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) {
202   return checkAttributeNumArgsImpl(S, AL, Num,
203                                    diag::err_attribute_wrong_number_arguments,
204                                    std::not_equal_to<unsigned>());
205 }
206 
207 /// Check if the attribute has at least as many args as Num. May
208 /// output an error.
209 static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL,
210                                          unsigned Num) {
211   return checkAttributeNumArgsImpl(S, AL, Num,
212                                    diag::err_attribute_too_few_arguments,
213                                    std::less<unsigned>());
214 }
215 
216 /// Check if the attribute has at most as many args as Num. May
217 /// output an error.
218 static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL,
219                                         unsigned Num) {
220   return checkAttributeNumArgsImpl(S, AL, Num,
221                                    diag::err_attribute_too_many_arguments,
222                                    std::greater<unsigned>());
223 }
224 
225 /// A helper function to provide Attribute Location for the Attr types
226 /// AND the ParsedAttr.
227 template <typename AttrInfo>
228 static typename std::enable_if<std::is_base_of<Attr, AttrInfo>::value,
229                                SourceLocation>::type
230 getAttrLoc(const AttrInfo &AL) {
231   return AL.getLocation();
232 }
233 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
234 
235 /// If Expr is a valid integer constant, get the value of the integer
236 /// expression and return success or failure. May output an error.
237 ///
238 /// Negative argument is implicitly converted to unsigned, unless
239 /// \p StrictlyUnsigned is true.
240 template <typename AttrInfo>
241 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
242                                 uint32_t &Val, unsigned Idx = UINT_MAX,
243                                 bool StrictlyUnsigned = false) {
244   llvm::APSInt I(32);
245   if (Expr->isTypeDependent() || Expr->isValueDependent() ||
246       !Expr->isIntegerConstantExpr(I, S.Context)) {
247     if (Idx != UINT_MAX)
248       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
249           << &AI << Idx << AANT_ArgumentIntegerConstant
250           << Expr->getSourceRange();
251     else
252       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
253           << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
254     return false;
255   }
256 
257   if (!I.isIntN(32)) {
258     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
259         << I.toString(10, false) << 32 << /* Unsigned */ 1;
260     return false;
261   }
262 
263   if (StrictlyUnsigned && I.isSigned() && I.isNegative()) {
264     S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
265         << &AI << /*non-negative*/ 1;
266     return false;
267   }
268 
269   Val = (uint32_t)I.getZExtValue();
270   return true;
271 }
272 
273 /// Wrapper around checkUInt32Argument, with an extra check to be sure
274 /// that the result will fit into a regular (signed) int. All args have the same
275 /// purpose as they do in checkUInt32Argument.
276 template <typename AttrInfo>
277 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
278                                      int &Val, unsigned Idx = UINT_MAX) {
279   uint32_t UVal;
280   if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
281     return false;
282 
283   if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
284     llvm::APSInt I(32); // for toString
285     I = UVal;
286     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
287         << I.toString(10, false) << 32 << /* Unsigned */ 0;
288     return false;
289   }
290 
291   Val = UVal;
292   return true;
293 }
294 
295 /// Diagnose mutually exclusive attributes when present on a given
296 /// declaration. Returns true if diagnosed.
297 template <typename AttrTy>
298 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
299   if (const auto *A = D->getAttr<AttrTy>()) {
300     S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
301     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
302     return true;
303   }
304   return false;
305 }
306 
307 template <typename AttrTy>
308 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
309   if (const auto *A = D->getAttr<AttrTy>()) {
310     S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
311                                                                       << A;
312     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
313     return true;
314   }
315   return false;
316 }
317 
318 /// Check if IdxExpr is a valid parameter index for a function or
319 /// instance method D.  May output an error.
320 ///
321 /// \returns true if IdxExpr is a valid index.
322 template <typename AttrInfo>
323 static bool checkFunctionOrMethodParameterIndex(
324     Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
325     const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
326   assert(isFunctionOrMethodOrBlock(D));
327 
328   // In C++ the implicit 'this' function parameter also counts.
329   // Parameters are counted from one.
330   bool HP = hasFunctionProto(D);
331   bool HasImplicitThisParam = isInstanceMethod(D);
332   bool IV = HP && isFunctionOrMethodVariadic(D);
333   unsigned NumParams =
334       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
335 
336   llvm::APSInt IdxInt;
337   if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
338       !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
339     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
340         << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
341         << IdxExpr->getSourceRange();
342     return false;
343   }
344 
345   unsigned IdxSource = IdxInt.getLimitedValue(UINT_MAX);
346   if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
347     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
348         << &AI << AttrArgNum << IdxExpr->getSourceRange();
349     return false;
350   }
351   if (HasImplicitThisParam && !CanIndexImplicitThis) {
352     if (IdxSource == 1) {
353       S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
354           << &AI << IdxExpr->getSourceRange();
355       return false;
356     }
357   }
358 
359   Idx = ParamIdx(IdxSource, D);
360   return true;
361 }
362 
363 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
364 /// If not emit an error and return false. If the argument is an identifier it
365 /// will emit an error with a fixit hint and treat it as if it was a string
366 /// literal.
367 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
368                                           StringRef &Str,
369                                           SourceLocation *ArgLocation) {
370   // Look for identifiers. If we have one emit a hint to fix it to a literal.
371   if (AL.isArgIdent(ArgNum)) {
372     IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
373     Diag(Loc->Loc, diag::err_attribute_argument_type)
374         << AL << AANT_ArgumentString
375         << FixItHint::CreateInsertion(Loc->Loc, "\"")
376         << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
377     Str = Loc->Ident->getName();
378     if (ArgLocation)
379       *ArgLocation = Loc->Loc;
380     return true;
381   }
382 
383   // Now check for an actual string literal.
384   Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
385   const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
386   if (ArgLocation)
387     *ArgLocation = ArgExpr->getBeginLoc();
388 
389   if (!Literal || !Literal->isAscii()) {
390     Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
391         << AL << AANT_ArgumentString;
392     return false;
393   }
394 
395   Str = Literal->getString();
396   return true;
397 }
398 
399 /// Applies the given attribute to the Decl without performing any
400 /// additional semantic checking.
401 template <typename AttrType>
402 static void handleSimpleAttribute(Sema &S, Decl *D,
403                                   const AttributeCommonInfo &CI) {
404   D->addAttr(::new (S.Context) AttrType(S.Context, CI));
405 }
406 
407 template <typename... DiagnosticArgs>
408 static const Sema::SemaDiagnosticBuilder&
409 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
410   return Bldr;
411 }
412 
413 template <typename T, typename... DiagnosticArgs>
414 static const Sema::SemaDiagnosticBuilder&
415 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
416                   DiagnosticArgs &&... ExtraArgs) {
417   return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
418                            std::forward<DiagnosticArgs>(ExtraArgs)...);
419 }
420 
421 /// Add an attribute {@code AttrType} to declaration {@code D}, provided that
422 /// {@code PassesCheck} is true.
423 /// Otherwise, emit diagnostic {@code DiagID}, passing in all parameters
424 /// specified in {@code ExtraArgs}.
425 template <typename AttrType, typename... DiagnosticArgs>
426 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
427                                             const AttributeCommonInfo &CI,
428                                             bool PassesCheck, unsigned DiagID,
429                                             DiagnosticArgs &&... ExtraArgs) {
430   if (!PassesCheck) {
431     Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
432     appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
433     return;
434   }
435   handleSimpleAttribute<AttrType>(S, D, CI);
436 }
437 
438 template <typename AttrType>
439 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
440                                                 const ParsedAttr &AL) {
441   handleSimpleAttribute<AttrType>(S, D, AL);
442 }
443 
444 /// Applies the given attribute to the Decl so long as the Decl doesn't
445 /// already have one of the given incompatible attributes.
446 template <typename AttrType, typename IncompatibleAttrType,
447           typename... IncompatibleAttrTypes>
448 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
449                                                 const ParsedAttr &AL) {
450   if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL))
451     return;
452   handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D,
453                                                                           AL);
454 }
455 
456 /// Check if the passed-in expression is of type int or bool.
457 static bool isIntOrBool(Expr *Exp) {
458   QualType QT = Exp->getType();
459   return QT->isBooleanType() || QT->isIntegerType();
460 }
461 
462 
463 // Check to see if the type is a smart pointer of some kind.  We assume
464 // it's a smart pointer if it defines both operator-> and operator*.
465 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
466   auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
467                                           OverloadedOperatorKind Op) {
468     DeclContextLookupResult Result =
469         Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
470     return !Result.empty();
471   };
472 
473   const RecordDecl *Record = RT->getDecl();
474   bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
475   bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
476   if (foundStarOperator && foundArrowOperator)
477     return true;
478 
479   const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
480   if (!CXXRecord)
481     return false;
482 
483   for (auto BaseSpecifier : CXXRecord->bases()) {
484     if (!foundStarOperator)
485       foundStarOperator = IsOverloadedOperatorPresent(
486           BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
487     if (!foundArrowOperator)
488       foundArrowOperator = IsOverloadedOperatorPresent(
489           BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
490   }
491 
492   if (foundStarOperator && foundArrowOperator)
493     return true;
494 
495   return false;
496 }
497 
498 /// Check if passed in Decl is a pointer type.
499 /// Note that this function may produce an error message.
500 /// \return true if the Decl is a pointer type; false otherwise
501 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
502                                        const ParsedAttr &AL) {
503   const auto *VD = cast<ValueDecl>(D);
504   QualType QT = VD->getType();
505   if (QT->isAnyPointerType())
506     return true;
507 
508   if (const auto *RT = QT->getAs<RecordType>()) {
509     // If it's an incomplete type, it could be a smart pointer; skip it.
510     // (We don't want to force template instantiation if we can avoid it,
511     // since that would alter the order in which templates are instantiated.)
512     if (RT->isIncompleteType())
513       return true;
514 
515     if (threadSafetyCheckIsSmartPointer(S, RT))
516       return true;
517   }
518 
519   S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
520   return false;
521 }
522 
523 /// Checks that the passed in QualType either is of RecordType or points
524 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
525 static const RecordType *getRecordType(QualType QT) {
526   if (const auto *RT = QT->getAs<RecordType>())
527     return RT;
528 
529   // Now check if we point to record type.
530   if (const auto *PT = QT->getAs<PointerType>())
531     return PT->getPointeeType()->getAs<RecordType>();
532 
533   return nullptr;
534 }
535 
536 template <typename AttrType>
537 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
538   // Check if the record itself has the attribute.
539   if (RD->hasAttr<AttrType>())
540     return true;
541 
542   // Else check if any base classes have the attribute.
543   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
544     CXXBasePaths BPaths(false, false);
545     if (CRD->lookupInBases(
546             [](const CXXBaseSpecifier *BS, CXXBasePath &) {
547               const auto &Ty = *BS->getType();
548               // If it's type-dependent, we assume it could have the attribute.
549               if (Ty.isDependentType())
550                 return true;
551               return Ty.castAs<RecordType>()->getDecl()->hasAttr<AttrType>();
552             },
553             BPaths, true))
554       return true;
555   }
556   return false;
557 }
558 
559 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
560   const RecordType *RT = getRecordType(Ty);
561 
562   if (!RT)
563     return false;
564 
565   // Don't check for the capability if the class hasn't been defined yet.
566   if (RT->isIncompleteType())
567     return true;
568 
569   // Allow smart pointers to be used as capability objects.
570   // FIXME -- Check the type that the smart pointer points to.
571   if (threadSafetyCheckIsSmartPointer(S, RT))
572     return true;
573 
574   return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
575 }
576 
577 static bool checkTypedefTypeForCapability(QualType Ty) {
578   const auto *TD = Ty->getAs<TypedefType>();
579   if (!TD)
580     return false;
581 
582   TypedefNameDecl *TN = TD->getDecl();
583   if (!TN)
584     return false;
585 
586   return TN->hasAttr<CapabilityAttr>();
587 }
588 
589 static bool typeHasCapability(Sema &S, QualType Ty) {
590   if (checkTypedefTypeForCapability(Ty))
591     return true;
592 
593   if (checkRecordTypeForCapability(S, Ty))
594     return true;
595 
596   return false;
597 }
598 
599 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
600   // Capability expressions are simple expressions involving the boolean logic
601   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
602   // a DeclRefExpr is found, its type should be checked to determine whether it
603   // is a capability or not.
604 
605   if (const auto *E = dyn_cast<CastExpr>(Ex))
606     return isCapabilityExpr(S, E->getSubExpr());
607   else if (const auto *E = dyn_cast<ParenExpr>(Ex))
608     return isCapabilityExpr(S, E->getSubExpr());
609   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
610     if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
611         E->getOpcode() == UO_Deref)
612       return isCapabilityExpr(S, E->getSubExpr());
613     return false;
614   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
615     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
616       return isCapabilityExpr(S, E->getLHS()) &&
617              isCapabilityExpr(S, E->getRHS());
618     return false;
619   }
620 
621   return typeHasCapability(S, Ex->getType());
622 }
623 
624 /// Checks that all attribute arguments, starting from Sidx, resolve to
625 /// a capability object.
626 /// \param Sidx The attribute argument index to start checking with.
627 /// \param ParamIdxOk Whether an argument can be indexing into a function
628 /// parameter list.
629 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
630                                            const ParsedAttr &AL,
631                                            SmallVectorImpl<Expr *> &Args,
632                                            unsigned Sidx = 0,
633                                            bool ParamIdxOk = false) {
634   if (Sidx == AL.getNumArgs()) {
635     // If we don't have any capability arguments, the attribute implicitly
636     // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
637     // a non-static method, and that the class is a (scoped) capability.
638     const auto *MD = dyn_cast<const CXXMethodDecl>(D);
639     if (MD && !MD->isStatic()) {
640       const CXXRecordDecl *RD = MD->getParent();
641       // FIXME -- need to check this again on template instantiation
642       if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
643           !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
644         S.Diag(AL.getLoc(),
645                diag::warn_thread_attribute_not_on_capability_member)
646             << AL << MD->getParent();
647     } else {
648       S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
649           << AL;
650     }
651   }
652 
653   for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
654     Expr *ArgExp = AL.getArgAsExpr(Idx);
655 
656     if (ArgExp->isTypeDependent()) {
657       // FIXME -- need to check this again on template instantiation
658       Args.push_back(ArgExp);
659       continue;
660     }
661 
662     if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
663       if (StrLit->getLength() == 0 ||
664           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
665         // Pass empty strings to the analyzer without warnings.
666         // Treat "*" as the universal lock.
667         Args.push_back(ArgExp);
668         continue;
669       }
670 
671       // We allow constant strings to be used as a placeholder for expressions
672       // that are not valid C++ syntax, but warn that they are ignored.
673       S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
674       Args.push_back(ArgExp);
675       continue;
676     }
677 
678     QualType ArgTy = ArgExp->getType();
679 
680     // A pointer to member expression of the form  &MyClass::mu is treated
681     // specially -- we need to look at the type of the member.
682     if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
683       if (UOp->getOpcode() == UO_AddrOf)
684         if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
685           if (DRE->getDecl()->isCXXInstanceMember())
686             ArgTy = DRE->getDecl()->getType();
687 
688     // First see if we can just cast to record type, or pointer to record type.
689     const RecordType *RT = getRecordType(ArgTy);
690 
691     // Now check if we index into a record type function param.
692     if(!RT && ParamIdxOk) {
693       const auto *FD = dyn_cast<FunctionDecl>(D);
694       const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
695       if(FD && IL) {
696         unsigned int NumParams = FD->getNumParams();
697         llvm::APInt ArgValue = IL->getValue();
698         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
699         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
700         if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
701           S.Diag(AL.getLoc(),
702                  diag::err_attribute_argument_out_of_bounds_extra_info)
703               << AL << Idx + 1 << NumParams;
704           continue;
705         }
706         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
707       }
708     }
709 
710     // If the type does not have a capability, see if the components of the
711     // expression have capabilities. This allows for writing C code where the
712     // capability may be on the type, and the expression is a capability
713     // boolean logic expression. Eg) requires_capability(A || B && !C)
714     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
715       S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
716           << AL << ArgTy;
717 
718     Args.push_back(ArgExp);
719   }
720 }
721 
722 //===----------------------------------------------------------------------===//
723 // Attribute Implementations
724 //===----------------------------------------------------------------------===//
725 
726 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
727   if (!threadSafetyCheckIsPointer(S, D, AL))
728     return;
729 
730   D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
731 }
732 
733 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
734                                      Expr *&Arg) {
735   SmallVector<Expr *, 1> Args;
736   // check that all arguments are lockable objects
737   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
738   unsigned Size = Args.size();
739   if (Size != 1)
740     return false;
741 
742   Arg = Args[0];
743 
744   return true;
745 }
746 
747 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
748   Expr *Arg = nullptr;
749   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
750     return;
751 
752   D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
753 }
754 
755 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
756   Expr *Arg = nullptr;
757   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
758     return;
759 
760   if (!threadSafetyCheckIsPointer(S, D, AL))
761     return;
762 
763   D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
764 }
765 
766 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
767                                         SmallVectorImpl<Expr *> &Args) {
768   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
769     return false;
770 
771   // Check that this attribute only applies to lockable types.
772   QualType QT = cast<ValueDecl>(D)->getType();
773   if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
774     S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
775     return false;
776   }
777 
778   // Check that all arguments are lockable objects.
779   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
780   if (Args.empty())
781     return false;
782 
783   return true;
784 }
785 
786 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
787   SmallVector<Expr *, 1> Args;
788   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
789     return;
790 
791   Expr **StartArg = &Args[0];
792   D->addAttr(::new (S.Context)
793                  AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
794 }
795 
796 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
797   SmallVector<Expr *, 1> Args;
798   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
799     return;
800 
801   Expr **StartArg = &Args[0];
802   D->addAttr(::new (S.Context)
803                  AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
804 }
805 
806 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
807                                    SmallVectorImpl<Expr *> &Args) {
808   // zero or more arguments ok
809   // check that all arguments are lockable objects
810   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
811 
812   return true;
813 }
814 
815 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
816   SmallVector<Expr *, 1> Args;
817   if (!checkLockFunAttrCommon(S, D, AL, Args))
818     return;
819 
820   unsigned Size = Args.size();
821   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
822   D->addAttr(::new (S.Context)
823                  AssertSharedLockAttr(S.Context, AL, StartArg, Size));
824 }
825 
826 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
827                                           const ParsedAttr &AL) {
828   SmallVector<Expr *, 1> Args;
829   if (!checkLockFunAttrCommon(S, D, AL, Args))
830     return;
831 
832   unsigned Size = Args.size();
833   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
834   D->addAttr(::new (S.Context)
835                  AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
836 }
837 
838 /// Checks to be sure that the given parameter number is in bounds, and
839 /// is an integral type. Will emit appropriate diagnostics if this returns
840 /// false.
841 ///
842 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
843 template <typename AttrInfo>
844 static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD,
845                                     const AttrInfo &AI, unsigned AttrArgNo) {
846   assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
847   Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
848   ParamIdx Idx;
849   if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg,
850                                            Idx))
851     return false;
852 
853   const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex());
854   if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) {
855     SourceLocation SrcLoc = AttrArg->getBeginLoc();
856     S.Diag(SrcLoc, diag::err_attribute_integers_only)
857         << AI << Param->getSourceRange();
858     return false;
859   }
860   return true;
861 }
862 
863 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
864   if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
865       !checkAttributeAtMostNumArgs(S, AL, 2))
866     return;
867 
868   const auto *FD = cast<FunctionDecl>(D);
869   if (!FD->getReturnType()->isPointerType()) {
870     S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
871     return;
872   }
873 
874   const Expr *SizeExpr = AL.getArgAsExpr(0);
875   int SizeArgNoVal;
876   // Parameter indices are 1-indexed, hence Index=1
877   if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
878     return;
879   if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0))
880     return;
881   ParamIdx SizeArgNo(SizeArgNoVal, D);
882 
883   ParamIdx NumberArgNo;
884   if (AL.getNumArgs() == 2) {
885     const Expr *NumberExpr = AL.getArgAsExpr(1);
886     int Val;
887     // Parameter indices are 1-based, hence Index=2
888     if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
889       return;
890     if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1))
891       return;
892     NumberArgNo = ParamIdx(Val, D);
893   }
894 
895   D->addAttr(::new (S.Context)
896                  AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
897 }
898 
899 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
900                                       SmallVectorImpl<Expr *> &Args) {
901   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
902     return false;
903 
904   if (!isIntOrBool(AL.getArgAsExpr(0))) {
905     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
906         << AL << 1 << AANT_ArgumentIntOrBool;
907     return false;
908   }
909 
910   // check that all arguments are lockable objects
911   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
912 
913   return true;
914 }
915 
916 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
917                                             const ParsedAttr &AL) {
918   SmallVector<Expr*, 2> Args;
919   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
920     return;
921 
922   D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
923       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
924 }
925 
926 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
927                                                const ParsedAttr &AL) {
928   SmallVector<Expr*, 2> Args;
929   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
930     return;
931 
932   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
933       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
934 }
935 
936 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
937   // check that the argument is lockable object
938   SmallVector<Expr*, 1> Args;
939   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
940   unsigned Size = Args.size();
941   if (Size == 0)
942     return;
943 
944   D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
945 }
946 
947 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
948   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
949     return;
950 
951   // check that all arguments are lockable objects
952   SmallVector<Expr*, 1> Args;
953   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
954   unsigned Size = Args.size();
955   if (Size == 0)
956     return;
957   Expr **StartArg = &Args[0];
958 
959   D->addAttr(::new (S.Context)
960                  LocksExcludedAttr(S.Context, AL, StartArg, Size));
961 }
962 
963 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
964                                        Expr *&Cond, StringRef &Msg) {
965   Cond = AL.getArgAsExpr(0);
966   if (!Cond->isTypeDependent()) {
967     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
968     if (Converted.isInvalid())
969       return false;
970     Cond = Converted.get();
971   }
972 
973   if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
974     return false;
975 
976   if (Msg.empty())
977     Msg = "<no message provided>";
978 
979   SmallVector<PartialDiagnosticAt, 8> Diags;
980   if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
981       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
982                                                 Diags)) {
983     S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
984     for (const PartialDiagnosticAt &PDiag : Diags)
985       S.Diag(PDiag.first, PDiag.second);
986     return false;
987   }
988   return true;
989 }
990 
991 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
992   S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
993 
994   Expr *Cond;
995   StringRef Msg;
996   if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
997     D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
998 }
999 
1000 namespace {
1001 /// Determines if a given Expr references any of the given function's
1002 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
1003 class ArgumentDependenceChecker
1004     : public RecursiveASTVisitor<ArgumentDependenceChecker> {
1005 #ifndef NDEBUG
1006   const CXXRecordDecl *ClassType;
1007 #endif
1008   llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
1009   bool Result;
1010 
1011 public:
1012   ArgumentDependenceChecker(const FunctionDecl *FD) {
1013 #ifndef NDEBUG
1014     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1015       ClassType = MD->getParent();
1016     else
1017       ClassType = nullptr;
1018 #endif
1019     Parms.insert(FD->param_begin(), FD->param_end());
1020   }
1021 
1022   bool referencesArgs(Expr *E) {
1023     Result = false;
1024     TraverseStmt(E);
1025     return Result;
1026   }
1027 
1028   bool VisitCXXThisExpr(CXXThisExpr *E) {
1029     assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
1030            "`this` doesn't refer to the enclosing class?");
1031     Result = true;
1032     return false;
1033   }
1034 
1035   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
1036     if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
1037       if (Parms.count(PVD)) {
1038         Result = true;
1039         return false;
1040       }
1041     return true;
1042   }
1043 };
1044 }
1045 
1046 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1047   S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
1048 
1049   Expr *Cond;
1050   StringRef Msg;
1051   if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1052     return;
1053 
1054   StringRef DiagTypeStr;
1055   if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1056     return;
1057 
1058   DiagnoseIfAttr::DiagnosticType DiagType;
1059   if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1060     S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1061            diag::err_diagnose_if_invalid_diagnostic_type);
1062     return;
1063   }
1064 
1065   bool ArgDependent = false;
1066   if (const auto *FD = dyn_cast<FunctionDecl>(D))
1067     ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1068   D->addAttr(::new (S.Context) DiagnoseIfAttr(
1069       S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1070 }
1071 
1072 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1073   static constexpr const StringRef kWildcard = "*";
1074 
1075   llvm::SmallVector<StringRef, 16> Names;
1076   bool HasWildcard = false;
1077 
1078   const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1079     if (Name == kWildcard)
1080       HasWildcard = true;
1081     Names.push_back(Name);
1082   };
1083 
1084   // Add previously defined attributes.
1085   if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1086     for (StringRef BuiltinName : NBA->builtinNames())
1087       AddBuiltinName(BuiltinName);
1088 
1089   // Add current attributes.
1090   if (AL.getNumArgs() == 0)
1091     AddBuiltinName(kWildcard);
1092   else
1093     for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1094       StringRef BuiltinName;
1095       SourceLocation LiteralLoc;
1096       if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1097         return;
1098 
1099       if (Builtin::Context::isBuiltinFunc(BuiltinName))
1100         AddBuiltinName(BuiltinName);
1101       else
1102         S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1103             << BuiltinName << AL.getAttrName()->getName();
1104     }
1105 
1106   // Repeating the same attribute is fine.
1107   llvm::sort(Names);
1108   Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1109 
1110   // Empty no_builtin must be on its own.
1111   if (HasWildcard && Names.size() > 1)
1112     S.Diag(D->getLocation(),
1113            diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1114         << AL.getAttrName()->getName();
1115 
1116   if (D->hasAttr<NoBuiltinAttr>())
1117     D->dropAttr<NoBuiltinAttr>();
1118   D->addAttr(::new (S.Context)
1119                  NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1120 }
1121 
1122 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1123   if (D->hasAttr<PassObjectSizeAttr>()) {
1124     S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1125     return;
1126   }
1127 
1128   Expr *E = AL.getArgAsExpr(0);
1129   uint32_t Type;
1130   if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1131     return;
1132 
1133   // pass_object_size's argument is passed in as the second argument of
1134   // __builtin_object_size. So, it has the same constraints as that second
1135   // argument; namely, it must be in the range [0, 3].
1136   if (Type > 3) {
1137     S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1138         << AL << 0 << 3 << E->getSourceRange();
1139     return;
1140   }
1141 
1142   // pass_object_size is only supported on constant pointer parameters; as a
1143   // kindness to users, we allow the parameter to be non-const for declarations.
1144   // At this point, we have no clue if `D` belongs to a function declaration or
1145   // definition, so we defer the constness check until later.
1146   if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1147     S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1148     return;
1149   }
1150 
1151   D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1152 }
1153 
1154 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1155   ConsumableAttr::ConsumedState DefaultState;
1156 
1157   if (AL.isArgIdent(0)) {
1158     IdentifierLoc *IL = AL.getArgAsIdent(0);
1159     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1160                                                    DefaultState)) {
1161       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1162                                                                << IL->Ident;
1163       return;
1164     }
1165   } else {
1166     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1167         << AL << AANT_ArgumentIdentifier;
1168     return;
1169   }
1170 
1171   D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1172 }
1173 
1174 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1175                                     const ParsedAttr &AL) {
1176   QualType ThisType = MD->getThisType()->getPointeeType();
1177 
1178   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1179     if (!RD->hasAttr<ConsumableAttr>()) {
1180       S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) <<
1181         RD->getNameAsString();
1182 
1183       return false;
1184     }
1185   }
1186 
1187   return true;
1188 }
1189 
1190 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1191   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
1192     return;
1193 
1194   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1195     return;
1196 
1197   SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1198   for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1199     CallableWhenAttr::ConsumedState CallableState;
1200 
1201     StringRef StateString;
1202     SourceLocation Loc;
1203     if (AL.isArgIdent(ArgIndex)) {
1204       IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1205       StateString = Ident->Ident->getName();
1206       Loc = Ident->Loc;
1207     } else {
1208       if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1209         return;
1210     }
1211 
1212     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1213                                                      CallableState)) {
1214       S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1215       return;
1216     }
1217 
1218     States.push_back(CallableState);
1219   }
1220 
1221   D->addAttr(::new (S.Context)
1222                  CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1223 }
1224 
1225 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1226   ParamTypestateAttr::ConsumedState ParamState;
1227 
1228   if (AL.isArgIdent(0)) {
1229     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1230     StringRef StateString = Ident->Ident->getName();
1231 
1232     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1233                                                        ParamState)) {
1234       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1235           << AL << StateString;
1236       return;
1237     }
1238   } else {
1239     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1240         << AL << AANT_ArgumentIdentifier;
1241     return;
1242   }
1243 
1244   // FIXME: This check is currently being done in the analysis.  It can be
1245   //        enabled here only after the parser propagates attributes at
1246   //        template specialization definition, not declaration.
1247   //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1248   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1249   //
1250   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1251   //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1252   //      ReturnType.getAsString();
1253   //    return;
1254   //}
1255 
1256   D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1257 }
1258 
1259 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1260   ReturnTypestateAttr::ConsumedState ReturnState;
1261 
1262   if (AL.isArgIdent(0)) {
1263     IdentifierLoc *IL = AL.getArgAsIdent(0);
1264     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1265                                                         ReturnState)) {
1266       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1267                                                                << IL->Ident;
1268       return;
1269     }
1270   } else {
1271     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1272         << AL << AANT_ArgumentIdentifier;
1273     return;
1274   }
1275 
1276   // FIXME: This check is currently being done in the analysis.  It can be
1277   //        enabled here only after the parser propagates attributes at
1278   //        template specialization definition, not declaration.
1279   //QualType ReturnType;
1280   //
1281   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1282   //  ReturnType = Param->getType();
1283   //
1284   //} else if (const CXXConstructorDecl *Constructor =
1285   //             dyn_cast<CXXConstructorDecl>(D)) {
1286   //  ReturnType = Constructor->getThisType()->getPointeeType();
1287   //
1288   //} else {
1289   //
1290   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1291   //}
1292   //
1293   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1294   //
1295   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1296   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1297   //      ReturnType.getAsString();
1298   //    return;
1299   //}
1300 
1301   D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1302 }
1303 
1304 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1305   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1306     return;
1307 
1308   SetTypestateAttr::ConsumedState NewState;
1309   if (AL.isArgIdent(0)) {
1310     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1311     StringRef Param = Ident->Ident->getName();
1312     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1313       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1314                                                                   << Param;
1315       return;
1316     }
1317   } else {
1318     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1319         << AL << AANT_ArgumentIdentifier;
1320     return;
1321   }
1322 
1323   D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1324 }
1325 
1326 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1327   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1328     return;
1329 
1330   TestTypestateAttr::ConsumedState TestState;
1331   if (AL.isArgIdent(0)) {
1332     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1333     StringRef Param = Ident->Ident->getName();
1334     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1335       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1336                                                                   << Param;
1337       return;
1338     }
1339   } else {
1340     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1341         << AL << AANT_ArgumentIdentifier;
1342     return;
1343   }
1344 
1345   D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1346 }
1347 
1348 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1349   // Remember this typedef decl, we will need it later for diagnostics.
1350   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1351 }
1352 
1353 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1354   if (auto *TD = dyn_cast<TagDecl>(D))
1355     TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1356   else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1357     bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1358                                 !FD->getType()->isIncompleteType() &&
1359                                 FD->isBitField() &&
1360                                 S.Context.getTypeAlign(FD->getType()) <= 8);
1361 
1362     if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
1363       if (BitfieldByteAligned)
1364         // The PS4 target needs to maintain ABI backwards compatibility.
1365         S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1366             << AL << FD->getType();
1367       else
1368         FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1369     } else {
1370       // Report warning about changed offset in the newer compiler versions.
1371       if (BitfieldByteAligned)
1372         S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1373 
1374       FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1375     }
1376 
1377   } else
1378     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1379 }
1380 
1381 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1382   // The IBOutlet/IBOutletCollection attributes only apply to instance
1383   // variables or properties of Objective-C classes.  The outlet must also
1384   // have an object reference type.
1385   if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1386     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1387       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1388           << AL << VD->getType() << 0;
1389       return false;
1390     }
1391   }
1392   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1393     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1394       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1395           << AL << PD->getType() << 1;
1396       return false;
1397     }
1398   }
1399   else {
1400     S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1401     return false;
1402   }
1403 
1404   return true;
1405 }
1406 
1407 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1408   if (!checkIBOutletCommon(S, D, AL))
1409     return;
1410 
1411   D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1412 }
1413 
1414 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1415 
1416   // The iboutletcollection attribute can have zero or one arguments.
1417   if (AL.getNumArgs() > 1) {
1418     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1419     return;
1420   }
1421 
1422   if (!checkIBOutletCommon(S, D, AL))
1423     return;
1424 
1425   ParsedType PT;
1426 
1427   if (AL.hasParsedType())
1428     PT = AL.getTypeArg();
1429   else {
1430     PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1431                        S.getScopeForContext(D->getDeclContext()->getParent()));
1432     if (!PT) {
1433       S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1434       return;
1435     }
1436   }
1437 
1438   TypeSourceInfo *QTLoc = nullptr;
1439   QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1440   if (!QTLoc)
1441     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1442 
1443   // Diagnose use of non-object type in iboutletcollection attribute.
1444   // FIXME. Gnu attribute extension ignores use of builtin types in
1445   // attributes. So, __attribute__((iboutletcollection(char))) will be
1446   // treated as __attribute__((iboutletcollection())).
1447   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1448     S.Diag(AL.getLoc(),
1449            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1450                                : diag::err_iboutletcollection_type) << QT;
1451     return;
1452   }
1453 
1454   D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1455 }
1456 
1457 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1458   if (RefOkay) {
1459     if (T->isReferenceType())
1460       return true;
1461   } else {
1462     T = T.getNonReferenceType();
1463   }
1464 
1465   // The nonnull attribute, and other similar attributes, can be applied to a
1466   // transparent union that contains a pointer type.
1467   if (const RecordType *UT = T->getAsUnionType()) {
1468     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1469       RecordDecl *UD = UT->getDecl();
1470       for (const auto *I : UD->fields()) {
1471         QualType QT = I->getType();
1472         if (QT->isAnyPointerType() || QT->isBlockPointerType())
1473           return true;
1474       }
1475     }
1476   }
1477 
1478   return T->isAnyPointerType() || T->isBlockPointerType();
1479 }
1480 
1481 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1482                                 SourceRange AttrParmRange,
1483                                 SourceRange TypeRange,
1484                                 bool isReturnValue = false) {
1485   if (!S.isValidPointerAttrType(T)) {
1486     if (isReturnValue)
1487       S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1488           << AL << AttrParmRange << TypeRange;
1489     else
1490       S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1491           << AL << AttrParmRange << TypeRange << 0;
1492     return false;
1493   }
1494   return true;
1495 }
1496 
1497 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1498   SmallVector<ParamIdx, 8> NonNullArgs;
1499   for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1500     Expr *Ex = AL.getArgAsExpr(I);
1501     ParamIdx Idx;
1502     if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1503       return;
1504 
1505     // Is the function argument a pointer type?
1506     if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1507         !attrNonNullArgCheck(
1508             S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1509             Ex->getSourceRange(),
1510             getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1511       continue;
1512 
1513     NonNullArgs.push_back(Idx);
1514   }
1515 
1516   // If no arguments were specified to __attribute__((nonnull)) then all pointer
1517   // arguments have a nonnull attribute; warn if there aren't any. Skip this
1518   // check if the attribute came from a macro expansion or a template
1519   // instantiation.
1520   if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1521       !S.inTemplateInstantiation()) {
1522     bool AnyPointers = isFunctionOrMethodVariadic(D);
1523     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1524          I != E && !AnyPointers; ++I) {
1525       QualType T = getFunctionOrMethodParamType(D, I);
1526       if (T->isDependentType() || S.isValidPointerAttrType(T))
1527         AnyPointers = true;
1528     }
1529 
1530     if (!AnyPointers)
1531       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1532   }
1533 
1534   ParamIdx *Start = NonNullArgs.data();
1535   unsigned Size = NonNullArgs.size();
1536   llvm::array_pod_sort(Start, Start + Size);
1537   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1538 }
1539 
1540 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1541                                        const ParsedAttr &AL) {
1542   if (AL.getNumArgs() > 0) {
1543     if (D->getFunctionType()) {
1544       handleNonNullAttr(S, D, AL);
1545     } else {
1546       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1547         << D->getSourceRange();
1548     }
1549     return;
1550   }
1551 
1552   // Is the argument a pointer type?
1553   if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1554                            D->getSourceRange()))
1555     return;
1556 
1557   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1558 }
1559 
1560 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1561   QualType ResultType = getFunctionOrMethodResultType(D);
1562   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1563   if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1564                            /* isReturnValue */ true))
1565     return;
1566 
1567   D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1568 }
1569 
1570 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1571   if (D->isInvalidDecl())
1572     return;
1573 
1574   // noescape only applies to pointer types.
1575   QualType T = cast<ParmVarDecl>(D)->getType();
1576   if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1577     S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1578         << AL << AL.getRange() << 0;
1579     return;
1580   }
1581 
1582   D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1583 }
1584 
1585 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1586   Expr *E = AL.getArgAsExpr(0),
1587        *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1588   S.AddAssumeAlignedAttr(D, AL, E, OE);
1589 }
1590 
1591 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1592   S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1593 }
1594 
1595 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1596                                 Expr *OE) {
1597   QualType ResultType = getFunctionOrMethodResultType(D);
1598   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1599 
1600   AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1601   SourceLocation AttrLoc = TmpAttr.getLocation();
1602 
1603   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1604     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1605         << &TmpAttr << TmpAttr.getRange() << SR;
1606     return;
1607   }
1608 
1609   if (!E->isValueDependent()) {
1610     llvm::APSInt I(64);
1611     if (!E->isIntegerConstantExpr(I, Context)) {
1612       if (OE)
1613         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1614           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1615           << E->getSourceRange();
1616       else
1617         Diag(AttrLoc, diag::err_attribute_argument_type)
1618           << &TmpAttr << AANT_ArgumentIntegerConstant
1619           << E->getSourceRange();
1620       return;
1621     }
1622 
1623     if (!I.isPowerOf2()) {
1624       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1625         << E->getSourceRange();
1626       return;
1627     }
1628   }
1629 
1630   if (OE) {
1631     if (!OE->isValueDependent()) {
1632       llvm::APSInt I(64);
1633       if (!OE->isIntegerConstantExpr(I, Context)) {
1634         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1635           << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1636           << OE->getSourceRange();
1637         return;
1638       }
1639     }
1640   }
1641 
1642   D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1643 }
1644 
1645 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1646                              Expr *ParamExpr) {
1647   QualType ResultType = getFunctionOrMethodResultType(D);
1648 
1649   AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1650   SourceLocation AttrLoc = CI.getLoc();
1651 
1652   if (!ResultType->isDependentType() &&
1653       !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1654     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1655         << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1656     return;
1657   }
1658 
1659   ParamIdx Idx;
1660   const auto *FuncDecl = cast<FunctionDecl>(D);
1661   if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1662                                            /*AttrArgNum=*/1, ParamExpr, Idx))
1663     return;
1664 
1665   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1666   if (!Ty->isDependentType() && !Ty->isIntegralType(Context)) {
1667     Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1668         << &TmpAttr
1669         << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1670     return;
1671   }
1672 
1673   D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1674 }
1675 
1676 /// Normalize the attribute, __foo__ becomes foo.
1677 /// Returns true if normalization was applied.
1678 static bool normalizeName(StringRef &AttrName) {
1679   if (AttrName.size() > 4 && AttrName.startswith("__") &&
1680       AttrName.endswith("__")) {
1681     AttrName = AttrName.drop_front(2).drop_back(2);
1682     return true;
1683   }
1684   return false;
1685 }
1686 
1687 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1688   // This attribute must be applied to a function declaration. The first
1689   // argument to the attribute must be an identifier, the name of the resource,
1690   // for example: malloc. The following arguments must be argument indexes, the
1691   // arguments must be of integer type for Returns, otherwise of pointer type.
1692   // The difference between Holds and Takes is that a pointer may still be used
1693   // after being held. free() should be __attribute((ownership_takes)), whereas
1694   // a list append function may well be __attribute((ownership_holds)).
1695 
1696   if (!AL.isArgIdent(0)) {
1697     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1698         << AL << 1 << AANT_ArgumentIdentifier;
1699     return;
1700   }
1701 
1702   // Figure out our Kind.
1703   OwnershipAttr::OwnershipKind K =
1704       OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1705 
1706   // Check arguments.
1707   switch (K) {
1708   case OwnershipAttr::Takes:
1709   case OwnershipAttr::Holds:
1710     if (AL.getNumArgs() < 2) {
1711       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1712       return;
1713     }
1714     break;
1715   case OwnershipAttr::Returns:
1716     if (AL.getNumArgs() > 2) {
1717       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1718       return;
1719     }
1720     break;
1721   }
1722 
1723   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1724 
1725   StringRef ModuleName = Module->getName();
1726   if (normalizeName(ModuleName)) {
1727     Module = &S.PP.getIdentifierTable().get(ModuleName);
1728   }
1729 
1730   SmallVector<ParamIdx, 8> OwnershipArgs;
1731   for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1732     Expr *Ex = AL.getArgAsExpr(i);
1733     ParamIdx Idx;
1734     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1735       return;
1736 
1737     // Is the function argument a pointer type?
1738     QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1739     int Err = -1;  // No error
1740     switch (K) {
1741       case OwnershipAttr::Takes:
1742       case OwnershipAttr::Holds:
1743         if (!T->isAnyPointerType() && !T->isBlockPointerType())
1744           Err = 0;
1745         break;
1746       case OwnershipAttr::Returns:
1747         if (!T->isIntegerType())
1748           Err = 1;
1749         break;
1750     }
1751     if (-1 != Err) {
1752       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1753                                                     << Ex->getSourceRange();
1754       return;
1755     }
1756 
1757     // Check we don't have a conflict with another ownership attribute.
1758     for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1759       // Cannot have two ownership attributes of different kinds for the same
1760       // index.
1761       if (I->getOwnKind() != K && I->args_end() !=
1762           std::find(I->args_begin(), I->args_end(), Idx)) {
1763         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
1764         return;
1765       } else if (K == OwnershipAttr::Returns &&
1766                  I->getOwnKind() == OwnershipAttr::Returns) {
1767         // A returns attribute conflicts with any other returns attribute using
1768         // a different index.
1769         if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
1770           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1771               << I->args_begin()->getSourceIndex();
1772           if (I->args_size())
1773             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1774                 << Idx.getSourceIndex() << Ex->getSourceRange();
1775           return;
1776         }
1777       }
1778     }
1779     OwnershipArgs.push_back(Idx);
1780   }
1781 
1782   ParamIdx *Start = OwnershipArgs.data();
1783   unsigned Size = OwnershipArgs.size();
1784   llvm::array_pod_sort(Start, Start + Size);
1785   D->addAttr(::new (S.Context)
1786                  OwnershipAttr(S.Context, AL, Module, Start, Size));
1787 }
1788 
1789 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1790   // Check the attribute arguments.
1791   if (AL.getNumArgs() > 1) {
1792     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1793     return;
1794   }
1795 
1796   // gcc rejects
1797   // class c {
1798   //   static int a __attribute__((weakref ("v2")));
1799   //   static int b() __attribute__((weakref ("f3")));
1800   // };
1801   // and ignores the attributes of
1802   // void f(void) {
1803   //   static int a __attribute__((weakref ("v2")));
1804   // }
1805   // we reject them
1806   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1807   if (!Ctx->isFileContext()) {
1808     S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1809         << cast<NamedDecl>(D);
1810     return;
1811   }
1812 
1813   // The GCC manual says
1814   //
1815   // At present, a declaration to which `weakref' is attached can only
1816   // be `static'.
1817   //
1818   // It also says
1819   //
1820   // Without a TARGET,
1821   // given as an argument to `weakref' or to `alias', `weakref' is
1822   // equivalent to `weak'.
1823   //
1824   // gcc 4.4.1 will accept
1825   // int a7 __attribute__((weakref));
1826   // as
1827   // int a7 __attribute__((weak));
1828   // This looks like a bug in gcc. We reject that for now. We should revisit
1829   // it if this behaviour is actually used.
1830 
1831   // GCC rejects
1832   // static ((alias ("y"), weakref)).
1833   // Should we? How to check that weakref is before or after alias?
1834 
1835   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1836   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
1837   // StringRef parameter it was given anyway.
1838   StringRef Str;
1839   if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1840     // GCC will accept anything as the argument of weakref. Should we
1841     // check for an existing decl?
1842     D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1843 
1844   D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1845 }
1846 
1847 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1848   StringRef Str;
1849   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1850     return;
1851 
1852   // Aliases should be on declarations, not definitions.
1853   const auto *FD = cast<FunctionDecl>(D);
1854   if (FD->isThisDeclarationADefinition()) {
1855     S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1856     return;
1857   }
1858 
1859   D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1860 }
1861 
1862 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1863   StringRef Str;
1864   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1865     return;
1866 
1867   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1868     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1869     return;
1870   }
1871   if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1872     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1873   }
1874 
1875   // Aliases should be on declarations, not definitions.
1876   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1877     if (FD->isThisDeclarationADefinition()) {
1878       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1879       return;
1880     }
1881   } else {
1882     const auto *VD = cast<VarDecl>(D);
1883     if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1884       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1885       return;
1886     }
1887   }
1888 
1889   // Mark target used to prevent unneeded-internal-declaration warnings.
1890   if (!S.LangOpts.CPlusPlus) {
1891     // FIXME: demangle Str for C++, as the attribute refers to the mangled
1892     // linkage name, not the pre-mangled identifier.
1893     const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
1894     LookupResult LR(S, target, Sema::LookupOrdinaryName);
1895     if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
1896       for (NamedDecl *ND : LR)
1897         ND->markUsed(S.Context);
1898   }
1899 
1900   D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1901 }
1902 
1903 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1904   StringRef Model;
1905   SourceLocation LiteralLoc;
1906   // Check that it is a string.
1907   if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
1908     return;
1909 
1910   // Check that the value.
1911   if (Model != "global-dynamic" && Model != "local-dynamic"
1912       && Model != "initial-exec" && Model != "local-exec") {
1913     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1914     return;
1915   }
1916 
1917   D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
1918 }
1919 
1920 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1921   QualType ResultType = getFunctionOrMethodResultType(D);
1922   if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
1923     D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
1924     return;
1925   }
1926 
1927   S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1928       << AL << getFunctionOrMethodResultSourceRange(D);
1929 }
1930 
1931 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1932   FunctionDecl *FD = cast<FunctionDecl>(D);
1933 
1934   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
1935     if (MD->getParent()->isLambda()) {
1936       S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
1937       return;
1938     }
1939   }
1940 
1941   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
1942     return;
1943 
1944   SmallVector<IdentifierInfo *, 8> CPUs;
1945   for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
1946     if (!AL.isArgIdent(ArgNo)) {
1947       S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1948           << AL << AANT_ArgumentIdentifier;
1949       return;
1950     }
1951 
1952     IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
1953     StringRef CPUName = CPUArg->Ident->getName().trim();
1954 
1955     if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
1956       S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
1957           << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
1958       return;
1959     }
1960 
1961     const TargetInfo &Target = S.Context.getTargetInfo();
1962     if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
1963           return Target.CPUSpecificManglingCharacter(CPUName) ==
1964                  Target.CPUSpecificManglingCharacter(Cur->getName());
1965         })) {
1966       S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
1967       return;
1968     }
1969     CPUs.push_back(CPUArg->Ident);
1970   }
1971 
1972   FD->setIsMultiVersion(true);
1973   if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
1974     D->addAttr(::new (S.Context)
1975                    CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1976   else
1977     D->addAttr(::new (S.Context)
1978                    CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1979 }
1980 
1981 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1982   if (S.LangOpts.CPlusPlus) {
1983     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
1984         << AL << AttributeLangSupport::Cpp;
1985     return;
1986   }
1987 
1988   if (CommonAttr *CA = S.mergeCommonAttr(D, AL))
1989     D->addAttr(CA);
1990 }
1991 
1992 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1993   if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL))
1994     return;
1995 
1996   if (AL.isDeclspecAttribute()) {
1997     const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
1998     const auto &Arch = Triple.getArch();
1999     if (Arch != llvm::Triple::x86 &&
2000         (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2001       S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2002           << AL << Triple.getArchName();
2003       return;
2004     }
2005   }
2006 
2007   D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2008 }
2009 
2010 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2011   if (hasDeclarator(D)) return;
2012 
2013   if (!isa<ObjCMethodDecl>(D)) {
2014     S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2015         << Attrs << ExpectedFunctionOrMethod;
2016     return;
2017   }
2018 
2019   D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2020 }
2021 
2022 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2023   if (!S.getLangOpts().CFProtectionBranch)
2024     S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2025   else
2026     handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2027 }
2028 
2029 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2030   if (!checkAttributeNumArgs(*this, Attrs, 0)) {
2031     Attrs.setInvalid();
2032     return true;
2033   }
2034 
2035   return false;
2036 }
2037 
2038 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2039   // Check whether the attribute is valid on the current target.
2040   if (!AL.existsInTarget(Context.getTargetInfo())) {
2041     Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL;
2042     AL.setInvalid();
2043     return true;
2044   }
2045 
2046   return false;
2047 }
2048 
2049 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2050 
2051   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2052   // because 'analyzer_noreturn' does not impact the type.
2053   if (!isFunctionOrMethodOrBlock(D)) {
2054     ValueDecl *VD = dyn_cast<ValueDecl>(D);
2055     if (!VD || (!VD->getType()->isBlockPointerType() &&
2056                 !VD->getType()->isFunctionPointerType())) {
2057       S.Diag(AL.getLoc(), AL.isCXX11Attribute()
2058                               ? diag::err_attribute_wrong_decl_type
2059                               : diag::warn_attribute_wrong_decl_type)
2060           << AL << ExpectedFunctionMethodOrBlock;
2061       return;
2062     }
2063   }
2064 
2065   D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2066 }
2067 
2068 // PS3 PPU-specific.
2069 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2070   /*
2071     Returning a Vector Class in Registers
2072 
2073     According to the PPU ABI specifications, a class with a single member of
2074     vector type is returned in memory when used as the return value of a
2075     function.
2076     This results in inefficient code when implementing vector classes. To return
2077     the value in a single vector register, add the vecreturn attribute to the
2078     class definition. This attribute is also applicable to struct types.
2079 
2080     Example:
2081 
2082     struct Vector
2083     {
2084       __vector float xyzw;
2085     } __attribute__((vecreturn));
2086 
2087     Vector Add(Vector lhs, Vector rhs)
2088     {
2089       Vector result;
2090       result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2091       return result; // This will be returned in a register
2092     }
2093   */
2094   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2095     S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2096     return;
2097   }
2098 
2099   const auto *R = cast<RecordDecl>(D);
2100   int count = 0;
2101 
2102   if (!isa<CXXRecordDecl>(R)) {
2103     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2104     return;
2105   }
2106 
2107   if (!cast<CXXRecordDecl>(R)->isPOD()) {
2108     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2109     return;
2110   }
2111 
2112   for (const auto *I : R->fields()) {
2113     if ((count == 1) || !I->getType()->isVectorType()) {
2114       S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2115       return;
2116     }
2117     count++;
2118   }
2119 
2120   D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2121 }
2122 
2123 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2124                                  const ParsedAttr &AL) {
2125   if (isa<ParmVarDecl>(D)) {
2126     // [[carries_dependency]] can only be applied to a parameter if it is a
2127     // parameter of a function declaration or lambda.
2128     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2129       S.Diag(AL.getLoc(),
2130              diag::err_carries_dependency_param_not_function_decl);
2131       return;
2132     }
2133   }
2134 
2135   D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2136 }
2137 
2138 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2139   bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2140 
2141   // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2142   // about using it as an extension.
2143   if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2144     S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2145 
2146   D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2147 }
2148 
2149 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2150   uint32_t priority = ConstructorAttr::DefaultPriority;
2151   if (AL.getNumArgs() &&
2152       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2153     return;
2154 
2155   D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2156 }
2157 
2158 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2159   uint32_t priority = DestructorAttr::DefaultPriority;
2160   if (AL.getNumArgs() &&
2161       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2162     return;
2163 
2164   D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2165 }
2166 
2167 template <typename AttrTy>
2168 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2169   // Handle the case where the attribute has a text message.
2170   StringRef Str;
2171   if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2172     return;
2173 
2174   D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2175 }
2176 
2177 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2178                                           const ParsedAttr &AL) {
2179   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2180     S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2181         << AL << AL.getRange();
2182     return;
2183   }
2184 
2185   D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2186 }
2187 
2188 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2189                                   IdentifierInfo *Platform,
2190                                   VersionTuple Introduced,
2191                                   VersionTuple Deprecated,
2192                                   VersionTuple Obsoleted) {
2193   StringRef PlatformName
2194     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2195   if (PlatformName.empty())
2196     PlatformName = Platform->getName();
2197 
2198   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2199   // of these steps are needed).
2200   if (!Introduced.empty() && !Deprecated.empty() &&
2201       !(Introduced <= Deprecated)) {
2202     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2203       << 1 << PlatformName << Deprecated.getAsString()
2204       << 0 << Introduced.getAsString();
2205     return true;
2206   }
2207 
2208   if (!Introduced.empty() && !Obsoleted.empty() &&
2209       !(Introduced <= Obsoleted)) {
2210     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2211       << 2 << PlatformName << Obsoleted.getAsString()
2212       << 0 << Introduced.getAsString();
2213     return true;
2214   }
2215 
2216   if (!Deprecated.empty() && !Obsoleted.empty() &&
2217       !(Deprecated <= Obsoleted)) {
2218     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2219       << 2 << PlatformName << Obsoleted.getAsString()
2220       << 1 << Deprecated.getAsString();
2221     return true;
2222   }
2223 
2224   return false;
2225 }
2226 
2227 /// Check whether the two versions match.
2228 ///
2229 /// If either version tuple is empty, then they are assumed to match. If
2230 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2231 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2232                           bool BeforeIsOkay) {
2233   if (X.empty() || Y.empty())
2234     return true;
2235 
2236   if (X == Y)
2237     return true;
2238 
2239   if (BeforeIsOkay && X < Y)
2240     return true;
2241 
2242   return false;
2243 }
2244 
2245 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2246     NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2247     bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2248     VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2249     bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2250     int Priority) {
2251   VersionTuple MergedIntroduced = Introduced;
2252   VersionTuple MergedDeprecated = Deprecated;
2253   VersionTuple MergedObsoleted = Obsoleted;
2254   bool FoundAny = false;
2255   bool OverrideOrImpl = false;
2256   switch (AMK) {
2257   case AMK_None:
2258   case AMK_Redeclaration:
2259     OverrideOrImpl = false;
2260     break;
2261 
2262   case AMK_Override:
2263   case AMK_ProtocolImplementation:
2264     OverrideOrImpl = true;
2265     break;
2266   }
2267 
2268   if (D->hasAttrs()) {
2269     AttrVec &Attrs = D->getAttrs();
2270     for (unsigned i = 0, e = Attrs.size(); i != e;) {
2271       const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2272       if (!OldAA) {
2273         ++i;
2274         continue;
2275       }
2276 
2277       IdentifierInfo *OldPlatform = OldAA->getPlatform();
2278       if (OldPlatform != Platform) {
2279         ++i;
2280         continue;
2281       }
2282 
2283       // If there is an existing availability attribute for this platform that
2284       // has a lower priority use the existing one and discard the new
2285       // attribute.
2286       if (OldAA->getPriority() < Priority)
2287         return nullptr;
2288 
2289       // If there is an existing attribute for this platform that has a higher
2290       // priority than the new attribute then erase the old one and continue
2291       // processing the attributes.
2292       if (OldAA->getPriority() > Priority) {
2293         Attrs.erase(Attrs.begin() + i);
2294         --e;
2295         continue;
2296       }
2297 
2298       FoundAny = true;
2299       VersionTuple OldIntroduced = OldAA->getIntroduced();
2300       VersionTuple OldDeprecated = OldAA->getDeprecated();
2301       VersionTuple OldObsoleted = OldAA->getObsoleted();
2302       bool OldIsUnavailable = OldAA->getUnavailable();
2303 
2304       if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2305           !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2306           !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2307           !(OldIsUnavailable == IsUnavailable ||
2308             (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2309         if (OverrideOrImpl) {
2310           int Which = -1;
2311           VersionTuple FirstVersion;
2312           VersionTuple SecondVersion;
2313           if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2314             Which = 0;
2315             FirstVersion = OldIntroduced;
2316             SecondVersion = Introduced;
2317           } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2318             Which = 1;
2319             FirstVersion = Deprecated;
2320             SecondVersion = OldDeprecated;
2321           } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2322             Which = 2;
2323             FirstVersion = Obsoleted;
2324             SecondVersion = OldObsoleted;
2325           }
2326 
2327           if (Which == -1) {
2328             Diag(OldAA->getLocation(),
2329                  diag::warn_mismatched_availability_override_unavail)
2330               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2331               << (AMK == AMK_Override);
2332           } else {
2333             Diag(OldAA->getLocation(),
2334                  diag::warn_mismatched_availability_override)
2335               << Which
2336               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2337               << FirstVersion.getAsString() << SecondVersion.getAsString()
2338               << (AMK == AMK_Override);
2339           }
2340           if (AMK == AMK_Override)
2341             Diag(CI.getLoc(), diag::note_overridden_method);
2342           else
2343             Diag(CI.getLoc(), diag::note_protocol_method);
2344         } else {
2345           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2346           Diag(CI.getLoc(), diag::note_previous_attribute);
2347         }
2348 
2349         Attrs.erase(Attrs.begin() + i);
2350         --e;
2351         continue;
2352       }
2353 
2354       VersionTuple MergedIntroduced2 = MergedIntroduced;
2355       VersionTuple MergedDeprecated2 = MergedDeprecated;
2356       VersionTuple MergedObsoleted2 = MergedObsoleted;
2357 
2358       if (MergedIntroduced2.empty())
2359         MergedIntroduced2 = OldIntroduced;
2360       if (MergedDeprecated2.empty())
2361         MergedDeprecated2 = OldDeprecated;
2362       if (MergedObsoleted2.empty())
2363         MergedObsoleted2 = OldObsoleted;
2364 
2365       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2366                                 MergedIntroduced2, MergedDeprecated2,
2367                                 MergedObsoleted2)) {
2368         Attrs.erase(Attrs.begin() + i);
2369         --e;
2370         continue;
2371       }
2372 
2373       MergedIntroduced = MergedIntroduced2;
2374       MergedDeprecated = MergedDeprecated2;
2375       MergedObsoleted = MergedObsoleted2;
2376       ++i;
2377     }
2378   }
2379 
2380   if (FoundAny &&
2381       MergedIntroduced == Introduced &&
2382       MergedDeprecated == Deprecated &&
2383       MergedObsoleted == Obsoleted)
2384     return nullptr;
2385 
2386   // Only create a new attribute if !OverrideOrImpl, but we want to do
2387   // the checking.
2388   if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2389                              MergedDeprecated, MergedObsoleted) &&
2390       !OverrideOrImpl) {
2391     auto *Avail = ::new (Context) AvailabilityAttr(
2392         Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2393         Message, IsStrict, Replacement, Priority);
2394     Avail->setImplicit(Implicit);
2395     return Avail;
2396   }
2397   return nullptr;
2398 }
2399 
2400 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2401   if (!checkAttributeNumArgs(S, AL, 1))
2402     return;
2403   IdentifierLoc *Platform = AL.getArgAsIdent(0);
2404 
2405   IdentifierInfo *II = Platform->Ident;
2406   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2407     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2408       << Platform->Ident;
2409 
2410   auto *ND = dyn_cast<NamedDecl>(D);
2411   if (!ND) // We warned about this already, so just return.
2412     return;
2413 
2414   AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2415   AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2416   AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2417   bool IsUnavailable = AL.getUnavailableLoc().isValid();
2418   bool IsStrict = AL.getStrictLoc().isValid();
2419   StringRef Str;
2420   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2421     Str = SE->getString();
2422   StringRef Replacement;
2423   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2424     Replacement = SE->getString();
2425 
2426   if (II->isStr("swift")) {
2427     if (Introduced.isValid() || Obsoleted.isValid() ||
2428         (!IsUnavailable && !Deprecated.isValid())) {
2429       S.Diag(AL.getLoc(),
2430              diag::warn_availability_swift_unavailable_deprecated_only);
2431       return;
2432     }
2433   }
2434 
2435   int PriorityModifier = AL.isPragmaClangAttribute()
2436                              ? Sema::AP_PragmaClangAttribute
2437                              : Sema::AP_Explicit;
2438   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2439       ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2440       Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2441       Sema::AMK_None, PriorityModifier);
2442   if (NewAttr)
2443     D->addAttr(NewAttr);
2444 
2445   // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2446   // matches before the start of the watchOS platform.
2447   if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2448     IdentifierInfo *NewII = nullptr;
2449     if (II->getName() == "ios")
2450       NewII = &S.Context.Idents.get("watchos");
2451     else if (II->getName() == "ios_app_extension")
2452       NewII = &S.Context.Idents.get("watchos_app_extension");
2453 
2454     if (NewII) {
2455         auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
2456           if (Version.empty())
2457             return Version;
2458           auto Major = Version.getMajor();
2459           auto NewMajor = Major >= 9 ? Major - 7 : 0;
2460           if (NewMajor >= 2) {
2461             if (Version.getMinor().hasValue()) {
2462               if (Version.getSubminor().hasValue())
2463                 return VersionTuple(NewMajor, Version.getMinor().getValue(),
2464                                     Version.getSubminor().getValue());
2465               else
2466                 return VersionTuple(NewMajor, Version.getMinor().getValue());
2467             }
2468             return VersionTuple(NewMajor);
2469           }
2470 
2471           return VersionTuple(2, 0);
2472         };
2473 
2474         auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2475         auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2476         auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2477 
2478         AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2479             ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2480             NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2481             Sema::AMK_None,
2482             PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2483         if (NewAttr)
2484           D->addAttr(NewAttr);
2485       }
2486   } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2487     // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2488     // matches before the start of the tvOS platform.
2489     IdentifierInfo *NewII = nullptr;
2490     if (II->getName() == "ios")
2491       NewII = &S.Context.Idents.get("tvos");
2492     else if (II->getName() == "ios_app_extension")
2493       NewII = &S.Context.Idents.get("tvos_app_extension");
2494 
2495     if (NewII) {
2496       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2497           ND, AL, NewII, true /*Implicit*/, Introduced.Version,
2498           Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict,
2499           Replacement, Sema::AMK_None,
2500           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2501       if (NewAttr)
2502         D->addAttr(NewAttr);
2503       }
2504   }
2505 }
2506 
2507 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2508                                            const ParsedAttr &AL) {
2509   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
2510     return;
2511   assert(checkAttributeAtMostNumArgs(S, AL, 3) &&
2512          "Invalid number of arguments in an external_source_symbol attribute");
2513 
2514   StringRef Language;
2515   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2516     Language = SE->getString();
2517   StringRef DefinedIn;
2518   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2519     DefinedIn = SE->getString();
2520   bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2521 
2522   D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2523       S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
2524 }
2525 
2526 template <class T>
2527 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2528                               typename T::VisibilityType value) {
2529   T *existingAttr = D->getAttr<T>();
2530   if (existingAttr) {
2531     typename T::VisibilityType existingValue = existingAttr->getVisibility();
2532     if (existingValue == value)
2533       return nullptr;
2534     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2535     S.Diag(CI.getLoc(), diag::note_previous_attribute);
2536     D->dropAttr<T>();
2537   }
2538   return ::new (S.Context) T(S.Context, CI, value);
2539 }
2540 
2541 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2542                                           const AttributeCommonInfo &CI,
2543                                           VisibilityAttr::VisibilityType Vis) {
2544   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2545 }
2546 
2547 TypeVisibilityAttr *
2548 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2549                               TypeVisibilityAttr::VisibilityType Vis) {
2550   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2551 }
2552 
2553 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2554                                  bool isTypeVisibility) {
2555   // Visibility attributes don't mean anything on a typedef.
2556   if (isa<TypedefNameDecl>(D)) {
2557     S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2558     return;
2559   }
2560 
2561   // 'type_visibility' can only go on a type or namespace.
2562   if (isTypeVisibility &&
2563       !(isa<TagDecl>(D) ||
2564         isa<ObjCInterfaceDecl>(D) ||
2565         isa<NamespaceDecl>(D))) {
2566     S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2567         << AL << ExpectedTypeOrNamespace;
2568     return;
2569   }
2570 
2571   // Check that the argument is a string literal.
2572   StringRef TypeStr;
2573   SourceLocation LiteralLoc;
2574   if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2575     return;
2576 
2577   VisibilityAttr::VisibilityType type;
2578   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2579     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2580                                                                 << TypeStr;
2581     return;
2582   }
2583 
2584   // Complain about attempts to use protected visibility on targets
2585   // (like Darwin) that don't support it.
2586   if (type == VisibilityAttr::Protected &&
2587       !S.Context.getTargetInfo().hasProtectedVisibility()) {
2588     S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2589     type = VisibilityAttr::Default;
2590   }
2591 
2592   Attr *newAttr;
2593   if (isTypeVisibility) {
2594     newAttr = S.mergeTypeVisibilityAttr(
2595         D, AL, (TypeVisibilityAttr::VisibilityType)type);
2596   } else {
2597     newAttr = S.mergeVisibilityAttr(D, AL, type);
2598   }
2599   if (newAttr)
2600     D->addAttr(newAttr);
2601 }
2602 
2603 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2604   // objc_direct cannot be set on methods declared in the context of a protocol
2605   if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2606     S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2607     return;
2608   }
2609 
2610   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2611     handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2612   } else {
2613     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2614   }
2615 }
2616 
2617 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2618                                         const ParsedAttr &AL) {
2619   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2620     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2621   } else {
2622     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2623   }
2624 }
2625 
2626 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2627   const auto *M = cast<ObjCMethodDecl>(D);
2628   if (!AL.isArgIdent(0)) {
2629     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2630         << AL << 1 << AANT_ArgumentIdentifier;
2631     return;
2632   }
2633 
2634   IdentifierLoc *IL = AL.getArgAsIdent(0);
2635   ObjCMethodFamilyAttr::FamilyKind F;
2636   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2637     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2638     return;
2639   }
2640 
2641   if (F == ObjCMethodFamilyAttr::OMF_init &&
2642       !M->getReturnType()->isObjCObjectPointerType()) {
2643     S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2644         << M->getReturnType();
2645     // Ignore the attribute.
2646     return;
2647   }
2648 
2649   D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
2650 }
2651 
2652 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2653   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2654     QualType T = TD->getUnderlyingType();
2655     if (!T->isCARCBridgableType()) {
2656       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2657       return;
2658     }
2659   }
2660   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2661     QualType T = PD->getType();
2662     if (!T->isCARCBridgableType()) {
2663       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2664       return;
2665     }
2666   }
2667   else {
2668     // It is okay to include this attribute on properties, e.g.:
2669     //
2670     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2671     //
2672     // In this case it follows tradition and suppresses an error in the above
2673     // case.
2674     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2675   }
2676   D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
2677 }
2678 
2679 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
2680   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2681     QualType T = TD->getUnderlyingType();
2682     if (!T->isObjCObjectPointerType()) {
2683       S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
2684       return;
2685     }
2686   } else {
2687     S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
2688     return;
2689   }
2690   D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
2691 }
2692 
2693 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2694   if (!AL.isArgIdent(0)) {
2695     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2696         << AL << 1 << AANT_ArgumentIdentifier;
2697     return;
2698   }
2699 
2700   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
2701   BlocksAttr::BlockType type;
2702   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2703     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
2704     return;
2705   }
2706 
2707   D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
2708 }
2709 
2710 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2711   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2712   if (AL.getNumArgs() > 0) {
2713     Expr *E = AL.getArgAsExpr(0);
2714     llvm::APSInt Idx(32);
2715     if (E->isTypeDependent() || E->isValueDependent() ||
2716         !E->isIntegerConstantExpr(Idx, S.Context)) {
2717       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2718           << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2719       return;
2720     }
2721 
2722     if (Idx.isSigned() && Idx.isNegative()) {
2723       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2724         << E->getSourceRange();
2725       return;
2726     }
2727 
2728     sentinel = Idx.getZExtValue();
2729   }
2730 
2731   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2732   if (AL.getNumArgs() > 1) {
2733     Expr *E = AL.getArgAsExpr(1);
2734     llvm::APSInt Idx(32);
2735     if (E->isTypeDependent() || E->isValueDependent() ||
2736         !E->isIntegerConstantExpr(Idx, S.Context)) {
2737       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2738           << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2739       return;
2740     }
2741     nullPos = Idx.getZExtValue();
2742 
2743     if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2744       // FIXME: This error message could be improved, it would be nice
2745       // to say what the bounds actually are.
2746       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2747         << E->getSourceRange();
2748       return;
2749     }
2750   }
2751 
2752   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2753     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2754     if (isa<FunctionNoProtoType>(FT)) {
2755       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2756       return;
2757     }
2758 
2759     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2760       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2761       return;
2762     }
2763   } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
2764     if (!MD->isVariadic()) {
2765       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2766       return;
2767     }
2768   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
2769     if (!BD->isVariadic()) {
2770       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2771       return;
2772     }
2773   } else if (const auto *V = dyn_cast<VarDecl>(D)) {
2774     QualType Ty = V->getType();
2775     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2776       const FunctionType *FT = Ty->isFunctionPointerType()
2777        ? D->getFunctionType()
2778        : Ty->castAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2779       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2780         int m = Ty->isFunctionPointerType() ? 0 : 1;
2781         S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2782         return;
2783       }
2784     } else {
2785       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2786           << AL << ExpectedFunctionMethodOrBlock;
2787       return;
2788     }
2789   } else {
2790     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2791         << AL << ExpectedFunctionMethodOrBlock;
2792     return;
2793   }
2794   D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
2795 }
2796 
2797 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
2798   if (D->getFunctionType() &&
2799       D->getFunctionType()->getReturnType()->isVoidType() &&
2800       !isa<CXXConstructorDecl>(D)) {
2801     S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
2802     return;
2803   }
2804   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
2805     if (MD->getReturnType()->isVoidType()) {
2806       S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
2807       return;
2808     }
2809 
2810   StringRef Str;
2811   if ((AL.isCXX11Attribute() || AL.isC2xAttribute()) && !AL.getScopeName()) {
2812     // If this is spelled as the standard C++17 attribute, but not in C++17,
2813     // warn about using it as an extension. If there are attribute arguments,
2814     // then claim it's a C++2a extension instead.
2815     // FIXME: If WG14 does not seem likely to adopt the same feature, add an
2816     // extension warning for C2x mode.
2817     const LangOptions &LO = S.getLangOpts();
2818     if (AL.getNumArgs() == 1) {
2819       if (LO.CPlusPlus && !LO.CPlusPlus2a)
2820         S.Diag(AL.getLoc(), diag::ext_cxx2a_attr) << AL;
2821 
2822       // Since this this is spelled [[nodiscard]], get the optional string
2823       // literal. If in C++ mode, but not in C++2a mode, diagnose as an
2824       // extension.
2825       // FIXME: C2x should support this feature as well, even as an extension.
2826       if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
2827         return;
2828     } else if (LO.CPlusPlus && !LO.CPlusPlus17)
2829       S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2830   }
2831 
2832   D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
2833 }
2834 
2835 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2836   // weak_import only applies to variable & function declarations.
2837   bool isDef = false;
2838   if (!D->canBeWeakImported(isDef)) {
2839     if (isDef)
2840       S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
2841         << "weak_import";
2842     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2843              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2844               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2845       // Nothing to warn about here.
2846     } else
2847       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2848           << AL << ExpectedVariableOrFunction;
2849 
2850     return;
2851   }
2852 
2853   D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
2854 }
2855 
2856 // Handles reqd_work_group_size and work_group_size_hint.
2857 template <typename WorkGroupAttr>
2858 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
2859   uint32_t WGSize[3];
2860   for (unsigned i = 0; i < 3; ++i) {
2861     const Expr *E = AL.getArgAsExpr(i);
2862     if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
2863                              /*StrictlyUnsigned=*/true))
2864       return;
2865     if (WGSize[i] == 0) {
2866       S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
2867           << AL << E->getSourceRange();
2868       return;
2869     }
2870   }
2871 
2872   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
2873   if (Existing && !(Existing->getXDim() == WGSize[0] &&
2874                     Existing->getYDim() == WGSize[1] &&
2875                     Existing->getZDim() == WGSize[2]))
2876     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
2877 
2878   D->addAttr(::new (S.Context)
2879                  WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
2880 }
2881 
2882 // Handles intel_reqd_sub_group_size.
2883 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
2884   uint32_t SGSize;
2885   const Expr *E = AL.getArgAsExpr(0);
2886   if (!checkUInt32Argument(S, AL, E, SGSize))
2887     return;
2888   if (SGSize == 0) {
2889     S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
2890         << AL << E->getSourceRange();
2891     return;
2892   }
2893 
2894   OpenCLIntelReqdSubGroupSizeAttr *Existing =
2895       D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
2896   if (Existing && Existing->getSubGroupSize() != SGSize)
2897     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
2898 
2899   D->addAttr(::new (S.Context)
2900                  OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
2901 }
2902 
2903 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
2904   if (!AL.hasParsedType()) {
2905     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
2906     return;
2907   }
2908 
2909   TypeSourceInfo *ParmTSI = nullptr;
2910   QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
2911   assert(ParmTSI && "no type source info for attribute argument");
2912 
2913   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
2914       (ParmType->isBooleanType() ||
2915        !ParmType->isIntegralType(S.getASTContext()))) {
2916     S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
2917     return;
2918   }
2919 
2920   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
2921     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
2922       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
2923       return;
2924     }
2925   }
2926 
2927   D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
2928 }
2929 
2930 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
2931                                     StringRef Name) {
2932   // Explicit or partial specializations do not inherit
2933   // the section attribute from the primary template.
2934   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2935     if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
2936         FD->isFunctionTemplateSpecialization())
2937       return nullptr;
2938   }
2939   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2940     if (ExistingAttr->getName() == Name)
2941       return nullptr;
2942     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
2943          << 1 /*section*/;
2944     Diag(CI.getLoc(), diag::note_previous_attribute);
2945     return nullptr;
2946   }
2947   return ::new (Context) SectionAttr(Context, CI, Name);
2948 }
2949 
2950 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
2951   std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
2952   if (!Error.empty()) {
2953     Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error
2954          << 1 /*'section'*/;
2955     return false;
2956   }
2957   return true;
2958 }
2959 
2960 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2961   // Make sure that there is a string literal as the sections's single
2962   // argument.
2963   StringRef Str;
2964   SourceLocation LiteralLoc;
2965   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
2966     return;
2967 
2968   if (!S.checkSectionName(LiteralLoc, Str))
2969     return;
2970 
2971   // If the target wants to validate the section specifier, make it happen.
2972   std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
2973   if (!Error.empty()) {
2974     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2975     << Error;
2976     return;
2977   }
2978 
2979   SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
2980   if (NewAttr)
2981     D->addAttr(NewAttr);
2982 }
2983 
2984 // This is used for `__declspec(code_seg("segname"))` on a decl.
2985 // `#pragma code_seg("segname")` uses checkSectionName() instead.
2986 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
2987                              StringRef CodeSegName) {
2988   std::string Error =
2989       S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName);
2990   if (!Error.empty()) {
2991     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2992         << Error << 0 /*'code-seg'*/;
2993     return false;
2994   }
2995 
2996   return true;
2997 }
2998 
2999 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3000                                     StringRef Name) {
3001   // Explicit or partial specializations do not inherit
3002   // the code_seg attribute from the primary template.
3003   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3004     if (FD->isFunctionTemplateSpecialization())
3005       return nullptr;
3006   }
3007   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3008     if (ExistingAttr->getName() == Name)
3009       return nullptr;
3010     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3011          << 0 /*codeseg*/;
3012     Diag(CI.getLoc(), diag::note_previous_attribute);
3013     return nullptr;
3014   }
3015   return ::new (Context) CodeSegAttr(Context, CI, Name);
3016 }
3017 
3018 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3019   StringRef Str;
3020   SourceLocation LiteralLoc;
3021   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3022     return;
3023   if (!checkCodeSegName(S, LiteralLoc, Str))
3024     return;
3025   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3026     if (!ExistingAttr->isImplicit()) {
3027       S.Diag(AL.getLoc(),
3028              ExistingAttr->getName() == Str
3029              ? diag::warn_duplicate_codeseg_attribute
3030              : diag::err_conflicting_codeseg_attribute);
3031       return;
3032     }
3033     D->dropAttr<CodeSegAttr>();
3034   }
3035   if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3036     D->addAttr(CSA);
3037 }
3038 
3039 // Check for things we'd like to warn about. Multiversioning issues are
3040 // handled later in the process, once we know how many exist.
3041 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3042   enum FirstParam { Unsupported, Duplicate };
3043   enum SecondParam { None, Architecture };
3044   for (auto Str : {"tune=", "fpmath="})
3045     if (AttrStr.find(Str) != StringRef::npos)
3046       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3047              << Unsupported << None << Str;
3048 
3049   ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
3050 
3051   if (!ParsedAttrs.Architecture.empty() &&
3052       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
3053     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3054            << Unsupported << Architecture << ParsedAttrs.Architecture;
3055 
3056   if (ParsedAttrs.DuplicateArchitecture)
3057     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3058            << Duplicate << None << "arch=";
3059 
3060   for (const auto &Feature : ParsedAttrs.Features) {
3061     auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3062     if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3063       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3064              << Unsupported << None << CurFeature;
3065   }
3066 
3067   TargetInfo::BranchProtectionInfo BPI;
3068   StringRef Error;
3069   if (!ParsedAttrs.BranchProtection.empty() &&
3070       !Context.getTargetInfo().validateBranchProtection(
3071           ParsedAttrs.BranchProtection, BPI, Error)) {
3072     if (Error.empty())
3073       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3074              << Unsupported << None << "branch-protection";
3075     else
3076       return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3077              << Error;
3078   }
3079 
3080   return false;
3081 }
3082 
3083 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3084   StringRef Str;
3085   SourceLocation LiteralLoc;
3086   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3087       S.checkTargetAttr(LiteralLoc, Str))
3088     return;
3089 
3090   TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3091   D->addAttr(NewAttr);
3092 }
3093 
3094 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3095   Expr *E = AL.getArgAsExpr(0);
3096   uint32_t VecWidth;
3097   if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3098     AL.setInvalid();
3099     return;
3100   }
3101 
3102   MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3103   if (Existing && Existing->getVectorWidth() != VecWidth) {
3104     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3105     return;
3106   }
3107 
3108   D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3109 }
3110 
3111 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3112   Expr *E = AL.getArgAsExpr(0);
3113   SourceLocation Loc = E->getExprLoc();
3114   FunctionDecl *FD = nullptr;
3115   DeclarationNameInfo NI;
3116 
3117   // gcc only allows for simple identifiers. Since we support more than gcc, we
3118   // will warn the user.
3119   if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3120     if (DRE->hasQualifier())
3121       S.Diag(Loc, diag::warn_cleanup_ext);
3122     FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3123     NI = DRE->getNameInfo();
3124     if (!FD) {
3125       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3126         << NI.getName();
3127       return;
3128     }
3129   } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3130     if (ULE->hasExplicitTemplateArgs())
3131       S.Diag(Loc, diag::warn_cleanup_ext);
3132     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3133     NI = ULE->getNameInfo();
3134     if (!FD) {
3135       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3136         << NI.getName();
3137       if (ULE->getType() == S.Context.OverloadTy)
3138         S.NoteAllOverloadCandidates(ULE);
3139       return;
3140     }
3141   } else {
3142     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3143     return;
3144   }
3145 
3146   if (FD->getNumParams() != 1) {
3147     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3148       << NI.getName();
3149     return;
3150   }
3151 
3152   // We're currently more strict than GCC about what function types we accept.
3153   // If this ever proves to be a problem it should be easy to fix.
3154   QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3155   QualType ParamTy = FD->getParamDecl(0)->getType();
3156   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3157                                    ParamTy, Ty) != Sema::Compatible) {
3158     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3159       << NI.getName() << ParamTy << Ty;
3160     return;
3161   }
3162 
3163   D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3164 }
3165 
3166 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3167                                         const ParsedAttr &AL) {
3168   if (!AL.isArgIdent(0)) {
3169     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3170         << AL << 0 << AANT_ArgumentIdentifier;
3171     return;
3172   }
3173 
3174   EnumExtensibilityAttr::Kind ExtensibilityKind;
3175   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3176   if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3177                                                ExtensibilityKind)) {
3178     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3179     return;
3180   }
3181 
3182   D->addAttr(::new (S.Context)
3183                  EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3184 }
3185 
3186 /// Handle __attribute__((format_arg((idx)))) attribute based on
3187 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3188 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3189   Expr *IdxExpr = AL.getArgAsExpr(0);
3190   ParamIdx Idx;
3191   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3192     return;
3193 
3194   // Make sure the format string is really a string.
3195   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3196 
3197   bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3198   if (NotNSStringTy &&
3199       !isCFStringType(Ty, S.Context) &&
3200       (!Ty->isPointerType() ||
3201        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3202     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3203         << "a string type" << IdxExpr->getSourceRange()
3204         << getFunctionOrMethodParamRange(D, 0);
3205     return;
3206   }
3207   Ty = getFunctionOrMethodResultType(D);
3208   if (!isNSStringType(Ty, S.Context) &&
3209       !isCFStringType(Ty, S.Context) &&
3210       (!Ty->isPointerType() ||
3211        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3212     S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3213         << (NotNSStringTy ? "string type" : "NSString")
3214         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3215     return;
3216   }
3217 
3218   D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3219 }
3220 
3221 enum FormatAttrKind {
3222   CFStringFormat,
3223   NSStringFormat,
3224   StrftimeFormat,
3225   SupportedFormat,
3226   IgnoredFormat,
3227   InvalidFormat
3228 };
3229 
3230 /// getFormatAttrKind - Map from format attribute names to supported format
3231 /// types.
3232 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3233   return llvm::StringSwitch<FormatAttrKind>(Format)
3234       // Check for formats that get handled specially.
3235       .Case("NSString", NSStringFormat)
3236       .Case("CFString", CFStringFormat)
3237       .Case("strftime", StrftimeFormat)
3238 
3239       // Otherwise, check for supported formats.
3240       .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3241       .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3242       .Case("kprintf", SupportedFormat)         // OpenBSD.
3243       .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3244       .Case("os_trace", SupportedFormat)
3245       .Case("os_log", SupportedFormat)
3246       .Case("syslog", SupportedFormat)
3247 
3248       .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3249       .Default(InvalidFormat);
3250 }
3251 
3252 /// Handle __attribute__((init_priority(priority))) attributes based on
3253 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3254 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3255   if (!S.getLangOpts().CPlusPlus) {
3256     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3257     return;
3258   }
3259 
3260   if (S.getCurFunctionOrMethodDecl()) {
3261     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3262     AL.setInvalid();
3263     return;
3264   }
3265   QualType T = cast<VarDecl>(D)->getType();
3266   if (S.Context.getAsArrayType(T))
3267     T = S.Context.getBaseElementType(T);
3268   if (!T->getAs<RecordType>()) {
3269     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3270     AL.setInvalid();
3271     return;
3272   }
3273 
3274   Expr *E = AL.getArgAsExpr(0);
3275   uint32_t prioritynum;
3276   if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3277     AL.setInvalid();
3278     return;
3279   }
3280 
3281   if (prioritynum < 101 || prioritynum > 65535) {
3282     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3283         << E->getSourceRange() << AL << 101 << 65535;
3284     AL.setInvalid();
3285     return;
3286   }
3287   D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3288 }
3289 
3290 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3291                                   IdentifierInfo *Format, int FormatIdx,
3292                                   int FirstArg) {
3293   // Check whether we already have an equivalent format attribute.
3294   for (auto *F : D->specific_attrs<FormatAttr>()) {
3295     if (F->getType() == Format &&
3296         F->getFormatIdx() == FormatIdx &&
3297         F->getFirstArg() == FirstArg) {
3298       // If we don't have a valid location for this attribute, adopt the
3299       // location.
3300       if (F->getLocation().isInvalid())
3301         F->setRange(CI.getRange());
3302       return nullptr;
3303     }
3304   }
3305 
3306   return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3307 }
3308 
3309 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3310 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3311 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3312   if (!AL.isArgIdent(0)) {
3313     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3314         << AL << 1 << AANT_ArgumentIdentifier;
3315     return;
3316   }
3317 
3318   // In C++ the implicit 'this' function parameter also counts, and they are
3319   // counted from one.
3320   bool HasImplicitThisParam = isInstanceMethod(D);
3321   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3322 
3323   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3324   StringRef Format = II->getName();
3325 
3326   if (normalizeName(Format)) {
3327     // If we've modified the string name, we need a new identifier for it.
3328     II = &S.Context.Idents.get(Format);
3329   }
3330 
3331   // Check for supported formats.
3332   FormatAttrKind Kind = getFormatAttrKind(Format);
3333 
3334   if (Kind == IgnoredFormat)
3335     return;
3336 
3337   if (Kind == InvalidFormat) {
3338     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3339         << AL << II->getName();
3340     return;
3341   }
3342 
3343   // checks for the 2nd argument
3344   Expr *IdxExpr = AL.getArgAsExpr(1);
3345   uint32_t Idx;
3346   if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3347     return;
3348 
3349   if (Idx < 1 || Idx > NumArgs) {
3350     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3351         << AL << 2 << IdxExpr->getSourceRange();
3352     return;
3353   }
3354 
3355   // FIXME: Do we need to bounds check?
3356   unsigned ArgIdx = Idx - 1;
3357 
3358   if (HasImplicitThisParam) {
3359     if (ArgIdx == 0) {
3360       S.Diag(AL.getLoc(),
3361              diag::err_format_attribute_implicit_this_format_string)
3362         << IdxExpr->getSourceRange();
3363       return;
3364     }
3365     ArgIdx--;
3366   }
3367 
3368   // make sure the format string is really a string
3369   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3370 
3371   if (Kind == CFStringFormat) {
3372     if (!isCFStringType(Ty, S.Context)) {
3373       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3374         << "a CFString" << IdxExpr->getSourceRange()
3375         << getFunctionOrMethodParamRange(D, ArgIdx);
3376       return;
3377     }
3378   } else if (Kind == NSStringFormat) {
3379     // FIXME: do we need to check if the type is NSString*?  What are the
3380     // semantics?
3381     if (!isNSStringType(Ty, S.Context)) {
3382       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3383         << "an NSString" << IdxExpr->getSourceRange()
3384         << getFunctionOrMethodParamRange(D, ArgIdx);
3385       return;
3386     }
3387   } else if (!Ty->isPointerType() ||
3388              !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) {
3389     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3390       << "a string type" << IdxExpr->getSourceRange()
3391       << getFunctionOrMethodParamRange(D, ArgIdx);
3392     return;
3393   }
3394 
3395   // check the 3rd argument
3396   Expr *FirstArgExpr = AL.getArgAsExpr(2);
3397   uint32_t FirstArg;
3398   if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3399     return;
3400 
3401   // check if the function is variadic if the 3rd argument non-zero
3402   if (FirstArg != 0) {
3403     if (isFunctionOrMethodVariadic(D)) {
3404       ++NumArgs; // +1 for ...
3405     } else {
3406       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3407       return;
3408     }
3409   }
3410 
3411   // strftime requires FirstArg to be 0 because it doesn't read from any
3412   // variable the input is just the current time + the format string.
3413   if (Kind == StrftimeFormat) {
3414     if (FirstArg != 0) {
3415       S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3416         << FirstArgExpr->getSourceRange();
3417       return;
3418     }
3419   // if 0 it disables parameter checking (to use with e.g. va_list)
3420   } else if (FirstArg != 0 && FirstArg != NumArgs) {
3421     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3422         << AL << 3 << FirstArgExpr->getSourceRange();
3423     return;
3424   }
3425 
3426   FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
3427   if (NewAttr)
3428     D->addAttr(NewAttr);
3429 }
3430 
3431 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
3432 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3433   // The index that identifies the callback callee is mandatory.
3434   if (AL.getNumArgs() == 0) {
3435     S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3436         << AL.getRange();
3437     return;
3438   }
3439 
3440   bool HasImplicitThisParam = isInstanceMethod(D);
3441   int32_t NumArgs = getFunctionOrMethodNumParams(D);
3442 
3443   FunctionDecl *FD = D->getAsFunction();
3444   assert(FD && "Expected a function declaration!");
3445 
3446   llvm::StringMap<int> NameIdxMapping;
3447   NameIdxMapping["__"] = -1;
3448 
3449   NameIdxMapping["this"] = 0;
3450 
3451   int Idx = 1;
3452   for (const ParmVarDecl *PVD : FD->parameters())
3453     NameIdxMapping[PVD->getName()] = Idx++;
3454 
3455   auto UnknownName = NameIdxMapping.end();
3456 
3457   SmallVector<int, 8> EncodingIndices;
3458   for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
3459     SourceRange SR;
3460     int32_t ArgIdx;
3461 
3462     if (AL.isArgIdent(I)) {
3463       IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
3464       auto It = NameIdxMapping.find(IdLoc->Ident->getName());
3465       if (It == UnknownName) {
3466         S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
3467             << IdLoc->Ident << IdLoc->Loc;
3468         return;
3469       }
3470 
3471       SR = SourceRange(IdLoc->Loc);
3472       ArgIdx = It->second;
3473     } else if (AL.isArgExpr(I)) {
3474       Expr *IdxExpr = AL.getArgAsExpr(I);
3475 
3476       // If the expression is not parseable as an int32_t we have a problem.
3477       if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
3478                                false)) {
3479         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3480             << AL << (I + 1) << IdxExpr->getSourceRange();
3481         return;
3482       }
3483 
3484       // Check oob, excluding the special values, 0 and -1.
3485       if (ArgIdx < -1 || ArgIdx > NumArgs) {
3486         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3487             << AL << (I + 1) << IdxExpr->getSourceRange();
3488         return;
3489       }
3490 
3491       SR = IdxExpr->getSourceRange();
3492     } else {
3493       llvm_unreachable("Unexpected ParsedAttr argument type!");
3494     }
3495 
3496     if (ArgIdx == 0 && !HasImplicitThisParam) {
3497       S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
3498           << (I + 1) << SR;
3499       return;
3500     }
3501 
3502     // Adjust for the case we do not have an implicit "this" parameter. In this
3503     // case we decrease all positive values by 1 to get LLVM argument indices.
3504     if (!HasImplicitThisParam && ArgIdx > 0)
3505       ArgIdx -= 1;
3506 
3507     EncodingIndices.push_back(ArgIdx);
3508   }
3509 
3510   int CalleeIdx = EncodingIndices.front();
3511   // Check if the callee index is proper, thus not "this" and not "unknown".
3512   // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
3513   // is false and positive if "HasImplicitThisParam" is true.
3514   if (CalleeIdx < (int)HasImplicitThisParam) {
3515     S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
3516         << AL.getRange();
3517     return;
3518   }
3519 
3520   // Get the callee type, note the index adjustment as the AST doesn't contain
3521   // the this type (which the callee cannot reference anyway!).
3522   const Type *CalleeType =
3523       getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
3524           .getTypePtr();
3525   if (!CalleeType || !CalleeType->isFunctionPointerType()) {
3526     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3527         << AL.getRange();
3528     return;
3529   }
3530 
3531   const Type *CalleeFnType =
3532       CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
3533 
3534   // TODO: Check the type of the callee arguments.
3535 
3536   const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
3537   if (!CalleeFnProtoType) {
3538     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3539         << AL.getRange();
3540     return;
3541   }
3542 
3543   if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
3544     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3545         << AL << (unsigned)(EncodingIndices.size() - 1);
3546     return;
3547   }
3548 
3549   if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
3550     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3551         << AL << (unsigned)(EncodingIndices.size() - 1);
3552     return;
3553   }
3554 
3555   if (CalleeFnProtoType->isVariadic()) {
3556     S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
3557     return;
3558   }
3559 
3560   // Do not allow multiple callback attributes.
3561   if (D->hasAttr<CallbackAttr>()) {
3562     S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
3563     return;
3564   }
3565 
3566   D->addAttr(::new (S.Context) CallbackAttr(
3567       S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
3568 }
3569 
3570 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3571   // Try to find the underlying union declaration.
3572   RecordDecl *RD = nullptr;
3573   const auto *TD = dyn_cast<TypedefNameDecl>(D);
3574   if (TD && TD->getUnderlyingType()->isUnionType())
3575     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3576   else
3577     RD = dyn_cast<RecordDecl>(D);
3578 
3579   if (!RD || !RD->isUnion()) {
3580     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
3581                                                               << ExpectedUnion;
3582     return;
3583   }
3584 
3585   if (!RD->isCompleteDefinition()) {
3586     if (!RD->isBeingDefined())
3587       S.Diag(AL.getLoc(),
3588              diag::warn_transparent_union_attribute_not_definition);
3589     return;
3590   }
3591 
3592   RecordDecl::field_iterator Field = RD->field_begin(),
3593                           FieldEnd = RD->field_end();
3594   if (Field == FieldEnd) {
3595     S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3596     return;
3597   }
3598 
3599   FieldDecl *FirstField = *Field;
3600   QualType FirstType = FirstField->getType();
3601   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3602     S.Diag(FirstField->getLocation(),
3603            diag::warn_transparent_union_attribute_floating)
3604       << FirstType->isVectorType() << FirstType;
3605     return;
3606   }
3607 
3608   if (FirstType->isIncompleteType())
3609     return;
3610   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3611   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3612   for (; Field != FieldEnd; ++Field) {
3613     QualType FieldType = Field->getType();
3614     if (FieldType->isIncompleteType())
3615       return;
3616     // FIXME: this isn't fully correct; we also need to test whether the
3617     // members of the union would all have the same calling convention as the
3618     // first member of the union. Checking just the size and alignment isn't
3619     // sufficient (consider structs passed on the stack instead of in registers
3620     // as an example).
3621     if (S.Context.getTypeSize(FieldType) != FirstSize ||
3622         S.Context.getTypeAlign(FieldType) > FirstAlign) {
3623       // Warn if we drop the attribute.
3624       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3625       unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
3626                                  : S.Context.getTypeAlign(FieldType);
3627       S.Diag(Field->getLocation(),
3628           diag::warn_transparent_union_attribute_field_size_align)
3629         << isSize << Field->getDeclName() << FieldBits;
3630       unsigned FirstBits = isSize? FirstSize : FirstAlign;
3631       S.Diag(FirstField->getLocation(),
3632              diag::note_transparent_union_first_field_size_align)
3633         << isSize << FirstBits;
3634       return;
3635     }
3636   }
3637 
3638   RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
3639 }
3640 
3641 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3642   // Make sure that there is a string literal as the annotation's single
3643   // argument.
3644   StringRef Str;
3645   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
3646     return;
3647 
3648   // Don't duplicate annotations that are already set.
3649   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
3650     if (I->getAnnotation() == Str)
3651       return;
3652   }
3653 
3654   D->addAttr(::new (S.Context) AnnotateAttr(S.Context, AL, Str));
3655 }
3656 
3657 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3658   S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
3659 }
3660 
3661 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
3662   AlignValueAttr TmpAttr(Context, CI, E);
3663   SourceLocation AttrLoc = CI.getLoc();
3664 
3665   QualType T;
3666   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
3667     T = TD->getUnderlyingType();
3668   else if (const auto *VD = dyn_cast<ValueDecl>(D))
3669     T = VD->getType();
3670   else
3671     llvm_unreachable("Unknown decl type for align_value");
3672 
3673   if (!T->isDependentType() && !T->isAnyPointerType() &&
3674       !T->isReferenceType() && !T->isMemberPointerType()) {
3675     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
3676       << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
3677     return;
3678   }
3679 
3680   if (!E->isValueDependent()) {
3681     llvm::APSInt Alignment;
3682     ExprResult ICE
3683       = VerifyIntegerConstantExpression(E, &Alignment,
3684           diag::err_align_value_attribute_argument_not_int,
3685             /*AllowFold*/ false);
3686     if (ICE.isInvalid())
3687       return;
3688 
3689     if (!Alignment.isPowerOf2()) {
3690       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3691         << E->getSourceRange();
3692       return;
3693     }
3694 
3695     D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
3696     return;
3697   }
3698 
3699   // Save dependent expressions in the AST to be instantiated.
3700   D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
3701 }
3702 
3703 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3704   // check the attribute arguments.
3705   if (AL.getNumArgs() > 1) {
3706     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3707     return;
3708   }
3709 
3710   if (AL.getNumArgs() == 0) {
3711     D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
3712     return;
3713   }
3714 
3715   Expr *E = AL.getArgAsExpr(0);
3716   if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
3717     S.Diag(AL.getEllipsisLoc(),
3718            diag::err_pack_expansion_without_parameter_packs);
3719     return;
3720   }
3721 
3722   if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
3723     return;
3724 
3725   S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
3726 }
3727 
3728 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
3729                           bool IsPackExpansion) {
3730   AlignedAttr TmpAttr(Context, CI, true, E);
3731   SourceLocation AttrLoc = CI.getLoc();
3732 
3733   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
3734   if (TmpAttr.isAlignas()) {
3735     // C++11 [dcl.align]p1:
3736     //   An alignment-specifier may be applied to a variable or to a class
3737     //   data member, but it shall not be applied to a bit-field, a function
3738     //   parameter, the formal parameter of a catch clause, or a variable
3739     //   declared with the register storage class specifier. An
3740     //   alignment-specifier may also be applied to the declaration of a class
3741     //   or enumeration type.
3742     // C11 6.7.5/2:
3743     //   An alignment attribute shall not be specified in a declaration of
3744     //   a typedef, or a bit-field, or a function, or a parameter, or an
3745     //   object declared with the register storage-class specifier.
3746     int DiagKind = -1;
3747     if (isa<ParmVarDecl>(D)) {
3748       DiagKind = 0;
3749     } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
3750       if (VD->getStorageClass() == SC_Register)
3751         DiagKind = 1;
3752       if (VD->isExceptionVariable())
3753         DiagKind = 2;
3754     } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
3755       if (FD->isBitField())
3756         DiagKind = 3;
3757     } else if (!isa<TagDecl>(D)) {
3758       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
3759         << (TmpAttr.isC11() ? ExpectedVariableOrField
3760                             : ExpectedVariableFieldOrTag);
3761       return;
3762     }
3763     if (DiagKind != -1) {
3764       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
3765         << &TmpAttr << DiagKind;
3766       return;
3767     }
3768   }
3769 
3770   if (E->isValueDependent()) {
3771     // We can't support a dependent alignment on a non-dependent type,
3772     // because we have no way to model that a type is "alignment-dependent"
3773     // but not dependent in any other way.
3774     if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
3775       if (!TND->getUnderlyingType()->isDependentType()) {
3776         Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
3777             << E->getSourceRange();
3778         return;
3779       }
3780     }
3781 
3782     // Save dependent expressions in the AST to be instantiated.
3783     AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
3784     AA->setPackExpansion(IsPackExpansion);
3785     D->addAttr(AA);
3786     return;
3787   }
3788 
3789   // FIXME: Cache the number on the AL object?
3790   llvm::APSInt Alignment;
3791   ExprResult ICE
3792     = VerifyIntegerConstantExpression(E, &Alignment,
3793         diag::err_aligned_attribute_argument_not_int,
3794         /*AllowFold*/ false);
3795   if (ICE.isInvalid())
3796     return;
3797 
3798   uint64_t AlignVal = Alignment.getZExtValue();
3799 
3800   // C++11 [dcl.align]p2:
3801   //   -- if the constant expression evaluates to zero, the alignment
3802   //      specifier shall have no effect
3803   // C11 6.7.5p6:
3804   //   An alignment specification of zero has no effect.
3805   if (!(TmpAttr.isAlignas() && !Alignment)) {
3806     if (!llvm::isPowerOf2_64(AlignVal)) {
3807       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3808         << E->getSourceRange();
3809       return;
3810     }
3811   }
3812 
3813   // Alignment calculations can wrap around if it's greater than 2**28.
3814   unsigned MaxValidAlignment =
3815       Context.getTargetInfo().getTriple().isOSBinFormatCOFF() ? 8192
3816                                                               : 268435456;
3817   if (AlignVal > MaxValidAlignment) {
3818     Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
3819                                                          << E->getSourceRange();
3820     return;
3821   }
3822 
3823   if (Context.getTargetInfo().isTLSSupported()) {
3824     unsigned MaxTLSAlign =
3825         Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
3826             .getQuantity();
3827     const auto *VD = dyn_cast<VarDecl>(D);
3828     if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
3829         VD->getTLSKind() != VarDecl::TLS_None) {
3830       Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
3831           << (unsigned)AlignVal << VD << MaxTLSAlign;
3832       return;
3833     }
3834   }
3835 
3836   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
3837   AA->setPackExpansion(IsPackExpansion);
3838   D->addAttr(AA);
3839 }
3840 
3841 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
3842                           TypeSourceInfo *TS, bool IsPackExpansion) {
3843   // FIXME: Cache the number on the AL object if non-dependent?
3844   // FIXME: Perform checking of type validity
3845   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
3846   AA->setPackExpansion(IsPackExpansion);
3847   D->addAttr(AA);
3848 }
3849 
3850 void Sema::CheckAlignasUnderalignment(Decl *D) {
3851   assert(D->hasAttrs() && "no attributes on decl");
3852 
3853   QualType UnderlyingTy, DiagTy;
3854   if (const auto *VD = dyn_cast<ValueDecl>(D)) {
3855     UnderlyingTy = DiagTy = VD->getType();
3856   } else {
3857     UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
3858     if (const auto *ED = dyn_cast<EnumDecl>(D))
3859       UnderlyingTy = ED->getIntegerType();
3860   }
3861   if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
3862     return;
3863 
3864   // C++11 [dcl.align]p5, C11 6.7.5/4:
3865   //   The combined effect of all alignment attributes in a declaration shall
3866   //   not specify an alignment that is less strict than the alignment that
3867   //   would otherwise be required for the entity being declared.
3868   AlignedAttr *AlignasAttr = nullptr;
3869   unsigned Align = 0;
3870   for (auto *I : D->specific_attrs<AlignedAttr>()) {
3871     if (I->isAlignmentDependent())
3872       return;
3873     if (I->isAlignas())
3874       AlignasAttr = I;
3875     Align = std::max(Align, I->getAlignment(Context));
3876   }
3877 
3878   if (AlignasAttr && Align) {
3879     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
3880     CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
3881     if (NaturalAlign > RequestedAlign)
3882       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
3883         << DiagTy << (unsigned)NaturalAlign.getQuantity();
3884   }
3885 }
3886 
3887 bool Sema::checkMSInheritanceAttrOnDefinition(
3888     CXXRecordDecl *RD, SourceRange Range, bool BestCase,
3889     MSInheritanceModel ExplicitModel) {
3890   assert(RD->hasDefinition() && "RD has no definition!");
3891 
3892   // We may not have seen base specifiers or any virtual methods yet.  We will
3893   // have to wait until the record is defined to catch any mismatches.
3894   if (!RD->getDefinition()->isCompleteDefinition())
3895     return false;
3896 
3897   // The unspecified model never matches what a definition could need.
3898   if (ExplicitModel == MSInheritanceModel::Unspecified)
3899     return false;
3900 
3901   if (BestCase) {
3902     if (RD->calculateInheritanceModel() == ExplicitModel)
3903       return false;
3904   } else {
3905     if (RD->calculateInheritanceModel() <= ExplicitModel)
3906       return false;
3907   }
3908 
3909   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
3910       << 0 /*definition*/;
3911   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
3912       << RD->getNameAsString();
3913   return true;
3914 }
3915 
3916 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
3917 /// attribute.
3918 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
3919                              bool &IntegerMode, bool &ComplexMode) {
3920   IntegerMode = true;
3921   ComplexMode = false;
3922   switch (Str.size()) {
3923   case 2:
3924     switch (Str[0]) {
3925     case 'Q':
3926       DestWidth = 8;
3927       break;
3928     case 'H':
3929       DestWidth = 16;
3930       break;
3931     case 'S':
3932       DestWidth = 32;
3933       break;
3934     case 'D':
3935       DestWidth = 64;
3936       break;
3937     case 'X':
3938       DestWidth = 96;
3939       break;
3940     case 'T':
3941       DestWidth = 128;
3942       break;
3943     }
3944     if (Str[1] == 'F') {
3945       IntegerMode = false;
3946     } else if (Str[1] == 'C') {
3947       IntegerMode = false;
3948       ComplexMode = true;
3949     } else if (Str[1] != 'I') {
3950       DestWidth = 0;
3951     }
3952     break;
3953   case 4:
3954     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3955     // pointer on PIC16 and other embedded platforms.
3956     if (Str == "word")
3957       DestWidth = S.Context.getTargetInfo().getRegisterWidth();
3958     else if (Str == "byte")
3959       DestWidth = S.Context.getTargetInfo().getCharWidth();
3960     break;
3961   case 7:
3962     if (Str == "pointer")
3963       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3964     break;
3965   case 11:
3966     if (Str == "unwind_word")
3967       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
3968     break;
3969   }
3970 }
3971 
3972 /// handleModeAttr - This attribute modifies the width of a decl with primitive
3973 /// type.
3974 ///
3975 /// Despite what would be logical, the mode attribute is a decl attribute, not a
3976 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
3977 /// HImode, not an intermediate pointer.
3978 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3979   // This attribute isn't documented, but glibc uses it.  It changes
3980   // the width of an int or unsigned int to the specified size.
3981   if (!AL.isArgIdent(0)) {
3982     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
3983         << AL << AANT_ArgumentIdentifier;
3984     return;
3985   }
3986 
3987   IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
3988 
3989   S.AddModeAttr(D, AL, Name);
3990 }
3991 
3992 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
3993                        IdentifierInfo *Name, bool InInstantiation) {
3994   StringRef Str = Name->getName();
3995   normalizeName(Str);
3996   SourceLocation AttrLoc = CI.getLoc();
3997 
3998   unsigned DestWidth = 0;
3999   bool IntegerMode = true;
4000   bool ComplexMode = false;
4001   llvm::APInt VectorSize(64, 0);
4002   if (Str.size() >= 4 && Str[0] == 'V') {
4003     // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4004     size_t StrSize = Str.size();
4005     size_t VectorStringLength = 0;
4006     while ((VectorStringLength + 1) < StrSize &&
4007            isdigit(Str[VectorStringLength + 1]))
4008       ++VectorStringLength;
4009     if (VectorStringLength &&
4010         !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4011         VectorSize.isPowerOf2()) {
4012       parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4013                        IntegerMode, ComplexMode);
4014       // Avoid duplicate warning from template instantiation.
4015       if (!InInstantiation)
4016         Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4017     } else {
4018       VectorSize = 0;
4019     }
4020   }
4021 
4022   if (!VectorSize)
4023     parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode);
4024 
4025   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4026   // and friends, at least with glibc.
4027   // FIXME: Make sure floating-point mappings are accurate
4028   // FIXME: Support XF and TF types
4029   if (!DestWidth) {
4030     Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4031     return;
4032   }
4033 
4034   QualType OldTy;
4035   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4036     OldTy = TD->getUnderlyingType();
4037   else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4038     // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4039     // Try to get type from enum declaration, default to int.
4040     OldTy = ED->getIntegerType();
4041     if (OldTy.isNull())
4042       OldTy = Context.IntTy;
4043   } else
4044     OldTy = cast<ValueDecl>(D)->getType();
4045 
4046   if (OldTy->isDependentType()) {
4047     D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4048     return;
4049   }
4050 
4051   // Base type can also be a vector type (see PR17453).
4052   // Distinguish between base type and base element type.
4053   QualType OldElemTy = OldTy;
4054   if (const auto *VT = OldTy->getAs<VectorType>())
4055     OldElemTy = VT->getElementType();
4056 
4057   // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4058   // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4059   // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4060   if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4061       VectorSize.getBoolValue()) {
4062     Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4063     return;
4064   }
4065   bool IntegralOrAnyEnumType =
4066       OldElemTy->isIntegralOrEnumerationType() || OldElemTy->getAs<EnumType>();
4067 
4068   if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4069       !IntegralOrAnyEnumType)
4070     Diag(AttrLoc, diag::err_mode_not_primitive);
4071   else if (IntegerMode) {
4072     if (!IntegralOrAnyEnumType)
4073       Diag(AttrLoc, diag::err_mode_wrong_type);
4074   } else if (ComplexMode) {
4075     if (!OldElemTy->isComplexType())
4076       Diag(AttrLoc, diag::err_mode_wrong_type);
4077   } else {
4078     if (!OldElemTy->isFloatingType())
4079       Diag(AttrLoc, diag::err_mode_wrong_type);
4080   }
4081 
4082   QualType NewElemTy;
4083 
4084   if (IntegerMode)
4085     NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4086                                               OldElemTy->isSignedIntegerType());
4087   else
4088     NewElemTy = Context.getRealTypeForBitwidth(DestWidth);
4089 
4090   if (NewElemTy.isNull()) {
4091     Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4092     return;
4093   }
4094 
4095   if (ComplexMode) {
4096     NewElemTy = Context.getComplexType(NewElemTy);
4097   }
4098 
4099   QualType NewTy = NewElemTy;
4100   if (VectorSize.getBoolValue()) {
4101     NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4102                                   VectorType::GenericVector);
4103   } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4104     // Complex machine mode does not support base vector types.
4105     if (ComplexMode) {
4106       Diag(AttrLoc, diag::err_complex_mode_vector_type);
4107       return;
4108     }
4109     unsigned NumElements = Context.getTypeSize(OldElemTy) *
4110                            OldVT->getNumElements() /
4111                            Context.getTypeSize(NewElemTy);
4112     NewTy =
4113         Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4114   }
4115 
4116   if (NewTy.isNull()) {
4117     Diag(AttrLoc, diag::err_mode_wrong_type);
4118     return;
4119   }
4120 
4121   // Install the new type.
4122   if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4123     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4124   else if (auto *ED = dyn_cast<EnumDecl>(D))
4125     ED->setIntegerType(NewTy);
4126   else
4127     cast<ValueDecl>(D)->setType(NewTy);
4128 
4129   D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4130 }
4131 
4132 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4133   D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4134 }
4135 
4136 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4137                                               const AttributeCommonInfo &CI,
4138                                               const IdentifierInfo *Ident) {
4139   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4140     Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4141     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4142     return nullptr;
4143   }
4144 
4145   if (D->hasAttr<AlwaysInlineAttr>())
4146     return nullptr;
4147 
4148   return ::new (Context) AlwaysInlineAttr(Context, CI);
4149 }
4150 
4151 CommonAttr *Sema::mergeCommonAttr(Decl *D, const ParsedAttr &AL) {
4152   if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
4153     return nullptr;
4154 
4155   return ::new (Context) CommonAttr(Context, AL);
4156 }
4157 
4158 CommonAttr *Sema::mergeCommonAttr(Decl *D, const CommonAttr &AL) {
4159   if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
4160     return nullptr;
4161 
4162   return ::new (Context) CommonAttr(Context, AL);
4163 }
4164 
4165 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4166                                                     const ParsedAttr &AL) {
4167   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4168     // Attribute applies to Var but not any subclass of it (like ParmVar,
4169     // ImplicitParm or VarTemplateSpecialization).
4170     if (VD->getKind() != Decl::Var) {
4171       Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4172           << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4173                                             : ExpectedVariableOrFunction);
4174       return nullptr;
4175     }
4176     // Attribute does not apply to non-static local variables.
4177     if (VD->hasLocalStorage()) {
4178       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4179       return nullptr;
4180     }
4181   }
4182 
4183   if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
4184     return nullptr;
4185 
4186   return ::new (Context) InternalLinkageAttr(Context, AL);
4187 }
4188 InternalLinkageAttr *
4189 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4190   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4191     // Attribute applies to Var but not any subclass of it (like ParmVar,
4192     // ImplicitParm or VarTemplateSpecialization).
4193     if (VD->getKind() != Decl::Var) {
4194       Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4195           << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4196                                              : ExpectedVariableOrFunction);
4197       return nullptr;
4198     }
4199     // Attribute does not apply to non-static local variables.
4200     if (VD->hasLocalStorage()) {
4201       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4202       return nullptr;
4203     }
4204   }
4205 
4206   if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
4207     return nullptr;
4208 
4209   return ::new (Context) InternalLinkageAttr(Context, AL);
4210 }
4211 
4212 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4213   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4214     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4215     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4216     return nullptr;
4217   }
4218 
4219   if (D->hasAttr<MinSizeAttr>())
4220     return nullptr;
4221 
4222   return ::new (Context) MinSizeAttr(Context, CI);
4223 }
4224 
4225 NoSpeculativeLoadHardeningAttr *Sema::mergeNoSpeculativeLoadHardeningAttr(
4226     Decl *D, const NoSpeculativeLoadHardeningAttr &AL) {
4227   if (checkAttrMutualExclusion<SpeculativeLoadHardeningAttr>(*this, D, AL))
4228     return nullptr;
4229 
4230   return ::new (Context) NoSpeculativeLoadHardeningAttr(Context, AL);
4231 }
4232 
4233 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4234                                               const AttributeCommonInfo &CI) {
4235   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4236     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4237     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4238     D->dropAttr<AlwaysInlineAttr>();
4239   }
4240   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4241     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4242     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4243     D->dropAttr<MinSizeAttr>();
4244   }
4245 
4246   if (D->hasAttr<OptimizeNoneAttr>())
4247     return nullptr;
4248 
4249   return ::new (Context) OptimizeNoneAttr(Context, CI);
4250 }
4251 
4252 SpeculativeLoadHardeningAttr *Sema::mergeSpeculativeLoadHardeningAttr(
4253     Decl *D, const SpeculativeLoadHardeningAttr &AL) {
4254   if (checkAttrMutualExclusion<NoSpeculativeLoadHardeningAttr>(*this, D, AL))
4255     return nullptr;
4256 
4257   return ::new (Context) SpeculativeLoadHardeningAttr(Context, AL);
4258 }
4259 
4260 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4261   if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL))
4262     return;
4263 
4264   if (AlwaysInlineAttr *Inline =
4265           S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4266     D->addAttr(Inline);
4267 }
4268 
4269 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4270   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4271     D->addAttr(MinSize);
4272 }
4273 
4274 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4275   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4276     D->addAttr(Optnone);
4277 }
4278 
4279 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4280   if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL))
4281     return;
4282   const auto *VD = cast<VarDecl>(D);
4283   if (!VD->hasGlobalStorage()) {
4284     S.Diag(AL.getLoc(), diag::err_cuda_nonglobal_constant);
4285     return;
4286   }
4287   D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4288 }
4289 
4290 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4291   if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL))
4292     return;
4293   const auto *VD = cast<VarDecl>(D);
4294   // extern __shared__ is only allowed on arrays with no length (e.g.
4295   // "int x[]").
4296   if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4297       !isa<IncompleteArrayType>(VD->getType())) {
4298     S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4299     return;
4300   }
4301   if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4302       S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4303           << S.CurrentCUDATarget())
4304     return;
4305   D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4306 }
4307 
4308 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4309   if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL) ||
4310       checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL)) {
4311     return;
4312   }
4313   const auto *FD = cast<FunctionDecl>(D);
4314   if (!FD->getReturnType()->isVoidType() &&
4315       !FD->getReturnType()->getAs<AutoType>() &&
4316       !FD->getReturnType()->isInstantiationDependentType()) {
4317     SourceRange RTRange = FD->getReturnTypeSourceRange();
4318     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4319         << FD->getType()
4320         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4321                               : FixItHint());
4322     return;
4323   }
4324   if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4325     if (Method->isInstance()) {
4326       S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
4327           << Method;
4328       return;
4329     }
4330     S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
4331   }
4332   // Only warn for "inline" when compiling for host, to cut down on noise.
4333   if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4334     S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
4335 
4336   D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
4337 }
4338 
4339 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4340   const auto *Fn = cast<FunctionDecl>(D);
4341   if (!Fn->isInlineSpecified()) {
4342     S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
4343     return;
4344   }
4345 
4346   if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
4347     S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
4348 
4349   D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
4350 }
4351 
4352 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4353   if (hasDeclarator(D)) return;
4354 
4355   // Diagnostic is emitted elsewhere: here we store the (valid) AL
4356   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
4357   CallingConv CC;
4358   if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
4359     return;
4360 
4361   if (!isa<ObjCMethodDecl>(D)) {
4362     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4363         << AL << ExpectedFunctionOrMethod;
4364     return;
4365   }
4366 
4367   switch (AL.getKind()) {
4368   case ParsedAttr::AT_FastCall:
4369     D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
4370     return;
4371   case ParsedAttr::AT_StdCall:
4372     D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
4373     return;
4374   case ParsedAttr::AT_ThisCall:
4375     D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
4376     return;
4377   case ParsedAttr::AT_CDecl:
4378     D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
4379     return;
4380   case ParsedAttr::AT_Pascal:
4381     D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
4382     return;
4383   case ParsedAttr::AT_SwiftCall:
4384     D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
4385     return;
4386   case ParsedAttr::AT_VectorCall:
4387     D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
4388     return;
4389   case ParsedAttr::AT_MSABI:
4390     D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
4391     return;
4392   case ParsedAttr::AT_SysVABI:
4393     D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
4394     return;
4395   case ParsedAttr::AT_RegCall:
4396     D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
4397     return;
4398   case ParsedAttr::AT_Pcs: {
4399     PcsAttr::PCSType PCS;
4400     switch (CC) {
4401     case CC_AAPCS:
4402       PCS = PcsAttr::AAPCS;
4403       break;
4404     case CC_AAPCS_VFP:
4405       PCS = PcsAttr::AAPCS_VFP;
4406       break;
4407     default:
4408       llvm_unreachable("unexpected calling convention in pcs attribute");
4409     }
4410 
4411     D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
4412     return;
4413   }
4414   case ParsedAttr::AT_AArch64VectorPcs:
4415     D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
4416     return;
4417   case ParsedAttr::AT_IntelOclBicc:
4418     D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
4419     return;
4420   case ParsedAttr::AT_PreserveMost:
4421     D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
4422     return;
4423   case ParsedAttr::AT_PreserveAll:
4424     D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
4425     return;
4426   default:
4427     llvm_unreachable("unexpected attribute kind");
4428   }
4429 }
4430 
4431 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4432   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
4433     return;
4434 
4435   std::vector<StringRef> DiagnosticIdentifiers;
4436   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
4437     StringRef RuleName;
4438 
4439     if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
4440       return;
4441 
4442     // FIXME: Warn if the rule name is unknown. This is tricky because only
4443     // clang-tidy knows about available rules.
4444     DiagnosticIdentifiers.push_back(RuleName);
4445   }
4446   D->addAttr(::new (S.Context)
4447                  SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
4448                               DiagnosticIdentifiers.size()));
4449 }
4450 
4451 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4452   TypeSourceInfo *DerefTypeLoc = nullptr;
4453   QualType ParmType;
4454   if (AL.hasParsedType()) {
4455     ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
4456 
4457     unsigned SelectIdx = ~0U;
4458     if (ParmType->isReferenceType())
4459       SelectIdx = 0;
4460     else if (ParmType->isArrayType())
4461       SelectIdx = 1;
4462 
4463     if (SelectIdx != ~0U) {
4464       S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
4465           << SelectIdx << AL;
4466       return;
4467     }
4468   }
4469 
4470   // To check if earlier decl attributes do not conflict the newly parsed ones
4471   // we always add (and check) the attribute to the cannonical decl.
4472   D = D->getCanonicalDecl();
4473   if (AL.getKind() == ParsedAttr::AT_Owner) {
4474     if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
4475       return;
4476     if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
4477       const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
4478                                           ? OAttr->getDerefType().getTypePtr()
4479                                           : nullptr;
4480       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4481         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4482             << AL << OAttr;
4483         S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
4484       }
4485       return;
4486     }
4487     for (Decl *Redecl : D->redecls()) {
4488       Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
4489     }
4490   } else {
4491     if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
4492       return;
4493     if (const auto *PAttr = D->getAttr<PointerAttr>()) {
4494       const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
4495                                           ? PAttr->getDerefType().getTypePtr()
4496                                           : nullptr;
4497       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4498         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4499             << AL << PAttr;
4500         S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
4501       }
4502       return;
4503     }
4504     for (Decl *Redecl : D->redecls()) {
4505       Redecl->addAttr(::new (S.Context)
4506                           PointerAttr(S.Context, AL, DerefTypeLoc));
4507     }
4508   }
4509 }
4510 
4511 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
4512                                 const FunctionDecl *FD) {
4513   if (Attrs.isInvalid())
4514     return true;
4515 
4516   if (Attrs.hasProcessingCache()) {
4517     CC = (CallingConv) Attrs.getProcessingCache();
4518     return false;
4519   }
4520 
4521   unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
4522   if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) {
4523     Attrs.setInvalid();
4524     return true;
4525   }
4526 
4527   // TODO: diagnose uses of these conventions on the wrong target.
4528   switch (Attrs.getKind()) {
4529   case ParsedAttr::AT_CDecl:
4530     CC = CC_C;
4531     break;
4532   case ParsedAttr::AT_FastCall:
4533     CC = CC_X86FastCall;
4534     break;
4535   case ParsedAttr::AT_StdCall:
4536     CC = CC_X86StdCall;
4537     break;
4538   case ParsedAttr::AT_ThisCall:
4539     CC = CC_X86ThisCall;
4540     break;
4541   case ParsedAttr::AT_Pascal:
4542     CC = CC_X86Pascal;
4543     break;
4544   case ParsedAttr::AT_SwiftCall:
4545     CC = CC_Swift;
4546     break;
4547   case ParsedAttr::AT_VectorCall:
4548     CC = CC_X86VectorCall;
4549     break;
4550   case ParsedAttr::AT_AArch64VectorPcs:
4551     CC = CC_AArch64VectorCall;
4552     break;
4553   case ParsedAttr::AT_RegCall:
4554     CC = CC_X86RegCall;
4555     break;
4556   case ParsedAttr::AT_MSABI:
4557     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
4558                                                              CC_Win64;
4559     break;
4560   case ParsedAttr::AT_SysVABI:
4561     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
4562                                                              CC_C;
4563     break;
4564   case ParsedAttr::AT_Pcs: {
4565     StringRef StrRef;
4566     if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
4567       Attrs.setInvalid();
4568       return true;
4569     }
4570     if (StrRef == "aapcs") {
4571       CC = CC_AAPCS;
4572       break;
4573     } else if (StrRef == "aapcs-vfp") {
4574       CC = CC_AAPCS_VFP;
4575       break;
4576     }
4577 
4578     Attrs.setInvalid();
4579     Diag(Attrs.getLoc(), diag::err_invalid_pcs);
4580     return true;
4581   }
4582   case ParsedAttr::AT_IntelOclBicc:
4583     CC = CC_IntelOclBicc;
4584     break;
4585   case ParsedAttr::AT_PreserveMost:
4586     CC = CC_PreserveMost;
4587     break;
4588   case ParsedAttr::AT_PreserveAll:
4589     CC = CC_PreserveAll;
4590     break;
4591   default: llvm_unreachable("unexpected attribute kind");
4592   }
4593 
4594   TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
4595   const TargetInfo &TI = Context.getTargetInfo();
4596   // CUDA functions may have host and/or device attributes which indicate
4597   // their targeted execution environment, therefore the calling convention
4598   // of functions in CUDA should be checked against the target deduced based
4599   // on their host/device attributes.
4600   if (LangOpts.CUDA) {
4601     auto *Aux = Context.getAuxTargetInfo();
4602     auto CudaTarget = IdentifyCUDATarget(FD);
4603     bool CheckHost = false, CheckDevice = false;
4604     switch (CudaTarget) {
4605     case CFT_HostDevice:
4606       CheckHost = true;
4607       CheckDevice = true;
4608       break;
4609     case CFT_Host:
4610       CheckHost = true;
4611       break;
4612     case CFT_Device:
4613     case CFT_Global:
4614       CheckDevice = true;
4615       break;
4616     case CFT_InvalidTarget:
4617       llvm_unreachable("unexpected cuda target");
4618     }
4619     auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
4620     auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
4621     if (CheckHost && HostTI)
4622       A = HostTI->checkCallingConvention(CC);
4623     if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
4624       A = DeviceTI->checkCallingConvention(CC);
4625   } else {
4626     A = TI.checkCallingConvention(CC);
4627   }
4628 
4629   switch (A) {
4630   case TargetInfo::CCCR_OK:
4631     break;
4632 
4633   case TargetInfo::CCCR_Ignore:
4634     // Treat an ignored convention as if it was an explicit C calling convention
4635     // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
4636     // that command line flags that change the default convention to
4637     // __vectorcall don't affect declarations marked __stdcall.
4638     CC = CC_C;
4639     break;
4640 
4641   case TargetInfo::CCCR_Error:
4642     Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
4643         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4644     break;
4645 
4646   case TargetInfo::CCCR_Warning: {
4647     Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
4648         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4649 
4650     // This convention is not valid for the target. Use the default function or
4651     // method calling convention.
4652     bool IsCXXMethod = false, IsVariadic = false;
4653     if (FD) {
4654       IsCXXMethod = FD->isCXXInstanceMember();
4655       IsVariadic = FD->isVariadic();
4656     }
4657     CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
4658     break;
4659   }
4660   }
4661 
4662   Attrs.setProcessingCache((unsigned) CC);
4663   return false;
4664 }
4665 
4666 /// Pointer-like types in the default address space.
4667 static bool isValidSwiftContextType(QualType Ty) {
4668   if (!Ty->hasPointerRepresentation())
4669     return Ty->isDependentType();
4670   return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
4671 }
4672 
4673 /// Pointers and references in the default address space.
4674 static bool isValidSwiftIndirectResultType(QualType Ty) {
4675   if (const auto *PtrType = Ty->getAs<PointerType>()) {
4676     Ty = PtrType->getPointeeType();
4677   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4678     Ty = RefType->getPointeeType();
4679   } else {
4680     return Ty->isDependentType();
4681   }
4682   return Ty.getAddressSpace() == LangAS::Default;
4683 }
4684 
4685 /// Pointers and references to pointers in the default address space.
4686 static bool isValidSwiftErrorResultType(QualType Ty) {
4687   if (const auto *PtrType = Ty->getAs<PointerType>()) {
4688     Ty = PtrType->getPointeeType();
4689   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4690     Ty = RefType->getPointeeType();
4691   } else {
4692     return Ty->isDependentType();
4693   }
4694   if (!Ty.getQualifiers().empty())
4695     return false;
4696   return isValidSwiftContextType(Ty);
4697 }
4698 
4699 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
4700                                ParameterABI abi) {
4701 
4702   QualType type = cast<ParmVarDecl>(D)->getType();
4703 
4704   if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
4705     if (existingAttr->getABI() != abi) {
4706       Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
4707           << getParameterABISpelling(abi) << existingAttr;
4708       Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
4709       return;
4710     }
4711   }
4712 
4713   switch (abi) {
4714   case ParameterABI::Ordinary:
4715     llvm_unreachable("explicit attribute for ordinary parameter ABI?");
4716 
4717   case ParameterABI::SwiftContext:
4718     if (!isValidSwiftContextType(type)) {
4719       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4720           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
4721     }
4722     D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
4723     return;
4724 
4725   case ParameterABI::SwiftErrorResult:
4726     if (!isValidSwiftErrorResultType(type)) {
4727       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4728           << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
4729     }
4730     D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
4731     return;
4732 
4733   case ParameterABI::SwiftIndirectResult:
4734     if (!isValidSwiftIndirectResultType(type)) {
4735       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4736           << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
4737     }
4738     D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
4739     return;
4740   }
4741   llvm_unreachable("bad parameter ABI attribute");
4742 }
4743 
4744 /// Checks a regparm attribute, returning true if it is ill-formed and
4745 /// otherwise setting numParams to the appropriate value.
4746 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
4747   if (AL.isInvalid())
4748     return true;
4749 
4750   if (!checkAttributeNumArgs(*this, AL, 1)) {
4751     AL.setInvalid();
4752     return true;
4753   }
4754 
4755   uint32_t NP;
4756   Expr *NumParamsExpr = AL.getArgAsExpr(0);
4757   if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
4758     AL.setInvalid();
4759     return true;
4760   }
4761 
4762   if (Context.getTargetInfo().getRegParmMax() == 0) {
4763     Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
4764       << NumParamsExpr->getSourceRange();
4765     AL.setInvalid();
4766     return true;
4767   }
4768 
4769   numParams = NP;
4770   if (numParams > Context.getTargetInfo().getRegParmMax()) {
4771     Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
4772       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
4773     AL.setInvalid();
4774     return true;
4775   }
4776 
4777   return false;
4778 }
4779 
4780 // Checks whether an argument of launch_bounds attribute is
4781 // acceptable, performs implicit conversion to Rvalue, and returns
4782 // non-nullptr Expr result on success. Otherwise, it returns nullptr
4783 // and may output an error.
4784 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
4785                                      const CUDALaunchBoundsAttr &AL,
4786                                      const unsigned Idx) {
4787   if (S.DiagnoseUnexpandedParameterPack(E))
4788     return nullptr;
4789 
4790   // Accept template arguments for now as they depend on something else.
4791   // We'll get to check them when they eventually get instantiated.
4792   if (E->isValueDependent())
4793     return E;
4794 
4795   llvm::APSInt I(64);
4796   if (!E->isIntegerConstantExpr(I, S.Context)) {
4797     S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
4798         << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
4799     return nullptr;
4800   }
4801   // Make sure we can fit it in 32 bits.
4802   if (!I.isIntN(32)) {
4803     S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false)
4804                                                      << 32 << /* Unsigned */ 1;
4805     return nullptr;
4806   }
4807   if (I < 0)
4808     S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
4809         << &AL << Idx << E->getSourceRange();
4810 
4811   // We may need to perform implicit conversion of the argument.
4812   InitializedEntity Entity = InitializedEntity::InitializeParameter(
4813       S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
4814   ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
4815   assert(!ValArg.isInvalid() &&
4816          "Unexpected PerformCopyInitialization() failure.");
4817 
4818   return ValArg.getAs<Expr>();
4819 }
4820 
4821 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
4822                                Expr *MaxThreads, Expr *MinBlocks) {
4823   CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
4824   MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
4825   if (MaxThreads == nullptr)
4826     return;
4827 
4828   if (MinBlocks) {
4829     MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
4830     if (MinBlocks == nullptr)
4831       return;
4832   }
4833 
4834   D->addAttr(::new (Context)
4835                  CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
4836 }
4837 
4838 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4839   if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
4840       !checkAttributeAtMostNumArgs(S, AL, 2))
4841     return;
4842 
4843   S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
4844                         AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
4845 }
4846 
4847 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
4848                                           const ParsedAttr &AL) {
4849   if (!AL.isArgIdent(0)) {
4850     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4851         << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
4852     return;
4853   }
4854 
4855   ParamIdx ArgumentIdx;
4856   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
4857                                            ArgumentIdx))
4858     return;
4859 
4860   ParamIdx TypeTagIdx;
4861   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
4862                                            TypeTagIdx))
4863     return;
4864 
4865   bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
4866   if (IsPointer) {
4867     // Ensure that buffer has a pointer type.
4868     unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
4869     if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
4870         !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
4871       S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
4872   }
4873 
4874   D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
4875       S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
4876       IsPointer));
4877 }
4878 
4879 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
4880                                          const ParsedAttr &AL) {
4881   if (!AL.isArgIdent(0)) {
4882     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4883         << AL << 1 << AANT_ArgumentIdentifier;
4884     return;
4885   }
4886 
4887   if (!checkAttributeNumArgs(S, AL, 1))
4888     return;
4889 
4890   if (!isa<VarDecl>(D)) {
4891     S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
4892         << AL << ExpectedVariable;
4893     return;
4894   }
4895 
4896   IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
4897   TypeSourceInfo *MatchingCTypeLoc = nullptr;
4898   S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
4899   assert(MatchingCTypeLoc && "no type source info for attribute argument");
4900 
4901   D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
4902       S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
4903       AL.getMustBeNull()));
4904 }
4905 
4906 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4907   ParamIdx ArgCount;
4908 
4909   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
4910                                            ArgCount,
4911                                            true /* CanIndexImplicitThis */))
4912     return;
4913 
4914   // ArgCount isn't a parameter index [0;n), it's a count [1;n]
4915   D->addAttr(::new (S.Context)
4916                  XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
4917 }
4918 
4919 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
4920                                              const ParsedAttr &AL) {
4921   uint32_t Count = 0, Offset = 0;
4922   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
4923     return;
4924   if (AL.getNumArgs() == 2) {
4925     Expr *Arg = AL.getArgAsExpr(1);
4926     if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
4927       return;
4928     if (Count < Offset) {
4929       S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
4930           << &AL << 0 << Count << Arg->getBeginLoc();
4931       return;
4932     }
4933   }
4934   D->addAttr(::new (S.Context)
4935                  PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
4936 }
4937 
4938 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
4939   if (AliasName.startswith("__arm_"))
4940     AliasName = AliasName.substr(6);
4941   switch (BuiltinID) {
4942 #include "clang/Basic/arm_mve_builtin_aliases.inc"
4943   default:
4944     return false;
4945   }
4946 }
4947 
4948 static void handleArmMveAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4949   if (!AL.isArgIdent(0)) {
4950     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4951         << AL << 1 << AANT_ArgumentIdentifier;
4952     return;
4953   }
4954 
4955   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
4956   unsigned BuiltinID = Ident->getBuiltinID();
4957 
4958   if (!ArmMveAliasValid(BuiltinID,
4959                         cast<FunctionDecl>(D)->getIdentifier()->getName())) {
4960     S.Diag(AL.getLoc(), diag::err_attribute_arm_mve_alias);
4961     return;
4962   }
4963 
4964   D->addAttr(::new (S.Context) ArmMveAliasAttr(S.Context, AL, Ident));
4965 }
4966 
4967 //===----------------------------------------------------------------------===//
4968 // Checker-specific attribute handlers.
4969 //===----------------------------------------------------------------------===//
4970 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
4971   return QT->isDependentType() || QT->isObjCRetainableType();
4972 }
4973 
4974 static bool isValidSubjectOfNSAttribute(QualType QT) {
4975   return QT->isDependentType() || QT->isObjCObjectPointerType() ||
4976          QT->isObjCNSObjectType();
4977 }
4978 
4979 static bool isValidSubjectOfCFAttribute(QualType QT) {
4980   return QT->isDependentType() || QT->isPointerType() ||
4981          isValidSubjectOfNSAttribute(QT);
4982 }
4983 
4984 static bool isValidSubjectOfOSAttribute(QualType QT) {
4985   if (QT->isDependentType())
4986     return true;
4987   QualType PT = QT->getPointeeType();
4988   return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
4989 }
4990 
4991 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
4992                             RetainOwnershipKind K,
4993                             bool IsTemplateInstantiation) {
4994   ValueDecl *VD = cast<ValueDecl>(D);
4995   switch (K) {
4996   case RetainOwnershipKind::OS:
4997     handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
4998         *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
4999         diag::warn_ns_attribute_wrong_parameter_type,
5000         /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5001     return;
5002   case RetainOwnershipKind::NS:
5003     handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5004         *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5005 
5006         // These attributes are normally just advisory, but in ARC, ns_consumed
5007         // is significant.  Allow non-dependent code to contain inappropriate
5008         // attributes even in ARC, but require template instantiations to be
5009         // set up correctly.
5010         ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5011              ? diag::err_ns_attribute_wrong_parameter_type
5012              : diag::warn_ns_attribute_wrong_parameter_type),
5013         /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5014     return;
5015   case RetainOwnershipKind::CF:
5016     handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5017         *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5018         diag::warn_ns_attribute_wrong_parameter_type,
5019         /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5020     return;
5021   }
5022 }
5023 
5024 static Sema::RetainOwnershipKind
5025 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5026   switch (AL.getKind()) {
5027   case ParsedAttr::AT_CFConsumed:
5028   case ParsedAttr::AT_CFReturnsRetained:
5029   case ParsedAttr::AT_CFReturnsNotRetained:
5030     return Sema::RetainOwnershipKind::CF;
5031   case ParsedAttr::AT_OSConsumesThis:
5032   case ParsedAttr::AT_OSConsumed:
5033   case ParsedAttr::AT_OSReturnsRetained:
5034   case ParsedAttr::AT_OSReturnsNotRetained:
5035   case ParsedAttr::AT_OSReturnsRetainedOnZero:
5036   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
5037     return Sema::RetainOwnershipKind::OS;
5038   case ParsedAttr::AT_NSConsumesSelf:
5039   case ParsedAttr::AT_NSConsumed:
5040   case ParsedAttr::AT_NSReturnsRetained:
5041   case ParsedAttr::AT_NSReturnsNotRetained:
5042   case ParsedAttr::AT_NSReturnsAutoreleased:
5043     return Sema::RetainOwnershipKind::NS;
5044   default:
5045     llvm_unreachable("Wrong argument supplied");
5046   }
5047 }
5048 
5049 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
5050   if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
5051     return false;
5052 
5053   Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
5054       << "'ns_returns_retained'" << 0 << 0;
5055   return true;
5056 }
5057 
5058 /// \return whether the parameter is a pointer to OSObject pointer.
5059 static bool isValidOSObjectOutParameter(const Decl *D) {
5060   const auto *PVD = dyn_cast<ParmVarDecl>(D);
5061   if (!PVD)
5062     return false;
5063   QualType QT = PVD->getType();
5064   QualType PT = QT->getPointeeType();
5065   return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
5066 }
5067 
5068 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
5069                                         const ParsedAttr &AL) {
5070   QualType ReturnType;
5071   Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
5072 
5073   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
5074     ReturnType = MD->getReturnType();
5075   } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
5076              (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
5077     return; // ignore: was handled as a type attribute
5078   } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
5079     ReturnType = PD->getType();
5080   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5081     ReturnType = FD->getReturnType();
5082   } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
5083     // Attributes on parameters are used for out-parameters,
5084     // passed as pointers-to-pointers.
5085     unsigned DiagID = K == Sema::RetainOwnershipKind::CF
5086             ? /*pointer-to-CF-pointer*/2
5087             : /*pointer-to-OSObject-pointer*/3;
5088     ReturnType = Param->getType()->getPointeeType();
5089     if (ReturnType.isNull()) {
5090       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5091           << AL << DiagID << AL.getRange();
5092       return;
5093     }
5094   } else if (AL.isUsedAsTypeAttr()) {
5095     return;
5096   } else {
5097     AttributeDeclKind ExpectedDeclKind;
5098     switch (AL.getKind()) {
5099     default: llvm_unreachable("invalid ownership attribute");
5100     case ParsedAttr::AT_NSReturnsRetained:
5101     case ParsedAttr::AT_NSReturnsAutoreleased:
5102     case ParsedAttr::AT_NSReturnsNotRetained:
5103       ExpectedDeclKind = ExpectedFunctionOrMethod;
5104       break;
5105 
5106     case ParsedAttr::AT_OSReturnsRetained:
5107     case ParsedAttr::AT_OSReturnsNotRetained:
5108     case ParsedAttr::AT_CFReturnsRetained:
5109     case ParsedAttr::AT_CFReturnsNotRetained:
5110       ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
5111       break;
5112     }
5113     S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
5114         << AL.getRange() << AL << ExpectedDeclKind;
5115     return;
5116   }
5117 
5118   bool TypeOK;
5119   bool Cf;
5120   unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
5121   switch (AL.getKind()) {
5122   default: llvm_unreachable("invalid ownership attribute");
5123   case ParsedAttr::AT_NSReturnsRetained:
5124     TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
5125     Cf = false;
5126     break;
5127 
5128   case ParsedAttr::AT_NSReturnsAutoreleased:
5129   case ParsedAttr::AT_NSReturnsNotRetained:
5130     TypeOK = isValidSubjectOfNSAttribute(ReturnType);
5131     Cf = false;
5132     break;
5133 
5134   case ParsedAttr::AT_CFReturnsRetained:
5135   case ParsedAttr::AT_CFReturnsNotRetained:
5136     TypeOK = isValidSubjectOfCFAttribute(ReturnType);
5137     Cf = true;
5138     break;
5139 
5140   case ParsedAttr::AT_OSReturnsRetained:
5141   case ParsedAttr::AT_OSReturnsNotRetained:
5142     TypeOK = isValidSubjectOfOSAttribute(ReturnType);
5143     Cf = true;
5144     ParmDiagID = 3; // Pointer-to-OSObject-pointer
5145     break;
5146   }
5147 
5148   if (!TypeOK) {
5149     if (AL.isUsedAsTypeAttr())
5150       return;
5151 
5152     if (isa<ParmVarDecl>(D)) {
5153       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5154           << AL << ParmDiagID << AL.getRange();
5155     } else {
5156       // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
5157       enum : unsigned {
5158         Function,
5159         Method,
5160         Property
5161       } SubjectKind = Function;
5162       if (isa<ObjCMethodDecl>(D))
5163         SubjectKind = Method;
5164       else if (isa<ObjCPropertyDecl>(D))
5165         SubjectKind = Property;
5166       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5167           << AL << SubjectKind << Cf << AL.getRange();
5168     }
5169     return;
5170   }
5171 
5172   switch (AL.getKind()) {
5173     default:
5174       llvm_unreachable("invalid ownership attribute");
5175     case ParsedAttr::AT_NSReturnsAutoreleased:
5176       handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
5177       return;
5178     case ParsedAttr::AT_CFReturnsNotRetained:
5179       handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
5180       return;
5181     case ParsedAttr::AT_NSReturnsNotRetained:
5182       handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
5183       return;
5184     case ParsedAttr::AT_CFReturnsRetained:
5185       handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
5186       return;
5187     case ParsedAttr::AT_NSReturnsRetained:
5188       handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
5189       return;
5190     case ParsedAttr::AT_OSReturnsRetained:
5191       handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
5192       return;
5193     case ParsedAttr::AT_OSReturnsNotRetained:
5194       handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
5195       return;
5196   };
5197 }
5198 
5199 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
5200                                               const ParsedAttr &Attrs) {
5201   const int EP_ObjCMethod = 1;
5202   const int EP_ObjCProperty = 2;
5203 
5204   SourceLocation loc = Attrs.getLoc();
5205   QualType resultType;
5206   if (isa<ObjCMethodDecl>(D))
5207     resultType = cast<ObjCMethodDecl>(D)->getReturnType();
5208   else
5209     resultType = cast<ObjCPropertyDecl>(D)->getType();
5210 
5211   if (!resultType->isReferenceType() &&
5212       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
5213     S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5214         << SourceRange(loc) << Attrs
5215         << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
5216         << /*non-retainable pointer*/ 2;
5217 
5218     // Drop the attribute.
5219     return;
5220   }
5221 
5222   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
5223 }
5224 
5225 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
5226                                         const ParsedAttr &Attrs) {
5227   const auto *Method = cast<ObjCMethodDecl>(D);
5228 
5229   const DeclContext *DC = Method->getDeclContext();
5230   if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
5231     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5232                                                                       << 0;
5233     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
5234     return;
5235   }
5236   if (Method->getMethodFamily() == OMF_dealloc) {
5237     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5238                                                                       << 1;
5239     return;
5240   }
5241 
5242   D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
5243 }
5244 
5245 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5246   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5247 
5248   if (!Parm) {
5249     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5250     return;
5251   }
5252 
5253   // Typedefs only allow objc_bridge(id) and have some additional checking.
5254   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
5255     if (!Parm->Ident->isStr("id")) {
5256       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
5257       return;
5258     }
5259 
5260     // Only allow 'cv void *'.
5261     QualType T = TD->getUnderlyingType();
5262     if (!T->isVoidPointerType()) {
5263       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
5264       return;
5265     }
5266   }
5267 
5268   D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
5269 }
5270 
5271 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
5272                                         const ParsedAttr &AL) {
5273   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5274 
5275   if (!Parm) {
5276     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5277     return;
5278   }
5279 
5280   D->addAttr(::new (S.Context)
5281                  ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
5282 }
5283 
5284 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
5285                                         const ParsedAttr &AL) {
5286   IdentifierInfo *RelatedClass =
5287       AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
5288   if (!RelatedClass) {
5289     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5290     return;
5291   }
5292   IdentifierInfo *ClassMethod =
5293     AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
5294   IdentifierInfo *InstanceMethod =
5295     AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
5296   D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
5297       S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
5298 }
5299 
5300 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
5301                                             const ParsedAttr &AL) {
5302   DeclContext *Ctx = D->getDeclContext();
5303 
5304   // This attribute can only be applied to methods in interfaces or class
5305   // extensions.
5306   if (!isa<ObjCInterfaceDecl>(Ctx) &&
5307       !(isa<ObjCCategoryDecl>(Ctx) &&
5308         cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
5309     S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
5310     return;
5311   }
5312 
5313   ObjCInterfaceDecl *IFace;
5314   if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
5315     IFace = CatDecl->getClassInterface();
5316   else
5317     IFace = cast<ObjCInterfaceDecl>(Ctx);
5318 
5319   if (!IFace)
5320     return;
5321 
5322   IFace->setHasDesignatedInitializers();
5323   D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
5324 }
5325 
5326 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
5327   StringRef MetaDataName;
5328   if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
5329     return;
5330   D->addAttr(::new (S.Context)
5331                  ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
5332 }
5333 
5334 // When a user wants to use objc_boxable with a union or struct
5335 // but they don't have access to the declaration (legacy/third-party code)
5336 // then they can 'enable' this feature with a typedef:
5337 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
5338 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
5339   bool notify = false;
5340 
5341   auto *RD = dyn_cast<RecordDecl>(D);
5342   if (RD && RD->getDefinition()) {
5343     RD = RD->getDefinition();
5344     notify = true;
5345   }
5346 
5347   if (RD) {
5348     ObjCBoxableAttr *BoxableAttr =
5349         ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
5350     RD->addAttr(BoxableAttr);
5351     if (notify) {
5352       // we need to notify ASTReader/ASTWriter about
5353       // modification of existing declaration
5354       if (ASTMutationListener *L = S.getASTMutationListener())
5355         L->AddedAttributeToRecord(BoxableAttr, RD);
5356     }
5357   }
5358 }
5359 
5360 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5361   if (hasDeclarator(D)) return;
5362 
5363   S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
5364       << AL.getRange() << AL << ExpectedVariable;
5365 }
5366 
5367 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
5368                                           const ParsedAttr &AL) {
5369   const auto *VD = cast<ValueDecl>(D);
5370   QualType QT = VD->getType();
5371 
5372   if (!QT->isDependentType() &&
5373       !QT->isObjCLifetimeType()) {
5374     S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
5375       << QT;
5376     return;
5377   }
5378 
5379   Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
5380 
5381   // If we have no lifetime yet, check the lifetime we're presumably
5382   // going to infer.
5383   if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
5384     Lifetime = QT->getObjCARCImplicitLifetime();
5385 
5386   switch (Lifetime) {
5387   case Qualifiers::OCL_None:
5388     assert(QT->isDependentType() &&
5389            "didn't infer lifetime for non-dependent type?");
5390     break;
5391 
5392   case Qualifiers::OCL_Weak:   // meaningful
5393   case Qualifiers::OCL_Strong: // meaningful
5394     break;
5395 
5396   case Qualifiers::OCL_ExplicitNone:
5397   case Qualifiers::OCL_Autoreleasing:
5398     S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
5399         << (Lifetime == Qualifiers::OCL_Autoreleasing);
5400     break;
5401   }
5402 
5403   D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
5404 }
5405 
5406 //===----------------------------------------------------------------------===//
5407 // Microsoft specific attribute handlers.
5408 //===----------------------------------------------------------------------===//
5409 
5410 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
5411                               StringRef Uuid) {
5412   if (const auto *UA = D->getAttr<UuidAttr>()) {
5413     if (UA->getGuid().equals_lower(Uuid))
5414       return nullptr;
5415     if (!UA->getGuid().empty()) {
5416       Diag(UA->getLocation(), diag::err_mismatched_uuid);
5417       Diag(CI.getLoc(), diag::note_previous_uuid);
5418       D->dropAttr<UuidAttr>();
5419     }
5420   }
5421 
5422   return ::new (Context) UuidAttr(Context, CI, Uuid);
5423 }
5424 
5425 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5426   if (!S.LangOpts.CPlusPlus) {
5427     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5428         << AL << AttributeLangSupport::C;
5429     return;
5430   }
5431 
5432   StringRef StrRef;
5433   SourceLocation LiteralLoc;
5434   if (!S.checkStringLiteralArgumentAttr(AL, 0, StrRef, &LiteralLoc))
5435     return;
5436 
5437   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
5438   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
5439   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
5440     StrRef = StrRef.drop_front().drop_back();
5441 
5442   // Validate GUID length.
5443   if (StrRef.size() != 36) {
5444     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5445     return;
5446   }
5447 
5448   for (unsigned i = 0; i < 36; ++i) {
5449     if (i == 8 || i == 13 || i == 18 || i == 23) {
5450       if (StrRef[i] != '-') {
5451         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5452         return;
5453       }
5454     } else if (!isHexDigit(StrRef[i])) {
5455       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5456       return;
5457     }
5458   }
5459 
5460   // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
5461   // the only thing in the [] list, the [] too), and add an insertion of
5462   // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas
5463   // separating attributes nor of the [ and the ] are in the AST.
5464   // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
5465   // on cfe-dev.
5466   if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
5467     S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
5468 
5469   UuidAttr *UA = S.mergeUuidAttr(D, AL, StrRef);
5470   if (UA)
5471     D->addAttr(UA);
5472 }
5473 
5474 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5475   if (!S.LangOpts.CPlusPlus) {
5476     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5477         << AL << AttributeLangSupport::C;
5478     return;
5479   }
5480   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
5481       D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
5482   if (IA) {
5483     D->addAttr(IA);
5484     S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
5485   }
5486 }
5487 
5488 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5489   const auto *VD = cast<VarDecl>(D);
5490   if (!S.Context.getTargetInfo().isTLSSupported()) {
5491     S.Diag(AL.getLoc(), diag::err_thread_unsupported);
5492     return;
5493   }
5494   if (VD->getTSCSpec() != TSCS_unspecified) {
5495     S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
5496     return;
5497   }
5498   if (VD->hasLocalStorage()) {
5499     S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
5500     return;
5501   }
5502   D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
5503 }
5504 
5505 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5506   SmallVector<StringRef, 4> Tags;
5507   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5508     StringRef Tag;
5509     if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
5510       return;
5511     Tags.push_back(Tag);
5512   }
5513 
5514   if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
5515     if (!NS->isInline()) {
5516       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
5517       return;
5518     }
5519     if (NS->isAnonymousNamespace()) {
5520       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
5521       return;
5522     }
5523     if (AL.getNumArgs() == 0)
5524       Tags.push_back(NS->getName());
5525   } else if (!checkAttributeAtLeastNumArgs(S, AL, 1))
5526     return;
5527 
5528   // Store tags sorted and without duplicates.
5529   llvm::sort(Tags);
5530   Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
5531 
5532   D->addAttr(::new (S.Context)
5533                  AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
5534 }
5535 
5536 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5537   // Check the attribute arguments.
5538   if (AL.getNumArgs() > 1) {
5539     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
5540     return;
5541   }
5542 
5543   StringRef Str;
5544   SourceLocation ArgLoc;
5545 
5546   if (AL.getNumArgs() == 0)
5547     Str = "";
5548   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5549     return;
5550 
5551   ARMInterruptAttr::InterruptType Kind;
5552   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5553     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
5554                                                                  << ArgLoc;
5555     return;
5556   }
5557 
5558   D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
5559 }
5560 
5561 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5562   // MSP430 'interrupt' attribute is applied to
5563   // a function with no parameters and void return type.
5564   if (!isFunctionOrMethod(D)) {
5565     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5566         << "'interrupt'" << ExpectedFunctionOrMethod;
5567     return;
5568   }
5569 
5570   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5571     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5572         << /*MSP430*/ 1 << 0;
5573     return;
5574   }
5575 
5576   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5577     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5578         << /*MSP430*/ 1 << 1;
5579     return;
5580   }
5581 
5582   // The attribute takes one integer argument.
5583   if (!checkAttributeNumArgs(S, AL, 1))
5584     return;
5585 
5586   if (!AL.isArgExpr(0)) {
5587     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
5588         << AL << AANT_ArgumentIntegerConstant;
5589     return;
5590   }
5591 
5592   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
5593   llvm::APSInt NumParams(32);
5594   if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
5595     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
5596         << AL << AANT_ArgumentIntegerConstant
5597         << NumParamsExpr->getSourceRange();
5598     return;
5599   }
5600   // The argument should be in range 0..63.
5601   unsigned Num = NumParams.getLimitedValue(255);
5602   if (Num > 63) {
5603     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
5604         << AL << (int)NumParams.getSExtValue()
5605         << NumParamsExpr->getSourceRange();
5606     return;
5607   }
5608 
5609   D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
5610   D->addAttr(UsedAttr::CreateImplicit(S.Context));
5611 }
5612 
5613 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5614   // Only one optional argument permitted.
5615   if (AL.getNumArgs() > 1) {
5616     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
5617     return;
5618   }
5619 
5620   StringRef Str;
5621   SourceLocation ArgLoc;
5622 
5623   if (AL.getNumArgs() == 0)
5624     Str = "";
5625   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5626     return;
5627 
5628   // Semantic checks for a function with the 'interrupt' attribute for MIPS:
5629   // a) Must be a function.
5630   // b) Must have no parameters.
5631   // c) Must have the 'void' return type.
5632   // d) Cannot have the 'mips16' attribute, as that instruction set
5633   //    lacks the 'eret' instruction.
5634   // e) The attribute itself must either have no argument or one of the
5635   //    valid interrupt types, see [MipsInterruptDocs].
5636 
5637   if (!isFunctionOrMethod(D)) {
5638     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5639         << "'interrupt'" << ExpectedFunctionOrMethod;
5640     return;
5641   }
5642 
5643   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5644     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5645         << /*MIPS*/ 0 << 0;
5646     return;
5647   }
5648 
5649   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5650     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5651         << /*MIPS*/ 0 << 1;
5652     return;
5653   }
5654 
5655   if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
5656     return;
5657 
5658   MipsInterruptAttr::InterruptType Kind;
5659   if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5660     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
5661         << AL << "'" + std::string(Str) + "'";
5662     return;
5663   }
5664 
5665   D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
5666 }
5667 
5668 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5669   // Semantic checks for a function with the 'interrupt' attribute.
5670   // a) Must be a function.
5671   // b) Must have the 'void' return type.
5672   // c) Must take 1 or 2 arguments.
5673   // d) The 1st argument must be a pointer.
5674   // e) The 2nd argument (if any) must be an unsigned integer.
5675   if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
5676       CXXMethodDecl::isStaticOverloadedOperator(
5677           cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
5678     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5679         << AL << ExpectedFunctionWithProtoType;
5680     return;
5681   }
5682   // Interrupt handler must have void return type.
5683   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5684     S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
5685            diag::err_anyx86_interrupt_attribute)
5686         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5687                 ? 0
5688                 : 1)
5689         << 0;
5690     return;
5691   }
5692   // Interrupt handler must have 1 or 2 parameters.
5693   unsigned NumParams = getFunctionOrMethodNumParams(D);
5694   if (NumParams < 1 || NumParams > 2) {
5695     S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
5696         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5697                 ? 0
5698                 : 1)
5699         << 1;
5700     return;
5701   }
5702   // The first argument must be a pointer.
5703   if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
5704     S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
5705            diag::err_anyx86_interrupt_attribute)
5706         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5707                 ? 0
5708                 : 1)
5709         << 2;
5710     return;
5711   }
5712   // The second argument, if present, must be an unsigned integer.
5713   unsigned TypeSize =
5714       S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
5715           ? 64
5716           : 32;
5717   if (NumParams == 2 &&
5718       (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
5719        S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
5720     S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
5721            diag::err_anyx86_interrupt_attribute)
5722         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5723                 ? 0
5724                 : 1)
5725         << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
5726     return;
5727   }
5728   D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
5729   D->addAttr(UsedAttr::CreateImplicit(S.Context));
5730 }
5731 
5732 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5733   if (!isFunctionOrMethod(D)) {
5734     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5735         << "'interrupt'" << ExpectedFunction;
5736     return;
5737   }
5738 
5739   if (!checkAttributeNumArgs(S, AL, 0))
5740     return;
5741 
5742   handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
5743 }
5744 
5745 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5746   if (!isFunctionOrMethod(D)) {
5747     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5748         << "'signal'" << ExpectedFunction;
5749     return;
5750   }
5751 
5752   if (!checkAttributeNumArgs(S, AL, 0))
5753     return;
5754 
5755   handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
5756 }
5757 
5758 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
5759   // Add preserve_access_index attribute to all fields and inner records.
5760   for (auto D : RD->decls()) {
5761     if (D->hasAttr<BPFPreserveAccessIndexAttr>())
5762       continue;
5763 
5764     D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
5765     if (auto *Rec = dyn_cast<RecordDecl>(D))
5766       handleBPFPreserveAIRecord(S, Rec);
5767   }
5768 }
5769 
5770 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
5771     const ParsedAttr &AL) {
5772   auto *Rec = cast<RecordDecl>(D);
5773   handleBPFPreserveAIRecord(S, Rec);
5774   Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
5775 }
5776 
5777 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5778   if (!isFunctionOrMethod(D)) {
5779     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5780         << "'export_name'" << ExpectedFunction;
5781     return;
5782   }
5783 
5784   auto *FD = cast<FunctionDecl>(D);
5785   if (FD->isThisDeclarationADefinition()) {
5786     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
5787     return;
5788   }
5789 
5790   StringRef Str;
5791   SourceLocation ArgLoc;
5792   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5793     return;
5794 
5795   D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
5796   D->addAttr(UsedAttr::CreateImplicit(S.Context));
5797 }
5798 
5799 static void handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5800   if (!isFunctionOrMethod(D)) {
5801     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5802         << "'import_module'" << ExpectedFunction;
5803     return;
5804   }
5805 
5806   auto *FD = cast<FunctionDecl>(D);
5807   if (FD->isThisDeclarationADefinition()) {
5808     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
5809     return;
5810   }
5811 
5812   StringRef Str;
5813   SourceLocation ArgLoc;
5814   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5815     return;
5816 
5817   FD->addAttr(::new (S.Context)
5818                   WebAssemblyImportModuleAttr(S.Context, AL, Str));
5819 }
5820 
5821 static void handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5822   if (!isFunctionOrMethod(D)) {
5823     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5824         << "'import_name'" << ExpectedFunction;
5825     return;
5826   }
5827 
5828   auto *FD = cast<FunctionDecl>(D);
5829   if (FD->isThisDeclarationADefinition()) {
5830     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
5831     return;
5832   }
5833 
5834   StringRef Str;
5835   SourceLocation ArgLoc;
5836   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5837     return;
5838 
5839   FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
5840 }
5841 
5842 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
5843                                      const ParsedAttr &AL) {
5844   // Warn about repeated attributes.
5845   if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
5846     S.Diag(AL.getRange().getBegin(),
5847       diag::warn_riscv_repeated_interrupt_attribute);
5848     S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
5849     return;
5850   }
5851 
5852   // Check the attribute argument. Argument is optional.
5853   if (!checkAttributeAtMostNumArgs(S, AL, 1))
5854     return;
5855 
5856   StringRef Str;
5857   SourceLocation ArgLoc;
5858 
5859   // 'machine'is the default interrupt mode.
5860   if (AL.getNumArgs() == 0)
5861     Str = "machine";
5862   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5863     return;
5864 
5865   // Semantic checks for a function with the 'interrupt' attribute:
5866   // - Must be a function.
5867   // - Must have no parameters.
5868   // - Must have the 'void' return type.
5869   // - The attribute itself must either have no argument or one of the
5870   //   valid interrupt types, see [RISCVInterruptDocs].
5871 
5872   if (D->getFunctionType() == nullptr) {
5873     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5874       << "'interrupt'" << ExpectedFunction;
5875     return;
5876   }
5877 
5878   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5879     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5880       << /*RISC-V*/ 2 << 0;
5881     return;
5882   }
5883 
5884   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5885     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5886       << /*RISC-V*/ 2 << 1;
5887     return;
5888   }
5889 
5890   RISCVInterruptAttr::InterruptType Kind;
5891   if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5892     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
5893                                                                  << ArgLoc;
5894     return;
5895   }
5896 
5897   D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
5898 }
5899 
5900 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5901   // Dispatch the interrupt attribute based on the current target.
5902   switch (S.Context.getTargetInfo().getTriple().getArch()) {
5903   case llvm::Triple::msp430:
5904     handleMSP430InterruptAttr(S, D, AL);
5905     break;
5906   case llvm::Triple::mipsel:
5907   case llvm::Triple::mips:
5908     handleMipsInterruptAttr(S, D, AL);
5909     break;
5910   case llvm::Triple::x86:
5911   case llvm::Triple::x86_64:
5912     handleAnyX86InterruptAttr(S, D, AL);
5913     break;
5914   case llvm::Triple::avr:
5915     handleAVRInterruptAttr(S, D, AL);
5916     break;
5917   case llvm::Triple::riscv32:
5918   case llvm::Triple::riscv64:
5919     handleRISCVInterruptAttr(S, D, AL);
5920     break;
5921   default:
5922     handleARMInterruptAttr(S, D, AL);
5923     break;
5924   }
5925 }
5926 
5927 static bool
5928 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
5929                                       const AMDGPUFlatWorkGroupSizeAttr &Attr) {
5930   // Accept template arguments for now as they depend on something else.
5931   // We'll get to check them when they eventually get instantiated.
5932   if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
5933     return false;
5934 
5935   uint32_t Min = 0;
5936   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
5937     return true;
5938 
5939   uint32_t Max = 0;
5940   if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
5941     return true;
5942 
5943   if (Min == 0 && Max != 0) {
5944     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
5945         << &Attr << 0;
5946     return true;
5947   }
5948   if (Min > Max) {
5949     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
5950         << &Attr << 1;
5951     return true;
5952   }
5953 
5954   return false;
5955 }
5956 
5957 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
5958                                           const AttributeCommonInfo &CI,
5959                                           Expr *MinExpr, Expr *MaxExpr) {
5960   AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
5961 
5962   if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
5963     return;
5964 
5965   D->addAttr(::new (Context)
5966                  AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
5967 }
5968 
5969 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
5970                                               const ParsedAttr &AL) {
5971   Expr *MinExpr = AL.getArgAsExpr(0);
5972   Expr *MaxExpr = AL.getArgAsExpr(1);
5973 
5974   S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
5975 }
5976 
5977 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
5978                                            Expr *MaxExpr,
5979                                            const AMDGPUWavesPerEUAttr &Attr) {
5980   if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
5981       (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
5982     return true;
5983 
5984   // Accept template arguments for now as they depend on something else.
5985   // We'll get to check them when they eventually get instantiated.
5986   if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
5987     return false;
5988 
5989   uint32_t Min = 0;
5990   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
5991     return true;
5992 
5993   uint32_t Max = 0;
5994   if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
5995     return true;
5996 
5997   if (Min == 0 && Max != 0) {
5998     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
5999         << &Attr << 0;
6000     return true;
6001   }
6002   if (Max != 0 && Min > Max) {
6003     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
6004         << &Attr << 1;
6005     return true;
6006   }
6007 
6008   return false;
6009 }
6010 
6011 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
6012                                    Expr *MinExpr, Expr *MaxExpr) {
6013   AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
6014 
6015   if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
6016     return;
6017 
6018   D->addAttr(::new (Context)
6019                  AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
6020 }
6021 
6022 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6023   if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
6024       !checkAttributeAtMostNumArgs(S, AL, 2))
6025     return;
6026 
6027   Expr *MinExpr = AL.getArgAsExpr(0);
6028   Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
6029 
6030   S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
6031 }
6032 
6033 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6034   uint32_t NumSGPR = 0;
6035   Expr *NumSGPRExpr = AL.getArgAsExpr(0);
6036   if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
6037     return;
6038 
6039   D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
6040 }
6041 
6042 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6043   uint32_t NumVGPR = 0;
6044   Expr *NumVGPRExpr = AL.getArgAsExpr(0);
6045   if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
6046     return;
6047 
6048   D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
6049 }
6050 
6051 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
6052                                               const ParsedAttr &AL) {
6053   // If we try to apply it to a function pointer, don't warn, but don't
6054   // do anything, either. It doesn't matter anyway, because there's nothing
6055   // special about calling a force_align_arg_pointer function.
6056   const auto *VD = dyn_cast<ValueDecl>(D);
6057   if (VD && VD->getType()->isFunctionPointerType())
6058     return;
6059   // Also don't warn on function pointer typedefs.
6060   const auto *TD = dyn_cast<TypedefNameDecl>(D);
6061   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
6062     TD->getUnderlyingType()->isFunctionType()))
6063     return;
6064   // Attribute can only be applied to function types.
6065   if (!isa<FunctionDecl>(D)) {
6066     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
6067         << AL << ExpectedFunction;
6068     return;
6069   }
6070 
6071   D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
6072 }
6073 
6074 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
6075   uint32_t Version;
6076   Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6077   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
6078     return;
6079 
6080   // TODO: Investigate what happens with the next major version of MSVC.
6081   if (Version != LangOptions::MSVC2015 / 100) {
6082     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6083         << AL << Version << VersionExpr->getSourceRange();
6084     return;
6085   }
6086 
6087   // The attribute expects a "major" version number like 19, but new versions of
6088   // MSVC have moved to updating the "minor", or less significant numbers, so we
6089   // have to multiply by 100 now.
6090   Version *= 100;
6091 
6092   D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
6093 }
6094 
6095 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
6096                                         const AttributeCommonInfo &CI) {
6097   if (D->hasAttr<DLLExportAttr>()) {
6098     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
6099     return nullptr;
6100   }
6101 
6102   if (D->hasAttr<DLLImportAttr>())
6103     return nullptr;
6104 
6105   return ::new (Context) DLLImportAttr(Context, CI);
6106 }
6107 
6108 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
6109                                         const AttributeCommonInfo &CI) {
6110   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
6111     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
6112     D->dropAttr<DLLImportAttr>();
6113   }
6114 
6115   if (D->hasAttr<DLLExportAttr>())
6116     return nullptr;
6117 
6118   return ::new (Context) DLLExportAttr(Context, CI);
6119 }
6120 
6121 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6122   if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
6123       S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6124     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
6125     return;
6126   }
6127 
6128   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
6129     if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
6130         !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6131       // MinGW doesn't allow dllimport on inline functions.
6132       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
6133           << A;
6134       return;
6135     }
6136   }
6137 
6138   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
6139     if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6140         MD->getParent()->isLambda()) {
6141       S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
6142       return;
6143     }
6144   }
6145 
6146   Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
6147                       ? (Attr *)S.mergeDLLExportAttr(D, A)
6148                       : (Attr *)S.mergeDLLImportAttr(D, A);
6149   if (NewAttr)
6150     D->addAttr(NewAttr);
6151 }
6152 
6153 MSInheritanceAttr *
6154 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
6155                              bool BestCase,
6156                              MSInheritanceModel Model) {
6157   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
6158     if (IA->getInheritanceModel() == Model)
6159       return nullptr;
6160     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
6161         << 1 /*previous declaration*/;
6162     Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
6163     D->dropAttr<MSInheritanceAttr>();
6164   }
6165 
6166   auto *RD = cast<CXXRecordDecl>(D);
6167   if (RD->hasDefinition()) {
6168     if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
6169                                            Model)) {
6170       return nullptr;
6171     }
6172   } else {
6173     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
6174       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6175           << 1 /*partial specialization*/;
6176       return nullptr;
6177     }
6178     if (RD->getDescribedClassTemplate()) {
6179       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6180           << 0 /*primary template*/;
6181       return nullptr;
6182     }
6183   }
6184 
6185   return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
6186 }
6187 
6188 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6189   // The capability attributes take a single string parameter for the name of
6190   // the capability they represent. The lockable attribute does not take any
6191   // parameters. However, semantically, both attributes represent the same
6192   // concept, and so they use the same semantic attribute. Eventually, the
6193   // lockable attribute will be removed.
6194   //
6195   // For backward compatibility, any capability which has no specified string
6196   // literal will be considered a "mutex."
6197   StringRef N("mutex");
6198   SourceLocation LiteralLoc;
6199   if (AL.getKind() == ParsedAttr::AT_Capability &&
6200       !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
6201     return;
6202 
6203   // Currently, there are only two names allowed for a capability: role and
6204   // mutex (case insensitive). Diagnose other capability names.
6205   if (!N.equals_lower("mutex") && !N.equals_lower("role"))
6206     S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
6207 
6208   D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
6209 }
6210 
6211 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6212   SmallVector<Expr*, 1> Args;
6213   if (!checkLockFunAttrCommon(S, D, AL, Args))
6214     return;
6215 
6216   D->addAttr(::new (S.Context)
6217                  AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
6218 }
6219 
6220 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
6221                                         const ParsedAttr &AL) {
6222   SmallVector<Expr*, 1> Args;
6223   if (!checkLockFunAttrCommon(S, D, AL, Args))
6224     return;
6225 
6226   D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
6227                                                      Args.size()));
6228 }
6229 
6230 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
6231                                            const ParsedAttr &AL) {
6232   SmallVector<Expr*, 2> Args;
6233   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
6234     return;
6235 
6236   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
6237       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
6238 }
6239 
6240 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
6241                                         const ParsedAttr &AL) {
6242   // Check that all arguments are lockable objects.
6243   SmallVector<Expr *, 1> Args;
6244   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
6245 
6246   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
6247                                                      Args.size()));
6248 }
6249 
6250 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
6251                                          const ParsedAttr &AL) {
6252   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
6253     return;
6254 
6255   // check that all arguments are lockable objects
6256   SmallVector<Expr*, 1> Args;
6257   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
6258   if (Args.empty())
6259     return;
6260 
6261   RequiresCapabilityAttr *RCA = ::new (S.Context)
6262       RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
6263 
6264   D->addAttr(RCA);
6265 }
6266 
6267 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6268   if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
6269     if (NSD->isAnonymousNamespace()) {
6270       S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
6271       // Do not want to attach the attribute to the namespace because that will
6272       // cause confusing diagnostic reports for uses of declarations within the
6273       // namespace.
6274       return;
6275     }
6276   }
6277 
6278   // Handle the cases where the attribute has a text message.
6279   StringRef Str, Replacement;
6280   if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
6281       !S.checkStringLiteralArgumentAttr(AL, 0, Str))
6282     return;
6283 
6284   // Only support a single optional message for Declspec and CXX11.
6285   if (AL.isDeclspecAttribute() || AL.isCXX11Attribute())
6286     checkAttributeAtMostNumArgs(S, AL, 1);
6287   else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
6288            !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
6289     return;
6290 
6291   if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
6292     S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
6293 
6294   D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
6295 }
6296 
6297 static bool isGlobalVar(const Decl *D) {
6298   if (const auto *S = dyn_cast<VarDecl>(D))
6299     return S->hasGlobalStorage();
6300   return false;
6301 }
6302 
6303 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6304   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
6305     return;
6306 
6307   std::vector<StringRef> Sanitizers;
6308 
6309   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6310     StringRef SanitizerName;
6311     SourceLocation LiteralLoc;
6312 
6313     if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
6314       return;
6315 
6316     if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
6317         SanitizerMask())
6318       S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
6319     else if (isGlobalVar(D) && SanitizerName != "address")
6320       S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
6321           << AL << ExpectedFunctionOrMethod;
6322     Sanitizers.push_back(SanitizerName);
6323   }
6324 
6325   D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
6326                                               Sanitizers.size()));
6327 }
6328 
6329 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
6330                                          const ParsedAttr &AL) {
6331   StringRef AttrName = AL.getAttrName()->getName();
6332   normalizeName(AttrName);
6333   StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
6334                                 .Case("no_address_safety_analysis", "address")
6335                                 .Case("no_sanitize_address", "address")
6336                                 .Case("no_sanitize_thread", "thread")
6337                                 .Case("no_sanitize_memory", "memory");
6338   if (isGlobalVar(D) && SanitizerName != "address")
6339     S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
6340         << AL << ExpectedFunction;
6341 
6342   // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
6343   // NoSanitizeAttr object; but we need to calculate the correct spelling list
6344   // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
6345   // has the same spellings as the index for NoSanitizeAttr. We don't have a
6346   // general way to "translate" between the two, so this hack attempts to work
6347   // around the issue with hard-coded indicies. This is critical for calling
6348   // getSpelling() or prettyPrint() on the resulting semantic attribute object
6349   // without failing assertions.
6350   unsigned TranslatedSpellingIndex = 0;
6351   if (AL.isC2xAttribute() || AL.isCXX11Attribute())
6352     TranslatedSpellingIndex = 1;
6353 
6354   AttributeCommonInfo Info = AL;
6355   Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
6356   D->addAttr(::new (S.Context)
6357                  NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6358 }
6359 
6360 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6361   if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
6362     D->addAttr(Internal);
6363 }
6364 
6365 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6366   if (S.LangOpts.OpenCLVersion != 200)
6367     S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
6368         << AL << "2.0" << 0;
6369   else
6370     S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL
6371                                                                    << "2.0";
6372 }
6373 
6374 /// Handles semantic checking for features that are common to all attributes,
6375 /// such as checking whether a parameter was properly specified, or the correct
6376 /// number of arguments were passed, etc.
6377 static bool handleCommonAttributeFeatures(Sema &S, Decl *D,
6378                                           const ParsedAttr &AL) {
6379   // Several attributes carry different semantics than the parsing requires, so
6380   // those are opted out of the common argument checks.
6381   //
6382   // We also bail on unknown and ignored attributes because those are handled
6383   // as part of the target-specific handling logic.
6384   if (AL.getKind() == ParsedAttr::UnknownAttribute)
6385     return false;
6386   // Check whether the attribute requires specific language extensions to be
6387   // enabled.
6388   if (!AL.diagnoseLangOpts(S))
6389     return true;
6390   // Check whether the attribute appertains to the given subject.
6391   if (!AL.diagnoseAppertainsTo(S, D))
6392     return true;
6393   if (AL.hasCustomParsing())
6394     return false;
6395 
6396   if (AL.getMinArgs() == AL.getMaxArgs()) {
6397     // If there are no optional arguments, then checking for the argument count
6398     // is trivial.
6399     if (!checkAttributeNumArgs(S, AL, AL.getMinArgs()))
6400       return true;
6401   } else {
6402     // There are optional arguments, so checking is slightly more involved.
6403     if (AL.getMinArgs() &&
6404         !checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs()))
6405       return true;
6406     else if (!AL.hasVariadicArg() && AL.getMaxArgs() &&
6407              !checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs()))
6408       return true;
6409   }
6410 
6411   if (S.CheckAttrTarget(AL))
6412     return true;
6413 
6414   return false;
6415 }
6416 
6417 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6418   if (D->isInvalidDecl())
6419     return;
6420 
6421   // Check if there is only one access qualifier.
6422   if (D->hasAttr<OpenCLAccessAttr>()) {
6423     if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
6424         AL.getSemanticSpelling()) {
6425       S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
6426           << AL.getAttrName()->getName() << AL.getRange();
6427     } else {
6428       S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
6429           << D->getSourceRange();
6430       D->setInvalidDecl(true);
6431       return;
6432     }
6433   }
6434 
6435   // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an
6436   // image object can be read and written.
6437   // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe
6438   // object. Using the read_write (or __read_write) qualifier with the pipe
6439   // qualifier is a compilation error.
6440   if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
6441     const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
6442     if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) {
6443       if ((!S.getLangOpts().OpenCLCPlusPlus &&
6444            S.getLangOpts().OpenCLVersion < 200) ||
6445           DeclTy->isPipeType()) {
6446         S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
6447             << AL << PDecl->getType() << DeclTy->isImageType();
6448         D->setInvalidDecl(true);
6449         return;
6450       }
6451     }
6452   }
6453 
6454   D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
6455 }
6456 
6457 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6458   // The 'sycl_kernel' attribute applies only to function templates.
6459   const auto *FD = cast<FunctionDecl>(D);
6460   const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
6461   assert(FT && "Function template is expected");
6462 
6463   // Function template must have at least two template parameters.
6464   const TemplateParameterList *TL = FT->getTemplateParameters();
6465   if (TL->size() < 2) {
6466     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
6467     return;
6468   }
6469 
6470   // Template parameters must be typenames.
6471   for (unsigned I = 0; I < 2; ++I) {
6472     const NamedDecl *TParam = TL->getParam(I);
6473     if (isa<NonTypeTemplateParmDecl>(TParam)) {
6474       S.Diag(FT->getLocation(),
6475              diag::warn_sycl_kernel_invalid_template_param_type);
6476       return;
6477     }
6478   }
6479 
6480   // Function must have at least one argument.
6481   if (getFunctionOrMethodNumParams(D) != 1) {
6482     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
6483     return;
6484   }
6485 
6486   // Function must return void.
6487   QualType RetTy = getFunctionOrMethodResultType(D);
6488   if (!RetTy->isVoidType()) {
6489     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
6490     return;
6491   }
6492 
6493   handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
6494 }
6495 
6496 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6497   if (!cast<VarDecl>(D)->hasGlobalStorage()) {
6498     S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
6499         << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
6500     return;
6501   }
6502 
6503   if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
6504     handleSimpleAttributeWithExclusions<AlwaysDestroyAttr, NoDestroyAttr>(S, D, A);
6505   else
6506     handleSimpleAttributeWithExclusions<NoDestroyAttr, AlwaysDestroyAttr>(S, D, A);
6507 }
6508 
6509 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6510   assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
6511          "uninitialized is only valid on automatic duration variables");
6512   D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
6513 }
6514 
6515 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
6516                                         bool DiagnoseFailure) {
6517   QualType Ty = VD->getType();
6518   if (!Ty->isObjCRetainableType()) {
6519     if (DiagnoseFailure) {
6520       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
6521           << 0;
6522     }
6523     return false;
6524   }
6525 
6526   Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
6527 
6528   // Sema::inferObjCARCLifetime must run after processing decl attributes
6529   // (because __block lowers to an attribute), so if the lifetime hasn't been
6530   // explicitly specified, infer it locally now.
6531   if (LifetimeQual == Qualifiers::OCL_None)
6532     LifetimeQual = Ty->getObjCARCImplicitLifetime();
6533 
6534   // The attributes only really makes sense for __strong variables; ignore any
6535   // attempts to annotate a parameter with any other lifetime qualifier.
6536   if (LifetimeQual != Qualifiers::OCL_Strong) {
6537     if (DiagnoseFailure) {
6538       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
6539           << 1;
6540     }
6541     return false;
6542   }
6543 
6544   // Tampering with the type of a VarDecl here is a bit of a hack, but we need
6545   // to ensure that the variable is 'const' so that we can error on
6546   // modification, which can otherwise over-release.
6547   VD->setType(Ty.withConst());
6548   VD->setARCPseudoStrong(true);
6549   return true;
6550 }
6551 
6552 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
6553                                              const ParsedAttr &AL) {
6554   if (auto *VD = dyn_cast<VarDecl>(D)) {
6555     assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
6556     if (!VD->hasLocalStorage()) {
6557       S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
6558           << 0;
6559       return;
6560     }
6561 
6562     if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
6563       return;
6564 
6565     handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
6566     return;
6567   }
6568 
6569   // If D is a function-like declaration (method, block, or function), then we
6570   // make every parameter psuedo-strong.
6571   for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
6572     auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
6573     QualType Ty = PVD->getType();
6574 
6575     // If a user wrote a parameter with __strong explicitly, then assume they
6576     // want "real" strong semantics for that parameter. This works because if
6577     // the parameter was written with __strong, then the strong qualifier will
6578     // be non-local.
6579     if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
6580         Qualifiers::OCL_Strong)
6581       continue;
6582 
6583     tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
6584   }
6585   handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
6586 }
6587 
6588 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6589   // Check that the return type is a `typedef int kern_return_t` or a typedef
6590   // around it, because otherwise MIG convention checks make no sense.
6591   // BlockDecl doesn't store a return type, so it's annoying to check,
6592   // so let's skip it for now.
6593   if (!isa<BlockDecl>(D)) {
6594     QualType T = getFunctionOrMethodResultType(D);
6595     bool IsKernReturnT = false;
6596     while (const auto *TT = T->getAs<TypedefType>()) {
6597       IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
6598       T = TT->desugar();
6599     }
6600     if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
6601       S.Diag(D->getBeginLoc(),
6602              diag::warn_mig_server_routine_does_not_return_kern_return_t);
6603       return;
6604     }
6605   }
6606 
6607   handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
6608 }
6609 
6610 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6611   // Warn if the return type is not a pointer or reference type.
6612   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6613     QualType RetTy = FD->getReturnType();
6614     if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
6615       S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
6616           << AL.getRange() << RetTy;
6617       return;
6618     }
6619   }
6620 
6621   handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
6622 }
6623 
6624 static void handeAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6625   if (AL.isUsedAsTypeAttr())
6626     return;
6627   // Warn if the parameter is definitely not an output parameter.
6628   if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6629     if (PVD->getType()->isIntegerType()) {
6630       S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
6631           << AL.getRange();
6632       return;
6633     }
6634   }
6635   StringRef Argument;
6636   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6637     return;
6638   D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
6639 }
6640 
6641 template<typename Attr>
6642 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6643   StringRef Argument;
6644   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6645     return;
6646   D->addAttr(Attr::Create(S.Context, Argument, AL));
6647 }
6648 
6649 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6650   // The guard attribute takes a single identifier argument.
6651 
6652   if (!AL.isArgIdent(0)) {
6653     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6654         << AL << AANT_ArgumentIdentifier;
6655     return;
6656   }
6657 
6658   CFGuardAttr::GuardArg Arg;
6659   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6660   if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
6661     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6662     return;
6663   }
6664 
6665   D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
6666 }
6667 
6668 //===----------------------------------------------------------------------===//
6669 // Top Level Sema Entry Points
6670 //===----------------------------------------------------------------------===//
6671 
6672 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
6673 /// the attribute applies to decls.  If the attribute is a type attribute, just
6674 /// silently ignore it if a GNU attribute.
6675 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
6676                                  const ParsedAttr &AL,
6677                                  bool IncludeCXX11Attributes) {
6678   if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
6679     return;
6680 
6681   // Ignore C++11 attributes on declarator chunks: they appertain to the type
6682   // instead.
6683   if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
6684     return;
6685 
6686   // Unknown attributes are automatically warned on. Target-specific attributes
6687   // which do not apply to the current target architecture are treated as
6688   // though they were unknown attributes.
6689   if (AL.getKind() == ParsedAttr::UnknownAttribute ||
6690       !AL.existsInTarget(S.Context.getTargetInfo())) {
6691     S.Diag(AL.getLoc(),
6692            AL.isDeclspecAttribute()
6693                ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
6694                : (unsigned)diag::warn_unknown_attribute_ignored)
6695         << AL;
6696     return;
6697   }
6698 
6699   if (handleCommonAttributeFeatures(S, D, AL))
6700     return;
6701 
6702   switch (AL.getKind()) {
6703   default:
6704     if (!AL.isStmtAttr()) {
6705       // Type attributes are handled elsewhere; silently move on.
6706       assert(AL.isTypeAttr() && "Non-type attribute not handled");
6707       break;
6708     }
6709     S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
6710         << AL << D->getLocation();
6711     break;
6712   case ParsedAttr::AT_Interrupt:
6713     handleInterruptAttr(S, D, AL);
6714     break;
6715   case ParsedAttr::AT_X86ForceAlignArgPointer:
6716     handleX86ForceAlignArgPointerAttr(S, D, AL);
6717     break;
6718   case ParsedAttr::AT_DLLExport:
6719   case ParsedAttr::AT_DLLImport:
6720     handleDLLAttr(S, D, AL);
6721     break;
6722   case ParsedAttr::AT_Mips16:
6723     handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr,
6724                                         MipsInterruptAttr>(S, D, AL);
6725     break;
6726   case ParsedAttr::AT_NoMips16:
6727     handleSimpleAttribute<NoMips16Attr>(S, D, AL);
6728     break;
6729   case ParsedAttr::AT_MicroMips:
6730     handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL);
6731     break;
6732   case ParsedAttr::AT_NoMicroMips:
6733     handleSimpleAttribute<NoMicroMipsAttr>(S, D, AL);
6734     break;
6735   case ParsedAttr::AT_MipsLongCall:
6736     handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>(
6737         S, D, AL);
6738     break;
6739   case ParsedAttr::AT_MipsShortCall:
6740     handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>(
6741         S, D, AL);
6742     break;
6743   case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
6744     handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
6745     break;
6746   case ParsedAttr::AT_AMDGPUWavesPerEU:
6747     handleAMDGPUWavesPerEUAttr(S, D, AL);
6748     break;
6749   case ParsedAttr::AT_AMDGPUNumSGPR:
6750     handleAMDGPUNumSGPRAttr(S, D, AL);
6751     break;
6752   case ParsedAttr::AT_AMDGPUNumVGPR:
6753     handleAMDGPUNumVGPRAttr(S, D, AL);
6754     break;
6755   case ParsedAttr::AT_AVRSignal:
6756     handleAVRSignalAttr(S, D, AL);
6757     break;
6758   case ParsedAttr::AT_BPFPreserveAccessIndex:
6759     handleBPFPreserveAccessIndexAttr(S, D, AL);
6760     break;
6761   case ParsedAttr::AT_WebAssemblyExportName:
6762     handleWebAssemblyExportNameAttr(S, D, AL);
6763     break;
6764   case ParsedAttr::AT_WebAssemblyImportModule:
6765     handleWebAssemblyImportModuleAttr(S, D, AL);
6766     break;
6767   case ParsedAttr::AT_WebAssemblyImportName:
6768     handleWebAssemblyImportNameAttr(S, D, AL);
6769     break;
6770   case ParsedAttr::AT_IBAction:
6771     handleSimpleAttribute<IBActionAttr>(S, D, AL);
6772     break;
6773   case ParsedAttr::AT_IBOutlet:
6774     handleIBOutlet(S, D, AL);
6775     break;
6776   case ParsedAttr::AT_IBOutletCollection:
6777     handleIBOutletCollection(S, D, AL);
6778     break;
6779   case ParsedAttr::AT_IFunc:
6780     handleIFuncAttr(S, D, AL);
6781     break;
6782   case ParsedAttr::AT_Alias:
6783     handleAliasAttr(S, D, AL);
6784     break;
6785   case ParsedAttr::AT_Aligned:
6786     handleAlignedAttr(S, D, AL);
6787     break;
6788   case ParsedAttr::AT_AlignValue:
6789     handleAlignValueAttr(S, D, AL);
6790     break;
6791   case ParsedAttr::AT_AllocSize:
6792     handleAllocSizeAttr(S, D, AL);
6793     break;
6794   case ParsedAttr::AT_AlwaysInline:
6795     handleAlwaysInlineAttr(S, D, AL);
6796     break;
6797   case ParsedAttr::AT_Artificial:
6798     handleSimpleAttribute<ArtificialAttr>(S, D, AL);
6799     break;
6800   case ParsedAttr::AT_AnalyzerNoReturn:
6801     handleAnalyzerNoReturnAttr(S, D, AL);
6802     break;
6803   case ParsedAttr::AT_TLSModel:
6804     handleTLSModelAttr(S, D, AL);
6805     break;
6806   case ParsedAttr::AT_Annotate:
6807     handleAnnotateAttr(S, D, AL);
6808     break;
6809   case ParsedAttr::AT_Availability:
6810     handleAvailabilityAttr(S, D, AL);
6811     break;
6812   case ParsedAttr::AT_CarriesDependency:
6813     handleDependencyAttr(S, scope, D, AL);
6814     break;
6815   case ParsedAttr::AT_CPUDispatch:
6816   case ParsedAttr::AT_CPUSpecific:
6817     handleCPUSpecificAttr(S, D, AL);
6818     break;
6819   case ParsedAttr::AT_Common:
6820     handleCommonAttr(S, D, AL);
6821     break;
6822   case ParsedAttr::AT_CUDAConstant:
6823     handleConstantAttr(S, D, AL);
6824     break;
6825   case ParsedAttr::AT_PassObjectSize:
6826     handlePassObjectSizeAttr(S, D, AL);
6827     break;
6828   case ParsedAttr::AT_Constructor:
6829     handleConstructorAttr(S, D, AL);
6830     break;
6831   case ParsedAttr::AT_CXX11NoReturn:
6832     handleSimpleAttribute<CXX11NoReturnAttr>(S, D, AL);
6833     break;
6834   case ParsedAttr::AT_Deprecated:
6835     handleDeprecatedAttr(S, D, AL);
6836     break;
6837   case ParsedAttr::AT_Destructor:
6838     handleDestructorAttr(S, D, AL);
6839     break;
6840   case ParsedAttr::AT_EnableIf:
6841     handleEnableIfAttr(S, D, AL);
6842     break;
6843   case ParsedAttr::AT_DiagnoseIf:
6844     handleDiagnoseIfAttr(S, D, AL);
6845     break;
6846   case ParsedAttr::AT_NoBuiltin:
6847     handleNoBuiltinAttr(S, D, AL);
6848     break;
6849   case ParsedAttr::AT_ExtVectorType:
6850     handleExtVectorTypeAttr(S, D, AL);
6851     break;
6852   case ParsedAttr::AT_ExternalSourceSymbol:
6853     handleExternalSourceSymbolAttr(S, D, AL);
6854     break;
6855   case ParsedAttr::AT_MinSize:
6856     handleMinSizeAttr(S, D, AL);
6857     break;
6858   case ParsedAttr::AT_OptimizeNone:
6859     handleOptimizeNoneAttr(S, D, AL);
6860     break;
6861   case ParsedAttr::AT_FlagEnum:
6862     handleSimpleAttribute<FlagEnumAttr>(S, D, AL);
6863     break;
6864   case ParsedAttr::AT_EnumExtensibility:
6865     handleEnumExtensibilityAttr(S, D, AL);
6866     break;
6867   case ParsedAttr::AT_Flatten:
6868     handleSimpleAttribute<FlattenAttr>(S, D, AL);
6869     break;
6870   case ParsedAttr::AT_SYCLKernel:
6871     handleSYCLKernelAttr(S, D, AL);
6872     break;
6873   case ParsedAttr::AT_Format:
6874     handleFormatAttr(S, D, AL);
6875     break;
6876   case ParsedAttr::AT_FormatArg:
6877     handleFormatArgAttr(S, D, AL);
6878     break;
6879   case ParsedAttr::AT_Callback:
6880     handleCallbackAttr(S, D, AL);
6881     break;
6882   case ParsedAttr::AT_CUDAGlobal:
6883     handleGlobalAttr(S, D, AL);
6884     break;
6885   case ParsedAttr::AT_CUDADevice:
6886     handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D,
6887                                                                         AL);
6888     break;
6889   case ParsedAttr::AT_CUDAHost:
6890     handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL);
6891     break;
6892   case ParsedAttr::AT_HIPPinnedShadow:
6893     handleSimpleAttributeWithExclusions<HIPPinnedShadowAttr, CUDADeviceAttr,
6894                                         CUDAConstantAttr>(S, D, AL);
6895     break;
6896   case ParsedAttr::AT_GNUInline:
6897     handleGNUInlineAttr(S, D, AL);
6898     break;
6899   case ParsedAttr::AT_CUDALaunchBounds:
6900     handleLaunchBoundsAttr(S, D, AL);
6901     break;
6902   case ParsedAttr::AT_Restrict:
6903     handleRestrictAttr(S, D, AL);
6904     break;
6905   case ParsedAttr::AT_LifetimeBound:
6906     handleSimpleAttribute<LifetimeBoundAttr>(S, D, AL);
6907     break;
6908   case ParsedAttr::AT_MayAlias:
6909     handleSimpleAttribute<MayAliasAttr>(S, D, AL);
6910     break;
6911   case ParsedAttr::AT_Mode:
6912     handleModeAttr(S, D, AL);
6913     break;
6914   case ParsedAttr::AT_NoAlias:
6915     handleSimpleAttribute<NoAliasAttr>(S, D, AL);
6916     break;
6917   case ParsedAttr::AT_NoCommon:
6918     handleSimpleAttribute<NoCommonAttr>(S, D, AL);
6919     break;
6920   case ParsedAttr::AT_NoSplitStack:
6921     handleSimpleAttribute<NoSplitStackAttr>(S, D, AL);
6922     break;
6923   case ParsedAttr::AT_NoUniqueAddress:
6924     handleSimpleAttribute<NoUniqueAddressAttr>(S, D, AL);
6925     break;
6926   case ParsedAttr::AT_NonNull:
6927     if (auto *PVD = dyn_cast<ParmVarDecl>(D))
6928       handleNonNullAttrParameter(S, PVD, AL);
6929     else
6930       handleNonNullAttr(S, D, AL);
6931     break;
6932   case ParsedAttr::AT_ReturnsNonNull:
6933     handleReturnsNonNullAttr(S, D, AL);
6934     break;
6935   case ParsedAttr::AT_NoEscape:
6936     handleNoEscapeAttr(S, D, AL);
6937     break;
6938   case ParsedAttr::AT_AssumeAligned:
6939     handleAssumeAlignedAttr(S, D, AL);
6940     break;
6941   case ParsedAttr::AT_AllocAlign:
6942     handleAllocAlignAttr(S, D, AL);
6943     break;
6944   case ParsedAttr::AT_Overloadable:
6945     handleSimpleAttribute<OverloadableAttr>(S, D, AL);
6946     break;
6947   case ParsedAttr::AT_Ownership:
6948     handleOwnershipAttr(S, D, AL);
6949     break;
6950   case ParsedAttr::AT_Cold:
6951     handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL);
6952     break;
6953   case ParsedAttr::AT_Hot:
6954     handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL);
6955     break;
6956   case ParsedAttr::AT_Naked:
6957     handleNakedAttr(S, D, AL);
6958     break;
6959   case ParsedAttr::AT_NoReturn:
6960     handleNoReturnAttr(S, D, AL);
6961     break;
6962   case ParsedAttr::AT_AnyX86NoCfCheck:
6963     handleNoCfCheckAttr(S, D, AL);
6964     break;
6965   case ParsedAttr::AT_NoThrow:
6966     if (!AL.isUsedAsTypeAttr())
6967       handleSimpleAttribute<NoThrowAttr>(S, D, AL);
6968     break;
6969   case ParsedAttr::AT_CUDAShared:
6970     handleSharedAttr(S, D, AL);
6971     break;
6972   case ParsedAttr::AT_VecReturn:
6973     handleVecReturnAttr(S, D, AL);
6974     break;
6975   case ParsedAttr::AT_ObjCOwnership:
6976     handleObjCOwnershipAttr(S, D, AL);
6977     break;
6978   case ParsedAttr::AT_ObjCPreciseLifetime:
6979     handleObjCPreciseLifetimeAttr(S, D, AL);
6980     break;
6981   case ParsedAttr::AT_ObjCReturnsInnerPointer:
6982     handleObjCReturnsInnerPointerAttr(S, D, AL);
6983     break;
6984   case ParsedAttr::AT_ObjCRequiresSuper:
6985     handleObjCRequiresSuperAttr(S, D, AL);
6986     break;
6987   case ParsedAttr::AT_ObjCBridge:
6988     handleObjCBridgeAttr(S, D, AL);
6989     break;
6990   case ParsedAttr::AT_ObjCBridgeMutable:
6991     handleObjCBridgeMutableAttr(S, D, AL);
6992     break;
6993   case ParsedAttr::AT_ObjCBridgeRelated:
6994     handleObjCBridgeRelatedAttr(S, D, AL);
6995     break;
6996   case ParsedAttr::AT_ObjCDesignatedInitializer:
6997     handleObjCDesignatedInitializer(S, D, AL);
6998     break;
6999   case ParsedAttr::AT_ObjCRuntimeName:
7000     handleObjCRuntimeName(S, D, AL);
7001     break;
7002   case ParsedAttr::AT_ObjCRuntimeVisible:
7003     handleSimpleAttribute<ObjCRuntimeVisibleAttr>(S, D, AL);
7004     break;
7005   case ParsedAttr::AT_ObjCBoxable:
7006     handleObjCBoxable(S, D, AL);
7007     break;
7008   case ParsedAttr::AT_CFAuditedTransfer:
7009     handleSimpleAttributeWithExclusions<CFAuditedTransferAttr,
7010                                         CFUnknownTransferAttr>(S, D, AL);
7011     break;
7012   case ParsedAttr::AT_CFUnknownTransfer:
7013     handleSimpleAttributeWithExclusions<CFUnknownTransferAttr,
7014                                         CFAuditedTransferAttr>(S, D, AL);
7015     break;
7016   case ParsedAttr::AT_CFConsumed:
7017   case ParsedAttr::AT_NSConsumed:
7018   case ParsedAttr::AT_OSConsumed:
7019     S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
7020                        /*IsTemplateInstantiation=*/false);
7021     break;
7022   case ParsedAttr::AT_NSConsumesSelf:
7023     handleSimpleAttribute<NSConsumesSelfAttr>(S, D, AL);
7024     break;
7025   case ParsedAttr::AT_OSConsumesThis:
7026     handleSimpleAttribute<OSConsumesThisAttr>(S, D, AL);
7027     break;
7028   case ParsedAttr::AT_OSReturnsRetainedOnZero:
7029     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
7030         S, D, AL, isValidOSObjectOutParameter(D),
7031         diag::warn_ns_attribute_wrong_parameter_type,
7032         /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
7033     break;
7034   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
7035     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
7036         S, D, AL, isValidOSObjectOutParameter(D),
7037         diag::warn_ns_attribute_wrong_parameter_type,
7038         /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
7039     break;
7040   case ParsedAttr::AT_NSReturnsAutoreleased:
7041   case ParsedAttr::AT_NSReturnsNotRetained:
7042   case ParsedAttr::AT_NSReturnsRetained:
7043   case ParsedAttr::AT_CFReturnsNotRetained:
7044   case ParsedAttr::AT_CFReturnsRetained:
7045   case ParsedAttr::AT_OSReturnsNotRetained:
7046   case ParsedAttr::AT_OSReturnsRetained:
7047     handleXReturnsXRetainedAttr(S, D, AL);
7048     break;
7049   case ParsedAttr::AT_WorkGroupSizeHint:
7050     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
7051     break;
7052   case ParsedAttr::AT_ReqdWorkGroupSize:
7053     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
7054     break;
7055   case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
7056     handleSubGroupSize(S, D, AL);
7057     break;
7058   case ParsedAttr::AT_VecTypeHint:
7059     handleVecTypeHint(S, D, AL);
7060     break;
7061   case ParsedAttr::AT_ConstInit:
7062     handleSimpleAttribute<ConstInitAttr>(S, D, AL);
7063     break;
7064   case ParsedAttr::AT_InitPriority:
7065     handleInitPriorityAttr(S, D, AL);
7066     break;
7067   case ParsedAttr::AT_Packed:
7068     handlePackedAttr(S, D, AL);
7069     break;
7070   case ParsedAttr::AT_Section:
7071     handleSectionAttr(S, D, AL);
7072     break;
7073   case ParsedAttr::AT_SpeculativeLoadHardening:
7074     handleSimpleAttributeWithExclusions<SpeculativeLoadHardeningAttr,
7075                                         NoSpeculativeLoadHardeningAttr>(S, D,
7076                                                                         AL);
7077     break;
7078   case ParsedAttr::AT_NoSpeculativeLoadHardening:
7079     handleSimpleAttributeWithExclusions<NoSpeculativeLoadHardeningAttr,
7080                                         SpeculativeLoadHardeningAttr>(S, D, AL);
7081     break;
7082   case ParsedAttr::AT_CodeSeg:
7083     handleCodeSegAttr(S, D, AL);
7084     break;
7085   case ParsedAttr::AT_Target:
7086     handleTargetAttr(S, D, AL);
7087     break;
7088   case ParsedAttr::AT_MinVectorWidth:
7089     handleMinVectorWidthAttr(S, D, AL);
7090     break;
7091   case ParsedAttr::AT_Unavailable:
7092     handleAttrWithMessage<UnavailableAttr>(S, D, AL);
7093     break;
7094   case ParsedAttr::AT_ArcWeakrefUnavailable:
7095     handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, AL);
7096     break;
7097   case ParsedAttr::AT_ObjCRootClass:
7098     handleSimpleAttribute<ObjCRootClassAttr>(S, D, AL);
7099     break;
7100   case ParsedAttr::AT_ObjCDirect:
7101     handleObjCDirectAttr(S, D, AL);
7102     break;
7103   case ParsedAttr::AT_ObjCDirectMembers:
7104     handleObjCDirectMembersAttr(S, D, AL);
7105     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
7106     break;
7107   case ParsedAttr::AT_ObjCNonLazyClass:
7108     handleSimpleAttribute<ObjCNonLazyClassAttr>(S, D, AL);
7109     break;
7110   case ParsedAttr::AT_ObjCSubclassingRestricted:
7111     handleSimpleAttribute<ObjCSubclassingRestrictedAttr>(S, D, AL);
7112     break;
7113   case ParsedAttr::AT_ObjCClassStub:
7114     handleSimpleAttribute<ObjCClassStubAttr>(S, D, AL);
7115     break;
7116   case ParsedAttr::AT_ObjCExplicitProtocolImpl:
7117     handleObjCSuppresProtocolAttr(S, D, AL);
7118     break;
7119   case ParsedAttr::AT_ObjCRequiresPropertyDefs:
7120     handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, AL);
7121     break;
7122   case ParsedAttr::AT_Unused:
7123     handleUnusedAttr(S, D, AL);
7124     break;
7125   case ParsedAttr::AT_ReturnsTwice:
7126     handleSimpleAttribute<ReturnsTwiceAttr>(S, D, AL);
7127     break;
7128   case ParsedAttr::AT_NotTailCalled:
7129     handleSimpleAttributeWithExclusions<NotTailCalledAttr, AlwaysInlineAttr>(
7130         S, D, AL);
7131     break;
7132   case ParsedAttr::AT_DisableTailCalls:
7133     handleSimpleAttributeWithExclusions<DisableTailCallsAttr, NakedAttr>(S, D,
7134                                                                          AL);
7135     break;
7136   case ParsedAttr::AT_Used:
7137     handleSimpleAttribute<UsedAttr>(S, D, AL);
7138     break;
7139   case ParsedAttr::AT_Visibility:
7140     handleVisibilityAttr(S, D, AL, false);
7141     break;
7142   case ParsedAttr::AT_TypeVisibility:
7143     handleVisibilityAttr(S, D, AL, true);
7144     break;
7145   case ParsedAttr::AT_WarnUnused:
7146     handleSimpleAttribute<WarnUnusedAttr>(S, D, AL);
7147     break;
7148   case ParsedAttr::AT_WarnUnusedResult:
7149     handleWarnUnusedResult(S, D, AL);
7150     break;
7151   case ParsedAttr::AT_Weak:
7152     handleSimpleAttribute<WeakAttr>(S, D, AL);
7153     break;
7154   case ParsedAttr::AT_WeakRef:
7155     handleWeakRefAttr(S, D, AL);
7156     break;
7157   case ParsedAttr::AT_WeakImport:
7158     handleWeakImportAttr(S, D, AL);
7159     break;
7160   case ParsedAttr::AT_TransparentUnion:
7161     handleTransparentUnionAttr(S, D, AL);
7162     break;
7163   case ParsedAttr::AT_ObjCException:
7164     handleSimpleAttribute<ObjCExceptionAttr>(S, D, AL);
7165     break;
7166   case ParsedAttr::AT_ObjCMethodFamily:
7167     handleObjCMethodFamilyAttr(S, D, AL);
7168     break;
7169   case ParsedAttr::AT_ObjCNSObject:
7170     handleObjCNSObject(S, D, AL);
7171     break;
7172   case ParsedAttr::AT_ObjCIndependentClass:
7173     handleObjCIndependentClass(S, D, AL);
7174     break;
7175   case ParsedAttr::AT_Blocks:
7176     handleBlocksAttr(S, D, AL);
7177     break;
7178   case ParsedAttr::AT_Sentinel:
7179     handleSentinelAttr(S, D, AL);
7180     break;
7181   case ParsedAttr::AT_Const:
7182     handleSimpleAttribute<ConstAttr>(S, D, AL);
7183     break;
7184   case ParsedAttr::AT_Pure:
7185     handleSimpleAttribute<PureAttr>(S, D, AL);
7186     break;
7187   case ParsedAttr::AT_Cleanup:
7188     handleCleanupAttr(S, D, AL);
7189     break;
7190   case ParsedAttr::AT_NoDebug:
7191     handleNoDebugAttr(S, D, AL);
7192     break;
7193   case ParsedAttr::AT_NoDuplicate:
7194     handleSimpleAttribute<NoDuplicateAttr>(S, D, AL);
7195     break;
7196   case ParsedAttr::AT_Convergent:
7197     handleSimpleAttribute<ConvergentAttr>(S, D, AL);
7198     break;
7199   case ParsedAttr::AT_NoInline:
7200     handleSimpleAttribute<NoInlineAttr>(S, D, AL);
7201     break;
7202   case ParsedAttr::AT_NoInstrumentFunction: // Interacts with -pg.
7203     handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, AL);
7204     break;
7205   case ParsedAttr::AT_NoStackProtector:
7206     // Interacts with -fstack-protector options.
7207     handleSimpleAttribute<NoStackProtectorAttr>(S, D, AL);
7208     break;
7209   case ParsedAttr::AT_CFICanonicalJumpTable:
7210     handleSimpleAttribute<CFICanonicalJumpTableAttr>(S, D, AL);
7211     break;
7212   case ParsedAttr::AT_StdCall:
7213   case ParsedAttr::AT_CDecl:
7214   case ParsedAttr::AT_FastCall:
7215   case ParsedAttr::AT_ThisCall:
7216   case ParsedAttr::AT_Pascal:
7217   case ParsedAttr::AT_RegCall:
7218   case ParsedAttr::AT_SwiftCall:
7219   case ParsedAttr::AT_VectorCall:
7220   case ParsedAttr::AT_MSABI:
7221   case ParsedAttr::AT_SysVABI:
7222   case ParsedAttr::AT_Pcs:
7223   case ParsedAttr::AT_IntelOclBicc:
7224   case ParsedAttr::AT_PreserveMost:
7225   case ParsedAttr::AT_PreserveAll:
7226   case ParsedAttr::AT_AArch64VectorPcs:
7227     handleCallConvAttr(S, D, AL);
7228     break;
7229   case ParsedAttr::AT_Suppress:
7230     handleSuppressAttr(S, D, AL);
7231     break;
7232   case ParsedAttr::AT_Owner:
7233   case ParsedAttr::AT_Pointer:
7234     handleLifetimeCategoryAttr(S, D, AL);
7235     break;
7236   case ParsedAttr::AT_OpenCLKernel:
7237     handleSimpleAttribute<OpenCLKernelAttr>(S, D, AL);
7238     break;
7239   case ParsedAttr::AT_OpenCLAccess:
7240     handleOpenCLAccessAttr(S, D, AL);
7241     break;
7242   case ParsedAttr::AT_OpenCLNoSVM:
7243     handleOpenCLNoSVMAttr(S, D, AL);
7244     break;
7245   case ParsedAttr::AT_SwiftContext:
7246     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
7247     break;
7248   case ParsedAttr::AT_SwiftErrorResult:
7249     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
7250     break;
7251   case ParsedAttr::AT_SwiftIndirectResult:
7252     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
7253     break;
7254   case ParsedAttr::AT_InternalLinkage:
7255     handleInternalLinkageAttr(S, D, AL);
7256     break;
7257   case ParsedAttr::AT_ExcludeFromExplicitInstantiation:
7258     handleSimpleAttribute<ExcludeFromExplicitInstantiationAttr>(S, D, AL);
7259     break;
7260   case ParsedAttr::AT_LTOVisibilityPublic:
7261     handleSimpleAttribute<LTOVisibilityPublicAttr>(S, D, AL);
7262     break;
7263 
7264   // Microsoft attributes:
7265   case ParsedAttr::AT_EmptyBases:
7266     handleSimpleAttribute<EmptyBasesAttr>(S, D, AL);
7267     break;
7268   case ParsedAttr::AT_LayoutVersion:
7269     handleLayoutVersion(S, D, AL);
7270     break;
7271   case ParsedAttr::AT_TrivialABI:
7272     handleSimpleAttribute<TrivialABIAttr>(S, D, AL);
7273     break;
7274   case ParsedAttr::AT_MSNoVTable:
7275     handleSimpleAttribute<MSNoVTableAttr>(S, D, AL);
7276     break;
7277   case ParsedAttr::AT_MSStruct:
7278     handleSimpleAttribute<MSStructAttr>(S, D, AL);
7279     break;
7280   case ParsedAttr::AT_Uuid:
7281     handleUuidAttr(S, D, AL);
7282     break;
7283   case ParsedAttr::AT_MSInheritance:
7284     handleMSInheritanceAttr(S, D, AL);
7285     break;
7286   case ParsedAttr::AT_SelectAny:
7287     handleSimpleAttribute<SelectAnyAttr>(S, D, AL);
7288     break;
7289   case ParsedAttr::AT_Thread:
7290     handleDeclspecThreadAttr(S, D, AL);
7291     break;
7292 
7293   case ParsedAttr::AT_AbiTag:
7294     handleAbiTagAttr(S, D, AL);
7295     break;
7296   case ParsedAttr::AT_CFGuard:
7297     handleCFGuardAttr(S, D, AL);
7298     break;
7299 
7300   // Thread safety attributes:
7301   case ParsedAttr::AT_AssertExclusiveLock:
7302     handleAssertExclusiveLockAttr(S, D, AL);
7303     break;
7304   case ParsedAttr::AT_AssertSharedLock:
7305     handleAssertSharedLockAttr(S, D, AL);
7306     break;
7307   case ParsedAttr::AT_GuardedVar:
7308     handleSimpleAttribute<GuardedVarAttr>(S, D, AL);
7309     break;
7310   case ParsedAttr::AT_PtGuardedVar:
7311     handlePtGuardedVarAttr(S, D, AL);
7312     break;
7313   case ParsedAttr::AT_ScopedLockable:
7314     handleSimpleAttribute<ScopedLockableAttr>(S, D, AL);
7315     break;
7316   case ParsedAttr::AT_NoSanitize:
7317     handleNoSanitizeAttr(S, D, AL);
7318     break;
7319   case ParsedAttr::AT_NoSanitizeSpecific:
7320     handleNoSanitizeSpecificAttr(S, D, AL);
7321     break;
7322   case ParsedAttr::AT_NoThreadSafetyAnalysis:
7323     handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, AL);
7324     break;
7325   case ParsedAttr::AT_GuardedBy:
7326     handleGuardedByAttr(S, D, AL);
7327     break;
7328   case ParsedAttr::AT_PtGuardedBy:
7329     handlePtGuardedByAttr(S, D, AL);
7330     break;
7331   case ParsedAttr::AT_ExclusiveTrylockFunction:
7332     handleExclusiveTrylockFunctionAttr(S, D, AL);
7333     break;
7334   case ParsedAttr::AT_LockReturned:
7335     handleLockReturnedAttr(S, D, AL);
7336     break;
7337   case ParsedAttr::AT_LocksExcluded:
7338     handleLocksExcludedAttr(S, D, AL);
7339     break;
7340   case ParsedAttr::AT_SharedTrylockFunction:
7341     handleSharedTrylockFunctionAttr(S, D, AL);
7342     break;
7343   case ParsedAttr::AT_AcquiredBefore:
7344     handleAcquiredBeforeAttr(S, D, AL);
7345     break;
7346   case ParsedAttr::AT_AcquiredAfter:
7347     handleAcquiredAfterAttr(S, D, AL);
7348     break;
7349 
7350   // Capability analysis attributes.
7351   case ParsedAttr::AT_Capability:
7352   case ParsedAttr::AT_Lockable:
7353     handleCapabilityAttr(S, D, AL);
7354     break;
7355   case ParsedAttr::AT_RequiresCapability:
7356     handleRequiresCapabilityAttr(S, D, AL);
7357     break;
7358 
7359   case ParsedAttr::AT_AssertCapability:
7360     handleAssertCapabilityAttr(S, D, AL);
7361     break;
7362   case ParsedAttr::AT_AcquireCapability:
7363     handleAcquireCapabilityAttr(S, D, AL);
7364     break;
7365   case ParsedAttr::AT_ReleaseCapability:
7366     handleReleaseCapabilityAttr(S, D, AL);
7367     break;
7368   case ParsedAttr::AT_TryAcquireCapability:
7369     handleTryAcquireCapabilityAttr(S, D, AL);
7370     break;
7371 
7372   // Consumed analysis attributes.
7373   case ParsedAttr::AT_Consumable:
7374     handleConsumableAttr(S, D, AL);
7375     break;
7376   case ParsedAttr::AT_ConsumableAutoCast:
7377     handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, AL);
7378     break;
7379   case ParsedAttr::AT_ConsumableSetOnRead:
7380     handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, AL);
7381     break;
7382   case ParsedAttr::AT_CallableWhen:
7383     handleCallableWhenAttr(S, D, AL);
7384     break;
7385   case ParsedAttr::AT_ParamTypestate:
7386     handleParamTypestateAttr(S, D, AL);
7387     break;
7388   case ParsedAttr::AT_ReturnTypestate:
7389     handleReturnTypestateAttr(S, D, AL);
7390     break;
7391   case ParsedAttr::AT_SetTypestate:
7392     handleSetTypestateAttr(S, D, AL);
7393     break;
7394   case ParsedAttr::AT_TestTypestate:
7395     handleTestTypestateAttr(S, D, AL);
7396     break;
7397 
7398   // Type safety attributes.
7399   case ParsedAttr::AT_ArgumentWithTypeTag:
7400     handleArgumentWithTypeTagAttr(S, D, AL);
7401     break;
7402   case ParsedAttr::AT_TypeTagForDatatype:
7403     handleTypeTagForDatatypeAttr(S, D, AL);
7404     break;
7405   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:
7406     handleSimpleAttribute<AnyX86NoCallerSavedRegistersAttr>(S, D, AL);
7407     break;
7408   case ParsedAttr::AT_RenderScriptKernel:
7409     handleSimpleAttribute<RenderScriptKernelAttr>(S, D, AL);
7410     break;
7411   // XRay attributes.
7412   case ParsedAttr::AT_XRayInstrument:
7413     handleSimpleAttribute<XRayInstrumentAttr>(S, D, AL);
7414     break;
7415   case ParsedAttr::AT_XRayLogArgs:
7416     handleXRayLogArgsAttr(S, D, AL);
7417     break;
7418 
7419   case ParsedAttr::AT_PatchableFunctionEntry:
7420     handlePatchableFunctionEntryAttr(S, D, AL);
7421     break;
7422 
7423   // Move semantics attribute.
7424   case ParsedAttr::AT_Reinitializes:
7425     handleSimpleAttribute<ReinitializesAttr>(S, D, AL);
7426     break;
7427 
7428   case ParsedAttr::AT_AlwaysDestroy:
7429   case ParsedAttr::AT_NoDestroy:
7430     handleDestroyAttr(S, D, AL);
7431     break;
7432 
7433   case ParsedAttr::AT_Uninitialized:
7434     handleUninitializedAttr(S, D, AL);
7435     break;
7436 
7437   case ParsedAttr::AT_ObjCExternallyRetained:
7438     handleObjCExternallyRetainedAttr(S, D, AL);
7439     break;
7440 
7441   case ParsedAttr::AT_MIGServerRoutine:
7442     handleMIGServerRoutineAttr(S, D, AL);
7443     break;
7444 
7445   case ParsedAttr::AT_MSAllocator:
7446     handleMSAllocatorAttr(S, D, AL);
7447     break;
7448 
7449   case ParsedAttr::AT_ArmMveAlias:
7450     handleArmMveAliasAttr(S, D, AL);
7451     break;
7452 
7453   case ParsedAttr::AT_AcquireHandle:
7454     handeAcquireHandleAttr(S, D, AL);
7455     break;
7456 
7457   case ParsedAttr::AT_ReleaseHandle:
7458     handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
7459     break;
7460 
7461   case ParsedAttr::AT_UseHandle:
7462     handleHandleAttr<UseHandleAttr>(S, D, AL);
7463     break;
7464   }
7465 }
7466 
7467 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
7468 /// attribute list to the specified decl, ignoring any type attributes.
7469 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
7470                                     const ParsedAttributesView &AttrList,
7471                                     bool IncludeCXX11Attributes) {
7472   if (AttrList.empty())
7473     return;
7474 
7475   for (const ParsedAttr &AL : AttrList)
7476     ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes);
7477 
7478   // FIXME: We should be able to handle these cases in TableGen.
7479   // GCC accepts
7480   // static int a9 __attribute__((weakref));
7481   // but that looks really pointless. We reject it.
7482   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
7483     Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
7484         << cast<NamedDecl>(D);
7485     D->dropAttr<WeakRefAttr>();
7486     return;
7487   }
7488 
7489   // FIXME: We should be able to handle this in TableGen as well. It would be
7490   // good to have a way to specify "these attributes must appear as a group",
7491   // for these. Additionally, it would be good to have a way to specify "these
7492   // attribute must never appear as a group" for attributes like cold and hot.
7493   if (!D->hasAttr<OpenCLKernelAttr>()) {
7494     // These attributes cannot be applied to a non-kernel function.
7495     if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
7496       // FIXME: This emits a different error message than
7497       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
7498       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7499       D->setInvalidDecl();
7500     } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
7501       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7502       D->setInvalidDecl();
7503     } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
7504       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7505       D->setInvalidDecl();
7506     } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
7507       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7508       D->setInvalidDecl();
7509     } else if (!D->hasAttr<CUDAGlobalAttr>()) {
7510       if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
7511         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7512             << A << ExpectedKernelFunction;
7513         D->setInvalidDecl();
7514       } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
7515         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7516             << A << ExpectedKernelFunction;
7517         D->setInvalidDecl();
7518       } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
7519         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7520             << A << ExpectedKernelFunction;
7521         D->setInvalidDecl();
7522       } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
7523         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7524             << A << ExpectedKernelFunction;
7525         D->setInvalidDecl();
7526       }
7527     }
7528   }
7529 
7530   // Do this check after processing D's attributes because the attribute
7531   // objc_method_family can change whether the given method is in the init
7532   // family, and it can be applied after objc_designated_initializer. This is a
7533   // bit of a hack, but we need it to be compatible with versions of clang that
7534   // processed the attribute list in the wrong order.
7535   if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
7536       cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
7537     Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
7538     D->dropAttr<ObjCDesignatedInitializerAttr>();
7539   }
7540 }
7541 
7542 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
7543 // attribute.
7544 void Sema::ProcessDeclAttributeDelayed(Decl *D,
7545                                        const ParsedAttributesView &AttrList) {
7546   for (const ParsedAttr &AL : AttrList)
7547     if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
7548       handleTransparentUnionAttr(*this, D, AL);
7549       break;
7550     }
7551 
7552   // For BPFPreserveAccessIndexAttr, we want to populate the attributes
7553   // to fields and inner records as well.
7554   if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
7555     handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
7556 }
7557 
7558 // Annotation attributes are the only attributes allowed after an access
7559 // specifier.
7560 bool Sema::ProcessAccessDeclAttributeList(
7561     AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
7562   for (const ParsedAttr &AL : AttrList) {
7563     if (AL.getKind() == ParsedAttr::AT_Annotate) {
7564       ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute());
7565     } else {
7566       Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
7567       return true;
7568     }
7569   }
7570   return false;
7571 }
7572 
7573 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
7574 /// contains any decl attributes that we should warn about.
7575 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
7576   for (const ParsedAttr &AL : A) {
7577     // Only warn if the attribute is an unignored, non-type attribute.
7578     if (AL.isUsedAsTypeAttr() || AL.isInvalid())
7579       continue;
7580     if (AL.getKind() == ParsedAttr::IgnoredAttribute)
7581       continue;
7582 
7583     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
7584       S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
7585           << AL << AL.getRange();
7586     } else {
7587       S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
7588                                                             << AL.getRange();
7589     }
7590   }
7591 }
7592 
7593 /// checkUnusedDeclAttributes - Given a declarator which is not being
7594 /// used to build a declaration, complain about any decl attributes
7595 /// which might be lying around on it.
7596 void Sema::checkUnusedDeclAttributes(Declarator &D) {
7597   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
7598   ::checkUnusedDeclAttributes(*this, D.getAttributes());
7599   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
7600     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
7601 }
7602 
7603 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
7604 /// \#pragma weak needs a non-definition decl and source may not have one.
7605 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
7606                                       SourceLocation Loc) {
7607   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
7608   NamedDecl *NewD = nullptr;
7609   if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
7610     FunctionDecl *NewFD;
7611     // FIXME: Missing call to CheckFunctionDeclaration().
7612     // FIXME: Mangling?
7613     // FIXME: Is the qualifier info correct?
7614     // FIXME: Is the DeclContext correct?
7615     NewFD = FunctionDecl::Create(
7616         FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
7617         DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
7618         false /*isInlineSpecified*/, FD->hasPrototype(), CSK_unspecified,
7619         FD->getTrailingRequiresClause());
7620     NewD = NewFD;
7621 
7622     if (FD->getQualifier())
7623       NewFD->setQualifierInfo(FD->getQualifierLoc());
7624 
7625     // Fake up parameter variables; they are declared as if this were
7626     // a typedef.
7627     QualType FDTy = FD->getType();
7628     if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
7629       SmallVector<ParmVarDecl*, 16> Params;
7630       for (const auto &AI : FT->param_types()) {
7631         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
7632         Param->setScopeInfo(0, Params.size());
7633         Params.push_back(Param);
7634       }
7635       NewFD->setParams(Params);
7636     }
7637   } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
7638     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
7639                            VD->getInnerLocStart(), VD->getLocation(), II,
7640                            VD->getType(), VD->getTypeSourceInfo(),
7641                            VD->getStorageClass());
7642     if (VD->getQualifier())
7643       cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
7644   }
7645   return NewD;
7646 }
7647 
7648 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
7649 /// applied to it, possibly with an alias.
7650 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
7651   if (W.getUsed()) return; // only do this once
7652   W.setUsed(true);
7653   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
7654     IdentifierInfo *NDId = ND->getIdentifier();
7655     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
7656     NewD->addAttr(
7657         AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
7658     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
7659                                            AttributeCommonInfo::AS_Pragma));
7660     WeakTopLevelDecl.push_back(NewD);
7661     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
7662     // to insert Decl at TU scope, sorry.
7663     DeclContext *SavedContext = CurContext;
7664     CurContext = Context.getTranslationUnitDecl();
7665     NewD->setDeclContext(CurContext);
7666     NewD->setLexicalDeclContext(CurContext);
7667     PushOnScopeChains(NewD, S);
7668     CurContext = SavedContext;
7669   } else { // just add weak to existing
7670     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
7671                                          AttributeCommonInfo::AS_Pragma));
7672   }
7673 }
7674 
7675 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
7676   // It's valid to "forward-declare" #pragma weak, in which case we
7677   // have to do this.
7678   LoadExternalWeakUndeclaredIdentifiers();
7679   if (!WeakUndeclaredIdentifiers.empty()) {
7680     NamedDecl *ND = nullptr;
7681     if (auto *VD = dyn_cast<VarDecl>(D))
7682       if (VD->isExternC())
7683         ND = VD;
7684     if (auto *FD = dyn_cast<FunctionDecl>(D))
7685       if (FD->isExternC())
7686         ND = FD;
7687     if (ND) {
7688       if (IdentifierInfo *Id = ND->getIdentifier()) {
7689         auto I = WeakUndeclaredIdentifiers.find(Id);
7690         if (I != WeakUndeclaredIdentifiers.end()) {
7691           WeakInfo W = I->second;
7692           DeclApplyPragmaWeak(S, ND, W);
7693           WeakUndeclaredIdentifiers[Id] = W;
7694         }
7695       }
7696     }
7697   }
7698 }
7699 
7700 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
7701 /// it, apply them to D.  This is a bit tricky because PD can have attributes
7702 /// specified in many different places, and we need to find and apply them all.
7703 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
7704   // Apply decl attributes from the DeclSpec if present.
7705   if (!PD.getDeclSpec().getAttributes().empty())
7706     ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes());
7707 
7708   // Walk the declarator structure, applying decl attributes that were in a type
7709   // position to the decl itself.  This handles cases like:
7710   //   int *__attr__(x)** D;
7711   // when X is a decl attribute.
7712   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
7713     ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
7714                              /*IncludeCXX11Attributes=*/false);
7715 
7716   // Finally, apply any attributes on the decl itself.
7717   ProcessDeclAttributeList(S, D, PD.getAttributes());
7718 
7719   // Apply additional attributes specified by '#pragma clang attribute'.
7720   AddPragmaAttributes(S, D);
7721 }
7722 
7723 /// Is the given declaration allowed to use a forbidden type?
7724 /// If so, it'll still be annotated with an attribute that makes it
7725 /// illegal to actually use.
7726 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
7727                                    const DelayedDiagnostic &diag,
7728                                    UnavailableAttr::ImplicitReason &reason) {
7729   // Private ivars are always okay.  Unfortunately, people don't
7730   // always properly make their ivars private, even in system headers.
7731   // Plus we need to make fields okay, too.
7732   if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
7733       !isa<FunctionDecl>(D))
7734     return false;
7735 
7736   // Silently accept unsupported uses of __weak in both user and system
7737   // declarations when it's been disabled, for ease of integration with
7738   // -fno-objc-arc files.  We do have to take some care against attempts
7739   // to define such things;  for now, we've only done that for ivars
7740   // and properties.
7741   if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
7742     if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
7743         diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
7744       reason = UnavailableAttr::IR_ForbiddenWeak;
7745       return true;
7746     }
7747   }
7748 
7749   // Allow all sorts of things in system headers.
7750   if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
7751     // Currently, all the failures dealt with this way are due to ARC
7752     // restrictions.
7753     reason = UnavailableAttr::IR_ARCForbiddenType;
7754     return true;
7755   }
7756 
7757   return false;
7758 }
7759 
7760 /// Handle a delayed forbidden-type diagnostic.
7761 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
7762                                        Decl *D) {
7763   auto Reason = UnavailableAttr::IR_None;
7764   if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
7765     assert(Reason && "didn't set reason?");
7766     D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
7767     return;
7768   }
7769   if (S.getLangOpts().ObjCAutoRefCount)
7770     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
7771       // FIXME: we may want to suppress diagnostics for all
7772       // kind of forbidden type messages on unavailable functions.
7773       if (FD->hasAttr<UnavailableAttr>() &&
7774           DD.getForbiddenTypeDiagnostic() ==
7775               diag::err_arc_array_param_no_ownership) {
7776         DD.Triggered = true;
7777         return;
7778       }
7779     }
7780 
7781   S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
7782       << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
7783   DD.Triggered = true;
7784 }
7785 
7786 static const AvailabilityAttr *getAttrForPlatform(ASTContext &Context,
7787                                                   const Decl *D) {
7788   // Check each AvailabilityAttr to find the one for this platform.
7789   for (const auto *A : D->attrs()) {
7790     if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) {
7791       // FIXME: this is copied from CheckAvailability. We should try to
7792       // de-duplicate.
7793 
7794       // Check if this is an App Extension "platform", and if so chop off
7795       // the suffix for matching with the actual platform.
7796       StringRef ActualPlatform = Avail->getPlatform()->getName();
7797       StringRef RealizedPlatform = ActualPlatform;
7798       if (Context.getLangOpts().AppExt) {
7799         size_t suffix = RealizedPlatform.rfind("_app_extension");
7800         if (suffix != StringRef::npos)
7801           RealizedPlatform = RealizedPlatform.slice(0, suffix);
7802       }
7803 
7804       StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
7805 
7806       // Match the platform name.
7807       if (RealizedPlatform == TargetPlatform)
7808         return Avail;
7809     }
7810   }
7811   return nullptr;
7812 }
7813 
7814 /// The diagnostic we should emit for \c D, and the declaration that
7815 /// originated it, or \c AR_Available.
7816 ///
7817 /// \param D The declaration to check.
7818 /// \param Message If non-null, this will be populated with the message from
7819 /// the availability attribute that is selected.
7820 /// \param ClassReceiver If we're checking the the method of a class message
7821 /// send, the class. Otherwise nullptr.
7822 static std::pair<AvailabilityResult, const NamedDecl *>
7823 ShouldDiagnoseAvailabilityOfDecl(Sema &S, const NamedDecl *D,
7824                                  std::string *Message,
7825                                  ObjCInterfaceDecl *ClassReceiver) {
7826   AvailabilityResult Result = D->getAvailability(Message);
7827 
7828   // For typedefs, if the typedef declaration appears available look
7829   // to the underlying type to see if it is more restrictive.
7830   while (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
7831     if (Result == AR_Available) {
7832       if (const auto *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7833         D = TT->getDecl();
7834         Result = D->getAvailability(Message);
7835         continue;
7836       }
7837     }
7838     break;
7839   }
7840 
7841   // Forward class declarations get their attributes from their definition.
7842   if (const auto *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
7843     if (IDecl->getDefinition()) {
7844       D = IDecl->getDefinition();
7845       Result = D->getAvailability(Message);
7846     }
7847   }
7848 
7849   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D))
7850     if (Result == AR_Available) {
7851       const DeclContext *DC = ECD->getDeclContext();
7852       if (const auto *TheEnumDecl = dyn_cast<EnumDecl>(DC)) {
7853         Result = TheEnumDecl->getAvailability(Message);
7854         D = TheEnumDecl;
7855       }
7856     }
7857 
7858   // For +new, infer availability from -init.
7859   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
7860     if (S.NSAPIObj && ClassReceiver) {
7861       ObjCMethodDecl *Init = ClassReceiver->lookupInstanceMethod(
7862           S.NSAPIObj->getInitSelector());
7863       if (Init && Result == AR_Available && MD->isClassMethod() &&
7864           MD->getSelector() == S.NSAPIObj->getNewSelector() &&
7865           MD->definedInNSObject(S.getASTContext())) {
7866         Result = Init->getAvailability(Message);
7867         D = Init;
7868       }
7869     }
7870   }
7871 
7872   return {Result, D};
7873 }
7874 
7875 
7876 /// whether we should emit a diagnostic for \c K and \c DeclVersion in
7877 /// the context of \c Ctx. For example, we should emit an unavailable diagnostic
7878 /// in a deprecated context, but not the other way around.
7879 static bool
7880 ShouldDiagnoseAvailabilityInContext(Sema &S, AvailabilityResult K,
7881                                     VersionTuple DeclVersion, Decl *Ctx,
7882                                     const NamedDecl *OffendingDecl) {
7883   assert(K != AR_Available && "Expected an unavailable declaration here!");
7884 
7885   // Checks if we should emit the availability diagnostic in the context of C.
7886   auto CheckContext = [&](const Decl *C) {
7887     if (K == AR_NotYetIntroduced) {
7888       if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, C))
7889         if (AA->getIntroduced() >= DeclVersion)
7890           return true;
7891     } else if (K == AR_Deprecated) {
7892       if (C->isDeprecated())
7893         return true;
7894     } else if (K == AR_Unavailable) {
7895       // It is perfectly fine to refer to an 'unavailable' Objective-C method
7896       // when it is referenced from within the @implementation itself. In this
7897       // context, we interpret unavailable as a form of access control.
7898       if (const auto *MD = dyn_cast<ObjCMethodDecl>(OffendingDecl)) {
7899         if (const auto *Impl = dyn_cast<ObjCImplDecl>(C)) {
7900           if (MD->getClassInterface() == Impl->getClassInterface())
7901             return true;
7902         }
7903       }
7904     }
7905 
7906     if (C->isUnavailable())
7907       return true;
7908     return false;
7909   };
7910 
7911   do {
7912     if (CheckContext(Ctx))
7913       return false;
7914 
7915     // An implementation implicitly has the availability of the interface.
7916     // Unless it is "+load" method.
7917     if (const auto *MethodD = dyn_cast<ObjCMethodDecl>(Ctx))
7918       if (MethodD->isClassMethod() &&
7919           MethodD->getSelector().getAsString() == "load")
7920         return true;
7921 
7922     if (const auto *CatOrImpl = dyn_cast<ObjCImplDecl>(Ctx)) {
7923       if (const ObjCInterfaceDecl *Interface = CatOrImpl->getClassInterface())
7924         if (CheckContext(Interface))
7925           return false;
7926     }
7927     // A category implicitly has the availability of the interface.
7928     else if (const auto *CatD = dyn_cast<ObjCCategoryDecl>(Ctx))
7929       if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
7930         if (CheckContext(Interface))
7931           return false;
7932   } while ((Ctx = cast_or_null<Decl>(Ctx->getDeclContext())));
7933 
7934   return true;
7935 }
7936 
7937 static bool
7938 shouldDiagnoseAvailabilityByDefault(const ASTContext &Context,
7939                                     const VersionTuple &DeploymentVersion,
7940                                     const VersionTuple &DeclVersion) {
7941   const auto &Triple = Context.getTargetInfo().getTriple();
7942   VersionTuple ForceAvailabilityFromVersion;
7943   switch (Triple.getOS()) {
7944   case llvm::Triple::IOS:
7945   case llvm::Triple::TvOS:
7946     ForceAvailabilityFromVersion = VersionTuple(/*Major=*/11);
7947     break;
7948   case llvm::Triple::WatchOS:
7949     ForceAvailabilityFromVersion = VersionTuple(/*Major=*/4);
7950     break;
7951   case llvm::Triple::Darwin:
7952   case llvm::Triple::MacOSX:
7953     ForceAvailabilityFromVersion = VersionTuple(/*Major=*/10, /*Minor=*/13);
7954     break;
7955   default:
7956     // New targets should always warn about availability.
7957     return Triple.getVendor() == llvm::Triple::Apple;
7958   }
7959   return DeploymentVersion >= ForceAvailabilityFromVersion ||
7960          DeclVersion >= ForceAvailabilityFromVersion;
7961 }
7962 
7963 static NamedDecl *findEnclosingDeclToAnnotate(Decl *OrigCtx) {
7964   for (Decl *Ctx = OrigCtx; Ctx;
7965        Ctx = cast_or_null<Decl>(Ctx->getDeclContext())) {
7966     if (isa<TagDecl>(Ctx) || isa<FunctionDecl>(Ctx) || isa<ObjCMethodDecl>(Ctx))
7967       return cast<NamedDecl>(Ctx);
7968     if (auto *CD = dyn_cast<ObjCContainerDecl>(Ctx)) {
7969       if (auto *Imp = dyn_cast<ObjCImplDecl>(Ctx))
7970         return Imp->getClassInterface();
7971       return CD;
7972     }
7973   }
7974 
7975   return dyn_cast<NamedDecl>(OrigCtx);
7976 }
7977 
7978 namespace {
7979 
7980 struct AttributeInsertion {
7981   StringRef Prefix;
7982   SourceLocation Loc;
7983   StringRef Suffix;
7984 
7985   static AttributeInsertion createInsertionAfter(const NamedDecl *D) {
7986     return {" ", D->getEndLoc(), ""};
7987   }
7988   static AttributeInsertion createInsertionAfter(SourceLocation Loc) {
7989     return {" ", Loc, ""};
7990   }
7991   static AttributeInsertion createInsertionBefore(const NamedDecl *D) {
7992     return {"", D->getBeginLoc(), "\n"};
7993   }
7994 };
7995 
7996 } // end anonymous namespace
7997 
7998 /// Tries to parse a string as ObjC method name.
7999 ///
8000 /// \param Name The string to parse. Expected to originate from availability
8001 /// attribute argument.
8002 /// \param SlotNames The vector that will be populated with slot names. In case
8003 /// of unsuccessful parsing can contain invalid data.
8004 /// \returns A number of method parameters if parsing was successful, None
8005 /// otherwise.
8006 static Optional<unsigned>
8007 tryParseObjCMethodName(StringRef Name, SmallVectorImpl<StringRef> &SlotNames,
8008                        const LangOptions &LangOpts) {
8009   // Accept replacements starting with - or + as valid ObjC method names.
8010   if (!Name.empty() && (Name.front() == '-' || Name.front() == '+'))
8011     Name = Name.drop_front(1);
8012   if (Name.empty())
8013     return None;
8014   Name.split(SlotNames, ':');
8015   unsigned NumParams;
8016   if (Name.back() == ':') {
8017     // Remove an empty string at the end that doesn't represent any slot.
8018     SlotNames.pop_back();
8019     NumParams = SlotNames.size();
8020   } else {
8021     if (SlotNames.size() != 1)
8022       // Not a valid method name, just a colon-separated string.
8023       return None;
8024     NumParams = 0;
8025   }
8026   // Verify all slot names are valid.
8027   bool AllowDollar = LangOpts.DollarIdents;
8028   for (StringRef S : SlotNames) {
8029     if (S.empty())
8030       continue;
8031     if (!isValidIdentifier(S, AllowDollar))
8032       return None;
8033   }
8034   return NumParams;
8035 }
8036 
8037 /// Returns a source location in which it's appropriate to insert a new
8038 /// attribute for the given declaration \D.
8039 static Optional<AttributeInsertion>
8040 createAttributeInsertion(const NamedDecl *D, const SourceManager &SM,
8041                          const LangOptions &LangOpts) {
8042   if (isa<ObjCPropertyDecl>(D))
8043     return AttributeInsertion::createInsertionAfter(D);
8044   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
8045     if (MD->hasBody())
8046       return None;
8047     return AttributeInsertion::createInsertionAfter(D);
8048   }
8049   if (const auto *TD = dyn_cast<TagDecl>(D)) {
8050     SourceLocation Loc =
8051         Lexer::getLocForEndOfToken(TD->getInnerLocStart(), 0, SM, LangOpts);
8052     if (Loc.isInvalid())
8053       return None;
8054     // Insert after the 'struct'/whatever keyword.
8055     return AttributeInsertion::createInsertionAfter(Loc);
8056   }
8057   return AttributeInsertion::createInsertionBefore(D);
8058 }
8059 
8060 /// Actually emit an availability diagnostic for a reference to an unavailable
8061 /// decl.
8062 ///
8063 /// \param Ctx The context that the reference occurred in
8064 /// \param ReferringDecl The exact declaration that was referenced.
8065 /// \param OffendingDecl A related decl to \c ReferringDecl that has an
8066 /// availability attribute corresponding to \c K attached to it. Note that this
8067 /// may not be the same as ReferringDecl, i.e. if an EnumDecl is annotated and
8068 /// we refer to a member EnumConstantDecl, ReferringDecl is the EnumConstantDecl
8069 /// and OffendingDecl is the EnumDecl.
8070 static void DoEmitAvailabilityWarning(Sema &S, AvailabilityResult K,
8071                                       Decl *Ctx, const NamedDecl *ReferringDecl,
8072                                       const NamedDecl *OffendingDecl,
8073                                       StringRef Message,
8074                                       ArrayRef<SourceLocation> Locs,
8075                                       const ObjCInterfaceDecl *UnknownObjCClass,
8076                                       const ObjCPropertyDecl *ObjCProperty,
8077                                       bool ObjCPropertyAccess) {
8078   // Diagnostics for deprecated or unavailable.
8079   unsigned diag, diag_message, diag_fwdclass_message;
8080   unsigned diag_available_here = diag::note_availability_specified_here;
8081   SourceLocation NoteLocation = OffendingDecl->getLocation();
8082 
8083   // Matches 'diag::note_property_attribute' options.
8084   unsigned property_note_select;
8085 
8086   // Matches diag::note_availability_specified_here.
8087   unsigned available_here_select_kind;
8088 
8089   VersionTuple DeclVersion;
8090   if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, OffendingDecl))
8091     DeclVersion = AA->getIntroduced();
8092 
8093   if (!ShouldDiagnoseAvailabilityInContext(S, K, DeclVersion, Ctx,
8094                                            OffendingDecl))
8095     return;
8096 
8097   SourceLocation Loc = Locs.front();
8098 
8099   // The declaration can have multiple availability attributes, we are looking
8100   // at one of them.
8101   const AvailabilityAttr *A = getAttrForPlatform(S.Context, OffendingDecl);
8102   if (A && A->isInherited()) {
8103     for (const Decl *Redecl = OffendingDecl->getMostRecentDecl(); Redecl;
8104          Redecl = Redecl->getPreviousDecl()) {
8105       const AvailabilityAttr *AForRedecl =
8106           getAttrForPlatform(S.Context, Redecl);
8107       if (AForRedecl && !AForRedecl->isInherited()) {
8108         // If D is a declaration with inherited attributes, the note should
8109         // point to the declaration with actual attributes.
8110         NoteLocation = Redecl->getLocation();
8111         break;
8112       }
8113     }
8114   }
8115 
8116   switch (K) {
8117   case AR_NotYetIntroduced: {
8118     // We would like to emit the diagnostic even if -Wunguarded-availability is
8119     // not specified for deployment targets >= to iOS 11 or equivalent or
8120     // for declarations that were introduced in iOS 11 (macOS 10.13, ...) or
8121     // later.
8122     const AvailabilityAttr *AA =
8123         getAttrForPlatform(S.getASTContext(), OffendingDecl);
8124     VersionTuple Introduced = AA->getIntroduced();
8125 
8126     bool UseNewWarning = shouldDiagnoseAvailabilityByDefault(
8127         S.Context, S.Context.getTargetInfo().getPlatformMinVersion(),
8128         Introduced);
8129     unsigned Warning = UseNewWarning ? diag::warn_unguarded_availability_new
8130                                      : diag::warn_unguarded_availability;
8131 
8132     std::string PlatformName = AvailabilityAttr::getPrettyPlatformName(
8133         S.getASTContext().getTargetInfo().getPlatformName());
8134 
8135     S.Diag(Loc, Warning) << OffendingDecl << PlatformName
8136                          << Introduced.getAsString();
8137 
8138     S.Diag(OffendingDecl->getLocation(),
8139            diag::note_partial_availability_specified_here)
8140         << OffendingDecl << PlatformName << Introduced.getAsString()
8141         << S.Context.getTargetInfo().getPlatformMinVersion().getAsString();
8142 
8143     if (const auto *Enclosing = findEnclosingDeclToAnnotate(Ctx)) {
8144       if (const auto *TD = dyn_cast<TagDecl>(Enclosing))
8145         if (TD->getDeclName().isEmpty()) {
8146           S.Diag(TD->getLocation(),
8147                  diag::note_decl_unguarded_availability_silence)
8148               << /*Anonymous*/ 1 << TD->getKindName();
8149           return;
8150         }
8151       auto FixitNoteDiag =
8152           S.Diag(Enclosing->getLocation(),
8153                  diag::note_decl_unguarded_availability_silence)
8154           << /*Named*/ 0 << Enclosing;
8155       // Don't offer a fixit for declarations with availability attributes.
8156       if (Enclosing->hasAttr<AvailabilityAttr>())
8157         return;
8158       if (!S.getPreprocessor().isMacroDefined("API_AVAILABLE"))
8159         return;
8160       Optional<AttributeInsertion> Insertion = createAttributeInsertion(
8161           Enclosing, S.getSourceManager(), S.getLangOpts());
8162       if (!Insertion)
8163         return;
8164       std::string PlatformName =
8165           AvailabilityAttr::getPlatformNameSourceSpelling(
8166               S.getASTContext().getTargetInfo().getPlatformName())
8167               .lower();
8168       std::string Introduced =
8169           OffendingDecl->getVersionIntroduced().getAsString();
8170       FixitNoteDiag << FixItHint::CreateInsertion(
8171           Insertion->Loc,
8172           (llvm::Twine(Insertion->Prefix) + "API_AVAILABLE(" + PlatformName +
8173            "(" + Introduced + "))" + Insertion->Suffix)
8174               .str());
8175     }
8176     return;
8177   }
8178   case AR_Deprecated:
8179     diag = !ObjCPropertyAccess ? diag::warn_deprecated
8180                                : diag::warn_property_method_deprecated;
8181     diag_message = diag::warn_deprecated_message;
8182     diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
8183     property_note_select = /* deprecated */ 0;
8184     available_here_select_kind = /* deprecated */ 2;
8185     if (const auto *AL = OffendingDecl->getAttr<DeprecatedAttr>())
8186       NoteLocation = AL->getLocation();
8187     break;
8188 
8189   case AR_Unavailable:
8190     diag = !ObjCPropertyAccess ? diag::err_unavailable
8191                                : diag::err_property_method_unavailable;
8192     diag_message = diag::err_unavailable_message;
8193     diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
8194     property_note_select = /* unavailable */ 1;
8195     available_here_select_kind = /* unavailable */ 0;
8196 
8197     if (auto AL = OffendingDecl->getAttr<UnavailableAttr>()) {
8198       if (AL->isImplicit() && AL->getImplicitReason()) {
8199         // Most of these failures are due to extra restrictions in ARC;
8200         // reflect that in the primary diagnostic when applicable.
8201         auto flagARCError = [&] {
8202           if (S.getLangOpts().ObjCAutoRefCount &&
8203               S.getSourceManager().isInSystemHeader(
8204                   OffendingDecl->getLocation()))
8205             diag = diag::err_unavailable_in_arc;
8206         };
8207 
8208         switch (AL->getImplicitReason()) {
8209         case UnavailableAttr::IR_None: break;
8210 
8211         case UnavailableAttr::IR_ARCForbiddenType:
8212           flagARCError();
8213           diag_available_here = diag::note_arc_forbidden_type;
8214           break;
8215 
8216         case UnavailableAttr::IR_ForbiddenWeak:
8217           if (S.getLangOpts().ObjCWeakRuntime)
8218             diag_available_here = diag::note_arc_weak_disabled;
8219           else
8220             diag_available_here = diag::note_arc_weak_no_runtime;
8221           break;
8222 
8223         case UnavailableAttr::IR_ARCForbiddenConversion:
8224           flagARCError();
8225           diag_available_here = diag::note_performs_forbidden_arc_conversion;
8226           break;
8227 
8228         case UnavailableAttr::IR_ARCInitReturnsUnrelated:
8229           flagARCError();
8230           diag_available_here = diag::note_arc_init_returns_unrelated;
8231           break;
8232 
8233         case UnavailableAttr::IR_ARCFieldWithOwnership:
8234           flagARCError();
8235           diag_available_here = diag::note_arc_field_with_ownership;
8236           break;
8237         }
8238       }
8239     }
8240     break;
8241 
8242   case AR_Available:
8243     llvm_unreachable("Warning for availability of available declaration?");
8244   }
8245 
8246   SmallVector<FixItHint, 12> FixIts;
8247   if (K == AR_Deprecated) {
8248     StringRef Replacement;
8249     if (auto AL = OffendingDecl->getAttr<DeprecatedAttr>())
8250       Replacement = AL->getReplacement();
8251     if (auto AL = getAttrForPlatform(S.Context, OffendingDecl))
8252       Replacement = AL->getReplacement();
8253 
8254     CharSourceRange UseRange;
8255     if (!Replacement.empty())
8256       UseRange =
8257           CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
8258     if (UseRange.isValid()) {
8259       if (const auto *MethodDecl = dyn_cast<ObjCMethodDecl>(ReferringDecl)) {
8260         Selector Sel = MethodDecl->getSelector();
8261         SmallVector<StringRef, 12> SelectorSlotNames;
8262         Optional<unsigned> NumParams = tryParseObjCMethodName(
8263             Replacement, SelectorSlotNames, S.getLangOpts());
8264         if (NumParams && NumParams.getValue() == Sel.getNumArgs()) {
8265           assert(SelectorSlotNames.size() == Locs.size());
8266           for (unsigned I = 0; I < Locs.size(); ++I) {
8267             if (!Sel.getNameForSlot(I).empty()) {
8268               CharSourceRange NameRange = CharSourceRange::getCharRange(
8269                   Locs[I], S.getLocForEndOfToken(Locs[I]));
8270               FixIts.push_back(FixItHint::CreateReplacement(
8271                   NameRange, SelectorSlotNames[I]));
8272             } else
8273               FixIts.push_back(
8274                   FixItHint::CreateInsertion(Locs[I], SelectorSlotNames[I]));
8275           }
8276         } else
8277           FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement));
8278       } else
8279         FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement));
8280     }
8281   }
8282 
8283   if (!Message.empty()) {
8284     S.Diag(Loc, diag_message) << ReferringDecl << Message << FixIts;
8285     if (ObjCProperty)
8286       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
8287           << ObjCProperty->getDeclName() << property_note_select;
8288   } else if (!UnknownObjCClass) {
8289     S.Diag(Loc, diag) << ReferringDecl << FixIts;
8290     if (ObjCProperty)
8291       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
8292           << ObjCProperty->getDeclName() << property_note_select;
8293   } else {
8294     S.Diag(Loc, diag_fwdclass_message) << ReferringDecl << FixIts;
8295     S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
8296   }
8297 
8298   S.Diag(NoteLocation, diag_available_here)
8299     << OffendingDecl << available_here_select_kind;
8300 }
8301 
8302 static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD,
8303                                            Decl *Ctx) {
8304   assert(DD.Kind == DelayedDiagnostic::Availability &&
8305          "Expected an availability diagnostic here");
8306 
8307   DD.Triggered = true;
8308   DoEmitAvailabilityWarning(
8309       S, DD.getAvailabilityResult(), Ctx, DD.getAvailabilityReferringDecl(),
8310       DD.getAvailabilityOffendingDecl(), DD.getAvailabilityMessage(),
8311       DD.getAvailabilitySelectorLocs(), DD.getUnknownObjCClass(),
8312       DD.getObjCProperty(), false);
8313 }
8314 
8315 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
8316   assert(DelayedDiagnostics.getCurrentPool());
8317   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
8318   DelayedDiagnostics.popWithoutEmitting(state);
8319 
8320   // When delaying diagnostics to run in the context of a parsed
8321   // declaration, we only want to actually emit anything if parsing
8322   // succeeds.
8323   if (!decl) return;
8324 
8325   // We emit all the active diagnostics in this pool or any of its
8326   // parents.  In general, we'll get one pool for the decl spec
8327   // and a child pool for each declarator; in a decl group like:
8328   //   deprecated_typedef foo, *bar, baz();
8329   // only the declarator pops will be passed decls.  This is correct;
8330   // we really do need to consider delayed diagnostics from the decl spec
8331   // for each of the different declarations.
8332   const DelayedDiagnosticPool *pool = &poppedPool;
8333   do {
8334     bool AnyAccessFailures = false;
8335     for (DelayedDiagnosticPool::pool_iterator
8336            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
8337       // This const_cast is a bit lame.  Really, Triggered should be mutable.
8338       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
8339       if (diag.Triggered)
8340         continue;
8341 
8342       switch (diag.Kind) {
8343       case DelayedDiagnostic::Availability:
8344         // Don't bother giving deprecation/unavailable diagnostics if
8345         // the decl is invalid.
8346         if (!decl->isInvalidDecl())
8347           handleDelayedAvailabilityCheck(*this, diag, decl);
8348         break;
8349 
8350       case DelayedDiagnostic::Access:
8351         // Only produce one access control diagnostic for a structured binding
8352         // declaration: we don't need to tell the user that all the fields are
8353         // inaccessible one at a time.
8354         if (AnyAccessFailures && isa<DecompositionDecl>(decl))
8355           continue;
8356         HandleDelayedAccessCheck(diag, decl);
8357         if (diag.Triggered)
8358           AnyAccessFailures = true;
8359         break;
8360 
8361       case DelayedDiagnostic::ForbiddenType:
8362         handleDelayedForbiddenType(*this, diag, decl);
8363         break;
8364       }
8365     }
8366   } while ((pool = pool->getParent()));
8367 }
8368 
8369 /// Given a set of delayed diagnostics, re-emit them as if they had
8370 /// been delayed in the current context instead of in the given pool.
8371 /// Essentially, this just moves them to the current pool.
8372 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
8373   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
8374   assert(curPool && "re-emitting in undelayed context not supported");
8375   curPool->steal(pool);
8376 }
8377 
8378 static void EmitAvailabilityWarning(Sema &S, AvailabilityResult AR,
8379                                     const NamedDecl *ReferringDecl,
8380                                     const NamedDecl *OffendingDecl,
8381                                     StringRef Message,
8382                                     ArrayRef<SourceLocation> Locs,
8383                                     const ObjCInterfaceDecl *UnknownObjCClass,
8384                                     const ObjCPropertyDecl *ObjCProperty,
8385                                     bool ObjCPropertyAccess) {
8386   // Delay if we're currently parsing a declaration.
8387   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
8388     S.DelayedDiagnostics.add(
8389         DelayedDiagnostic::makeAvailability(
8390             AR, Locs, ReferringDecl, OffendingDecl, UnknownObjCClass,
8391             ObjCProperty, Message, ObjCPropertyAccess));
8392     return;
8393   }
8394 
8395   Decl *Ctx = cast<Decl>(S.getCurLexicalContext());
8396   DoEmitAvailabilityWarning(S, AR, Ctx, ReferringDecl, OffendingDecl,
8397                             Message, Locs, UnknownObjCClass, ObjCProperty,
8398                             ObjCPropertyAccess);
8399 }
8400 
8401 namespace {
8402 
8403 /// Returns true if the given statement can be a body-like child of \p Parent.
8404 bool isBodyLikeChildStmt(const Stmt *S, const Stmt *Parent) {
8405   switch (Parent->getStmtClass()) {
8406   case Stmt::IfStmtClass:
8407     return cast<IfStmt>(Parent)->getThen() == S ||
8408            cast<IfStmt>(Parent)->getElse() == S;
8409   case Stmt::WhileStmtClass:
8410     return cast<WhileStmt>(Parent)->getBody() == S;
8411   case Stmt::DoStmtClass:
8412     return cast<DoStmt>(Parent)->getBody() == S;
8413   case Stmt::ForStmtClass:
8414     return cast<ForStmt>(Parent)->getBody() == S;
8415   case Stmt::CXXForRangeStmtClass:
8416     return cast<CXXForRangeStmt>(Parent)->getBody() == S;
8417   case Stmt::ObjCForCollectionStmtClass:
8418     return cast<ObjCForCollectionStmt>(Parent)->getBody() == S;
8419   case Stmt::CaseStmtClass:
8420   case Stmt::DefaultStmtClass:
8421     return cast<SwitchCase>(Parent)->getSubStmt() == S;
8422   default:
8423     return false;
8424   }
8425 }
8426 
8427 class StmtUSEFinder : public RecursiveASTVisitor<StmtUSEFinder> {
8428   const Stmt *Target;
8429 
8430 public:
8431   bool VisitStmt(Stmt *S) { return S != Target; }
8432 
8433   /// Returns true if the given statement is present in the given declaration.
8434   static bool isContained(const Stmt *Target, const Decl *D) {
8435     StmtUSEFinder Visitor;
8436     Visitor.Target = Target;
8437     return !Visitor.TraverseDecl(const_cast<Decl *>(D));
8438   }
8439 };
8440 
8441 /// Traverses the AST and finds the last statement that used a given
8442 /// declaration.
8443 class LastDeclUSEFinder : public RecursiveASTVisitor<LastDeclUSEFinder> {
8444   const Decl *D;
8445 
8446 public:
8447   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
8448     if (DRE->getDecl() == D)
8449       return false;
8450     return true;
8451   }
8452 
8453   static const Stmt *findLastStmtThatUsesDecl(const Decl *D,
8454                                               const CompoundStmt *Scope) {
8455     LastDeclUSEFinder Visitor;
8456     Visitor.D = D;
8457     for (auto I = Scope->body_rbegin(), E = Scope->body_rend(); I != E; ++I) {
8458       const Stmt *S = *I;
8459       if (!Visitor.TraverseStmt(const_cast<Stmt *>(S)))
8460         return S;
8461     }
8462     return nullptr;
8463   }
8464 };
8465 
8466 /// This class implements -Wunguarded-availability.
8467 ///
8468 /// This is done with a traversal of the AST of a function that makes reference
8469 /// to a partially available declaration. Whenever we encounter an \c if of the
8470 /// form: \c if(@available(...)), we use the version from the condition to visit
8471 /// the then statement.
8472 class DiagnoseUnguardedAvailability
8473     : public RecursiveASTVisitor<DiagnoseUnguardedAvailability> {
8474   typedef RecursiveASTVisitor<DiagnoseUnguardedAvailability> Base;
8475 
8476   Sema &SemaRef;
8477   Decl *Ctx;
8478 
8479   /// Stack of potentially nested 'if (@available(...))'s.
8480   SmallVector<VersionTuple, 8> AvailabilityStack;
8481   SmallVector<const Stmt *, 16> StmtStack;
8482 
8483   void DiagnoseDeclAvailability(NamedDecl *D, SourceRange Range,
8484                                 ObjCInterfaceDecl *ClassReceiver = nullptr);
8485 
8486 public:
8487   DiagnoseUnguardedAvailability(Sema &SemaRef, Decl *Ctx)
8488       : SemaRef(SemaRef), Ctx(Ctx) {
8489     AvailabilityStack.push_back(
8490         SemaRef.Context.getTargetInfo().getPlatformMinVersion());
8491   }
8492 
8493   bool TraverseDecl(Decl *D) {
8494     // Avoid visiting nested functions to prevent duplicate warnings.
8495     if (!D || isa<FunctionDecl>(D))
8496       return true;
8497     return Base::TraverseDecl(D);
8498   }
8499 
8500   bool TraverseStmt(Stmt *S) {
8501     if (!S)
8502       return true;
8503     StmtStack.push_back(S);
8504     bool Result = Base::TraverseStmt(S);
8505     StmtStack.pop_back();
8506     return Result;
8507   }
8508 
8509   void IssueDiagnostics(Stmt *S) { TraverseStmt(S); }
8510 
8511   bool TraverseIfStmt(IfStmt *If);
8512 
8513   bool TraverseLambdaExpr(LambdaExpr *E) { return true; }
8514 
8515   // for 'case X:' statements, don't bother looking at the 'X'; it can't lead
8516   // to any useful diagnostics.
8517   bool TraverseCaseStmt(CaseStmt *CS) { return TraverseStmt(CS->getSubStmt()); }
8518 
8519   bool VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *PRE) {
8520     if (PRE->isClassReceiver())
8521       DiagnoseDeclAvailability(PRE->getClassReceiver(), PRE->getReceiverLocation());
8522     return true;
8523   }
8524 
8525   bool VisitObjCMessageExpr(ObjCMessageExpr *Msg) {
8526     if (ObjCMethodDecl *D = Msg->getMethodDecl()) {
8527       ObjCInterfaceDecl *ID = nullptr;
8528       QualType ReceiverTy = Msg->getClassReceiver();
8529       if (!ReceiverTy.isNull() && ReceiverTy->getAsObjCInterfaceType())
8530         ID = ReceiverTy->getAsObjCInterfaceType()->getInterface();
8531 
8532       DiagnoseDeclAvailability(
8533           D, SourceRange(Msg->getSelectorStartLoc(), Msg->getEndLoc()), ID);
8534     }
8535     return true;
8536   }
8537 
8538   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
8539     DiagnoseDeclAvailability(DRE->getDecl(),
8540                              SourceRange(DRE->getBeginLoc(), DRE->getEndLoc()));
8541     return true;
8542   }
8543 
8544   bool VisitMemberExpr(MemberExpr *ME) {
8545     DiagnoseDeclAvailability(ME->getMemberDecl(),
8546                              SourceRange(ME->getBeginLoc(), ME->getEndLoc()));
8547     return true;
8548   }
8549 
8550   bool VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
8551     SemaRef.Diag(E->getBeginLoc(), diag::warn_at_available_unchecked_use)
8552         << (!SemaRef.getLangOpts().ObjC);
8553     return true;
8554   }
8555 
8556   bool VisitTypeLoc(TypeLoc Ty);
8557 };
8558 
8559 void DiagnoseUnguardedAvailability::DiagnoseDeclAvailability(
8560     NamedDecl *D, SourceRange Range, ObjCInterfaceDecl *ReceiverClass) {
8561   AvailabilityResult Result;
8562   const NamedDecl *OffendingDecl;
8563   std::tie(Result, OffendingDecl) =
8564       ShouldDiagnoseAvailabilityOfDecl(SemaRef, D, nullptr, ReceiverClass);
8565   if (Result != AR_Available) {
8566     // All other diagnostic kinds have already been handled in
8567     // DiagnoseAvailabilityOfDecl.
8568     if (Result != AR_NotYetIntroduced)
8569       return;
8570 
8571     const AvailabilityAttr *AA =
8572       getAttrForPlatform(SemaRef.getASTContext(), OffendingDecl);
8573     VersionTuple Introduced = AA->getIntroduced();
8574 
8575     if (AvailabilityStack.back() >= Introduced)
8576       return;
8577 
8578     // If the context of this function is less available than D, we should not
8579     // emit a diagnostic.
8580     if (!ShouldDiagnoseAvailabilityInContext(SemaRef, Result, Introduced, Ctx,
8581                                              OffendingDecl))
8582       return;
8583 
8584     // We would like to emit the diagnostic even if -Wunguarded-availability is
8585     // not specified for deployment targets >= to iOS 11 or equivalent or
8586     // for declarations that were introduced in iOS 11 (macOS 10.13, ...) or
8587     // later.
8588     unsigned DiagKind =
8589         shouldDiagnoseAvailabilityByDefault(
8590             SemaRef.Context,
8591             SemaRef.Context.getTargetInfo().getPlatformMinVersion(), Introduced)
8592             ? diag::warn_unguarded_availability_new
8593             : diag::warn_unguarded_availability;
8594 
8595     std::string PlatformName = AvailabilityAttr::getPrettyPlatformName(
8596         SemaRef.getASTContext().getTargetInfo().getPlatformName());
8597 
8598     SemaRef.Diag(Range.getBegin(), DiagKind)
8599         << Range << D << PlatformName << Introduced.getAsString();
8600 
8601     SemaRef.Diag(OffendingDecl->getLocation(),
8602                  diag::note_partial_availability_specified_here)
8603         << OffendingDecl << PlatformName << Introduced.getAsString()
8604         << SemaRef.Context.getTargetInfo()
8605                .getPlatformMinVersion()
8606                .getAsString();
8607 
8608     auto FixitDiag =
8609         SemaRef.Diag(Range.getBegin(), diag::note_unguarded_available_silence)
8610         << Range << D
8611         << (SemaRef.getLangOpts().ObjC ? /*@available*/ 0
8612                                        : /*__builtin_available*/ 1);
8613 
8614     // Find the statement which should be enclosed in the if @available check.
8615     if (StmtStack.empty())
8616       return;
8617     const Stmt *StmtOfUse = StmtStack.back();
8618     const CompoundStmt *Scope = nullptr;
8619     for (const Stmt *S : llvm::reverse(StmtStack)) {
8620       if (const auto *CS = dyn_cast<CompoundStmt>(S)) {
8621         Scope = CS;
8622         break;
8623       }
8624       if (isBodyLikeChildStmt(StmtOfUse, S)) {
8625         // The declaration won't be seen outside of the statement, so we don't
8626         // have to wrap the uses of any declared variables in if (@available).
8627         // Therefore we can avoid setting Scope here.
8628         break;
8629       }
8630       StmtOfUse = S;
8631     }
8632     const Stmt *LastStmtOfUse = nullptr;
8633     if (isa<DeclStmt>(StmtOfUse) && Scope) {
8634       for (const Decl *D : cast<DeclStmt>(StmtOfUse)->decls()) {
8635         if (StmtUSEFinder::isContained(StmtStack.back(), D)) {
8636           LastStmtOfUse = LastDeclUSEFinder::findLastStmtThatUsesDecl(D, Scope);
8637           break;
8638         }
8639       }
8640     }
8641 
8642     const SourceManager &SM = SemaRef.getSourceManager();
8643     SourceLocation IfInsertionLoc =
8644         SM.getExpansionLoc(StmtOfUse->getBeginLoc());
8645     SourceLocation StmtEndLoc =
8646         SM.getExpansionRange(
8647               (LastStmtOfUse ? LastStmtOfUse : StmtOfUse)->getEndLoc())
8648             .getEnd();
8649     if (SM.getFileID(IfInsertionLoc) != SM.getFileID(StmtEndLoc))
8650       return;
8651 
8652     StringRef Indentation = Lexer::getIndentationForLine(IfInsertionLoc, SM);
8653     const char *ExtraIndentation = "    ";
8654     std::string FixItString;
8655     llvm::raw_string_ostream FixItOS(FixItString);
8656     FixItOS << "if (" << (SemaRef.getLangOpts().ObjC ? "@available"
8657                                                      : "__builtin_available")
8658             << "("
8659             << AvailabilityAttr::getPlatformNameSourceSpelling(
8660                    SemaRef.getASTContext().getTargetInfo().getPlatformName())
8661             << " " << Introduced.getAsString() << ", *)) {\n"
8662             << Indentation << ExtraIndentation;
8663     FixitDiag << FixItHint::CreateInsertion(IfInsertionLoc, FixItOS.str());
8664     SourceLocation ElseInsertionLoc = Lexer::findLocationAfterToken(
8665         StmtEndLoc, tok::semi, SM, SemaRef.getLangOpts(),
8666         /*SkipTrailingWhitespaceAndNewLine=*/false);
8667     if (ElseInsertionLoc.isInvalid())
8668       ElseInsertionLoc =
8669           Lexer::getLocForEndOfToken(StmtEndLoc, 0, SM, SemaRef.getLangOpts());
8670     FixItOS.str().clear();
8671     FixItOS << "\n"
8672             << Indentation << "} else {\n"
8673             << Indentation << ExtraIndentation
8674             << "// Fallback on earlier versions\n"
8675             << Indentation << "}";
8676     FixitDiag << FixItHint::CreateInsertion(ElseInsertionLoc, FixItOS.str());
8677   }
8678 }
8679 
8680 bool DiagnoseUnguardedAvailability::VisitTypeLoc(TypeLoc Ty) {
8681   const Type *TyPtr = Ty.getTypePtr();
8682   SourceRange Range{Ty.getBeginLoc(), Ty.getEndLoc()};
8683 
8684   if (Range.isInvalid())
8685     return true;
8686 
8687   if (const auto *TT = dyn_cast<TagType>(TyPtr)) {
8688     TagDecl *TD = TT->getDecl();
8689     DiagnoseDeclAvailability(TD, Range);
8690 
8691   } else if (const auto *TD = dyn_cast<TypedefType>(TyPtr)) {
8692     TypedefNameDecl *D = TD->getDecl();
8693     DiagnoseDeclAvailability(D, Range);
8694 
8695   } else if (const auto *ObjCO = dyn_cast<ObjCObjectType>(TyPtr)) {
8696     if (NamedDecl *D = ObjCO->getInterface())
8697       DiagnoseDeclAvailability(D, Range);
8698   }
8699 
8700   return true;
8701 }
8702 
8703 bool DiagnoseUnguardedAvailability::TraverseIfStmt(IfStmt *If) {
8704   VersionTuple CondVersion;
8705   if (auto *E = dyn_cast<ObjCAvailabilityCheckExpr>(If->getCond())) {
8706     CondVersion = E->getVersion();
8707 
8708     // If we're using the '*' case here or if this check is redundant, then we
8709     // use the enclosing version to check both branches.
8710     if (CondVersion.empty() || CondVersion <= AvailabilityStack.back())
8711       return TraverseStmt(If->getThen()) && TraverseStmt(If->getElse());
8712   } else {
8713     // This isn't an availability checking 'if', we can just continue.
8714     return Base::TraverseIfStmt(If);
8715   }
8716 
8717   AvailabilityStack.push_back(CondVersion);
8718   bool ShouldContinue = TraverseStmt(If->getThen());
8719   AvailabilityStack.pop_back();
8720 
8721   return ShouldContinue && TraverseStmt(If->getElse());
8722 }
8723 
8724 } // end anonymous namespace
8725 
8726 void Sema::DiagnoseUnguardedAvailabilityViolations(Decl *D) {
8727   Stmt *Body = nullptr;
8728 
8729   if (auto *FD = D->getAsFunction()) {
8730     // FIXME: We only examine the pattern decl for availability violations now,
8731     // but we should also examine instantiated templates.
8732     if (FD->isTemplateInstantiation())
8733       return;
8734 
8735     Body = FD->getBody();
8736   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(D))
8737     Body = MD->getBody();
8738   else if (auto *BD = dyn_cast<BlockDecl>(D))
8739     Body = BD->getBody();
8740 
8741   assert(Body && "Need a body here!");
8742 
8743   DiagnoseUnguardedAvailability(*this, D).IssueDiagnostics(Body);
8744 }
8745 
8746 void Sema::DiagnoseAvailabilityOfDecl(NamedDecl *D,
8747                                       ArrayRef<SourceLocation> Locs,
8748                                       const ObjCInterfaceDecl *UnknownObjCClass,
8749                                       bool ObjCPropertyAccess,
8750                                       bool AvoidPartialAvailabilityChecks,
8751                                       ObjCInterfaceDecl *ClassReceiver) {
8752   std::string Message;
8753   AvailabilityResult Result;
8754   const NamedDecl* OffendingDecl;
8755   // See if this declaration is unavailable, deprecated, or partial.
8756   std::tie(Result, OffendingDecl) =
8757       ShouldDiagnoseAvailabilityOfDecl(*this, D, &Message, ClassReceiver);
8758   if (Result == AR_Available)
8759     return;
8760 
8761   if (Result == AR_NotYetIntroduced) {
8762     if (AvoidPartialAvailabilityChecks)
8763       return;
8764 
8765     // We need to know the @available context in the current function to
8766     // diagnose this use, let DiagnoseUnguardedAvailabilityViolations do that
8767     // when we're done parsing the current function.
8768     if (getCurFunctionOrMethodDecl()) {
8769       getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
8770       return;
8771     } else if (getCurBlock() || getCurLambda()) {
8772       getCurFunction()->HasPotentialAvailabilityViolations = true;
8773       return;
8774     }
8775   }
8776 
8777   const ObjCPropertyDecl *ObjCPDecl = nullptr;
8778   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
8779     if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
8780       AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
8781       if (PDeclResult == Result)
8782         ObjCPDecl = PD;
8783     }
8784   }
8785 
8786   EmitAvailabilityWarning(*this, Result, D, OffendingDecl, Message, Locs,
8787                           UnknownObjCClass, ObjCPDecl, ObjCPropertyAccess);
8788 }
8789