1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/SwiftCallingConv.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> // std::sort 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 // Helper for coercing an aggregate argument or return value into an integer 41 // array of the same size (including padding) and alignment. This alternate 42 // coercion happens only for the RenderScript ABI and can be removed after 43 // runtimes that rely on it are no longer supported. 44 // 45 // RenderScript assumes that the size of the argument / return value in the IR 46 // is the same as the size of the corresponding qualified type. This helper 47 // coerces the aggregate type into an array of the same size (including 48 // padding). This coercion is used in lieu of expansion of struct members or 49 // other canonical coercions that return a coerced-type of larger size. 50 // 51 // Ty - The argument / return value type 52 // Context - The associated ASTContext 53 // LLVMContext - The associated LLVMContext 54 static ABIArgInfo coerceToIntArray(QualType Ty, 55 ASTContext &Context, 56 llvm::LLVMContext &LLVMContext) { 57 // Alignment and Size are measured in bits. 58 const uint64_t Size = Context.getTypeSize(Ty); 59 const uint64_t Alignment = Context.getTypeAlign(Ty); 60 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 61 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 62 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 63 } 64 65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 66 llvm::Value *Array, 67 llvm::Value *Value, 68 unsigned FirstIndex, 69 unsigned LastIndex) { 70 // Alternatively, we could emit this as a loop in the source. 71 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 72 llvm::Value *Cell = 73 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 74 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 75 } 76 } 77 78 static bool isAggregateTypeForABI(QualType T) { 79 return !CodeGenFunction::hasScalarEvaluationKind(T) || 80 T->isMemberFunctionPointerType(); 81 } 82 83 ABIArgInfo 84 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 85 llvm::Type *Padding) const { 86 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 87 ByRef, Realign, Padding); 88 } 89 90 ABIArgInfo 91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 92 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 93 /*ByRef*/ false, Realign); 94 } 95 96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 97 QualType Ty) const { 98 return Address::invalid(); 99 } 100 101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 102 if (Ty->isPromotableIntegerType()) 103 return true; 104 105 if (const auto *EIT = Ty->getAs<ExtIntType>()) 106 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 107 return true; 108 109 return false; 110 } 111 112 ABIInfo::~ABIInfo() {} 113 114 /// Does the given lowering require more than the given number of 115 /// registers when expanded? 116 /// 117 /// This is intended to be the basis of a reasonable basic implementation 118 /// of should{Pass,Return}IndirectlyForSwift. 119 /// 120 /// For most targets, a limit of four total registers is reasonable; this 121 /// limits the amount of code required in order to move around the value 122 /// in case it wasn't produced immediately prior to the call by the caller 123 /// (or wasn't produced in exactly the right registers) or isn't used 124 /// immediately within the callee. But some targets may need to further 125 /// limit the register count due to an inability to support that many 126 /// return registers. 127 static bool occupiesMoreThan(CodeGenTypes &cgt, 128 ArrayRef<llvm::Type*> scalarTypes, 129 unsigned maxAllRegisters) { 130 unsigned intCount = 0, fpCount = 0; 131 for (llvm::Type *type : scalarTypes) { 132 if (type->isPointerTy()) { 133 intCount++; 134 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 135 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 136 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 137 } else { 138 assert(type->isVectorTy() || type->isFloatingPointTy()); 139 fpCount++; 140 } 141 } 142 143 return (intCount + fpCount > maxAllRegisters); 144 } 145 146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 147 llvm::Type *eltTy, 148 unsigned numElts) const { 149 // The default implementation of this assumes that the target guarantees 150 // 128-bit SIMD support but nothing more. 151 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 152 } 153 154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 155 CGCXXABI &CXXABI) { 156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 157 if (!RD) { 158 if (!RT->getDecl()->canPassInRegisters()) 159 return CGCXXABI::RAA_Indirect; 160 return CGCXXABI::RAA_Default; 161 } 162 return CXXABI.getRecordArgABI(RD); 163 } 164 165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 166 CGCXXABI &CXXABI) { 167 const RecordType *RT = T->getAs<RecordType>(); 168 if (!RT) 169 return CGCXXABI::RAA_Default; 170 return getRecordArgABI(RT, CXXABI); 171 } 172 173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 174 const ABIInfo &Info) { 175 QualType Ty = FI.getReturnType(); 176 177 if (const auto *RT = Ty->getAs<RecordType>()) 178 if (!isa<CXXRecordDecl>(RT->getDecl()) && 179 !RT->getDecl()->canPassInRegisters()) { 180 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 181 return true; 182 } 183 184 return CXXABI.classifyReturnType(FI); 185 } 186 187 /// Pass transparent unions as if they were the type of the first element. Sema 188 /// should ensure that all elements of the union have the same "machine type". 189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 190 if (const RecordType *UT = Ty->getAsUnionType()) { 191 const RecordDecl *UD = UT->getDecl(); 192 if (UD->hasAttr<TransparentUnionAttr>()) { 193 assert(!UD->field_empty() && "sema created an empty transparent union"); 194 return UD->field_begin()->getType(); 195 } 196 } 197 return Ty; 198 } 199 200 CGCXXABI &ABIInfo::getCXXABI() const { 201 return CGT.getCXXABI(); 202 } 203 204 ASTContext &ABIInfo::getContext() const { 205 return CGT.getContext(); 206 } 207 208 llvm::LLVMContext &ABIInfo::getVMContext() const { 209 return CGT.getLLVMContext(); 210 } 211 212 const llvm::DataLayout &ABIInfo::getDataLayout() const { 213 return CGT.getDataLayout(); 214 } 215 216 const TargetInfo &ABIInfo::getTarget() const { 217 return CGT.getTarget(); 218 } 219 220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 221 return CGT.getCodeGenOpts(); 222 } 223 224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 225 226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 227 return false; 228 } 229 230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 231 uint64_t Members) const { 232 return false; 233 } 234 235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 236 raw_ostream &OS = llvm::errs(); 237 OS << "(ABIArgInfo Kind="; 238 switch (TheKind) { 239 case Direct: 240 OS << "Direct Type="; 241 if (llvm::Type *Ty = getCoerceToType()) 242 Ty->print(OS); 243 else 244 OS << "null"; 245 break; 246 case Extend: 247 OS << "Extend"; 248 break; 249 case Ignore: 250 OS << "Ignore"; 251 break; 252 case InAlloca: 253 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 254 break; 255 case Indirect: 256 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 257 << " ByVal=" << getIndirectByVal() 258 << " Realign=" << getIndirectRealign(); 259 break; 260 case Expand: 261 OS << "Expand"; 262 break; 263 case CoerceAndExpand: 264 OS << "CoerceAndExpand Type="; 265 getCoerceAndExpandType()->print(OS); 266 break; 267 } 268 OS << ")\n"; 269 } 270 271 // Dynamically round a pointer up to a multiple of the given alignment. 272 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 273 llvm::Value *Ptr, 274 CharUnits Align) { 275 llvm::Value *PtrAsInt = Ptr; 276 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 277 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 278 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 279 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 280 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 281 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 282 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 283 Ptr->getType(), 284 Ptr->getName() + ".aligned"); 285 return PtrAsInt; 286 } 287 288 /// Emit va_arg for a platform using the common void* representation, 289 /// where arguments are simply emitted in an array of slots on the stack. 290 /// 291 /// This version implements the core direct-value passing rules. 292 /// 293 /// \param SlotSize - The size and alignment of a stack slot. 294 /// Each argument will be allocated to a multiple of this number of 295 /// slots, and all the slots will be aligned to this value. 296 /// \param AllowHigherAlign - The slot alignment is not a cap; 297 /// an argument type with an alignment greater than the slot size 298 /// will be emitted on a higher-alignment address, potentially 299 /// leaving one or more empty slots behind as padding. If this 300 /// is false, the returned address might be less-aligned than 301 /// DirectAlign. 302 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 303 Address VAListAddr, 304 llvm::Type *DirectTy, 305 CharUnits DirectSize, 306 CharUnits DirectAlign, 307 CharUnits SlotSize, 308 bool AllowHigherAlign) { 309 // Cast the element type to i8* if necessary. Some platforms define 310 // va_list as a struct containing an i8* instead of just an i8*. 311 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 312 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 313 314 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 315 316 // If the CC aligns values higher than the slot size, do so if needed. 317 Address Addr = Address::invalid(); 318 if (AllowHigherAlign && DirectAlign > SlotSize) { 319 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 320 DirectAlign); 321 } else { 322 Addr = Address(Ptr, SlotSize); 323 } 324 325 // Advance the pointer past the argument, then store that back. 326 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 327 Address NextPtr = 328 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 329 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 330 331 // If the argument is smaller than a slot, and this is a big-endian 332 // target, the argument will be right-adjusted in its slot. 333 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 334 !DirectTy->isStructTy()) { 335 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 336 } 337 338 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 339 return Addr; 340 } 341 342 /// Emit va_arg for a platform using the common void* representation, 343 /// where arguments are simply emitted in an array of slots on the stack. 344 /// 345 /// \param IsIndirect - Values of this type are passed indirectly. 346 /// \param ValueInfo - The size and alignment of this type, generally 347 /// computed with getContext().getTypeInfoInChars(ValueTy). 348 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 349 /// Each argument will be allocated to a multiple of this number of 350 /// slots, and all the slots will be aligned to this value. 351 /// \param AllowHigherAlign - The slot alignment is not a cap; 352 /// an argument type with an alignment greater than the slot size 353 /// will be emitted on a higher-alignment address, potentially 354 /// leaving one or more empty slots behind as padding. 355 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 356 QualType ValueTy, bool IsIndirect, 357 std::pair<CharUnits, CharUnits> ValueInfo, 358 CharUnits SlotSizeAndAlign, 359 bool AllowHigherAlign) { 360 // The size and alignment of the value that was passed directly. 361 CharUnits DirectSize, DirectAlign; 362 if (IsIndirect) { 363 DirectSize = CGF.getPointerSize(); 364 DirectAlign = CGF.getPointerAlign(); 365 } else { 366 DirectSize = ValueInfo.first; 367 DirectAlign = ValueInfo.second; 368 } 369 370 // Cast the address we've calculated to the right type. 371 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 372 if (IsIndirect) 373 DirectTy = DirectTy->getPointerTo(0); 374 375 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 376 DirectSize, DirectAlign, 377 SlotSizeAndAlign, 378 AllowHigherAlign); 379 380 if (IsIndirect) { 381 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 382 } 383 384 return Addr; 385 386 } 387 388 static Address emitMergePHI(CodeGenFunction &CGF, 389 Address Addr1, llvm::BasicBlock *Block1, 390 Address Addr2, llvm::BasicBlock *Block2, 391 const llvm::Twine &Name = "") { 392 assert(Addr1.getType() == Addr2.getType()); 393 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 394 PHI->addIncoming(Addr1.getPointer(), Block1); 395 PHI->addIncoming(Addr2.getPointer(), Block2); 396 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 397 return Address(PHI, Align); 398 } 399 400 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 401 402 // If someone can figure out a general rule for this, that would be great. 403 // It's probably just doomed to be platform-dependent, though. 404 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 405 // Verified for: 406 // x86-64 FreeBSD, Linux, Darwin 407 // x86-32 FreeBSD, Linux, Darwin 408 // PowerPC Linux, Darwin 409 // ARM Darwin (*not* EABI) 410 // AArch64 Linux 411 return 32; 412 } 413 414 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 415 const FunctionNoProtoType *fnType) const { 416 // The following conventions are known to require this to be false: 417 // x86_stdcall 418 // MIPS 419 // For everything else, we just prefer false unless we opt out. 420 return false; 421 } 422 423 void 424 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 425 llvm::SmallString<24> &Opt) const { 426 // This assumes the user is passing a library name like "rt" instead of a 427 // filename like "librt.a/so", and that they don't care whether it's static or 428 // dynamic. 429 Opt = "-l"; 430 Opt += Lib; 431 } 432 433 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 434 // OpenCL kernels are called via an explicit runtime API with arguments 435 // set with clSetKernelArg(), not as normal sub-functions. 436 // Return SPIR_KERNEL by default as the kernel calling convention to 437 // ensure the fingerprint is fixed such way that each OpenCL argument 438 // gets one matching argument in the produced kernel function argument 439 // list to enable feasible implementation of clSetKernelArg() with 440 // aggregates etc. In case we would use the default C calling conv here, 441 // clSetKernelArg() might break depending on the target-specific 442 // conventions; different targets might split structs passed as values 443 // to multiple function arguments etc. 444 return llvm::CallingConv::SPIR_KERNEL; 445 } 446 447 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 448 llvm::PointerType *T, QualType QT) const { 449 return llvm::ConstantPointerNull::get(T); 450 } 451 452 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 453 const VarDecl *D) const { 454 assert(!CGM.getLangOpts().OpenCL && 455 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 456 "Address space agnostic languages only"); 457 return D ? D->getType().getAddressSpace() : LangAS::Default; 458 } 459 460 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 461 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 462 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 463 // Since target may map different address spaces in AST to the same address 464 // space, an address space conversion may end up as a bitcast. 465 if (auto *C = dyn_cast<llvm::Constant>(Src)) 466 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 467 // Try to preserve the source's name to make IR more readable. 468 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 469 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 470 } 471 472 llvm::Constant * 473 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 474 LangAS SrcAddr, LangAS DestAddr, 475 llvm::Type *DestTy) const { 476 // Since target may map different address spaces in AST to the same address 477 // space, an address space conversion may end up as a bitcast. 478 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 479 } 480 481 llvm::SyncScope::ID 482 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 483 SyncScope Scope, 484 llvm::AtomicOrdering Ordering, 485 llvm::LLVMContext &Ctx) const { 486 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 487 } 488 489 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 490 491 /// isEmptyField - Return true iff a the field is "empty", that is it 492 /// is an unnamed bit-field or an (array of) empty record(s). 493 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 494 bool AllowArrays) { 495 if (FD->isUnnamedBitfield()) 496 return true; 497 498 QualType FT = FD->getType(); 499 500 // Constant arrays of empty records count as empty, strip them off. 501 // Constant arrays of zero length always count as empty. 502 bool WasArray = false; 503 if (AllowArrays) 504 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 505 if (AT->getSize() == 0) 506 return true; 507 FT = AT->getElementType(); 508 // The [[no_unique_address]] special case below does not apply to 509 // arrays of C++ empty records, so we need to remember this fact. 510 WasArray = true; 511 } 512 513 const RecordType *RT = FT->getAs<RecordType>(); 514 if (!RT) 515 return false; 516 517 // C++ record fields are never empty, at least in the Itanium ABI. 518 // 519 // FIXME: We should use a predicate for whether this behavior is true in the 520 // current ABI. 521 // 522 // The exception to the above rule are fields marked with the 523 // [[no_unique_address]] attribute (since C++20). Those do count as empty 524 // according to the Itanium ABI. The exception applies only to records, 525 // not arrays of records, so we must also check whether we stripped off an 526 // array type above. 527 if (isa<CXXRecordDecl>(RT->getDecl()) && 528 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 529 return false; 530 531 return isEmptyRecord(Context, FT, AllowArrays); 532 } 533 534 /// isEmptyRecord - Return true iff a structure contains only empty 535 /// fields. Note that a structure with a flexible array member is not 536 /// considered empty. 537 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 538 const RecordType *RT = T->getAs<RecordType>(); 539 if (!RT) 540 return false; 541 const RecordDecl *RD = RT->getDecl(); 542 if (RD->hasFlexibleArrayMember()) 543 return false; 544 545 // If this is a C++ record, check the bases first. 546 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 547 for (const auto &I : CXXRD->bases()) 548 if (!isEmptyRecord(Context, I.getType(), true)) 549 return false; 550 551 for (const auto *I : RD->fields()) 552 if (!isEmptyField(Context, I, AllowArrays)) 553 return false; 554 return true; 555 } 556 557 /// isSingleElementStruct - Determine if a structure is a "single 558 /// element struct", i.e. it has exactly one non-empty field or 559 /// exactly one field which is itself a single element 560 /// struct. Structures with flexible array members are never 561 /// considered single element structs. 562 /// 563 /// \return The field declaration for the single non-empty field, if 564 /// it exists. 565 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 566 const RecordType *RT = T->getAs<RecordType>(); 567 if (!RT) 568 return nullptr; 569 570 const RecordDecl *RD = RT->getDecl(); 571 if (RD->hasFlexibleArrayMember()) 572 return nullptr; 573 574 const Type *Found = nullptr; 575 576 // If this is a C++ record, check the bases first. 577 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 578 for (const auto &I : CXXRD->bases()) { 579 // Ignore empty records. 580 if (isEmptyRecord(Context, I.getType(), true)) 581 continue; 582 583 // If we already found an element then this isn't a single-element struct. 584 if (Found) 585 return nullptr; 586 587 // If this is non-empty and not a single element struct, the composite 588 // cannot be a single element struct. 589 Found = isSingleElementStruct(I.getType(), Context); 590 if (!Found) 591 return nullptr; 592 } 593 } 594 595 // Check for single element. 596 for (const auto *FD : RD->fields()) { 597 QualType FT = FD->getType(); 598 599 // Ignore empty fields. 600 if (isEmptyField(Context, FD, true)) 601 continue; 602 603 // If we already found an element then this isn't a single-element 604 // struct. 605 if (Found) 606 return nullptr; 607 608 // Treat single element arrays as the element. 609 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 610 if (AT->getSize().getZExtValue() != 1) 611 break; 612 FT = AT->getElementType(); 613 } 614 615 if (!isAggregateTypeForABI(FT)) { 616 Found = FT.getTypePtr(); 617 } else { 618 Found = isSingleElementStruct(FT, Context); 619 if (!Found) 620 return nullptr; 621 } 622 } 623 624 // We don't consider a struct a single-element struct if it has 625 // padding beyond the element type. 626 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 627 return nullptr; 628 629 return Found; 630 } 631 632 namespace { 633 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 634 const ABIArgInfo &AI) { 635 // This default implementation defers to the llvm backend's va_arg 636 // instruction. It can handle only passing arguments directly 637 // (typically only handled in the backend for primitive types), or 638 // aggregates passed indirectly by pointer (NOTE: if the "byval" 639 // flag has ABI impact in the callee, this implementation cannot 640 // work.) 641 642 // Only a few cases are covered here at the moment -- those needed 643 // by the default abi. 644 llvm::Value *Val; 645 646 if (AI.isIndirect()) { 647 assert(!AI.getPaddingType() && 648 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 649 assert( 650 !AI.getIndirectRealign() && 651 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 652 653 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 654 CharUnits TyAlignForABI = TyInfo.second; 655 656 llvm::Type *BaseTy = 657 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 658 llvm::Value *Addr = 659 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 660 return Address(Addr, TyAlignForABI); 661 } else { 662 assert((AI.isDirect() || AI.isExtend()) && 663 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 664 665 assert(!AI.getInReg() && 666 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 667 assert(!AI.getPaddingType() && 668 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 669 assert(!AI.getDirectOffset() && 670 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 671 assert(!AI.getCoerceToType() && 672 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 673 674 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 675 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 676 CGF.Builder.CreateStore(Val, Temp); 677 return Temp; 678 } 679 } 680 681 /// DefaultABIInfo - The default implementation for ABI specific 682 /// details. This implementation provides information which results in 683 /// self-consistent and sensible LLVM IR generation, but does not 684 /// conform to any particular ABI. 685 class DefaultABIInfo : public ABIInfo { 686 public: 687 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 688 689 ABIArgInfo classifyReturnType(QualType RetTy) const; 690 ABIArgInfo classifyArgumentType(QualType RetTy) const; 691 692 void computeInfo(CGFunctionInfo &FI) const override { 693 if (!getCXXABI().classifyReturnType(FI)) 694 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 695 for (auto &I : FI.arguments()) 696 I.info = classifyArgumentType(I.type); 697 } 698 699 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 700 QualType Ty) const override { 701 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 702 } 703 }; 704 705 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 706 public: 707 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 708 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 709 }; 710 711 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 712 Ty = useFirstFieldIfTransparentUnion(Ty); 713 714 if (isAggregateTypeForABI(Ty)) { 715 // Records with non-trivial destructors/copy-constructors should not be 716 // passed by value. 717 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 718 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 719 720 return getNaturalAlignIndirect(Ty); 721 } 722 723 // Treat an enum type as its underlying type. 724 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 725 Ty = EnumTy->getDecl()->getIntegerType(); 726 727 ASTContext &Context = getContext(); 728 if (const auto *EIT = Ty->getAs<ExtIntType>()) 729 if (EIT->getNumBits() > 730 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 731 ? Context.Int128Ty 732 : Context.LongLongTy)) 733 return getNaturalAlignIndirect(Ty); 734 735 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 736 : ABIArgInfo::getDirect()); 737 } 738 739 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 740 if (RetTy->isVoidType()) 741 return ABIArgInfo::getIgnore(); 742 743 if (isAggregateTypeForABI(RetTy)) 744 return getNaturalAlignIndirect(RetTy); 745 746 // Treat an enum type as its underlying type. 747 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 748 RetTy = EnumTy->getDecl()->getIntegerType(); 749 750 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 751 if (EIT->getNumBits() > 752 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 753 ? getContext().Int128Ty 754 : getContext().LongLongTy)) 755 return getNaturalAlignIndirect(RetTy); 756 757 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 758 : ABIArgInfo::getDirect()); 759 } 760 761 //===----------------------------------------------------------------------===// 762 // WebAssembly ABI Implementation 763 // 764 // This is a very simple ABI that relies a lot on DefaultABIInfo. 765 //===----------------------------------------------------------------------===// 766 767 class WebAssemblyABIInfo final : public SwiftABIInfo { 768 public: 769 enum ABIKind { 770 MVP = 0, 771 ExperimentalMV = 1, 772 }; 773 774 private: 775 DefaultABIInfo defaultInfo; 776 ABIKind Kind; 777 778 public: 779 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 780 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 781 782 private: 783 ABIArgInfo classifyReturnType(QualType RetTy) const; 784 ABIArgInfo classifyArgumentType(QualType Ty) const; 785 786 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 787 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 788 // overload them. 789 void computeInfo(CGFunctionInfo &FI) const override { 790 if (!getCXXABI().classifyReturnType(FI)) 791 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 792 for (auto &Arg : FI.arguments()) 793 Arg.info = classifyArgumentType(Arg.type); 794 } 795 796 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 797 QualType Ty) const override; 798 799 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 800 bool asReturnValue) const override { 801 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 802 } 803 804 bool isSwiftErrorInRegister() const override { 805 return false; 806 } 807 }; 808 809 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 810 public: 811 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 812 WebAssemblyABIInfo::ABIKind K) 813 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 814 815 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 816 CodeGen::CodeGenModule &CGM) const override { 817 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 818 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 819 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 820 llvm::Function *Fn = cast<llvm::Function>(GV); 821 llvm::AttrBuilder B; 822 B.addAttribute("wasm-import-module", Attr->getImportModule()); 823 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 824 } 825 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 826 llvm::Function *Fn = cast<llvm::Function>(GV); 827 llvm::AttrBuilder B; 828 B.addAttribute("wasm-import-name", Attr->getImportName()); 829 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 830 } 831 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 832 llvm::Function *Fn = cast<llvm::Function>(GV); 833 llvm::AttrBuilder B; 834 B.addAttribute("wasm-export-name", Attr->getExportName()); 835 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 836 } 837 } 838 839 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 840 llvm::Function *Fn = cast<llvm::Function>(GV); 841 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 842 Fn->addFnAttr("no-prototype"); 843 } 844 } 845 }; 846 847 /// Classify argument of given type \p Ty. 848 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 849 Ty = useFirstFieldIfTransparentUnion(Ty); 850 851 if (isAggregateTypeForABI(Ty)) { 852 // Records with non-trivial destructors/copy-constructors should not be 853 // passed by value. 854 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 855 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 856 // Ignore empty structs/unions. 857 if (isEmptyRecord(getContext(), Ty, true)) 858 return ABIArgInfo::getIgnore(); 859 // Lower single-element structs to just pass a regular value. TODO: We 860 // could do reasonable-size multiple-element structs too, using getExpand(), 861 // though watch out for things like bitfields. 862 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 863 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 864 // For the experimental multivalue ABI, fully expand all other aggregates 865 if (Kind == ABIKind::ExperimentalMV) { 866 const RecordType *RT = Ty->getAs<RecordType>(); 867 assert(RT); 868 bool HasBitField = false; 869 for (auto *Field : RT->getDecl()->fields()) { 870 if (Field->isBitField()) { 871 HasBitField = true; 872 break; 873 } 874 } 875 if (!HasBitField) 876 return ABIArgInfo::getExpand(); 877 } 878 } 879 880 // Otherwise just do the default thing. 881 return defaultInfo.classifyArgumentType(Ty); 882 } 883 884 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 885 if (isAggregateTypeForABI(RetTy)) { 886 // Records with non-trivial destructors/copy-constructors should not be 887 // returned by value. 888 if (!getRecordArgABI(RetTy, getCXXABI())) { 889 // Ignore empty structs/unions. 890 if (isEmptyRecord(getContext(), RetTy, true)) 891 return ABIArgInfo::getIgnore(); 892 // Lower single-element structs to just return a regular value. TODO: We 893 // could do reasonable-size multiple-element structs too, using 894 // ABIArgInfo::getDirect(). 895 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 896 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 897 // For the experimental multivalue ABI, return all other aggregates 898 if (Kind == ABIKind::ExperimentalMV) 899 return ABIArgInfo::getDirect(); 900 } 901 } 902 903 // Otherwise just do the default thing. 904 return defaultInfo.classifyReturnType(RetTy); 905 } 906 907 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 908 QualType Ty) const { 909 bool IsIndirect = isAggregateTypeForABI(Ty) && 910 !isEmptyRecord(getContext(), Ty, true) && 911 !isSingleElementStruct(Ty, getContext()); 912 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 913 getContext().getTypeInfoInChars(Ty), 914 CharUnits::fromQuantity(4), 915 /*AllowHigherAlign=*/true); 916 } 917 918 //===----------------------------------------------------------------------===// 919 // le32/PNaCl bitcode ABI Implementation 920 // 921 // This is a simplified version of the x86_32 ABI. Arguments and return values 922 // are always passed on the stack. 923 //===----------------------------------------------------------------------===// 924 925 class PNaClABIInfo : public ABIInfo { 926 public: 927 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 928 929 ABIArgInfo classifyReturnType(QualType RetTy) const; 930 ABIArgInfo classifyArgumentType(QualType RetTy) const; 931 932 void computeInfo(CGFunctionInfo &FI) const override; 933 Address EmitVAArg(CodeGenFunction &CGF, 934 Address VAListAddr, QualType Ty) const override; 935 }; 936 937 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 938 public: 939 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 940 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 941 }; 942 943 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 944 if (!getCXXABI().classifyReturnType(FI)) 945 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 946 947 for (auto &I : FI.arguments()) 948 I.info = classifyArgumentType(I.type); 949 } 950 951 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 952 QualType Ty) const { 953 // The PNaCL ABI is a bit odd, in that varargs don't use normal 954 // function classification. Structs get passed directly for varargs 955 // functions, through a rewriting transform in 956 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 957 // this target to actually support a va_arg instructions with an 958 // aggregate type, unlike other targets. 959 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 960 } 961 962 /// Classify argument of given type \p Ty. 963 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 964 if (isAggregateTypeForABI(Ty)) { 965 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 966 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 967 return getNaturalAlignIndirect(Ty); 968 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 969 // Treat an enum type as its underlying type. 970 Ty = EnumTy->getDecl()->getIntegerType(); 971 } else if (Ty->isFloatingType()) { 972 // Floating-point types don't go inreg. 973 return ABIArgInfo::getDirect(); 974 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 975 // Treat extended integers as integers if <=64, otherwise pass indirectly. 976 if (EIT->getNumBits() > 64) 977 return getNaturalAlignIndirect(Ty); 978 return ABIArgInfo::getDirect(); 979 } 980 981 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 982 : ABIArgInfo::getDirect()); 983 } 984 985 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 986 if (RetTy->isVoidType()) 987 return ABIArgInfo::getIgnore(); 988 989 // In the PNaCl ABI we always return records/structures on the stack. 990 if (isAggregateTypeForABI(RetTy)) 991 return getNaturalAlignIndirect(RetTy); 992 993 // Treat extended integers as integers if <=64, otherwise pass indirectly. 994 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 995 if (EIT->getNumBits() > 64) 996 return getNaturalAlignIndirect(RetTy); 997 return ABIArgInfo::getDirect(); 998 } 999 1000 // Treat an enum type as its underlying type. 1001 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1002 RetTy = EnumTy->getDecl()->getIntegerType(); 1003 1004 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1005 : ABIArgInfo::getDirect()); 1006 } 1007 1008 /// IsX86_MMXType - Return true if this is an MMX type. 1009 bool IsX86_MMXType(llvm::Type *IRType) { 1010 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1011 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1012 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1013 IRType->getScalarSizeInBits() != 64; 1014 } 1015 1016 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1017 StringRef Constraint, 1018 llvm::Type* Ty) { 1019 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1020 .Cases("y", "&y", "^Ym", true) 1021 .Default(false); 1022 if (IsMMXCons && Ty->isVectorTy()) { 1023 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1024 64) { 1025 // Invalid MMX constraint 1026 return nullptr; 1027 } 1028 1029 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1030 } 1031 1032 // No operation needed 1033 return Ty; 1034 } 1035 1036 /// Returns true if this type can be passed in SSE registers with the 1037 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1038 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1039 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1040 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1041 if (BT->getKind() == BuiltinType::LongDouble) { 1042 if (&Context.getTargetInfo().getLongDoubleFormat() == 1043 &llvm::APFloat::x87DoubleExtended()) 1044 return false; 1045 } 1046 return true; 1047 } 1048 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1049 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1050 // registers specially. 1051 unsigned VecSize = Context.getTypeSize(VT); 1052 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1053 return true; 1054 } 1055 return false; 1056 } 1057 1058 /// Returns true if this aggregate is small enough to be passed in SSE registers 1059 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1060 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1061 return NumMembers <= 4; 1062 } 1063 1064 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1065 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1066 auto AI = ABIArgInfo::getDirect(T); 1067 AI.setInReg(true); 1068 AI.setCanBeFlattened(false); 1069 return AI; 1070 } 1071 1072 //===----------------------------------------------------------------------===// 1073 // X86-32 ABI Implementation 1074 //===----------------------------------------------------------------------===// 1075 1076 /// Similar to llvm::CCState, but for Clang. 1077 struct CCState { 1078 CCState(CGFunctionInfo &FI) 1079 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1080 1081 llvm::SmallBitVector IsPreassigned; 1082 unsigned CC = CallingConv::CC_C; 1083 unsigned FreeRegs = 0; 1084 unsigned FreeSSERegs = 0; 1085 }; 1086 1087 enum { 1088 // Vectorcall only allows the first 6 parameters to be passed in registers. 1089 VectorcallMaxParamNumAsReg = 6 1090 }; 1091 1092 /// X86_32ABIInfo - The X86-32 ABI information. 1093 class X86_32ABIInfo : public SwiftABIInfo { 1094 enum Class { 1095 Integer, 1096 Float 1097 }; 1098 1099 static const unsigned MinABIStackAlignInBytes = 4; 1100 1101 bool IsDarwinVectorABI; 1102 bool IsRetSmallStructInRegABI; 1103 bool IsWin32StructABI; 1104 bool IsSoftFloatABI; 1105 bool IsMCUABI; 1106 unsigned DefaultNumRegisterParameters; 1107 1108 static bool isRegisterSize(unsigned Size) { 1109 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1110 } 1111 1112 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1113 // FIXME: Assumes vectorcall is in use. 1114 return isX86VectorTypeForVectorCall(getContext(), Ty); 1115 } 1116 1117 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1118 uint64_t NumMembers) const override { 1119 // FIXME: Assumes vectorcall is in use. 1120 return isX86VectorCallAggregateSmallEnough(NumMembers); 1121 } 1122 1123 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1124 1125 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1126 /// such that the argument will be passed in memory. 1127 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1128 1129 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1130 1131 /// Return the alignment to use for the given type on the stack. 1132 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1133 1134 Class classify(QualType Ty) const; 1135 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1136 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1137 1138 /// Updates the number of available free registers, returns 1139 /// true if any registers were allocated. 1140 bool updateFreeRegs(QualType Ty, CCState &State) const; 1141 1142 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1143 bool &NeedsPadding) const; 1144 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1145 1146 bool canExpandIndirectArgument(QualType Ty) const; 1147 1148 /// Rewrite the function info so that all memory arguments use 1149 /// inalloca. 1150 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1151 1152 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1153 CharUnits &StackOffset, ABIArgInfo &Info, 1154 QualType Type) const; 1155 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1156 1157 public: 1158 1159 void computeInfo(CGFunctionInfo &FI) const override; 1160 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1161 QualType Ty) const override; 1162 1163 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1164 bool RetSmallStructInRegABI, bool Win32StructABI, 1165 unsigned NumRegisterParameters, bool SoftFloatABI) 1166 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1167 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1168 IsWin32StructABI(Win32StructABI), 1169 IsSoftFloatABI(SoftFloatABI), 1170 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1171 DefaultNumRegisterParameters(NumRegisterParameters) {} 1172 1173 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1174 bool asReturnValue) const override { 1175 // LLVM's x86-32 lowering currently only assigns up to three 1176 // integer registers and three fp registers. Oddly, it'll use up to 1177 // four vector registers for vectors, but those can overlap with the 1178 // scalar registers. 1179 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1180 } 1181 1182 bool isSwiftErrorInRegister() const override { 1183 // x86-32 lowering does not support passing swifterror in a register. 1184 return false; 1185 } 1186 }; 1187 1188 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1189 public: 1190 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1191 bool RetSmallStructInRegABI, bool Win32StructABI, 1192 unsigned NumRegisterParameters, bool SoftFloatABI) 1193 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1194 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1195 NumRegisterParameters, SoftFloatABI)) {} 1196 1197 static bool isStructReturnInRegABI( 1198 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1199 1200 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1201 CodeGen::CodeGenModule &CGM) const override; 1202 1203 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1204 // Darwin uses different dwarf register numbers for EH. 1205 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1206 return 4; 1207 } 1208 1209 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1210 llvm::Value *Address) const override; 1211 1212 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1213 StringRef Constraint, 1214 llvm::Type* Ty) const override { 1215 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1216 } 1217 1218 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1219 std::string &Constraints, 1220 std::vector<llvm::Type *> &ResultRegTypes, 1221 std::vector<llvm::Type *> &ResultTruncRegTypes, 1222 std::vector<LValue> &ResultRegDests, 1223 std::string &AsmString, 1224 unsigned NumOutputs) const override; 1225 1226 llvm::Constant * 1227 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1228 unsigned Sig = (0xeb << 0) | // jmp rel8 1229 (0x06 << 8) | // .+0x08 1230 ('v' << 16) | 1231 ('2' << 24); 1232 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1233 } 1234 1235 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1236 return "movl\t%ebp, %ebp" 1237 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1238 } 1239 }; 1240 1241 } 1242 1243 /// Rewrite input constraint references after adding some output constraints. 1244 /// In the case where there is one output and one input and we add one output, 1245 /// we need to replace all operand references greater than or equal to 1: 1246 /// mov $0, $1 1247 /// mov eax, $1 1248 /// The result will be: 1249 /// mov $0, $2 1250 /// mov eax, $2 1251 static void rewriteInputConstraintReferences(unsigned FirstIn, 1252 unsigned NumNewOuts, 1253 std::string &AsmString) { 1254 std::string Buf; 1255 llvm::raw_string_ostream OS(Buf); 1256 size_t Pos = 0; 1257 while (Pos < AsmString.size()) { 1258 size_t DollarStart = AsmString.find('$', Pos); 1259 if (DollarStart == std::string::npos) 1260 DollarStart = AsmString.size(); 1261 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1262 if (DollarEnd == std::string::npos) 1263 DollarEnd = AsmString.size(); 1264 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1265 Pos = DollarEnd; 1266 size_t NumDollars = DollarEnd - DollarStart; 1267 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1268 // We have an operand reference. 1269 size_t DigitStart = Pos; 1270 if (AsmString[DigitStart] == '{') { 1271 OS << '{'; 1272 ++DigitStart; 1273 } 1274 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1275 if (DigitEnd == std::string::npos) 1276 DigitEnd = AsmString.size(); 1277 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1278 unsigned OperandIndex; 1279 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1280 if (OperandIndex >= FirstIn) 1281 OperandIndex += NumNewOuts; 1282 OS << OperandIndex; 1283 } else { 1284 OS << OperandStr; 1285 } 1286 Pos = DigitEnd; 1287 } 1288 } 1289 AsmString = std::move(OS.str()); 1290 } 1291 1292 /// Add output constraints for EAX:EDX because they are return registers. 1293 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1294 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1295 std::vector<llvm::Type *> &ResultRegTypes, 1296 std::vector<llvm::Type *> &ResultTruncRegTypes, 1297 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1298 unsigned NumOutputs) const { 1299 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1300 1301 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1302 // larger. 1303 if (!Constraints.empty()) 1304 Constraints += ','; 1305 if (RetWidth <= 32) { 1306 Constraints += "={eax}"; 1307 ResultRegTypes.push_back(CGF.Int32Ty); 1308 } else { 1309 // Use the 'A' constraint for EAX:EDX. 1310 Constraints += "=A"; 1311 ResultRegTypes.push_back(CGF.Int64Ty); 1312 } 1313 1314 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1315 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1316 ResultTruncRegTypes.push_back(CoerceTy); 1317 1318 // Coerce the integer by bitcasting the return slot pointer. 1319 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1320 CoerceTy->getPointerTo())); 1321 ResultRegDests.push_back(ReturnSlot); 1322 1323 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1324 } 1325 1326 /// shouldReturnTypeInRegister - Determine if the given type should be 1327 /// returned in a register (for the Darwin and MCU ABI). 1328 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1329 ASTContext &Context) const { 1330 uint64_t Size = Context.getTypeSize(Ty); 1331 1332 // For i386, type must be register sized. 1333 // For the MCU ABI, it only needs to be <= 8-byte 1334 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1335 return false; 1336 1337 if (Ty->isVectorType()) { 1338 // 64- and 128- bit vectors inside structures are not returned in 1339 // registers. 1340 if (Size == 64 || Size == 128) 1341 return false; 1342 1343 return true; 1344 } 1345 1346 // If this is a builtin, pointer, enum, complex type, member pointer, or 1347 // member function pointer it is ok. 1348 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1349 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1350 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1351 return true; 1352 1353 // Arrays are treated like records. 1354 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1355 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1356 1357 // Otherwise, it must be a record type. 1358 const RecordType *RT = Ty->getAs<RecordType>(); 1359 if (!RT) return false; 1360 1361 // FIXME: Traverse bases here too. 1362 1363 // Structure types are passed in register if all fields would be 1364 // passed in a register. 1365 for (const auto *FD : RT->getDecl()->fields()) { 1366 // Empty fields are ignored. 1367 if (isEmptyField(Context, FD, true)) 1368 continue; 1369 1370 // Check fields recursively. 1371 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1372 return false; 1373 } 1374 return true; 1375 } 1376 1377 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1378 // Treat complex types as the element type. 1379 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1380 Ty = CTy->getElementType(); 1381 1382 // Check for a type which we know has a simple scalar argument-passing 1383 // convention without any padding. (We're specifically looking for 32 1384 // and 64-bit integer and integer-equivalents, float, and double.) 1385 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1386 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1387 return false; 1388 1389 uint64_t Size = Context.getTypeSize(Ty); 1390 return Size == 32 || Size == 64; 1391 } 1392 1393 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1394 uint64_t &Size) { 1395 for (const auto *FD : RD->fields()) { 1396 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1397 // argument is smaller than 32-bits, expanding the struct will create 1398 // alignment padding. 1399 if (!is32Or64BitBasicType(FD->getType(), Context)) 1400 return false; 1401 1402 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1403 // how to expand them yet, and the predicate for telling if a bitfield still 1404 // counts as "basic" is more complicated than what we were doing previously. 1405 if (FD->isBitField()) 1406 return false; 1407 1408 Size += Context.getTypeSize(FD->getType()); 1409 } 1410 return true; 1411 } 1412 1413 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1414 uint64_t &Size) { 1415 // Don't do this if there are any non-empty bases. 1416 for (const CXXBaseSpecifier &Base : RD->bases()) { 1417 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1418 Size)) 1419 return false; 1420 } 1421 if (!addFieldSizes(Context, RD, Size)) 1422 return false; 1423 return true; 1424 } 1425 1426 /// Test whether an argument type which is to be passed indirectly (on the 1427 /// stack) would have the equivalent layout if it was expanded into separate 1428 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1429 /// optimizations. 1430 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1431 // We can only expand structure types. 1432 const RecordType *RT = Ty->getAs<RecordType>(); 1433 if (!RT) 1434 return false; 1435 const RecordDecl *RD = RT->getDecl(); 1436 uint64_t Size = 0; 1437 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1438 if (!IsWin32StructABI) { 1439 // On non-Windows, we have to conservatively match our old bitcode 1440 // prototypes in order to be ABI-compatible at the bitcode level. 1441 if (!CXXRD->isCLike()) 1442 return false; 1443 } else { 1444 // Don't do this for dynamic classes. 1445 if (CXXRD->isDynamicClass()) 1446 return false; 1447 } 1448 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1449 return false; 1450 } else { 1451 if (!addFieldSizes(getContext(), RD, Size)) 1452 return false; 1453 } 1454 1455 // We can do this if there was no alignment padding. 1456 return Size == getContext().getTypeSize(Ty); 1457 } 1458 1459 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1460 // If the return value is indirect, then the hidden argument is consuming one 1461 // integer register. 1462 if (State.FreeRegs) { 1463 --State.FreeRegs; 1464 if (!IsMCUABI) 1465 return getNaturalAlignIndirectInReg(RetTy); 1466 } 1467 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1468 } 1469 1470 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1471 CCState &State) const { 1472 if (RetTy->isVoidType()) 1473 return ABIArgInfo::getIgnore(); 1474 1475 const Type *Base = nullptr; 1476 uint64_t NumElts = 0; 1477 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1478 State.CC == llvm::CallingConv::X86_RegCall) && 1479 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1480 // The LLVM struct type for such an aggregate should lower properly. 1481 return ABIArgInfo::getDirect(); 1482 } 1483 1484 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1485 // On Darwin, some vectors are returned in registers. 1486 if (IsDarwinVectorABI) { 1487 uint64_t Size = getContext().getTypeSize(RetTy); 1488 1489 // 128-bit vectors are a special case; they are returned in 1490 // registers and we need to make sure to pick a type the LLVM 1491 // backend will like. 1492 if (Size == 128) 1493 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1494 llvm::Type::getInt64Ty(getVMContext()), 2)); 1495 1496 // Always return in register if it fits in a general purpose 1497 // register, or if it is 64 bits and has a single element. 1498 if ((Size == 8 || Size == 16 || Size == 32) || 1499 (Size == 64 && VT->getNumElements() == 1)) 1500 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1501 Size)); 1502 1503 return getIndirectReturnResult(RetTy, State); 1504 } 1505 1506 return ABIArgInfo::getDirect(); 1507 } 1508 1509 if (isAggregateTypeForABI(RetTy)) { 1510 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1511 // Structures with flexible arrays are always indirect. 1512 if (RT->getDecl()->hasFlexibleArrayMember()) 1513 return getIndirectReturnResult(RetTy, State); 1514 } 1515 1516 // If specified, structs and unions are always indirect. 1517 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1518 return getIndirectReturnResult(RetTy, State); 1519 1520 // Ignore empty structs/unions. 1521 if (isEmptyRecord(getContext(), RetTy, true)) 1522 return ABIArgInfo::getIgnore(); 1523 1524 // Small structures which are register sized are generally returned 1525 // in a register. 1526 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1527 uint64_t Size = getContext().getTypeSize(RetTy); 1528 1529 // As a special-case, if the struct is a "single-element" struct, and 1530 // the field is of type "float" or "double", return it in a 1531 // floating-point register. (MSVC does not apply this special case.) 1532 // We apply a similar transformation for pointer types to improve the 1533 // quality of the generated IR. 1534 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1535 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1536 || SeltTy->hasPointerRepresentation()) 1537 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1538 1539 // FIXME: We should be able to narrow this integer in cases with dead 1540 // padding. 1541 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1542 } 1543 1544 return getIndirectReturnResult(RetTy, State); 1545 } 1546 1547 // Treat an enum type as its underlying type. 1548 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1549 RetTy = EnumTy->getDecl()->getIntegerType(); 1550 1551 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1552 if (EIT->getNumBits() > 64) 1553 return getIndirectReturnResult(RetTy, State); 1554 1555 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1556 : ABIArgInfo::getDirect()); 1557 } 1558 1559 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1560 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1561 } 1562 1563 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1564 const RecordType *RT = Ty->getAs<RecordType>(); 1565 if (!RT) 1566 return 0; 1567 const RecordDecl *RD = RT->getDecl(); 1568 1569 // If this is a C++ record, check the bases first. 1570 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1571 for (const auto &I : CXXRD->bases()) 1572 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1573 return false; 1574 1575 for (const auto *i : RD->fields()) { 1576 QualType FT = i->getType(); 1577 1578 if (isSIMDVectorType(Context, FT)) 1579 return true; 1580 1581 if (isRecordWithSIMDVectorType(Context, FT)) 1582 return true; 1583 } 1584 1585 return false; 1586 } 1587 1588 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1589 unsigned Align) const { 1590 // Otherwise, if the alignment is less than or equal to the minimum ABI 1591 // alignment, just use the default; the backend will handle this. 1592 if (Align <= MinABIStackAlignInBytes) 1593 return 0; // Use default alignment. 1594 1595 // On non-Darwin, the stack type alignment is always 4. 1596 if (!IsDarwinVectorABI) { 1597 // Set explicit alignment, since we may need to realign the top. 1598 return MinABIStackAlignInBytes; 1599 } 1600 1601 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1602 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1603 isRecordWithSIMDVectorType(getContext(), Ty))) 1604 return 16; 1605 1606 return MinABIStackAlignInBytes; 1607 } 1608 1609 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1610 CCState &State) const { 1611 if (!ByVal) { 1612 if (State.FreeRegs) { 1613 --State.FreeRegs; // Non-byval indirects just use one pointer. 1614 if (!IsMCUABI) 1615 return getNaturalAlignIndirectInReg(Ty); 1616 } 1617 return getNaturalAlignIndirect(Ty, false); 1618 } 1619 1620 // Compute the byval alignment. 1621 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1622 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1623 if (StackAlign == 0) 1624 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1625 1626 // If the stack alignment is less than the type alignment, realign the 1627 // argument. 1628 bool Realign = TypeAlign > StackAlign; 1629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1630 /*ByVal=*/true, Realign); 1631 } 1632 1633 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1634 const Type *T = isSingleElementStruct(Ty, getContext()); 1635 if (!T) 1636 T = Ty.getTypePtr(); 1637 1638 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1639 BuiltinType::Kind K = BT->getKind(); 1640 if (K == BuiltinType::Float || K == BuiltinType::Double) 1641 return Float; 1642 } 1643 return Integer; 1644 } 1645 1646 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1647 if (!IsSoftFloatABI) { 1648 Class C = classify(Ty); 1649 if (C == Float) 1650 return false; 1651 } 1652 1653 unsigned Size = getContext().getTypeSize(Ty); 1654 unsigned SizeInRegs = (Size + 31) / 32; 1655 1656 if (SizeInRegs == 0) 1657 return false; 1658 1659 if (!IsMCUABI) { 1660 if (SizeInRegs > State.FreeRegs) { 1661 State.FreeRegs = 0; 1662 return false; 1663 } 1664 } else { 1665 // The MCU psABI allows passing parameters in-reg even if there are 1666 // earlier parameters that are passed on the stack. Also, 1667 // it does not allow passing >8-byte structs in-register, 1668 // even if there are 3 free registers available. 1669 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1670 return false; 1671 } 1672 1673 State.FreeRegs -= SizeInRegs; 1674 return true; 1675 } 1676 1677 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1678 bool &InReg, 1679 bool &NeedsPadding) const { 1680 // On Windows, aggregates other than HFAs are never passed in registers, and 1681 // they do not consume register slots. Homogenous floating-point aggregates 1682 // (HFAs) have already been dealt with at this point. 1683 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1684 return false; 1685 1686 NeedsPadding = false; 1687 InReg = !IsMCUABI; 1688 1689 if (!updateFreeRegs(Ty, State)) 1690 return false; 1691 1692 if (IsMCUABI) 1693 return true; 1694 1695 if (State.CC == llvm::CallingConv::X86_FastCall || 1696 State.CC == llvm::CallingConv::X86_VectorCall || 1697 State.CC == llvm::CallingConv::X86_RegCall) { 1698 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1699 NeedsPadding = true; 1700 1701 return false; 1702 } 1703 1704 return true; 1705 } 1706 1707 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1708 if (!updateFreeRegs(Ty, State)) 1709 return false; 1710 1711 if (IsMCUABI) 1712 return false; 1713 1714 if (State.CC == llvm::CallingConv::X86_FastCall || 1715 State.CC == llvm::CallingConv::X86_VectorCall || 1716 State.CC == llvm::CallingConv::X86_RegCall) { 1717 if (getContext().getTypeSize(Ty) > 32) 1718 return false; 1719 1720 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1721 Ty->isReferenceType()); 1722 } 1723 1724 return true; 1725 } 1726 1727 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1728 // Vectorcall x86 works subtly different than in x64, so the format is 1729 // a bit different than the x64 version. First, all vector types (not HVAs) 1730 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1731 // This differs from the x64 implementation, where the first 6 by INDEX get 1732 // registers. 1733 // In the second pass over the arguments, HVAs are passed in the remaining 1734 // vector registers if possible, or indirectly by address. The address will be 1735 // passed in ECX/EDX if available. Any other arguments are passed according to 1736 // the usual fastcall rules. 1737 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1738 for (int I = 0, E = Args.size(); I < E; ++I) { 1739 const Type *Base = nullptr; 1740 uint64_t NumElts = 0; 1741 const QualType &Ty = Args[I].type; 1742 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1743 isHomogeneousAggregate(Ty, Base, NumElts)) { 1744 if (State.FreeSSERegs >= NumElts) { 1745 State.FreeSSERegs -= NumElts; 1746 Args[I].info = ABIArgInfo::getDirectInReg(); 1747 State.IsPreassigned.set(I); 1748 } 1749 } 1750 } 1751 } 1752 1753 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1754 CCState &State) const { 1755 // FIXME: Set alignment on indirect arguments. 1756 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1757 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1758 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1759 1760 Ty = useFirstFieldIfTransparentUnion(Ty); 1761 TypeInfo TI = getContext().getTypeInfo(Ty); 1762 1763 // Check with the C++ ABI first. 1764 const RecordType *RT = Ty->getAs<RecordType>(); 1765 if (RT) { 1766 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1767 if (RAA == CGCXXABI::RAA_Indirect) { 1768 return getIndirectResult(Ty, false, State); 1769 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1770 // The field index doesn't matter, we'll fix it up later. 1771 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1772 } 1773 } 1774 1775 // Regcall uses the concept of a homogenous vector aggregate, similar 1776 // to other targets. 1777 const Type *Base = nullptr; 1778 uint64_t NumElts = 0; 1779 if ((IsRegCall || IsVectorCall) && 1780 isHomogeneousAggregate(Ty, Base, NumElts)) { 1781 if (State.FreeSSERegs >= NumElts) { 1782 State.FreeSSERegs -= NumElts; 1783 1784 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1785 // does. 1786 if (IsVectorCall) 1787 return getDirectX86Hva(); 1788 1789 if (Ty->isBuiltinType() || Ty->isVectorType()) 1790 return ABIArgInfo::getDirect(); 1791 return ABIArgInfo::getExpand(); 1792 } 1793 return getIndirectResult(Ty, /*ByVal=*/false, State); 1794 } 1795 1796 if (isAggregateTypeForABI(Ty)) { 1797 // Structures with flexible arrays are always indirect. 1798 // FIXME: This should not be byval! 1799 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1800 return getIndirectResult(Ty, true, State); 1801 1802 // Ignore empty structs/unions on non-Windows. 1803 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1804 return ABIArgInfo::getIgnore(); 1805 1806 llvm::LLVMContext &LLVMContext = getVMContext(); 1807 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1808 bool NeedsPadding = false; 1809 bool InReg; 1810 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1811 unsigned SizeInRegs = (TI.Width + 31) / 32; 1812 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1813 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1814 if (InReg) 1815 return ABIArgInfo::getDirectInReg(Result); 1816 else 1817 return ABIArgInfo::getDirect(Result); 1818 } 1819 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1820 1821 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1822 // added in MSVC 2015. 1823 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1824 return getIndirectResult(Ty, /*ByVal=*/false, State); 1825 1826 // Expand small (<= 128-bit) record types when we know that the stack layout 1827 // of those arguments will match the struct. This is important because the 1828 // LLVM backend isn't smart enough to remove byval, which inhibits many 1829 // optimizations. 1830 // Don't do this for the MCU if there are still free integer registers 1831 // (see X86_64 ABI for full explanation). 1832 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1833 canExpandIndirectArgument(Ty)) 1834 return ABIArgInfo::getExpandWithPadding( 1835 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1836 1837 return getIndirectResult(Ty, true, State); 1838 } 1839 1840 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1841 // On Windows, vectors are passed directly if registers are available, or 1842 // indirectly if not. This avoids the need to align argument memory. Pass 1843 // user-defined vector types larger than 512 bits indirectly for simplicity. 1844 if (IsWin32StructABI) { 1845 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1846 --State.FreeSSERegs; 1847 return ABIArgInfo::getDirectInReg(); 1848 } 1849 return getIndirectResult(Ty, /*ByVal=*/false, State); 1850 } 1851 1852 // On Darwin, some vectors are passed in memory, we handle this by passing 1853 // it as an i8/i16/i32/i64. 1854 if (IsDarwinVectorABI) { 1855 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1856 (TI.Width == 64 && VT->getNumElements() == 1)) 1857 return ABIArgInfo::getDirect( 1858 llvm::IntegerType::get(getVMContext(), TI.Width)); 1859 } 1860 1861 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1862 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1863 1864 return ABIArgInfo::getDirect(); 1865 } 1866 1867 1868 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1869 Ty = EnumTy->getDecl()->getIntegerType(); 1870 1871 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1872 1873 if (isPromotableIntegerTypeForABI(Ty)) { 1874 if (InReg) 1875 return ABIArgInfo::getExtendInReg(Ty); 1876 return ABIArgInfo::getExtend(Ty); 1877 } 1878 1879 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1880 if (EIT->getNumBits() <= 64) { 1881 if (InReg) 1882 return ABIArgInfo::getDirectInReg(); 1883 return ABIArgInfo::getDirect(); 1884 } 1885 return getIndirectResult(Ty, /*ByVal=*/false, State); 1886 } 1887 1888 if (InReg) 1889 return ABIArgInfo::getDirectInReg(); 1890 return ABIArgInfo::getDirect(); 1891 } 1892 1893 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1894 CCState State(FI); 1895 if (IsMCUABI) 1896 State.FreeRegs = 3; 1897 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1898 State.FreeRegs = 2; 1899 State.FreeSSERegs = 3; 1900 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1901 State.FreeRegs = 2; 1902 State.FreeSSERegs = 6; 1903 } else if (FI.getHasRegParm()) 1904 State.FreeRegs = FI.getRegParm(); 1905 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1906 State.FreeRegs = 5; 1907 State.FreeSSERegs = 8; 1908 } else if (IsWin32StructABI) { 1909 // Since MSVC 2015, the first three SSE vectors have been passed in 1910 // registers. The rest are passed indirectly. 1911 State.FreeRegs = DefaultNumRegisterParameters; 1912 State.FreeSSERegs = 3; 1913 } else 1914 State.FreeRegs = DefaultNumRegisterParameters; 1915 1916 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1917 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1918 } else if (FI.getReturnInfo().isIndirect()) { 1919 // The C++ ABI is not aware of register usage, so we have to check if the 1920 // return value was sret and put it in a register ourselves if appropriate. 1921 if (State.FreeRegs) { 1922 --State.FreeRegs; // The sret parameter consumes a register. 1923 if (!IsMCUABI) 1924 FI.getReturnInfo().setInReg(true); 1925 } 1926 } 1927 1928 // The chain argument effectively gives us another free register. 1929 if (FI.isChainCall()) 1930 ++State.FreeRegs; 1931 1932 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1933 // arguments to XMM registers as available. 1934 if (State.CC == llvm::CallingConv::X86_VectorCall) 1935 runVectorCallFirstPass(FI, State); 1936 1937 bool UsedInAlloca = false; 1938 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1939 for (int I = 0, E = Args.size(); I < E; ++I) { 1940 // Skip arguments that have already been assigned. 1941 if (State.IsPreassigned.test(I)) 1942 continue; 1943 1944 Args[I].info = classifyArgumentType(Args[I].type, State); 1945 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1946 } 1947 1948 // If we needed to use inalloca for any argument, do a second pass and rewrite 1949 // all the memory arguments to use inalloca. 1950 if (UsedInAlloca) 1951 rewriteWithInAlloca(FI); 1952 } 1953 1954 void 1955 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1956 CharUnits &StackOffset, ABIArgInfo &Info, 1957 QualType Type) const { 1958 // Arguments are always 4-byte-aligned. 1959 CharUnits WordSize = CharUnits::fromQuantity(4); 1960 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1961 1962 // sret pointers and indirect things will require an extra pointer 1963 // indirection, unless they are byval. Most things are byval, and will not 1964 // require this indirection. 1965 bool IsIndirect = false; 1966 if (Info.isIndirect() && !Info.getIndirectByVal()) 1967 IsIndirect = true; 1968 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1969 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1970 if (IsIndirect) 1971 LLTy = LLTy->getPointerTo(0); 1972 FrameFields.push_back(LLTy); 1973 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1974 1975 // Insert padding bytes to respect alignment. 1976 CharUnits FieldEnd = StackOffset; 1977 StackOffset = FieldEnd.alignTo(WordSize); 1978 if (StackOffset != FieldEnd) { 1979 CharUnits NumBytes = StackOffset - FieldEnd; 1980 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1981 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1982 FrameFields.push_back(Ty); 1983 } 1984 } 1985 1986 static bool isArgInAlloca(const ABIArgInfo &Info) { 1987 // Leave ignored and inreg arguments alone. 1988 switch (Info.getKind()) { 1989 case ABIArgInfo::InAlloca: 1990 return true; 1991 case ABIArgInfo::Ignore: 1992 return false; 1993 case ABIArgInfo::Indirect: 1994 case ABIArgInfo::Direct: 1995 case ABIArgInfo::Extend: 1996 return !Info.getInReg(); 1997 case ABIArgInfo::Expand: 1998 case ABIArgInfo::CoerceAndExpand: 1999 // These are aggregate types which are never passed in registers when 2000 // inalloca is involved. 2001 return true; 2002 } 2003 llvm_unreachable("invalid enum"); 2004 } 2005 2006 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2007 assert(IsWin32StructABI && "inalloca only supported on win32"); 2008 2009 // Build a packed struct type for all of the arguments in memory. 2010 SmallVector<llvm::Type *, 6> FrameFields; 2011 2012 // The stack alignment is always 4. 2013 CharUnits StackAlign = CharUnits::fromQuantity(4); 2014 2015 CharUnits StackOffset; 2016 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2017 2018 // Put 'this' into the struct before 'sret', if necessary. 2019 bool IsThisCall = 2020 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2021 ABIArgInfo &Ret = FI.getReturnInfo(); 2022 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2023 isArgInAlloca(I->info)) { 2024 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2025 ++I; 2026 } 2027 2028 // Put the sret parameter into the inalloca struct if it's in memory. 2029 if (Ret.isIndirect() && !Ret.getInReg()) { 2030 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2031 // On Windows, the hidden sret parameter is always returned in eax. 2032 Ret.setInAllocaSRet(IsWin32StructABI); 2033 } 2034 2035 // Skip the 'this' parameter in ecx. 2036 if (IsThisCall) 2037 ++I; 2038 2039 // Put arguments passed in memory into the struct. 2040 for (; I != E; ++I) { 2041 if (isArgInAlloca(I->info)) 2042 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2043 } 2044 2045 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2046 /*isPacked=*/true), 2047 StackAlign); 2048 } 2049 2050 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2051 Address VAListAddr, QualType Ty) const { 2052 2053 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2054 2055 // x86-32 changes the alignment of certain arguments on the stack. 2056 // 2057 // Just messing with TypeInfo like this works because we never pass 2058 // anything indirectly. 2059 TypeInfo.second = CharUnits::fromQuantity( 2060 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 2061 2062 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2063 TypeInfo, CharUnits::fromQuantity(4), 2064 /*AllowHigherAlign*/ true); 2065 } 2066 2067 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2068 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2069 assert(Triple.getArch() == llvm::Triple::x86); 2070 2071 switch (Opts.getStructReturnConvention()) { 2072 case CodeGenOptions::SRCK_Default: 2073 break; 2074 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2075 return false; 2076 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2077 return true; 2078 } 2079 2080 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2081 return true; 2082 2083 switch (Triple.getOS()) { 2084 case llvm::Triple::DragonFly: 2085 case llvm::Triple::FreeBSD: 2086 case llvm::Triple::OpenBSD: 2087 case llvm::Triple::Win32: 2088 return true; 2089 default: 2090 return false; 2091 } 2092 } 2093 2094 void X86_32TargetCodeGenInfo::setTargetAttributes( 2095 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2096 if (GV->isDeclaration()) 2097 return; 2098 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2099 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2100 llvm::Function *Fn = cast<llvm::Function>(GV); 2101 Fn->addFnAttr("stackrealign"); 2102 } 2103 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2104 llvm::Function *Fn = cast<llvm::Function>(GV); 2105 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2106 } 2107 } 2108 } 2109 2110 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2111 CodeGen::CodeGenFunction &CGF, 2112 llvm::Value *Address) const { 2113 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2114 2115 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2116 2117 // 0-7 are the eight integer registers; the order is different 2118 // on Darwin (for EH), but the range is the same. 2119 // 8 is %eip. 2120 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2121 2122 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2123 // 12-16 are st(0..4). Not sure why we stop at 4. 2124 // These have size 16, which is sizeof(long double) on 2125 // platforms with 8-byte alignment for that type. 2126 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2127 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2128 2129 } else { 2130 // 9 is %eflags, which doesn't get a size on Darwin for some 2131 // reason. 2132 Builder.CreateAlignedStore( 2133 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2134 CharUnits::One()); 2135 2136 // 11-16 are st(0..5). Not sure why we stop at 5. 2137 // These have size 12, which is sizeof(long double) on 2138 // platforms with 4-byte alignment for that type. 2139 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2140 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2141 } 2142 2143 return false; 2144 } 2145 2146 //===----------------------------------------------------------------------===// 2147 // X86-64 ABI Implementation 2148 //===----------------------------------------------------------------------===// 2149 2150 2151 namespace { 2152 /// The AVX ABI level for X86 targets. 2153 enum class X86AVXABILevel { 2154 None, 2155 AVX, 2156 AVX512 2157 }; 2158 2159 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2160 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2161 switch (AVXLevel) { 2162 case X86AVXABILevel::AVX512: 2163 return 512; 2164 case X86AVXABILevel::AVX: 2165 return 256; 2166 case X86AVXABILevel::None: 2167 return 128; 2168 } 2169 llvm_unreachable("Unknown AVXLevel"); 2170 } 2171 2172 /// X86_64ABIInfo - The X86_64 ABI information. 2173 class X86_64ABIInfo : public SwiftABIInfo { 2174 enum Class { 2175 Integer = 0, 2176 SSE, 2177 SSEUp, 2178 X87, 2179 X87Up, 2180 ComplexX87, 2181 NoClass, 2182 Memory 2183 }; 2184 2185 /// merge - Implement the X86_64 ABI merging algorithm. 2186 /// 2187 /// Merge an accumulating classification \arg Accum with a field 2188 /// classification \arg Field. 2189 /// 2190 /// \param Accum - The accumulating classification. This should 2191 /// always be either NoClass or the result of a previous merge 2192 /// call. In addition, this should never be Memory (the caller 2193 /// should just return Memory for the aggregate). 2194 static Class merge(Class Accum, Class Field); 2195 2196 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2197 /// 2198 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2199 /// final MEMORY or SSE classes when necessary. 2200 /// 2201 /// \param AggregateSize - The size of the current aggregate in 2202 /// the classification process. 2203 /// 2204 /// \param Lo - The classification for the parts of the type 2205 /// residing in the low word of the containing object. 2206 /// 2207 /// \param Hi - The classification for the parts of the type 2208 /// residing in the higher words of the containing object. 2209 /// 2210 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2211 2212 /// classify - Determine the x86_64 register classes in which the 2213 /// given type T should be passed. 2214 /// 2215 /// \param Lo - The classification for the parts of the type 2216 /// residing in the low word of the containing object. 2217 /// 2218 /// \param Hi - The classification for the parts of the type 2219 /// residing in the high word of the containing object. 2220 /// 2221 /// \param OffsetBase - The bit offset of this type in the 2222 /// containing object. Some parameters are classified different 2223 /// depending on whether they straddle an eightbyte boundary. 2224 /// 2225 /// \param isNamedArg - Whether the argument in question is a "named" 2226 /// argument, as used in AMD64-ABI 3.5.7. 2227 /// 2228 /// If a word is unused its result will be NoClass; if a type should 2229 /// be passed in Memory then at least the classification of \arg Lo 2230 /// will be Memory. 2231 /// 2232 /// The \arg Lo class will be NoClass iff the argument is ignored. 2233 /// 2234 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2235 /// also be ComplexX87. 2236 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2237 bool isNamedArg) const; 2238 2239 llvm::Type *GetByteVectorType(QualType Ty) const; 2240 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2241 unsigned IROffset, QualType SourceTy, 2242 unsigned SourceOffset) const; 2243 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2244 unsigned IROffset, QualType SourceTy, 2245 unsigned SourceOffset) const; 2246 2247 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2248 /// such that the argument will be returned in memory. 2249 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2250 2251 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2252 /// such that the argument will be passed in memory. 2253 /// 2254 /// \param freeIntRegs - The number of free integer registers remaining 2255 /// available. 2256 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2257 2258 ABIArgInfo classifyReturnType(QualType RetTy) const; 2259 2260 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2261 unsigned &neededInt, unsigned &neededSSE, 2262 bool isNamedArg) const; 2263 2264 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2265 unsigned &NeededSSE) const; 2266 2267 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2268 unsigned &NeededSSE) const; 2269 2270 bool IsIllegalVectorType(QualType Ty) const; 2271 2272 /// The 0.98 ABI revision clarified a lot of ambiguities, 2273 /// unfortunately in ways that were not always consistent with 2274 /// certain previous compilers. In particular, platforms which 2275 /// required strict binary compatibility with older versions of GCC 2276 /// may need to exempt themselves. 2277 bool honorsRevision0_98() const { 2278 return !getTarget().getTriple().isOSDarwin(); 2279 } 2280 2281 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2282 /// classify it as INTEGER (for compatibility with older clang compilers). 2283 bool classifyIntegerMMXAsSSE() const { 2284 // Clang <= 3.8 did not do this. 2285 if (getContext().getLangOpts().getClangABICompat() <= 2286 LangOptions::ClangABI::Ver3_8) 2287 return false; 2288 2289 const llvm::Triple &Triple = getTarget().getTriple(); 2290 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2291 return false; 2292 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2293 return false; 2294 return true; 2295 } 2296 2297 // GCC classifies vectors of __int128 as memory. 2298 bool passInt128VectorsInMem() const { 2299 // Clang <= 9.0 did not do this. 2300 if (getContext().getLangOpts().getClangABICompat() <= 2301 LangOptions::ClangABI::Ver9) 2302 return false; 2303 2304 const llvm::Triple &T = getTarget().getTriple(); 2305 return T.isOSLinux() || T.isOSNetBSD(); 2306 } 2307 2308 X86AVXABILevel AVXLevel; 2309 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2310 // 64-bit hardware. 2311 bool Has64BitPointers; 2312 2313 public: 2314 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2315 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2316 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2317 } 2318 2319 bool isPassedUsingAVXType(QualType type) const { 2320 unsigned neededInt, neededSSE; 2321 // The freeIntRegs argument doesn't matter here. 2322 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2323 /*isNamedArg*/true); 2324 if (info.isDirect()) { 2325 llvm::Type *ty = info.getCoerceToType(); 2326 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2327 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2328 } 2329 return false; 2330 } 2331 2332 void computeInfo(CGFunctionInfo &FI) const override; 2333 2334 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2335 QualType Ty) const override; 2336 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2337 QualType Ty) const override; 2338 2339 bool has64BitPointers() const { 2340 return Has64BitPointers; 2341 } 2342 2343 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2344 bool asReturnValue) const override { 2345 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2346 } 2347 bool isSwiftErrorInRegister() const override { 2348 return true; 2349 } 2350 }; 2351 2352 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2353 class WinX86_64ABIInfo : public SwiftABIInfo { 2354 public: 2355 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2356 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2357 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2358 2359 void computeInfo(CGFunctionInfo &FI) const override; 2360 2361 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2362 QualType Ty) const override; 2363 2364 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2365 // FIXME: Assumes vectorcall is in use. 2366 return isX86VectorTypeForVectorCall(getContext(), Ty); 2367 } 2368 2369 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2370 uint64_t NumMembers) const override { 2371 // FIXME: Assumes vectorcall is in use. 2372 return isX86VectorCallAggregateSmallEnough(NumMembers); 2373 } 2374 2375 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2376 bool asReturnValue) const override { 2377 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2378 } 2379 2380 bool isSwiftErrorInRegister() const override { 2381 return true; 2382 } 2383 2384 private: 2385 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2386 bool IsVectorCall, bool IsRegCall) const; 2387 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2388 const ABIArgInfo ¤t) const; 2389 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2390 bool IsVectorCall, bool IsRegCall) const; 2391 2392 X86AVXABILevel AVXLevel; 2393 2394 bool IsMingw64; 2395 }; 2396 2397 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2398 public: 2399 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2400 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2401 2402 const X86_64ABIInfo &getABIInfo() const { 2403 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2404 } 2405 2406 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2407 /// the autoreleaseRV/retainRV optimization. 2408 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2409 return true; 2410 } 2411 2412 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2413 return 7; 2414 } 2415 2416 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2417 llvm::Value *Address) const override { 2418 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2419 2420 // 0-15 are the 16 integer registers. 2421 // 16 is %rip. 2422 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2423 return false; 2424 } 2425 2426 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2427 StringRef Constraint, 2428 llvm::Type* Ty) const override { 2429 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2430 } 2431 2432 bool isNoProtoCallVariadic(const CallArgList &args, 2433 const FunctionNoProtoType *fnType) const override { 2434 // The default CC on x86-64 sets %al to the number of SSA 2435 // registers used, and GCC sets this when calling an unprototyped 2436 // function, so we override the default behavior. However, don't do 2437 // that when AVX types are involved: the ABI explicitly states it is 2438 // undefined, and it doesn't work in practice because of how the ABI 2439 // defines varargs anyway. 2440 if (fnType->getCallConv() == CC_C) { 2441 bool HasAVXType = false; 2442 for (CallArgList::const_iterator 2443 it = args.begin(), ie = args.end(); it != ie; ++it) { 2444 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2445 HasAVXType = true; 2446 break; 2447 } 2448 } 2449 2450 if (!HasAVXType) 2451 return true; 2452 } 2453 2454 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2455 } 2456 2457 llvm::Constant * 2458 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2459 unsigned Sig = (0xeb << 0) | // jmp rel8 2460 (0x06 << 8) | // .+0x08 2461 ('v' << 16) | 2462 ('2' << 24); 2463 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2464 } 2465 2466 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2467 CodeGen::CodeGenModule &CGM) const override { 2468 if (GV->isDeclaration()) 2469 return; 2470 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2471 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2472 llvm::Function *Fn = cast<llvm::Function>(GV); 2473 Fn->addFnAttr("stackrealign"); 2474 } 2475 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2476 llvm::Function *Fn = cast<llvm::Function>(GV); 2477 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2478 } 2479 } 2480 } 2481 2482 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2483 const FunctionDecl *Caller, 2484 const FunctionDecl *Callee, 2485 const CallArgList &Args) const override; 2486 }; 2487 2488 static void initFeatureMaps(const ASTContext &Ctx, 2489 llvm::StringMap<bool> &CallerMap, 2490 const FunctionDecl *Caller, 2491 llvm::StringMap<bool> &CalleeMap, 2492 const FunctionDecl *Callee) { 2493 if (CalleeMap.empty() && CallerMap.empty()) { 2494 // The caller is potentially nullptr in the case where the call isn't in a 2495 // function. In this case, the getFunctionFeatureMap ensures we just get 2496 // the TU level setting (since it cannot be modified by 'target'.. 2497 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2498 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2499 } 2500 } 2501 2502 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2503 SourceLocation CallLoc, 2504 const llvm::StringMap<bool> &CallerMap, 2505 const llvm::StringMap<bool> &CalleeMap, 2506 QualType Ty, StringRef Feature, 2507 bool IsArgument) { 2508 bool CallerHasFeat = CallerMap.lookup(Feature); 2509 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2510 if (!CallerHasFeat && !CalleeHasFeat) 2511 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2512 << IsArgument << Ty << Feature; 2513 2514 // Mixing calling conventions here is very clearly an error. 2515 if (!CallerHasFeat || !CalleeHasFeat) 2516 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2517 << IsArgument << Ty << Feature; 2518 2519 // Else, both caller and callee have the required feature, so there is no need 2520 // to diagnose. 2521 return false; 2522 } 2523 2524 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2525 SourceLocation CallLoc, 2526 const llvm::StringMap<bool> &CallerMap, 2527 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2528 bool IsArgument) { 2529 uint64_t Size = Ctx.getTypeSize(Ty); 2530 if (Size > 256) 2531 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2532 "avx512f", IsArgument); 2533 2534 if (Size > 128) 2535 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2536 IsArgument); 2537 2538 return false; 2539 } 2540 2541 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2542 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2543 const FunctionDecl *Callee, const CallArgList &Args) const { 2544 llvm::StringMap<bool> CallerMap; 2545 llvm::StringMap<bool> CalleeMap; 2546 unsigned ArgIndex = 0; 2547 2548 // We need to loop through the actual call arguments rather than the the 2549 // function's parameters, in case this variadic. 2550 for (const CallArg &Arg : Args) { 2551 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2552 // additionally changes how vectors >256 in size are passed. Like GCC, we 2553 // warn when a function is called with an argument where this will change. 2554 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2555 // the caller and callee features are mismatched. 2556 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2557 // change its ABI with attribute-target after this call. 2558 if (Arg.getType()->isVectorType() && 2559 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2560 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2561 QualType Ty = Arg.getType(); 2562 // The CallArg seems to have desugared the type already, so for clearer 2563 // diagnostics, replace it with the type in the FunctionDecl if possible. 2564 if (ArgIndex < Callee->getNumParams()) 2565 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2566 2567 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2568 CalleeMap, Ty, /*IsArgument*/ true)) 2569 return; 2570 } 2571 ++ArgIndex; 2572 } 2573 2574 // Check return always, as we don't have a good way of knowing in codegen 2575 // whether this value is used, tail-called, etc. 2576 if (Callee->getReturnType()->isVectorType() && 2577 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2578 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2579 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2580 CalleeMap, Callee->getReturnType(), 2581 /*IsArgument*/ false); 2582 } 2583 } 2584 2585 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2586 // If the argument does not end in .lib, automatically add the suffix. 2587 // If the argument contains a space, enclose it in quotes. 2588 // This matches the behavior of MSVC. 2589 bool Quote = (Lib.find(" ") != StringRef::npos); 2590 std::string ArgStr = Quote ? "\"" : ""; 2591 ArgStr += Lib; 2592 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2593 ArgStr += ".lib"; 2594 ArgStr += Quote ? "\"" : ""; 2595 return ArgStr; 2596 } 2597 2598 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2599 public: 2600 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2601 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2602 unsigned NumRegisterParameters) 2603 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2604 Win32StructABI, NumRegisterParameters, false) {} 2605 2606 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2607 CodeGen::CodeGenModule &CGM) const override; 2608 2609 void getDependentLibraryOption(llvm::StringRef Lib, 2610 llvm::SmallString<24> &Opt) const override { 2611 Opt = "/DEFAULTLIB:"; 2612 Opt += qualifyWindowsLibrary(Lib); 2613 } 2614 2615 void getDetectMismatchOption(llvm::StringRef Name, 2616 llvm::StringRef Value, 2617 llvm::SmallString<32> &Opt) const override { 2618 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2619 } 2620 }; 2621 2622 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2623 CodeGen::CodeGenModule &CGM) { 2624 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2625 2626 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2627 Fn->addFnAttr("stack-probe-size", 2628 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2629 if (CGM.getCodeGenOpts().NoStackArgProbe) 2630 Fn->addFnAttr("no-stack-arg-probe"); 2631 } 2632 } 2633 2634 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2635 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2636 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2637 if (GV->isDeclaration()) 2638 return; 2639 addStackProbeTargetAttributes(D, GV, CGM); 2640 } 2641 2642 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2643 public: 2644 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2645 X86AVXABILevel AVXLevel) 2646 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2647 2648 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2649 CodeGen::CodeGenModule &CGM) const override; 2650 2651 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2652 return 7; 2653 } 2654 2655 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2656 llvm::Value *Address) const override { 2657 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2658 2659 // 0-15 are the 16 integer registers. 2660 // 16 is %rip. 2661 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2662 return false; 2663 } 2664 2665 void getDependentLibraryOption(llvm::StringRef Lib, 2666 llvm::SmallString<24> &Opt) const override { 2667 Opt = "/DEFAULTLIB:"; 2668 Opt += qualifyWindowsLibrary(Lib); 2669 } 2670 2671 void getDetectMismatchOption(llvm::StringRef Name, 2672 llvm::StringRef Value, 2673 llvm::SmallString<32> &Opt) const override { 2674 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2675 } 2676 }; 2677 2678 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2679 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2680 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2681 if (GV->isDeclaration()) 2682 return; 2683 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2684 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2685 llvm::Function *Fn = cast<llvm::Function>(GV); 2686 Fn->addFnAttr("stackrealign"); 2687 } 2688 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2689 llvm::Function *Fn = cast<llvm::Function>(GV); 2690 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2691 } 2692 } 2693 2694 addStackProbeTargetAttributes(D, GV, CGM); 2695 } 2696 } 2697 2698 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2699 Class &Hi) const { 2700 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2701 // 2702 // (a) If one of the classes is Memory, the whole argument is passed in 2703 // memory. 2704 // 2705 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2706 // memory. 2707 // 2708 // (c) If the size of the aggregate exceeds two eightbytes and the first 2709 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2710 // argument is passed in memory. NOTE: This is necessary to keep the 2711 // ABI working for processors that don't support the __m256 type. 2712 // 2713 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2714 // 2715 // Some of these are enforced by the merging logic. Others can arise 2716 // only with unions; for example: 2717 // union { _Complex double; unsigned; } 2718 // 2719 // Note that clauses (b) and (c) were added in 0.98. 2720 // 2721 if (Hi == Memory) 2722 Lo = Memory; 2723 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2724 Lo = Memory; 2725 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2726 Lo = Memory; 2727 if (Hi == SSEUp && Lo != SSE) 2728 Hi = SSE; 2729 } 2730 2731 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2732 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2733 // classified recursively so that always two fields are 2734 // considered. The resulting class is calculated according to 2735 // the classes of the fields in the eightbyte: 2736 // 2737 // (a) If both classes are equal, this is the resulting class. 2738 // 2739 // (b) If one of the classes is NO_CLASS, the resulting class is 2740 // the other class. 2741 // 2742 // (c) If one of the classes is MEMORY, the result is the MEMORY 2743 // class. 2744 // 2745 // (d) If one of the classes is INTEGER, the result is the 2746 // INTEGER. 2747 // 2748 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2749 // MEMORY is used as class. 2750 // 2751 // (f) Otherwise class SSE is used. 2752 2753 // Accum should never be memory (we should have returned) or 2754 // ComplexX87 (because this cannot be passed in a structure). 2755 assert((Accum != Memory && Accum != ComplexX87) && 2756 "Invalid accumulated classification during merge."); 2757 if (Accum == Field || Field == NoClass) 2758 return Accum; 2759 if (Field == Memory) 2760 return Memory; 2761 if (Accum == NoClass) 2762 return Field; 2763 if (Accum == Integer || Field == Integer) 2764 return Integer; 2765 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2766 Accum == X87 || Accum == X87Up) 2767 return Memory; 2768 return SSE; 2769 } 2770 2771 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2772 Class &Lo, Class &Hi, bool isNamedArg) const { 2773 // FIXME: This code can be simplified by introducing a simple value class for 2774 // Class pairs with appropriate constructor methods for the various 2775 // situations. 2776 2777 // FIXME: Some of the split computations are wrong; unaligned vectors 2778 // shouldn't be passed in registers for example, so there is no chance they 2779 // can straddle an eightbyte. Verify & simplify. 2780 2781 Lo = Hi = NoClass; 2782 2783 Class &Current = OffsetBase < 64 ? Lo : Hi; 2784 Current = Memory; 2785 2786 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2787 BuiltinType::Kind k = BT->getKind(); 2788 2789 if (k == BuiltinType::Void) { 2790 Current = NoClass; 2791 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2792 Lo = Integer; 2793 Hi = Integer; 2794 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2795 Current = Integer; 2796 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2797 Current = SSE; 2798 } else if (k == BuiltinType::LongDouble) { 2799 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2800 if (LDF == &llvm::APFloat::IEEEquad()) { 2801 Lo = SSE; 2802 Hi = SSEUp; 2803 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2804 Lo = X87; 2805 Hi = X87Up; 2806 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2807 Current = SSE; 2808 } else 2809 llvm_unreachable("unexpected long double representation!"); 2810 } 2811 // FIXME: _Decimal32 and _Decimal64 are SSE. 2812 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2813 return; 2814 } 2815 2816 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2817 // Classify the underlying integer type. 2818 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2819 return; 2820 } 2821 2822 if (Ty->hasPointerRepresentation()) { 2823 Current = Integer; 2824 return; 2825 } 2826 2827 if (Ty->isMemberPointerType()) { 2828 if (Ty->isMemberFunctionPointerType()) { 2829 if (Has64BitPointers) { 2830 // If Has64BitPointers, this is an {i64, i64}, so classify both 2831 // Lo and Hi now. 2832 Lo = Hi = Integer; 2833 } else { 2834 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2835 // straddles an eightbyte boundary, Hi should be classified as well. 2836 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2837 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2838 if (EB_FuncPtr != EB_ThisAdj) { 2839 Lo = Hi = Integer; 2840 } else { 2841 Current = Integer; 2842 } 2843 } 2844 } else { 2845 Current = Integer; 2846 } 2847 return; 2848 } 2849 2850 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2851 uint64_t Size = getContext().getTypeSize(VT); 2852 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2853 // gcc passes the following as integer: 2854 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2855 // 2 bytes - <2 x char>, <1 x short> 2856 // 1 byte - <1 x char> 2857 Current = Integer; 2858 2859 // If this type crosses an eightbyte boundary, it should be 2860 // split. 2861 uint64_t EB_Lo = (OffsetBase) / 64; 2862 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2863 if (EB_Lo != EB_Hi) 2864 Hi = Lo; 2865 } else if (Size == 64) { 2866 QualType ElementType = VT->getElementType(); 2867 2868 // gcc passes <1 x double> in memory. :( 2869 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2870 return; 2871 2872 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2873 // pass them as integer. For platforms where clang is the de facto 2874 // platform compiler, we must continue to use integer. 2875 if (!classifyIntegerMMXAsSSE() && 2876 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2877 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2878 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2879 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2880 Current = Integer; 2881 else 2882 Current = SSE; 2883 2884 // If this type crosses an eightbyte boundary, it should be 2885 // split. 2886 if (OffsetBase && OffsetBase != 64) 2887 Hi = Lo; 2888 } else if (Size == 128 || 2889 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2890 QualType ElementType = VT->getElementType(); 2891 2892 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2893 if (passInt128VectorsInMem() && Size != 128 && 2894 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2895 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2896 return; 2897 2898 // Arguments of 256-bits are split into four eightbyte chunks. The 2899 // least significant one belongs to class SSE and all the others to class 2900 // SSEUP. The original Lo and Hi design considers that types can't be 2901 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2902 // This design isn't correct for 256-bits, but since there're no cases 2903 // where the upper parts would need to be inspected, avoid adding 2904 // complexity and just consider Hi to match the 64-256 part. 2905 // 2906 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2907 // registers if they are "named", i.e. not part of the "..." of a 2908 // variadic function. 2909 // 2910 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2911 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2912 Lo = SSE; 2913 Hi = SSEUp; 2914 } 2915 return; 2916 } 2917 2918 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2919 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2920 2921 uint64_t Size = getContext().getTypeSize(Ty); 2922 if (ET->isIntegralOrEnumerationType()) { 2923 if (Size <= 64) 2924 Current = Integer; 2925 else if (Size <= 128) 2926 Lo = Hi = Integer; 2927 } else if (ET == getContext().FloatTy) { 2928 Current = SSE; 2929 } else if (ET == getContext().DoubleTy) { 2930 Lo = Hi = SSE; 2931 } else if (ET == getContext().LongDoubleTy) { 2932 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2933 if (LDF == &llvm::APFloat::IEEEquad()) 2934 Current = Memory; 2935 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2936 Current = ComplexX87; 2937 else if (LDF == &llvm::APFloat::IEEEdouble()) 2938 Lo = Hi = SSE; 2939 else 2940 llvm_unreachable("unexpected long double representation!"); 2941 } 2942 2943 // If this complex type crosses an eightbyte boundary then it 2944 // should be split. 2945 uint64_t EB_Real = (OffsetBase) / 64; 2946 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2947 if (Hi == NoClass && EB_Real != EB_Imag) 2948 Hi = Lo; 2949 2950 return; 2951 } 2952 2953 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2954 if (EITy->getNumBits() <= 64) 2955 Current = Integer; 2956 else if (EITy->getNumBits() <= 128) 2957 Lo = Hi = Integer; 2958 // Larger values need to get passed in memory. 2959 return; 2960 } 2961 2962 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2963 // Arrays are treated like structures. 2964 2965 uint64_t Size = getContext().getTypeSize(Ty); 2966 2967 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2968 // than eight eightbytes, ..., it has class MEMORY. 2969 if (Size > 512) 2970 return; 2971 2972 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2973 // fields, it has class MEMORY. 2974 // 2975 // Only need to check alignment of array base. 2976 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2977 return; 2978 2979 // Otherwise implement simplified merge. We could be smarter about 2980 // this, but it isn't worth it and would be harder to verify. 2981 Current = NoClass; 2982 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2983 uint64_t ArraySize = AT->getSize().getZExtValue(); 2984 2985 // The only case a 256-bit wide vector could be used is when the array 2986 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2987 // to work for sizes wider than 128, early check and fallback to memory. 2988 // 2989 if (Size > 128 && 2990 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2991 return; 2992 2993 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2994 Class FieldLo, FieldHi; 2995 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2996 Lo = merge(Lo, FieldLo); 2997 Hi = merge(Hi, FieldHi); 2998 if (Lo == Memory || Hi == Memory) 2999 break; 3000 } 3001 3002 postMerge(Size, Lo, Hi); 3003 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3004 return; 3005 } 3006 3007 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3008 uint64_t Size = getContext().getTypeSize(Ty); 3009 3010 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3011 // than eight eightbytes, ..., it has class MEMORY. 3012 if (Size > 512) 3013 return; 3014 3015 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3016 // copy constructor or a non-trivial destructor, it is passed by invisible 3017 // reference. 3018 if (getRecordArgABI(RT, getCXXABI())) 3019 return; 3020 3021 const RecordDecl *RD = RT->getDecl(); 3022 3023 // Assume variable sized types are passed in memory. 3024 if (RD->hasFlexibleArrayMember()) 3025 return; 3026 3027 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3028 3029 // Reset Lo class, this will be recomputed. 3030 Current = NoClass; 3031 3032 // If this is a C++ record, classify the bases first. 3033 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3034 for (const auto &I : CXXRD->bases()) { 3035 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3036 "Unexpected base class!"); 3037 const auto *Base = 3038 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3039 3040 // Classify this field. 3041 // 3042 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3043 // single eightbyte, each is classified separately. Each eightbyte gets 3044 // initialized to class NO_CLASS. 3045 Class FieldLo, FieldHi; 3046 uint64_t Offset = 3047 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3048 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3049 Lo = merge(Lo, FieldLo); 3050 Hi = merge(Hi, FieldHi); 3051 if (Lo == Memory || Hi == Memory) { 3052 postMerge(Size, Lo, Hi); 3053 return; 3054 } 3055 } 3056 } 3057 3058 // Classify the fields one at a time, merging the results. 3059 unsigned idx = 0; 3060 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3061 i != e; ++i, ++idx) { 3062 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3063 bool BitField = i->isBitField(); 3064 3065 // Ignore padding bit-fields. 3066 if (BitField && i->isUnnamedBitfield()) 3067 continue; 3068 3069 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3070 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 3071 // 3072 // The only case a 256-bit wide vector could be used is when the struct 3073 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3074 // to work for sizes wider than 128, early check and fallback to memory. 3075 // 3076 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 3077 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3078 Lo = Memory; 3079 postMerge(Size, Lo, Hi); 3080 return; 3081 } 3082 // Note, skip this test for bit-fields, see below. 3083 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3084 Lo = Memory; 3085 postMerge(Size, Lo, Hi); 3086 return; 3087 } 3088 3089 // Classify this field. 3090 // 3091 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3092 // exceeds a single eightbyte, each is classified 3093 // separately. Each eightbyte gets initialized to class 3094 // NO_CLASS. 3095 Class FieldLo, FieldHi; 3096 3097 // Bit-fields require special handling, they do not force the 3098 // structure to be passed in memory even if unaligned, and 3099 // therefore they can straddle an eightbyte. 3100 if (BitField) { 3101 assert(!i->isUnnamedBitfield()); 3102 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3103 uint64_t Size = i->getBitWidthValue(getContext()); 3104 3105 uint64_t EB_Lo = Offset / 64; 3106 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3107 3108 if (EB_Lo) { 3109 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3110 FieldLo = NoClass; 3111 FieldHi = Integer; 3112 } else { 3113 FieldLo = Integer; 3114 FieldHi = EB_Hi ? Integer : NoClass; 3115 } 3116 } else 3117 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3118 Lo = merge(Lo, FieldLo); 3119 Hi = merge(Hi, FieldHi); 3120 if (Lo == Memory || Hi == Memory) 3121 break; 3122 } 3123 3124 postMerge(Size, Lo, Hi); 3125 } 3126 } 3127 3128 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3129 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3130 // place naturally. 3131 if (!isAggregateTypeForABI(Ty)) { 3132 // Treat an enum type as its underlying type. 3133 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3134 Ty = EnumTy->getDecl()->getIntegerType(); 3135 3136 if (Ty->isExtIntType()) 3137 return getNaturalAlignIndirect(Ty); 3138 3139 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3140 : ABIArgInfo::getDirect()); 3141 } 3142 3143 return getNaturalAlignIndirect(Ty); 3144 } 3145 3146 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3147 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3148 uint64_t Size = getContext().getTypeSize(VecTy); 3149 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3150 if (Size <= 64 || Size > LargestVector) 3151 return true; 3152 QualType EltTy = VecTy->getElementType(); 3153 if (passInt128VectorsInMem() && 3154 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3155 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3156 return true; 3157 } 3158 3159 return false; 3160 } 3161 3162 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3163 unsigned freeIntRegs) const { 3164 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3165 // place naturally. 3166 // 3167 // This assumption is optimistic, as there could be free registers available 3168 // when we need to pass this argument in memory, and LLVM could try to pass 3169 // the argument in the free register. This does not seem to happen currently, 3170 // but this code would be much safer if we could mark the argument with 3171 // 'onstack'. See PR12193. 3172 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3173 !Ty->isExtIntType()) { 3174 // Treat an enum type as its underlying type. 3175 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3176 Ty = EnumTy->getDecl()->getIntegerType(); 3177 3178 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3179 : ABIArgInfo::getDirect()); 3180 } 3181 3182 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3183 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3184 3185 // Compute the byval alignment. We specify the alignment of the byval in all 3186 // cases so that the mid-level optimizer knows the alignment of the byval. 3187 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3188 3189 // Attempt to avoid passing indirect results using byval when possible. This 3190 // is important for good codegen. 3191 // 3192 // We do this by coercing the value into a scalar type which the backend can 3193 // handle naturally (i.e., without using byval). 3194 // 3195 // For simplicity, we currently only do this when we have exhausted all of the 3196 // free integer registers. Doing this when there are free integer registers 3197 // would require more care, as we would have to ensure that the coerced value 3198 // did not claim the unused register. That would require either reording the 3199 // arguments to the function (so that any subsequent inreg values came first), 3200 // or only doing this optimization when there were no following arguments that 3201 // might be inreg. 3202 // 3203 // We currently expect it to be rare (particularly in well written code) for 3204 // arguments to be passed on the stack when there are still free integer 3205 // registers available (this would typically imply large structs being passed 3206 // by value), so this seems like a fair tradeoff for now. 3207 // 3208 // We can revisit this if the backend grows support for 'onstack' parameter 3209 // attributes. See PR12193. 3210 if (freeIntRegs == 0) { 3211 uint64_t Size = getContext().getTypeSize(Ty); 3212 3213 // If this type fits in an eightbyte, coerce it into the matching integral 3214 // type, which will end up on the stack (with alignment 8). 3215 if (Align == 8 && Size <= 64) 3216 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3217 Size)); 3218 } 3219 3220 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3221 } 3222 3223 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3224 /// register. Pick an LLVM IR type that will be passed as a vector register. 3225 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3226 // Wrapper structs/arrays that only contain vectors are passed just like 3227 // vectors; strip them off if present. 3228 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3229 Ty = QualType(InnerTy, 0); 3230 3231 llvm::Type *IRType = CGT.ConvertType(Ty); 3232 if (isa<llvm::VectorType>(IRType)) { 3233 // Don't pass vXi128 vectors in their native type, the backend can't 3234 // legalize them. 3235 if (passInt128VectorsInMem() && 3236 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3237 // Use a vXi64 vector. 3238 uint64_t Size = getContext().getTypeSize(Ty); 3239 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3240 Size / 64); 3241 } 3242 3243 return IRType; 3244 } 3245 3246 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3247 return IRType; 3248 3249 // We couldn't find the preferred IR vector type for 'Ty'. 3250 uint64_t Size = getContext().getTypeSize(Ty); 3251 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3252 3253 3254 // Return a LLVM IR vector type based on the size of 'Ty'. 3255 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3256 Size / 64); 3257 } 3258 3259 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3260 /// is known to either be off the end of the specified type or being in 3261 /// alignment padding. The user type specified is known to be at most 128 bits 3262 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3263 /// classification that put one of the two halves in the INTEGER class. 3264 /// 3265 /// It is conservatively correct to return false. 3266 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3267 unsigned EndBit, ASTContext &Context) { 3268 // If the bytes being queried are off the end of the type, there is no user 3269 // data hiding here. This handles analysis of builtins, vectors and other 3270 // types that don't contain interesting padding. 3271 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3272 if (TySize <= StartBit) 3273 return true; 3274 3275 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3276 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3277 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3278 3279 // Check each element to see if the element overlaps with the queried range. 3280 for (unsigned i = 0; i != NumElts; ++i) { 3281 // If the element is after the span we care about, then we're done.. 3282 unsigned EltOffset = i*EltSize; 3283 if (EltOffset >= EndBit) break; 3284 3285 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3286 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3287 EndBit-EltOffset, Context)) 3288 return false; 3289 } 3290 // If it overlaps no elements, then it is safe to process as padding. 3291 return true; 3292 } 3293 3294 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3295 const RecordDecl *RD = RT->getDecl(); 3296 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3297 3298 // If this is a C++ record, check the bases first. 3299 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3300 for (const auto &I : CXXRD->bases()) { 3301 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3302 "Unexpected base class!"); 3303 const auto *Base = 3304 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3305 3306 // If the base is after the span we care about, ignore it. 3307 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3308 if (BaseOffset >= EndBit) continue; 3309 3310 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3311 if (!BitsContainNoUserData(I.getType(), BaseStart, 3312 EndBit-BaseOffset, Context)) 3313 return false; 3314 } 3315 } 3316 3317 // Verify that no field has data that overlaps the region of interest. Yes 3318 // this could be sped up a lot by being smarter about queried fields, 3319 // however we're only looking at structs up to 16 bytes, so we don't care 3320 // much. 3321 unsigned idx = 0; 3322 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3323 i != e; ++i, ++idx) { 3324 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3325 3326 // If we found a field after the region we care about, then we're done. 3327 if (FieldOffset >= EndBit) break; 3328 3329 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3330 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3331 Context)) 3332 return false; 3333 } 3334 3335 // If nothing in this record overlapped the area of interest, then we're 3336 // clean. 3337 return true; 3338 } 3339 3340 return false; 3341 } 3342 3343 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3344 /// float member at the specified offset. For example, {int,{float}} has a 3345 /// float at offset 4. It is conservatively correct for this routine to return 3346 /// false. 3347 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3348 const llvm::DataLayout &TD) { 3349 // Base case if we find a float. 3350 if (IROffset == 0 && IRType->isFloatTy()) 3351 return true; 3352 3353 // If this is a struct, recurse into the field at the specified offset. 3354 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3355 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3356 unsigned Elt = SL->getElementContainingOffset(IROffset); 3357 IROffset -= SL->getElementOffset(Elt); 3358 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3359 } 3360 3361 // If this is an array, recurse into the field at the specified offset. 3362 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3363 llvm::Type *EltTy = ATy->getElementType(); 3364 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3365 IROffset -= IROffset/EltSize*EltSize; 3366 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3367 } 3368 3369 return false; 3370 } 3371 3372 3373 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3374 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3375 llvm::Type *X86_64ABIInfo:: 3376 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3377 QualType SourceTy, unsigned SourceOffset) const { 3378 // The only three choices we have are either double, <2 x float>, or float. We 3379 // pass as float if the last 4 bytes is just padding. This happens for 3380 // structs that contain 3 floats. 3381 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3382 SourceOffset*8+64, getContext())) 3383 return llvm::Type::getFloatTy(getVMContext()); 3384 3385 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3386 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3387 // case. 3388 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3389 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3390 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3391 2); 3392 3393 return llvm::Type::getDoubleTy(getVMContext()); 3394 } 3395 3396 3397 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3398 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3399 /// about the high or low part of an up-to-16-byte struct. This routine picks 3400 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3401 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3402 /// etc). 3403 /// 3404 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3405 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3406 /// the 8-byte value references. PrefType may be null. 3407 /// 3408 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3409 /// an offset into this that we're processing (which is always either 0 or 8). 3410 /// 3411 llvm::Type *X86_64ABIInfo:: 3412 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3413 QualType SourceTy, unsigned SourceOffset) const { 3414 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3415 // returning an 8-byte unit starting with it. See if we can safely use it. 3416 if (IROffset == 0) { 3417 // Pointers and int64's always fill the 8-byte unit. 3418 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3419 IRType->isIntegerTy(64)) 3420 return IRType; 3421 3422 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3423 // goodness in the source type is just tail padding. This is allowed to 3424 // kick in for struct {double,int} on the int, but not on 3425 // struct{double,int,int} because we wouldn't return the second int. We 3426 // have to do this analysis on the source type because we can't depend on 3427 // unions being lowered a specific way etc. 3428 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3429 IRType->isIntegerTy(32) || 3430 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3431 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3432 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3433 3434 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3435 SourceOffset*8+64, getContext())) 3436 return IRType; 3437 } 3438 } 3439 3440 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3441 // If this is a struct, recurse into the field at the specified offset. 3442 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3443 if (IROffset < SL->getSizeInBytes()) { 3444 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3445 IROffset -= SL->getElementOffset(FieldIdx); 3446 3447 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3448 SourceTy, SourceOffset); 3449 } 3450 } 3451 3452 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3453 llvm::Type *EltTy = ATy->getElementType(); 3454 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3455 unsigned EltOffset = IROffset/EltSize*EltSize; 3456 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3457 SourceOffset); 3458 } 3459 3460 // Okay, we don't have any better idea of what to pass, so we pass this in an 3461 // integer register that isn't too big to fit the rest of the struct. 3462 unsigned TySizeInBytes = 3463 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3464 3465 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3466 3467 // It is always safe to classify this as an integer type up to i64 that 3468 // isn't larger than the structure. 3469 return llvm::IntegerType::get(getVMContext(), 3470 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3471 } 3472 3473 3474 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3475 /// be used as elements of a two register pair to pass or return, return a 3476 /// first class aggregate to represent them. For example, if the low part of 3477 /// a by-value argument should be passed as i32* and the high part as float, 3478 /// return {i32*, float}. 3479 static llvm::Type * 3480 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3481 const llvm::DataLayout &TD) { 3482 // In order to correctly satisfy the ABI, we need to the high part to start 3483 // at offset 8. If the high and low parts we inferred are both 4-byte types 3484 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3485 // the second element at offset 8. Check for this: 3486 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3487 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3488 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3489 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3490 3491 // To handle this, we have to increase the size of the low part so that the 3492 // second element will start at an 8 byte offset. We can't increase the size 3493 // of the second element because it might make us access off the end of the 3494 // struct. 3495 if (HiStart != 8) { 3496 // There are usually two sorts of types the ABI generation code can produce 3497 // for the low part of a pair that aren't 8 bytes in size: float or 3498 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3499 // NaCl). 3500 // Promote these to a larger type. 3501 if (Lo->isFloatTy()) 3502 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3503 else { 3504 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3505 && "Invalid/unknown lo type"); 3506 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3507 } 3508 } 3509 3510 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3511 3512 // Verify that the second element is at an 8-byte offset. 3513 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3514 "Invalid x86-64 argument pair!"); 3515 return Result; 3516 } 3517 3518 ABIArgInfo X86_64ABIInfo:: 3519 classifyReturnType(QualType RetTy) const { 3520 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3521 // classification algorithm. 3522 X86_64ABIInfo::Class Lo, Hi; 3523 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3524 3525 // Check some invariants. 3526 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3527 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3528 3529 llvm::Type *ResType = nullptr; 3530 switch (Lo) { 3531 case NoClass: 3532 if (Hi == NoClass) 3533 return ABIArgInfo::getIgnore(); 3534 // If the low part is just padding, it takes no register, leave ResType 3535 // null. 3536 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3537 "Unknown missing lo part"); 3538 break; 3539 3540 case SSEUp: 3541 case X87Up: 3542 llvm_unreachable("Invalid classification for lo word."); 3543 3544 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3545 // hidden argument. 3546 case Memory: 3547 return getIndirectReturnResult(RetTy); 3548 3549 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3550 // available register of the sequence %rax, %rdx is used. 3551 case Integer: 3552 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3553 3554 // If we have a sign or zero extended integer, make sure to return Extend 3555 // so that the parameter gets the right LLVM IR attributes. 3556 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3557 // Treat an enum type as its underlying type. 3558 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3559 RetTy = EnumTy->getDecl()->getIntegerType(); 3560 3561 if (RetTy->isIntegralOrEnumerationType() && 3562 isPromotableIntegerTypeForABI(RetTy)) 3563 return ABIArgInfo::getExtend(RetTy); 3564 } 3565 break; 3566 3567 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3568 // available SSE register of the sequence %xmm0, %xmm1 is used. 3569 case SSE: 3570 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3571 break; 3572 3573 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3574 // returned on the X87 stack in %st0 as 80-bit x87 number. 3575 case X87: 3576 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3577 break; 3578 3579 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3580 // part of the value is returned in %st0 and the imaginary part in 3581 // %st1. 3582 case ComplexX87: 3583 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3584 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3585 llvm::Type::getX86_FP80Ty(getVMContext())); 3586 break; 3587 } 3588 3589 llvm::Type *HighPart = nullptr; 3590 switch (Hi) { 3591 // Memory was handled previously and X87 should 3592 // never occur as a hi class. 3593 case Memory: 3594 case X87: 3595 llvm_unreachable("Invalid classification for hi word."); 3596 3597 case ComplexX87: // Previously handled. 3598 case NoClass: 3599 break; 3600 3601 case Integer: 3602 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3603 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3604 return ABIArgInfo::getDirect(HighPart, 8); 3605 break; 3606 case SSE: 3607 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3608 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3609 return ABIArgInfo::getDirect(HighPart, 8); 3610 break; 3611 3612 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3613 // is passed in the next available eightbyte chunk if the last used 3614 // vector register. 3615 // 3616 // SSEUP should always be preceded by SSE, just widen. 3617 case SSEUp: 3618 assert(Lo == SSE && "Unexpected SSEUp classification."); 3619 ResType = GetByteVectorType(RetTy); 3620 break; 3621 3622 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3623 // returned together with the previous X87 value in %st0. 3624 case X87Up: 3625 // If X87Up is preceded by X87, we don't need to do 3626 // anything. However, in some cases with unions it may not be 3627 // preceded by X87. In such situations we follow gcc and pass the 3628 // extra bits in an SSE reg. 3629 if (Lo != X87) { 3630 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3631 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3632 return ABIArgInfo::getDirect(HighPart, 8); 3633 } 3634 break; 3635 } 3636 3637 // If a high part was specified, merge it together with the low part. It is 3638 // known to pass in the high eightbyte of the result. We do this by forming a 3639 // first class struct aggregate with the high and low part: {low, high} 3640 if (HighPart) 3641 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3642 3643 return ABIArgInfo::getDirect(ResType); 3644 } 3645 3646 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3647 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3648 bool isNamedArg) 3649 const 3650 { 3651 Ty = useFirstFieldIfTransparentUnion(Ty); 3652 3653 X86_64ABIInfo::Class Lo, Hi; 3654 classify(Ty, 0, Lo, Hi, isNamedArg); 3655 3656 // Check some invariants. 3657 // FIXME: Enforce these by construction. 3658 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3659 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3660 3661 neededInt = 0; 3662 neededSSE = 0; 3663 llvm::Type *ResType = nullptr; 3664 switch (Lo) { 3665 case NoClass: 3666 if (Hi == NoClass) 3667 return ABIArgInfo::getIgnore(); 3668 // If the low part is just padding, it takes no register, leave ResType 3669 // null. 3670 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3671 "Unknown missing lo part"); 3672 break; 3673 3674 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3675 // on the stack. 3676 case Memory: 3677 3678 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3679 // COMPLEX_X87, it is passed in memory. 3680 case X87: 3681 case ComplexX87: 3682 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3683 ++neededInt; 3684 return getIndirectResult(Ty, freeIntRegs); 3685 3686 case SSEUp: 3687 case X87Up: 3688 llvm_unreachable("Invalid classification for lo word."); 3689 3690 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3691 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3692 // and %r9 is used. 3693 case Integer: 3694 ++neededInt; 3695 3696 // Pick an 8-byte type based on the preferred type. 3697 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3698 3699 // If we have a sign or zero extended integer, make sure to return Extend 3700 // so that the parameter gets the right LLVM IR attributes. 3701 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3702 // Treat an enum type as its underlying type. 3703 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3704 Ty = EnumTy->getDecl()->getIntegerType(); 3705 3706 if (Ty->isIntegralOrEnumerationType() && 3707 isPromotableIntegerTypeForABI(Ty)) 3708 return ABIArgInfo::getExtend(Ty); 3709 } 3710 3711 break; 3712 3713 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3714 // available SSE register is used, the registers are taken in the 3715 // order from %xmm0 to %xmm7. 3716 case SSE: { 3717 llvm::Type *IRType = CGT.ConvertType(Ty); 3718 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3719 ++neededSSE; 3720 break; 3721 } 3722 } 3723 3724 llvm::Type *HighPart = nullptr; 3725 switch (Hi) { 3726 // Memory was handled previously, ComplexX87 and X87 should 3727 // never occur as hi classes, and X87Up must be preceded by X87, 3728 // which is passed in memory. 3729 case Memory: 3730 case X87: 3731 case ComplexX87: 3732 llvm_unreachable("Invalid classification for hi word."); 3733 3734 case NoClass: break; 3735 3736 case Integer: 3737 ++neededInt; 3738 // Pick an 8-byte type based on the preferred type. 3739 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3740 3741 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3742 return ABIArgInfo::getDirect(HighPart, 8); 3743 break; 3744 3745 // X87Up generally doesn't occur here (long double is passed in 3746 // memory), except in situations involving unions. 3747 case X87Up: 3748 case SSE: 3749 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3750 3751 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3752 return ABIArgInfo::getDirect(HighPart, 8); 3753 3754 ++neededSSE; 3755 break; 3756 3757 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3758 // eightbyte is passed in the upper half of the last used SSE 3759 // register. This only happens when 128-bit vectors are passed. 3760 case SSEUp: 3761 assert(Lo == SSE && "Unexpected SSEUp classification"); 3762 ResType = GetByteVectorType(Ty); 3763 break; 3764 } 3765 3766 // If a high part was specified, merge it together with the low part. It is 3767 // known to pass in the high eightbyte of the result. We do this by forming a 3768 // first class struct aggregate with the high and low part: {low, high} 3769 if (HighPart) 3770 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3771 3772 return ABIArgInfo::getDirect(ResType); 3773 } 3774 3775 ABIArgInfo 3776 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3777 unsigned &NeededSSE) const { 3778 auto RT = Ty->getAs<RecordType>(); 3779 assert(RT && "classifyRegCallStructType only valid with struct types"); 3780 3781 if (RT->getDecl()->hasFlexibleArrayMember()) 3782 return getIndirectReturnResult(Ty); 3783 3784 // Sum up bases 3785 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3786 if (CXXRD->isDynamicClass()) { 3787 NeededInt = NeededSSE = 0; 3788 return getIndirectReturnResult(Ty); 3789 } 3790 3791 for (const auto &I : CXXRD->bases()) 3792 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3793 .isIndirect()) { 3794 NeededInt = NeededSSE = 0; 3795 return getIndirectReturnResult(Ty); 3796 } 3797 } 3798 3799 // Sum up members 3800 for (const auto *FD : RT->getDecl()->fields()) { 3801 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3802 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3803 .isIndirect()) { 3804 NeededInt = NeededSSE = 0; 3805 return getIndirectReturnResult(Ty); 3806 } 3807 } else { 3808 unsigned LocalNeededInt, LocalNeededSSE; 3809 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3810 LocalNeededSSE, true) 3811 .isIndirect()) { 3812 NeededInt = NeededSSE = 0; 3813 return getIndirectReturnResult(Ty); 3814 } 3815 NeededInt += LocalNeededInt; 3816 NeededSSE += LocalNeededSSE; 3817 } 3818 } 3819 3820 return ABIArgInfo::getDirect(); 3821 } 3822 3823 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3824 unsigned &NeededInt, 3825 unsigned &NeededSSE) const { 3826 3827 NeededInt = 0; 3828 NeededSSE = 0; 3829 3830 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3831 } 3832 3833 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3834 3835 const unsigned CallingConv = FI.getCallingConvention(); 3836 // It is possible to force Win64 calling convention on any x86_64 target by 3837 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3838 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3839 if (CallingConv == llvm::CallingConv::Win64) { 3840 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3841 Win64ABIInfo.computeInfo(FI); 3842 return; 3843 } 3844 3845 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3846 3847 // Keep track of the number of assigned registers. 3848 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3849 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3850 unsigned NeededInt, NeededSSE; 3851 3852 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3853 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3854 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3855 FI.getReturnInfo() = 3856 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3857 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3858 FreeIntRegs -= NeededInt; 3859 FreeSSERegs -= NeededSSE; 3860 } else { 3861 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3862 } 3863 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3864 getContext().getCanonicalType(FI.getReturnType() 3865 ->getAs<ComplexType>() 3866 ->getElementType()) == 3867 getContext().LongDoubleTy) 3868 // Complex Long Double Type is passed in Memory when Regcall 3869 // calling convention is used. 3870 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3871 else 3872 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3873 } 3874 3875 // If the return value is indirect, then the hidden argument is consuming one 3876 // integer register. 3877 if (FI.getReturnInfo().isIndirect()) 3878 --FreeIntRegs; 3879 3880 // The chain argument effectively gives us another free register. 3881 if (FI.isChainCall()) 3882 ++FreeIntRegs; 3883 3884 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3885 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3886 // get assigned (in left-to-right order) for passing as follows... 3887 unsigned ArgNo = 0; 3888 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3889 it != ie; ++it, ++ArgNo) { 3890 bool IsNamedArg = ArgNo < NumRequiredArgs; 3891 3892 if (IsRegCall && it->type->isStructureOrClassType()) 3893 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3894 else 3895 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3896 NeededSSE, IsNamedArg); 3897 3898 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3899 // eightbyte of an argument, the whole argument is passed on the 3900 // stack. If registers have already been assigned for some 3901 // eightbytes of such an argument, the assignments get reverted. 3902 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3903 FreeIntRegs -= NeededInt; 3904 FreeSSERegs -= NeededSSE; 3905 } else { 3906 it->info = getIndirectResult(it->type, FreeIntRegs); 3907 } 3908 } 3909 } 3910 3911 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3912 Address VAListAddr, QualType Ty) { 3913 Address overflow_arg_area_p = 3914 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3915 llvm::Value *overflow_arg_area = 3916 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3917 3918 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3919 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3920 // It isn't stated explicitly in the standard, but in practice we use 3921 // alignment greater than 16 where necessary. 3922 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3923 if (Align > CharUnits::fromQuantity(8)) { 3924 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3925 Align); 3926 } 3927 3928 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3929 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3930 llvm::Value *Res = 3931 CGF.Builder.CreateBitCast(overflow_arg_area, 3932 llvm::PointerType::getUnqual(LTy)); 3933 3934 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3935 // l->overflow_arg_area + sizeof(type). 3936 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3937 // an 8 byte boundary. 3938 3939 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3940 llvm::Value *Offset = 3941 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3942 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3943 "overflow_arg_area.next"); 3944 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3945 3946 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3947 return Address(Res, Align); 3948 } 3949 3950 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3951 QualType Ty) const { 3952 // Assume that va_list type is correct; should be pointer to LLVM type: 3953 // struct { 3954 // i32 gp_offset; 3955 // i32 fp_offset; 3956 // i8* overflow_arg_area; 3957 // i8* reg_save_area; 3958 // }; 3959 unsigned neededInt, neededSSE; 3960 3961 Ty = getContext().getCanonicalType(Ty); 3962 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3963 /*isNamedArg*/false); 3964 3965 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3966 // in the registers. If not go to step 7. 3967 if (!neededInt && !neededSSE) 3968 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3969 3970 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3971 // general purpose registers needed to pass type and num_fp to hold 3972 // the number of floating point registers needed. 3973 3974 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3975 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3976 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3977 // 3978 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3979 // register save space). 3980 3981 llvm::Value *InRegs = nullptr; 3982 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3983 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3984 if (neededInt) { 3985 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3986 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3987 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3988 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3989 } 3990 3991 if (neededSSE) { 3992 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3993 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3994 llvm::Value *FitsInFP = 3995 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3996 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3997 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3998 } 3999 4000 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4001 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4002 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4003 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4004 4005 // Emit code to load the value if it was passed in registers. 4006 4007 CGF.EmitBlock(InRegBlock); 4008 4009 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4010 // an offset of l->gp_offset and/or l->fp_offset. This may require 4011 // copying to a temporary location in case the parameter is passed 4012 // in different register classes or requires an alignment greater 4013 // than 8 for general purpose registers and 16 for XMM registers. 4014 // 4015 // FIXME: This really results in shameful code when we end up needing to 4016 // collect arguments from different places; often what should result in a 4017 // simple assembling of a structure from scattered addresses has many more 4018 // loads than necessary. Can we clean this up? 4019 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4020 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4021 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4022 4023 Address RegAddr = Address::invalid(); 4024 if (neededInt && neededSSE) { 4025 // FIXME: Cleanup. 4026 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4027 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4028 Address Tmp = CGF.CreateMemTemp(Ty); 4029 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4030 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4031 llvm::Type *TyLo = ST->getElementType(0); 4032 llvm::Type *TyHi = ST->getElementType(1); 4033 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4034 "Unexpected ABI info for mixed regs"); 4035 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4036 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4037 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4038 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4039 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4040 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4041 4042 // Copy the first element. 4043 // FIXME: Our choice of alignment here and below is probably pessimistic. 4044 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4045 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4046 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4047 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4048 4049 // Copy the second element. 4050 V = CGF.Builder.CreateAlignedLoad( 4051 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4052 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4053 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4054 4055 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4056 } else if (neededInt) { 4057 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4058 CharUnits::fromQuantity(8)); 4059 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4060 4061 // Copy to a temporary if necessary to ensure the appropriate alignment. 4062 std::pair<CharUnits, CharUnits> SizeAlign = 4063 getContext().getTypeInfoInChars(Ty); 4064 uint64_t TySize = SizeAlign.first.getQuantity(); 4065 CharUnits TyAlign = SizeAlign.second; 4066 4067 // Copy into a temporary if the type is more aligned than the 4068 // register save area. 4069 if (TyAlign.getQuantity() > 8) { 4070 Address Tmp = CGF.CreateMemTemp(Ty); 4071 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4072 RegAddr = Tmp; 4073 } 4074 4075 } else if (neededSSE == 1) { 4076 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4077 CharUnits::fromQuantity(16)); 4078 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4079 } else { 4080 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4081 // SSE registers are spaced 16 bytes apart in the register save 4082 // area, we need to collect the two eightbytes together. 4083 // The ABI isn't explicit about this, but it seems reasonable 4084 // to assume that the slots are 16-byte aligned, since the stack is 4085 // naturally 16-byte aligned and the prologue is expected to store 4086 // all the SSE registers to the RSA. 4087 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4088 CharUnits::fromQuantity(16)); 4089 Address RegAddrHi = 4090 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4091 CharUnits::fromQuantity(16)); 4092 llvm::Type *ST = AI.canHaveCoerceToType() 4093 ? AI.getCoerceToType() 4094 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4095 llvm::Value *V; 4096 Address Tmp = CGF.CreateMemTemp(Ty); 4097 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4098 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4099 RegAddrLo, ST->getStructElementType(0))); 4100 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4101 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4102 RegAddrHi, ST->getStructElementType(1))); 4103 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4104 4105 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4106 } 4107 4108 // AMD64-ABI 3.5.7p5: Step 5. Set: 4109 // l->gp_offset = l->gp_offset + num_gp * 8 4110 // l->fp_offset = l->fp_offset + num_fp * 16. 4111 if (neededInt) { 4112 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4113 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4114 gp_offset_p); 4115 } 4116 if (neededSSE) { 4117 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4118 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4119 fp_offset_p); 4120 } 4121 CGF.EmitBranch(ContBlock); 4122 4123 // Emit code to load the value if it was passed in memory. 4124 4125 CGF.EmitBlock(InMemBlock); 4126 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4127 4128 // Return the appropriate result. 4129 4130 CGF.EmitBlock(ContBlock); 4131 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4132 "vaarg.addr"); 4133 return ResAddr; 4134 } 4135 4136 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4137 QualType Ty) const { 4138 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4139 CGF.getContext().getTypeInfoInChars(Ty), 4140 CharUnits::fromQuantity(8), 4141 /*allowHigherAlign*/ false); 4142 } 4143 4144 ABIArgInfo 4145 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4146 const ABIArgInfo ¤t) const { 4147 // Assumes vectorCall calling convention. 4148 const Type *Base = nullptr; 4149 uint64_t NumElts = 0; 4150 4151 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4152 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4153 FreeSSERegs -= NumElts; 4154 return getDirectX86Hva(); 4155 } 4156 return current; 4157 } 4158 4159 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4160 bool IsReturnType, bool IsVectorCall, 4161 bool IsRegCall) const { 4162 4163 if (Ty->isVoidType()) 4164 return ABIArgInfo::getIgnore(); 4165 4166 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4167 Ty = EnumTy->getDecl()->getIntegerType(); 4168 4169 TypeInfo Info = getContext().getTypeInfo(Ty); 4170 uint64_t Width = Info.Width; 4171 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4172 4173 const RecordType *RT = Ty->getAs<RecordType>(); 4174 if (RT) { 4175 if (!IsReturnType) { 4176 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4177 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4178 } 4179 4180 if (RT->getDecl()->hasFlexibleArrayMember()) 4181 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4182 4183 } 4184 4185 const Type *Base = nullptr; 4186 uint64_t NumElts = 0; 4187 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4188 // other targets. 4189 if ((IsVectorCall || IsRegCall) && 4190 isHomogeneousAggregate(Ty, Base, NumElts)) { 4191 if (IsRegCall) { 4192 if (FreeSSERegs >= NumElts) { 4193 FreeSSERegs -= NumElts; 4194 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4195 return ABIArgInfo::getDirect(); 4196 return ABIArgInfo::getExpand(); 4197 } 4198 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4199 } else if (IsVectorCall) { 4200 if (FreeSSERegs >= NumElts && 4201 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4202 FreeSSERegs -= NumElts; 4203 return ABIArgInfo::getDirect(); 4204 } else if (IsReturnType) { 4205 return ABIArgInfo::getExpand(); 4206 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4207 // HVAs are delayed and reclassified in the 2nd step. 4208 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4209 } 4210 } 4211 } 4212 4213 if (Ty->isMemberPointerType()) { 4214 // If the member pointer is represented by an LLVM int or ptr, pass it 4215 // directly. 4216 llvm::Type *LLTy = CGT.ConvertType(Ty); 4217 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4218 return ABIArgInfo::getDirect(); 4219 } 4220 4221 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4222 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4223 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4224 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4225 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4226 4227 // Otherwise, coerce it to a small integer. 4228 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4229 } 4230 4231 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4232 switch (BT->getKind()) { 4233 case BuiltinType::Bool: 4234 // Bool type is always extended to the ABI, other builtin types are not 4235 // extended. 4236 return ABIArgInfo::getExtend(Ty); 4237 4238 case BuiltinType::LongDouble: 4239 // Mingw64 GCC uses the old 80 bit extended precision floating point 4240 // unit. It passes them indirectly through memory. 4241 if (IsMingw64) { 4242 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4243 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4244 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4245 } 4246 break; 4247 4248 case BuiltinType::Int128: 4249 case BuiltinType::UInt128: 4250 // If it's a parameter type, the normal ABI rule is that arguments larger 4251 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4252 // even though it isn't particularly efficient. 4253 if (!IsReturnType) 4254 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4255 4256 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4257 // Clang matches them for compatibility. 4258 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4259 llvm::Type::getInt64Ty(getVMContext()), 2)); 4260 4261 default: 4262 break; 4263 } 4264 } 4265 4266 if (Ty->isExtIntType()) { 4267 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4268 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4269 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4270 // anyway as long is it fits in them, so we don't have to check the power of 4271 // 2. 4272 if (Width <= 64) 4273 return ABIArgInfo::getDirect(); 4274 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4275 } 4276 4277 return ABIArgInfo::getDirect(); 4278 } 4279 4280 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4281 unsigned FreeSSERegs, 4282 bool IsVectorCall, 4283 bool IsRegCall) const { 4284 unsigned Count = 0; 4285 for (auto &I : FI.arguments()) { 4286 // Vectorcall in x64 only permits the first 6 arguments to be passed 4287 // as XMM/YMM registers. 4288 if (Count < VectorcallMaxParamNumAsReg) 4289 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4290 else { 4291 // Since these cannot be passed in registers, pretend no registers 4292 // are left. 4293 unsigned ZeroSSERegsAvail = 0; 4294 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4295 IsVectorCall, IsRegCall); 4296 } 4297 ++Count; 4298 } 4299 4300 for (auto &I : FI.arguments()) { 4301 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4302 } 4303 } 4304 4305 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4306 const unsigned CC = FI.getCallingConvention(); 4307 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4308 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4309 4310 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4311 // classification rules. 4312 if (CC == llvm::CallingConv::X86_64_SysV) { 4313 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4314 SysVABIInfo.computeInfo(FI); 4315 return; 4316 } 4317 4318 unsigned FreeSSERegs = 0; 4319 if (IsVectorCall) { 4320 // We can use up to 4 SSE return registers with vectorcall. 4321 FreeSSERegs = 4; 4322 } else if (IsRegCall) { 4323 // RegCall gives us 16 SSE registers. 4324 FreeSSERegs = 16; 4325 } 4326 4327 if (!getCXXABI().classifyReturnType(FI)) 4328 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4329 IsVectorCall, IsRegCall); 4330 4331 if (IsVectorCall) { 4332 // We can use up to 6 SSE register parameters with vectorcall. 4333 FreeSSERegs = 6; 4334 } else if (IsRegCall) { 4335 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4336 FreeSSERegs = 16; 4337 } 4338 4339 if (IsVectorCall) { 4340 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4341 } else { 4342 for (auto &I : FI.arguments()) 4343 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4344 } 4345 4346 } 4347 4348 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4349 QualType Ty) const { 4350 4351 bool IsIndirect = false; 4352 4353 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4354 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4355 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4356 uint64_t Width = getContext().getTypeSize(Ty); 4357 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4358 } 4359 4360 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4361 CGF.getContext().getTypeInfoInChars(Ty), 4362 CharUnits::fromQuantity(8), 4363 /*allowHigherAlign*/ false); 4364 } 4365 4366 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4367 llvm::Value *Address, bool Is64Bit, 4368 bool IsAIX) { 4369 // This is calculated from the LLVM and GCC tables and verified 4370 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4371 4372 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4373 4374 llvm::IntegerType *i8 = CGF.Int8Ty; 4375 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4376 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4377 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4378 4379 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4380 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4381 4382 // 32-63: fp0-31, the 8-byte floating-point registers 4383 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4384 4385 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4386 // 64: mq 4387 // 65: lr 4388 // 66: ctr 4389 // 67: ap 4390 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4391 4392 // 68-76 are various 4-byte special-purpose registers: 4393 // 68-75 cr0-7 4394 // 76: xer 4395 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4396 4397 // 77-108: v0-31, the 16-byte vector registers 4398 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4399 4400 // 109: vrsave 4401 // 110: vscr 4402 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4403 4404 // AIX does not utilize the rest of the registers. 4405 if (IsAIX) 4406 return false; 4407 4408 // 111: spe_acc 4409 // 112: spefscr 4410 // 113: sfp 4411 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4412 4413 if (!Is64Bit) 4414 return false; 4415 4416 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4417 // or above CPU. 4418 // 64-bit only registers: 4419 // 114: tfhar 4420 // 115: tfiar 4421 // 116: texasr 4422 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4423 4424 return false; 4425 } 4426 4427 // AIX 4428 namespace { 4429 /// AIXABIInfo - The AIX XCOFF ABI information. 4430 class AIXABIInfo : public ABIInfo { 4431 const bool Is64Bit; 4432 const unsigned PtrByteSize; 4433 CharUnits getParamTypeAlignment(QualType Ty) const; 4434 4435 public: 4436 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4437 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4438 4439 bool isPromotableTypeForABI(QualType Ty) const; 4440 4441 ABIArgInfo classifyReturnType(QualType RetTy) const; 4442 ABIArgInfo classifyArgumentType(QualType Ty) const; 4443 4444 void computeInfo(CGFunctionInfo &FI) const override { 4445 if (!getCXXABI().classifyReturnType(FI)) 4446 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4447 4448 for (auto &I : FI.arguments()) 4449 I.info = classifyArgumentType(I.type); 4450 } 4451 4452 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4453 QualType Ty) const override; 4454 }; 4455 4456 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4457 const bool Is64Bit; 4458 4459 public: 4460 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4461 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4462 Is64Bit(Is64Bit) {} 4463 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4464 return 1; // r1 is the dedicated stack pointer 4465 } 4466 4467 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4468 llvm::Value *Address) const override; 4469 }; 4470 } // namespace 4471 4472 // Return true if the ABI requires Ty to be passed sign- or zero- 4473 // extended to 32/64 bits. 4474 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4475 // Treat an enum type as its underlying type. 4476 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4477 Ty = EnumTy->getDecl()->getIntegerType(); 4478 4479 // Promotable integer types are required to be promoted by the ABI. 4480 if (Ty->isPromotableIntegerType()) 4481 return true; 4482 4483 if (!Is64Bit) 4484 return false; 4485 4486 // For 64 bit mode, in addition to the usual promotable integer types, we also 4487 // need to extend all 32-bit types, since the ABI requires promotion to 64 4488 // bits. 4489 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4490 switch (BT->getKind()) { 4491 case BuiltinType::Int: 4492 case BuiltinType::UInt: 4493 return true; 4494 default: 4495 break; 4496 } 4497 4498 return false; 4499 } 4500 4501 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4502 if (RetTy->isAnyComplexType()) 4503 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4504 4505 if (RetTy->isVectorType()) 4506 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4507 4508 if (RetTy->isVoidType()) 4509 return ABIArgInfo::getIgnore(); 4510 4511 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4512 // alignment here. 4513 if (isAggregateTypeForABI(RetTy)) 4514 return getNaturalAlignIndirect(RetTy); 4515 4516 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4517 : ABIArgInfo::getDirect()); 4518 } 4519 4520 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4521 Ty = useFirstFieldIfTransparentUnion(Ty); 4522 4523 if (Ty->isAnyComplexType()) 4524 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4525 4526 if (Ty->isVectorType()) 4527 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4528 4529 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4530 // alignment here. 4531 if (isAggregateTypeForABI(Ty)) { 4532 // Records with non-trivial destructors/copy-constructors should not be 4533 // passed by value. 4534 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4535 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4536 4537 CharUnits CCAlign = getParamTypeAlignment(Ty); 4538 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4539 4540 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4541 /*Realign*/ TyAlign > CCAlign); 4542 } 4543 4544 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4545 : ABIArgInfo::getDirect()); 4546 } 4547 4548 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4549 if (Ty->isAnyComplexType()) 4550 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4551 4552 if (Ty->isVectorType()) 4553 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4554 4555 // If the structure contains a vector type, the alignment is 16. 4556 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4557 return CharUnits::fromQuantity(16); 4558 4559 return CharUnits::fromQuantity(PtrByteSize); 4560 } 4561 4562 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4563 QualType Ty) const { 4564 if (Ty->isAnyComplexType()) 4565 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4566 4567 if (Ty->isVectorType()) 4568 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4569 4570 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4571 TypeInfo.second = getParamTypeAlignment(Ty); 4572 4573 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4574 4575 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4576 SlotSize, /*AllowHigher*/ true); 4577 } 4578 4579 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4580 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4581 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4582 } 4583 4584 // PowerPC-32 4585 namespace { 4586 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4587 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4588 bool IsSoftFloatABI; 4589 bool IsRetSmallStructInRegABI; 4590 4591 CharUnits getParamTypeAlignment(QualType Ty) const; 4592 4593 public: 4594 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4595 bool RetSmallStructInRegABI) 4596 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4597 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4598 4599 ABIArgInfo classifyReturnType(QualType RetTy) const; 4600 4601 void computeInfo(CGFunctionInfo &FI) const override { 4602 if (!getCXXABI().classifyReturnType(FI)) 4603 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4604 for (auto &I : FI.arguments()) 4605 I.info = classifyArgumentType(I.type); 4606 } 4607 4608 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4609 QualType Ty) const override; 4610 }; 4611 4612 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4613 public: 4614 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4615 bool RetSmallStructInRegABI) 4616 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4617 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4618 4619 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4620 const CodeGenOptions &Opts); 4621 4622 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4623 // This is recovered from gcc output. 4624 return 1; // r1 is the dedicated stack pointer 4625 } 4626 4627 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4628 llvm::Value *Address) const override; 4629 }; 4630 } 4631 4632 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4633 // Complex types are passed just like their elements. 4634 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4635 Ty = CTy->getElementType(); 4636 4637 if (Ty->isVectorType()) 4638 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4639 : 4); 4640 4641 // For single-element float/vector structs, we consider the whole type 4642 // to have the same alignment requirements as its single element. 4643 const Type *AlignTy = nullptr; 4644 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4645 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4646 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4647 (BT && BT->isFloatingPoint())) 4648 AlignTy = EltType; 4649 } 4650 4651 if (AlignTy) 4652 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4653 return CharUnits::fromQuantity(4); 4654 } 4655 4656 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4657 uint64_t Size; 4658 4659 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4660 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4661 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4662 // System V ABI (1995), page 3-22, specified: 4663 // > A structure or union whose size is less than or equal to 8 bytes 4664 // > shall be returned in r3 and r4, as if it were first stored in the 4665 // > 8-byte aligned memory area and then the low addressed word were 4666 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4667 // > the last member of the structure or union are not defined. 4668 // 4669 // GCC for big-endian PPC32 inserts the pad before the first member, 4670 // not "beyond the last member" of the struct. To stay compatible 4671 // with GCC, we coerce the struct to an integer of the same size. 4672 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4673 if (Size == 0) 4674 return ABIArgInfo::getIgnore(); 4675 else { 4676 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4677 return ABIArgInfo::getDirect(CoerceTy); 4678 } 4679 } 4680 4681 return DefaultABIInfo::classifyReturnType(RetTy); 4682 } 4683 4684 // TODO: this implementation is now likely redundant with 4685 // DefaultABIInfo::EmitVAArg. 4686 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4687 QualType Ty) const { 4688 if (getTarget().getTriple().isOSDarwin()) { 4689 auto TI = getContext().getTypeInfoInChars(Ty); 4690 TI.second = getParamTypeAlignment(Ty); 4691 4692 CharUnits SlotSize = CharUnits::fromQuantity(4); 4693 return emitVoidPtrVAArg(CGF, VAList, Ty, 4694 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4695 /*AllowHigherAlign=*/true); 4696 } 4697 4698 const unsigned OverflowLimit = 8; 4699 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4700 // TODO: Implement this. For now ignore. 4701 (void)CTy; 4702 return Address::invalid(); // FIXME? 4703 } 4704 4705 // struct __va_list_tag { 4706 // unsigned char gpr; 4707 // unsigned char fpr; 4708 // unsigned short reserved; 4709 // void *overflow_arg_area; 4710 // void *reg_save_area; 4711 // }; 4712 4713 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4714 bool isInt = !Ty->isFloatingType(); 4715 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4716 4717 // All aggregates are passed indirectly? That doesn't seem consistent 4718 // with the argument-lowering code. 4719 bool isIndirect = isAggregateTypeForABI(Ty); 4720 4721 CGBuilderTy &Builder = CGF.Builder; 4722 4723 // The calling convention either uses 1-2 GPRs or 1 FPR. 4724 Address NumRegsAddr = Address::invalid(); 4725 if (isInt || IsSoftFloatABI) { 4726 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4727 } else { 4728 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4729 } 4730 4731 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4732 4733 // "Align" the register count when TY is i64. 4734 if (isI64 || (isF64 && IsSoftFloatABI)) { 4735 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4736 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4737 } 4738 4739 llvm::Value *CC = 4740 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4741 4742 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4743 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4744 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4745 4746 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4747 4748 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4749 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4750 4751 // Case 1: consume registers. 4752 Address RegAddr = Address::invalid(); 4753 { 4754 CGF.EmitBlock(UsingRegs); 4755 4756 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4757 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4758 CharUnits::fromQuantity(8)); 4759 assert(RegAddr.getElementType() == CGF.Int8Ty); 4760 4761 // Floating-point registers start after the general-purpose registers. 4762 if (!(isInt || IsSoftFloatABI)) { 4763 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4764 CharUnits::fromQuantity(32)); 4765 } 4766 4767 // Get the address of the saved value by scaling the number of 4768 // registers we've used by the number of 4769 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4770 llvm::Value *RegOffset = 4771 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4772 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4773 RegAddr.getPointer(), RegOffset), 4774 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4775 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4776 4777 // Increase the used-register count. 4778 NumRegs = 4779 Builder.CreateAdd(NumRegs, 4780 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4781 Builder.CreateStore(NumRegs, NumRegsAddr); 4782 4783 CGF.EmitBranch(Cont); 4784 } 4785 4786 // Case 2: consume space in the overflow area. 4787 Address MemAddr = Address::invalid(); 4788 { 4789 CGF.EmitBlock(UsingOverflow); 4790 4791 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4792 4793 // Everything in the overflow area is rounded up to a size of at least 4. 4794 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4795 4796 CharUnits Size; 4797 if (!isIndirect) { 4798 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4799 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4800 } else { 4801 Size = CGF.getPointerSize(); 4802 } 4803 4804 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4805 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4806 OverflowAreaAlign); 4807 // Round up address of argument to alignment 4808 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4809 if (Align > OverflowAreaAlign) { 4810 llvm::Value *Ptr = OverflowArea.getPointer(); 4811 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4812 Align); 4813 } 4814 4815 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4816 4817 // Increase the overflow area. 4818 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4819 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4820 CGF.EmitBranch(Cont); 4821 } 4822 4823 CGF.EmitBlock(Cont); 4824 4825 // Merge the cases with a phi. 4826 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4827 "vaarg.addr"); 4828 4829 // Load the pointer if the argument was passed indirectly. 4830 if (isIndirect) { 4831 Result = Address(Builder.CreateLoad(Result, "aggr"), 4832 getContext().getTypeAlignInChars(Ty)); 4833 } 4834 4835 return Result; 4836 } 4837 4838 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4839 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4840 assert(Triple.getArch() == llvm::Triple::ppc); 4841 4842 switch (Opts.getStructReturnConvention()) { 4843 case CodeGenOptions::SRCK_Default: 4844 break; 4845 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4846 return false; 4847 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4848 return true; 4849 } 4850 4851 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4852 return true; 4853 4854 return false; 4855 } 4856 4857 bool 4858 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4859 llvm::Value *Address) const { 4860 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4861 /*IsAIX*/ false); 4862 } 4863 4864 // PowerPC-64 4865 4866 namespace { 4867 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4868 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4869 public: 4870 enum ABIKind { 4871 ELFv1 = 0, 4872 ELFv2 4873 }; 4874 4875 private: 4876 static const unsigned GPRBits = 64; 4877 ABIKind Kind; 4878 bool HasQPX; 4879 bool IsSoftFloatABI; 4880 4881 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4882 // will be passed in a QPX register. 4883 bool IsQPXVectorTy(const Type *Ty) const { 4884 if (!HasQPX) 4885 return false; 4886 4887 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4888 unsigned NumElements = VT->getNumElements(); 4889 if (NumElements == 1) 4890 return false; 4891 4892 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4893 if (getContext().getTypeSize(Ty) <= 256) 4894 return true; 4895 } else if (VT->getElementType()-> 4896 isSpecificBuiltinType(BuiltinType::Float)) { 4897 if (getContext().getTypeSize(Ty) <= 128) 4898 return true; 4899 } 4900 } 4901 4902 return false; 4903 } 4904 4905 bool IsQPXVectorTy(QualType Ty) const { 4906 return IsQPXVectorTy(Ty.getTypePtr()); 4907 } 4908 4909 public: 4910 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4911 bool SoftFloatABI) 4912 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4913 IsSoftFloatABI(SoftFloatABI) {} 4914 4915 bool isPromotableTypeForABI(QualType Ty) const; 4916 CharUnits getParamTypeAlignment(QualType Ty) const; 4917 4918 ABIArgInfo classifyReturnType(QualType RetTy) const; 4919 ABIArgInfo classifyArgumentType(QualType Ty) const; 4920 4921 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4922 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4923 uint64_t Members) const override; 4924 4925 // TODO: We can add more logic to computeInfo to improve performance. 4926 // Example: For aggregate arguments that fit in a register, we could 4927 // use getDirectInReg (as is done below for structs containing a single 4928 // floating-point value) to avoid pushing them to memory on function 4929 // entry. This would require changing the logic in PPCISelLowering 4930 // when lowering the parameters in the caller and args in the callee. 4931 void computeInfo(CGFunctionInfo &FI) const override { 4932 if (!getCXXABI().classifyReturnType(FI)) 4933 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4934 for (auto &I : FI.arguments()) { 4935 // We rely on the default argument classification for the most part. 4936 // One exception: An aggregate containing a single floating-point 4937 // or vector item must be passed in a register if one is available. 4938 const Type *T = isSingleElementStruct(I.type, getContext()); 4939 if (T) { 4940 const BuiltinType *BT = T->getAs<BuiltinType>(); 4941 if (IsQPXVectorTy(T) || 4942 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4943 (BT && BT->isFloatingPoint())) { 4944 QualType QT(T, 0); 4945 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4946 continue; 4947 } 4948 } 4949 I.info = classifyArgumentType(I.type); 4950 } 4951 } 4952 4953 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4954 QualType Ty) const override; 4955 4956 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4957 bool asReturnValue) const override { 4958 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4959 } 4960 4961 bool isSwiftErrorInRegister() const override { 4962 return false; 4963 } 4964 }; 4965 4966 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4967 4968 public: 4969 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4970 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4971 bool SoftFloatABI) 4972 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4973 CGT, Kind, HasQPX, SoftFloatABI)) {} 4974 4975 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4976 // This is recovered from gcc output. 4977 return 1; // r1 is the dedicated stack pointer 4978 } 4979 4980 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4981 llvm::Value *Address) const override; 4982 }; 4983 4984 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4985 public: 4986 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4987 4988 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4989 // This is recovered from gcc output. 4990 return 1; // r1 is the dedicated stack pointer 4991 } 4992 4993 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4994 llvm::Value *Address) const override; 4995 }; 4996 4997 } 4998 4999 // Return true if the ABI requires Ty to be passed sign- or zero- 5000 // extended to 64 bits. 5001 bool 5002 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5003 // Treat an enum type as its underlying type. 5004 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5005 Ty = EnumTy->getDecl()->getIntegerType(); 5006 5007 // Promotable integer types are required to be promoted by the ABI. 5008 if (isPromotableIntegerTypeForABI(Ty)) 5009 return true; 5010 5011 // In addition to the usual promotable integer types, we also need to 5012 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5013 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5014 switch (BT->getKind()) { 5015 case BuiltinType::Int: 5016 case BuiltinType::UInt: 5017 return true; 5018 default: 5019 break; 5020 } 5021 5022 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5023 if (EIT->getNumBits() < 64) 5024 return true; 5025 5026 return false; 5027 } 5028 5029 /// isAlignedParamType - Determine whether a type requires 16-byte or 5030 /// higher alignment in the parameter area. Always returns at least 8. 5031 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5032 // Complex types are passed just like their elements. 5033 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5034 Ty = CTy->getElementType(); 5035 5036 // Only vector types of size 16 bytes need alignment (larger types are 5037 // passed via reference, smaller types are not aligned). 5038 if (IsQPXVectorTy(Ty)) { 5039 if (getContext().getTypeSize(Ty) > 128) 5040 return CharUnits::fromQuantity(32); 5041 5042 return CharUnits::fromQuantity(16); 5043 } else if (Ty->isVectorType()) { 5044 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5045 } 5046 5047 // For single-element float/vector structs, we consider the whole type 5048 // to have the same alignment requirements as its single element. 5049 const Type *AlignAsType = nullptr; 5050 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5051 if (EltType) { 5052 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5053 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 5054 getContext().getTypeSize(EltType) == 128) || 5055 (BT && BT->isFloatingPoint())) 5056 AlignAsType = EltType; 5057 } 5058 5059 // Likewise for ELFv2 homogeneous aggregates. 5060 const Type *Base = nullptr; 5061 uint64_t Members = 0; 5062 if (!AlignAsType && Kind == ELFv2 && 5063 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5064 AlignAsType = Base; 5065 5066 // With special case aggregates, only vector base types need alignment. 5067 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 5068 if (getContext().getTypeSize(AlignAsType) > 128) 5069 return CharUnits::fromQuantity(32); 5070 5071 return CharUnits::fromQuantity(16); 5072 } else if (AlignAsType) { 5073 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5074 } 5075 5076 // Otherwise, we only need alignment for any aggregate type that 5077 // has an alignment requirement of >= 16 bytes. 5078 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5079 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 5080 return CharUnits::fromQuantity(32); 5081 return CharUnits::fromQuantity(16); 5082 } 5083 5084 return CharUnits::fromQuantity(8); 5085 } 5086 5087 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5088 /// aggregate. Base is set to the base element type, and Members is set 5089 /// to the number of base elements. 5090 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5091 uint64_t &Members) const { 5092 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5093 uint64_t NElements = AT->getSize().getZExtValue(); 5094 if (NElements == 0) 5095 return false; 5096 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5097 return false; 5098 Members *= NElements; 5099 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5100 const RecordDecl *RD = RT->getDecl(); 5101 if (RD->hasFlexibleArrayMember()) 5102 return false; 5103 5104 Members = 0; 5105 5106 // If this is a C++ record, check the bases first. 5107 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5108 for (const auto &I : CXXRD->bases()) { 5109 // Ignore empty records. 5110 if (isEmptyRecord(getContext(), I.getType(), true)) 5111 continue; 5112 5113 uint64_t FldMembers; 5114 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5115 return false; 5116 5117 Members += FldMembers; 5118 } 5119 } 5120 5121 for (const auto *FD : RD->fields()) { 5122 // Ignore (non-zero arrays of) empty records. 5123 QualType FT = FD->getType(); 5124 while (const ConstantArrayType *AT = 5125 getContext().getAsConstantArrayType(FT)) { 5126 if (AT->getSize().getZExtValue() == 0) 5127 return false; 5128 FT = AT->getElementType(); 5129 } 5130 if (isEmptyRecord(getContext(), FT, true)) 5131 continue; 5132 5133 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5134 if (getContext().getLangOpts().CPlusPlus && 5135 FD->isZeroLengthBitField(getContext())) 5136 continue; 5137 5138 uint64_t FldMembers; 5139 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5140 return false; 5141 5142 Members = (RD->isUnion() ? 5143 std::max(Members, FldMembers) : Members + FldMembers); 5144 } 5145 5146 if (!Base) 5147 return false; 5148 5149 // Ensure there is no padding. 5150 if (getContext().getTypeSize(Base) * Members != 5151 getContext().getTypeSize(Ty)) 5152 return false; 5153 } else { 5154 Members = 1; 5155 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5156 Members = 2; 5157 Ty = CT->getElementType(); 5158 } 5159 5160 // Most ABIs only support float, double, and some vector type widths. 5161 if (!isHomogeneousAggregateBaseType(Ty)) 5162 return false; 5163 5164 // The base type must be the same for all members. Types that 5165 // agree in both total size and mode (float vs. vector) are 5166 // treated as being equivalent here. 5167 const Type *TyPtr = Ty.getTypePtr(); 5168 if (!Base) { 5169 Base = TyPtr; 5170 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5171 // so make sure to widen it explicitly. 5172 if (const VectorType *VT = Base->getAs<VectorType>()) { 5173 QualType EltTy = VT->getElementType(); 5174 unsigned NumElements = 5175 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5176 Base = getContext() 5177 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5178 .getTypePtr(); 5179 } 5180 } 5181 5182 if (Base->isVectorType() != TyPtr->isVectorType() || 5183 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5184 return false; 5185 } 5186 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5187 } 5188 5189 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5190 // Homogeneous aggregates for ELFv2 must have base types of float, 5191 // double, long double, or 128-bit vectors. 5192 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5193 if (BT->getKind() == BuiltinType::Float || 5194 BT->getKind() == BuiltinType::Double || 5195 BT->getKind() == BuiltinType::LongDouble || 5196 (getContext().getTargetInfo().hasFloat128Type() && 5197 (BT->getKind() == BuiltinType::Float128))) { 5198 if (IsSoftFloatABI) 5199 return false; 5200 return true; 5201 } 5202 } 5203 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5204 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 5205 return true; 5206 } 5207 return false; 5208 } 5209 5210 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5211 const Type *Base, uint64_t Members) const { 5212 // Vector and fp128 types require one register, other floating point types 5213 // require one or two registers depending on their size. 5214 uint32_t NumRegs = 5215 ((getContext().getTargetInfo().hasFloat128Type() && 5216 Base->isFloat128Type()) || 5217 Base->isVectorType()) ? 1 5218 : (getContext().getTypeSize(Base) + 63) / 64; 5219 5220 // Homogeneous Aggregates may occupy at most 8 registers. 5221 return Members * NumRegs <= 8; 5222 } 5223 5224 ABIArgInfo 5225 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5226 Ty = useFirstFieldIfTransparentUnion(Ty); 5227 5228 if (Ty->isAnyComplexType()) 5229 return ABIArgInfo::getDirect(); 5230 5231 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5232 // or via reference (larger than 16 bytes). 5233 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 5234 uint64_t Size = getContext().getTypeSize(Ty); 5235 if (Size > 128) 5236 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5237 else if (Size < 128) { 5238 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5239 return ABIArgInfo::getDirect(CoerceTy); 5240 } 5241 } 5242 5243 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5244 if (EIT->getNumBits() > 128) 5245 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5246 5247 if (isAggregateTypeForABI(Ty)) { 5248 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5249 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5250 5251 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5252 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5253 5254 // ELFv2 homogeneous aggregates are passed as array types. 5255 const Type *Base = nullptr; 5256 uint64_t Members = 0; 5257 if (Kind == ELFv2 && 5258 isHomogeneousAggregate(Ty, Base, Members)) { 5259 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5260 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5261 return ABIArgInfo::getDirect(CoerceTy); 5262 } 5263 5264 // If an aggregate may end up fully in registers, we do not 5265 // use the ByVal method, but pass the aggregate as array. 5266 // This is usually beneficial since we avoid forcing the 5267 // back-end to store the argument to memory. 5268 uint64_t Bits = getContext().getTypeSize(Ty); 5269 if (Bits > 0 && Bits <= 8 * GPRBits) { 5270 llvm::Type *CoerceTy; 5271 5272 // Types up to 8 bytes are passed as integer type (which will be 5273 // properly aligned in the argument save area doubleword). 5274 if (Bits <= GPRBits) 5275 CoerceTy = 5276 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5277 // Larger types are passed as arrays, with the base type selected 5278 // according to the required alignment in the save area. 5279 else { 5280 uint64_t RegBits = ABIAlign * 8; 5281 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5282 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5283 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5284 } 5285 5286 return ABIArgInfo::getDirect(CoerceTy); 5287 } 5288 5289 // All other aggregates are passed ByVal. 5290 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5291 /*ByVal=*/true, 5292 /*Realign=*/TyAlign > ABIAlign); 5293 } 5294 5295 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5296 : ABIArgInfo::getDirect()); 5297 } 5298 5299 ABIArgInfo 5300 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5301 if (RetTy->isVoidType()) 5302 return ABIArgInfo::getIgnore(); 5303 5304 if (RetTy->isAnyComplexType()) 5305 return ABIArgInfo::getDirect(); 5306 5307 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5308 // or via reference (larger than 16 bytes). 5309 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5310 uint64_t Size = getContext().getTypeSize(RetTy); 5311 if (Size > 128) 5312 return getNaturalAlignIndirect(RetTy); 5313 else if (Size < 128) { 5314 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5315 return ABIArgInfo::getDirect(CoerceTy); 5316 } 5317 } 5318 5319 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5320 if (EIT->getNumBits() > 128) 5321 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5322 5323 if (isAggregateTypeForABI(RetTy)) { 5324 // ELFv2 homogeneous aggregates are returned as array types. 5325 const Type *Base = nullptr; 5326 uint64_t Members = 0; 5327 if (Kind == ELFv2 && 5328 isHomogeneousAggregate(RetTy, Base, Members)) { 5329 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5330 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5331 return ABIArgInfo::getDirect(CoerceTy); 5332 } 5333 5334 // ELFv2 small aggregates are returned in up to two registers. 5335 uint64_t Bits = getContext().getTypeSize(RetTy); 5336 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5337 if (Bits == 0) 5338 return ABIArgInfo::getIgnore(); 5339 5340 llvm::Type *CoerceTy; 5341 if (Bits > GPRBits) { 5342 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5343 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5344 } else 5345 CoerceTy = 5346 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5347 return ABIArgInfo::getDirect(CoerceTy); 5348 } 5349 5350 // All other aggregates are returned indirectly. 5351 return getNaturalAlignIndirect(RetTy); 5352 } 5353 5354 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5355 : ABIArgInfo::getDirect()); 5356 } 5357 5358 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5359 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5360 QualType Ty) const { 5361 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5362 TypeInfo.second = getParamTypeAlignment(Ty); 5363 5364 CharUnits SlotSize = CharUnits::fromQuantity(8); 5365 5366 // If we have a complex type and the base type is smaller than 8 bytes, 5367 // the ABI calls for the real and imaginary parts to be right-adjusted 5368 // in separate doublewords. However, Clang expects us to produce a 5369 // pointer to a structure with the two parts packed tightly. So generate 5370 // loads of the real and imaginary parts relative to the va_list pointer, 5371 // and store them to a temporary structure. 5372 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5373 CharUnits EltSize = TypeInfo.first / 2; 5374 if (EltSize < SlotSize) { 5375 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5376 SlotSize * 2, SlotSize, 5377 SlotSize, /*AllowHigher*/ true); 5378 5379 Address RealAddr = Addr; 5380 Address ImagAddr = RealAddr; 5381 if (CGF.CGM.getDataLayout().isBigEndian()) { 5382 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5383 SlotSize - EltSize); 5384 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5385 2 * SlotSize - EltSize); 5386 } else { 5387 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5388 } 5389 5390 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5391 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5392 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5393 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5394 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5395 5396 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5397 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5398 /*init*/ true); 5399 return Temp; 5400 } 5401 } 5402 5403 // Otherwise, just use the general rule. 5404 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5405 TypeInfo, SlotSize, /*AllowHigher*/ true); 5406 } 5407 5408 bool 5409 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5410 CodeGen::CodeGenFunction &CGF, 5411 llvm::Value *Address) const { 5412 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5413 /*IsAIX*/ false); 5414 } 5415 5416 bool 5417 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5418 llvm::Value *Address) const { 5419 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5420 /*IsAIX*/ false); 5421 } 5422 5423 //===----------------------------------------------------------------------===// 5424 // AArch64 ABI Implementation 5425 //===----------------------------------------------------------------------===// 5426 5427 namespace { 5428 5429 class AArch64ABIInfo : public SwiftABIInfo { 5430 public: 5431 enum ABIKind { 5432 AAPCS = 0, 5433 DarwinPCS, 5434 Win64 5435 }; 5436 5437 private: 5438 ABIKind Kind; 5439 5440 public: 5441 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5442 : SwiftABIInfo(CGT), Kind(Kind) {} 5443 5444 private: 5445 ABIKind getABIKind() const { return Kind; } 5446 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5447 5448 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5449 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5450 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5451 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5452 uint64_t Members) const override; 5453 5454 bool isIllegalVectorType(QualType Ty) const; 5455 5456 void computeInfo(CGFunctionInfo &FI) const override { 5457 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5458 FI.getReturnInfo() = 5459 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5460 5461 for (auto &it : FI.arguments()) 5462 it.info = classifyArgumentType(it.type); 5463 } 5464 5465 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5466 CodeGenFunction &CGF) const; 5467 5468 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5469 CodeGenFunction &CGF) const; 5470 5471 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5472 QualType Ty) const override { 5473 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5474 if (isa<llvm::ScalableVectorType>(BaseTy)) 5475 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5476 "currently not supported"); 5477 5478 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5479 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5480 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5481 } 5482 5483 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5484 QualType Ty) const override; 5485 5486 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5487 bool asReturnValue) const override { 5488 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5489 } 5490 bool isSwiftErrorInRegister() const override { 5491 return true; 5492 } 5493 5494 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5495 unsigned elts) const override; 5496 5497 bool allowBFloatArgsAndRet() const override { 5498 return getTarget().hasBFloat16Type(); 5499 } 5500 }; 5501 5502 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5503 public: 5504 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5505 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5506 5507 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5508 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5509 } 5510 5511 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5512 return 31; 5513 } 5514 5515 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5516 5517 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5518 CodeGen::CodeGenModule &CGM) const override { 5519 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5520 if (!FD) 5521 return; 5522 5523 LangOptions::SignReturnAddressScopeKind Scope = 5524 CGM.getLangOpts().getSignReturnAddressScope(); 5525 LangOptions::SignReturnAddressKeyKind Key = 5526 CGM.getLangOpts().getSignReturnAddressKey(); 5527 bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement; 5528 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5529 ParsedTargetAttr Attr = TA->parse(); 5530 if (!Attr.BranchProtection.empty()) { 5531 TargetInfo::BranchProtectionInfo BPI; 5532 StringRef Error; 5533 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5534 BPI, Error); 5535 assert(Error.empty()); 5536 Scope = BPI.SignReturnAddr; 5537 Key = BPI.SignKey; 5538 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5539 } 5540 } 5541 5542 auto *Fn = cast<llvm::Function>(GV); 5543 if (Scope != LangOptions::SignReturnAddressScopeKind::None) { 5544 Fn->addFnAttr("sign-return-address", 5545 Scope == LangOptions::SignReturnAddressScopeKind::All 5546 ? "all" 5547 : "non-leaf"); 5548 5549 Fn->addFnAttr("sign-return-address-key", 5550 Key == LangOptions::SignReturnAddressKeyKind::AKey 5551 ? "a_key" 5552 : "b_key"); 5553 } 5554 5555 if (BranchTargetEnforcement) 5556 Fn->addFnAttr("branch-target-enforcement"); 5557 } 5558 }; 5559 5560 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5561 public: 5562 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5563 : AArch64TargetCodeGenInfo(CGT, K) {} 5564 5565 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5566 CodeGen::CodeGenModule &CGM) const override; 5567 5568 void getDependentLibraryOption(llvm::StringRef Lib, 5569 llvm::SmallString<24> &Opt) const override { 5570 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5571 } 5572 5573 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5574 llvm::SmallString<32> &Opt) const override { 5575 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5576 } 5577 }; 5578 5579 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5580 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5581 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5582 if (GV->isDeclaration()) 5583 return; 5584 addStackProbeTargetAttributes(D, GV, CGM); 5585 } 5586 } 5587 5588 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5589 Ty = useFirstFieldIfTransparentUnion(Ty); 5590 5591 // Handle illegal vector types here. 5592 if (isIllegalVectorType(Ty)) { 5593 uint64_t Size = getContext().getTypeSize(Ty); 5594 // Android promotes <2 x i8> to i16, not i32 5595 if (isAndroid() && (Size <= 16)) { 5596 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5597 return ABIArgInfo::getDirect(ResType); 5598 } 5599 if (Size <= 32) { 5600 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5601 return ABIArgInfo::getDirect(ResType); 5602 } 5603 if (Size == 64) { 5604 auto *ResType = 5605 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5606 return ABIArgInfo::getDirect(ResType); 5607 } 5608 if (Size == 128) { 5609 auto *ResType = 5610 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5611 return ABIArgInfo::getDirect(ResType); 5612 } 5613 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5614 } 5615 5616 if (!isAggregateTypeForABI(Ty)) { 5617 // Treat an enum type as its underlying type. 5618 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5619 Ty = EnumTy->getDecl()->getIntegerType(); 5620 5621 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5622 if (EIT->getNumBits() > 128) 5623 return getNaturalAlignIndirect(Ty); 5624 5625 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5626 ? ABIArgInfo::getExtend(Ty) 5627 : ABIArgInfo::getDirect()); 5628 } 5629 5630 // Structures with either a non-trivial destructor or a non-trivial 5631 // copy constructor are always indirect. 5632 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5633 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5634 CGCXXABI::RAA_DirectInMemory); 5635 } 5636 5637 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5638 // elsewhere for GNU compatibility. 5639 uint64_t Size = getContext().getTypeSize(Ty); 5640 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5641 if (IsEmpty || Size == 0) { 5642 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5643 return ABIArgInfo::getIgnore(); 5644 5645 // GNU C mode. The only argument that gets ignored is an empty one with size 5646 // 0. 5647 if (IsEmpty && Size == 0) 5648 return ABIArgInfo::getIgnore(); 5649 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5650 } 5651 5652 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5653 const Type *Base = nullptr; 5654 uint64_t Members = 0; 5655 if (isHomogeneousAggregate(Ty, Base, Members)) { 5656 return ABIArgInfo::getDirect( 5657 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5658 } 5659 5660 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5661 if (Size <= 128) { 5662 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5663 // same size and alignment. 5664 if (getTarget().isRenderScriptTarget()) { 5665 return coerceToIntArray(Ty, getContext(), getVMContext()); 5666 } 5667 unsigned Alignment; 5668 if (Kind == AArch64ABIInfo::AAPCS) { 5669 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5670 Alignment = Alignment < 128 ? 64 : 128; 5671 } else { 5672 Alignment = std::max(getContext().getTypeAlign(Ty), 5673 (unsigned)getTarget().getPointerWidth(0)); 5674 } 5675 Size = llvm::alignTo(Size, Alignment); 5676 5677 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5678 // For aggregates with 16-byte alignment, we use i128. 5679 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5680 return ABIArgInfo::getDirect( 5681 Size == Alignment ? BaseTy 5682 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5683 } 5684 5685 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5686 } 5687 5688 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5689 bool IsVariadic) const { 5690 if (RetTy->isVoidType()) 5691 return ABIArgInfo::getIgnore(); 5692 5693 // Large vector types should be returned via memory. 5694 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5695 return getNaturalAlignIndirect(RetTy); 5696 5697 if (!isAggregateTypeForABI(RetTy)) { 5698 // Treat an enum type as its underlying type. 5699 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5700 RetTy = EnumTy->getDecl()->getIntegerType(); 5701 5702 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5703 if (EIT->getNumBits() > 128) 5704 return getNaturalAlignIndirect(RetTy); 5705 5706 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5707 ? ABIArgInfo::getExtend(RetTy) 5708 : ABIArgInfo::getDirect()); 5709 } 5710 5711 uint64_t Size = getContext().getTypeSize(RetTy); 5712 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5713 return ABIArgInfo::getIgnore(); 5714 5715 const Type *Base = nullptr; 5716 uint64_t Members = 0; 5717 if (isHomogeneousAggregate(RetTy, Base, Members) && 5718 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5719 IsVariadic)) 5720 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5721 return ABIArgInfo::getDirect(); 5722 5723 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5724 if (Size <= 128) { 5725 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5726 // same size and alignment. 5727 if (getTarget().isRenderScriptTarget()) { 5728 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5729 } 5730 unsigned Alignment = getContext().getTypeAlign(RetTy); 5731 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5732 5733 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5734 // For aggregates with 16-byte alignment, we use i128. 5735 if (Alignment < 128 && Size == 128) { 5736 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5737 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5738 } 5739 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5740 } 5741 5742 return getNaturalAlignIndirect(RetTy); 5743 } 5744 5745 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5746 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5747 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5748 // Check whether VT is legal. 5749 unsigned NumElements = VT->getNumElements(); 5750 uint64_t Size = getContext().getTypeSize(VT); 5751 // NumElements should be power of 2. 5752 if (!llvm::isPowerOf2_32(NumElements)) 5753 return true; 5754 5755 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5756 // vectors for some reason. 5757 llvm::Triple Triple = getTarget().getTriple(); 5758 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5759 Triple.isOSBinFormatMachO()) 5760 return Size <= 32; 5761 5762 return Size != 64 && (Size != 128 || NumElements == 1); 5763 } 5764 return false; 5765 } 5766 5767 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5768 llvm::Type *eltTy, 5769 unsigned elts) const { 5770 if (!llvm::isPowerOf2_32(elts)) 5771 return false; 5772 if (totalSize.getQuantity() != 8 && 5773 (totalSize.getQuantity() != 16 || elts == 1)) 5774 return false; 5775 return true; 5776 } 5777 5778 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5779 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5780 // point type or a short-vector type. This is the same as the 32-bit ABI, 5781 // but with the difference that any floating-point type is allowed, 5782 // including __fp16. 5783 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5784 if (BT->isFloatingPoint()) 5785 return true; 5786 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5787 unsigned VecSize = getContext().getTypeSize(VT); 5788 if (VecSize == 64 || VecSize == 128) 5789 return true; 5790 } 5791 return false; 5792 } 5793 5794 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5795 uint64_t Members) const { 5796 return Members <= 4; 5797 } 5798 5799 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5800 QualType Ty, 5801 CodeGenFunction &CGF) const { 5802 ABIArgInfo AI = classifyArgumentType(Ty); 5803 bool IsIndirect = AI.isIndirect(); 5804 5805 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5806 if (IsIndirect) 5807 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5808 else if (AI.getCoerceToType()) 5809 BaseTy = AI.getCoerceToType(); 5810 5811 unsigned NumRegs = 1; 5812 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5813 BaseTy = ArrTy->getElementType(); 5814 NumRegs = ArrTy->getNumElements(); 5815 } 5816 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5817 5818 // The AArch64 va_list type and handling is specified in the Procedure Call 5819 // Standard, section B.4: 5820 // 5821 // struct { 5822 // void *__stack; 5823 // void *__gr_top; 5824 // void *__vr_top; 5825 // int __gr_offs; 5826 // int __vr_offs; 5827 // }; 5828 5829 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5830 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5831 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5832 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5833 5834 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5835 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5836 5837 Address reg_offs_p = Address::invalid(); 5838 llvm::Value *reg_offs = nullptr; 5839 int reg_top_index; 5840 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5841 if (!IsFPR) { 5842 // 3 is the field number of __gr_offs 5843 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5844 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5845 reg_top_index = 1; // field number for __gr_top 5846 RegSize = llvm::alignTo(RegSize, 8); 5847 } else { 5848 // 4 is the field number of __vr_offs. 5849 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5850 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5851 reg_top_index = 2; // field number for __vr_top 5852 RegSize = 16 * NumRegs; 5853 } 5854 5855 //======================================= 5856 // Find out where argument was passed 5857 //======================================= 5858 5859 // If reg_offs >= 0 we're already using the stack for this type of 5860 // argument. We don't want to keep updating reg_offs (in case it overflows, 5861 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5862 // whatever they get). 5863 llvm::Value *UsingStack = nullptr; 5864 UsingStack = CGF.Builder.CreateICmpSGE( 5865 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5866 5867 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5868 5869 // Otherwise, at least some kind of argument could go in these registers, the 5870 // question is whether this particular type is too big. 5871 CGF.EmitBlock(MaybeRegBlock); 5872 5873 // Integer arguments may need to correct register alignment (for example a 5874 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5875 // align __gr_offs to calculate the potential address. 5876 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5877 int Align = TyAlign.getQuantity(); 5878 5879 reg_offs = CGF.Builder.CreateAdd( 5880 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5881 "align_regoffs"); 5882 reg_offs = CGF.Builder.CreateAnd( 5883 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5884 "aligned_regoffs"); 5885 } 5886 5887 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5888 // The fact that this is done unconditionally reflects the fact that 5889 // allocating an argument to the stack also uses up all the remaining 5890 // registers of the appropriate kind. 5891 llvm::Value *NewOffset = nullptr; 5892 NewOffset = CGF.Builder.CreateAdd( 5893 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5894 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5895 5896 // Now we're in a position to decide whether this argument really was in 5897 // registers or not. 5898 llvm::Value *InRegs = nullptr; 5899 InRegs = CGF.Builder.CreateICmpSLE( 5900 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5901 5902 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5903 5904 //======================================= 5905 // Argument was in registers 5906 //======================================= 5907 5908 // Now we emit the code for if the argument was originally passed in 5909 // registers. First start the appropriate block: 5910 CGF.EmitBlock(InRegBlock); 5911 5912 llvm::Value *reg_top = nullptr; 5913 Address reg_top_p = 5914 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5915 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5916 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5917 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5918 Address RegAddr = Address::invalid(); 5919 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5920 5921 if (IsIndirect) { 5922 // If it's been passed indirectly (actually a struct), whatever we find from 5923 // stored registers or on the stack will actually be a struct **. 5924 MemTy = llvm::PointerType::getUnqual(MemTy); 5925 } 5926 5927 const Type *Base = nullptr; 5928 uint64_t NumMembers = 0; 5929 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5930 if (IsHFA && NumMembers > 1) { 5931 // Homogeneous aggregates passed in registers will have their elements split 5932 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5933 // qN+1, ...). We reload and store into a temporary local variable 5934 // contiguously. 5935 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5936 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5937 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5938 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5939 Address Tmp = CGF.CreateTempAlloca(HFATy, 5940 std::max(TyAlign, BaseTyInfo.second)); 5941 5942 // On big-endian platforms, the value will be right-aligned in its slot. 5943 int Offset = 0; 5944 if (CGF.CGM.getDataLayout().isBigEndian() && 5945 BaseTyInfo.first.getQuantity() < 16) 5946 Offset = 16 - BaseTyInfo.first.getQuantity(); 5947 5948 for (unsigned i = 0; i < NumMembers; ++i) { 5949 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5950 Address LoadAddr = 5951 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5952 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5953 5954 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5955 5956 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5957 CGF.Builder.CreateStore(Elem, StoreAddr); 5958 } 5959 5960 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5961 } else { 5962 // Otherwise the object is contiguous in memory. 5963 5964 // It might be right-aligned in its slot. 5965 CharUnits SlotSize = BaseAddr.getAlignment(); 5966 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5967 (IsHFA || !isAggregateTypeForABI(Ty)) && 5968 TySize < SlotSize) { 5969 CharUnits Offset = SlotSize - TySize; 5970 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5971 } 5972 5973 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5974 } 5975 5976 CGF.EmitBranch(ContBlock); 5977 5978 //======================================= 5979 // Argument was on the stack 5980 //======================================= 5981 CGF.EmitBlock(OnStackBlock); 5982 5983 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5984 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5985 5986 // Again, stack arguments may need realignment. In this case both integer and 5987 // floating-point ones might be affected. 5988 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5989 int Align = TyAlign.getQuantity(); 5990 5991 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5992 5993 OnStackPtr = CGF.Builder.CreateAdd( 5994 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5995 "align_stack"); 5996 OnStackPtr = CGF.Builder.CreateAnd( 5997 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5998 "align_stack"); 5999 6000 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6001 } 6002 Address OnStackAddr(OnStackPtr, 6003 std::max(CharUnits::fromQuantity(8), TyAlign)); 6004 6005 // All stack slots are multiples of 8 bytes. 6006 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6007 CharUnits StackSize; 6008 if (IsIndirect) 6009 StackSize = StackSlotSize; 6010 else 6011 StackSize = TySize.alignTo(StackSlotSize); 6012 6013 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6014 llvm::Value *NewStack = 6015 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6016 6017 // Write the new value of __stack for the next call to va_arg 6018 CGF.Builder.CreateStore(NewStack, stack_p); 6019 6020 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6021 TySize < StackSlotSize) { 6022 CharUnits Offset = StackSlotSize - TySize; 6023 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6024 } 6025 6026 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6027 6028 CGF.EmitBranch(ContBlock); 6029 6030 //======================================= 6031 // Tidy up 6032 //======================================= 6033 CGF.EmitBlock(ContBlock); 6034 6035 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6036 OnStackAddr, OnStackBlock, "vaargs.addr"); 6037 6038 if (IsIndirect) 6039 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6040 TyAlign); 6041 6042 return ResAddr; 6043 } 6044 6045 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6046 CodeGenFunction &CGF) const { 6047 // The backend's lowering doesn't support va_arg for aggregates or 6048 // illegal vector types. Lower VAArg here for these cases and use 6049 // the LLVM va_arg instruction for everything else. 6050 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6051 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6052 6053 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6054 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6055 6056 // Empty records are ignored for parameter passing purposes. 6057 if (isEmptyRecord(getContext(), Ty, true)) { 6058 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6059 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6060 return Addr; 6061 } 6062 6063 // The size of the actual thing passed, which might end up just 6064 // being a pointer for indirect types. 6065 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6066 6067 // Arguments bigger than 16 bytes which aren't homogeneous 6068 // aggregates should be passed indirectly. 6069 bool IsIndirect = false; 6070 if (TyInfo.first.getQuantity() > 16) { 6071 const Type *Base = nullptr; 6072 uint64_t Members = 0; 6073 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6074 } 6075 6076 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6077 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6078 } 6079 6080 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6081 QualType Ty) const { 6082 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6083 CGF.getContext().getTypeInfoInChars(Ty), 6084 CharUnits::fromQuantity(8), 6085 /*allowHigherAlign*/ false); 6086 } 6087 6088 //===----------------------------------------------------------------------===// 6089 // ARM ABI Implementation 6090 //===----------------------------------------------------------------------===// 6091 6092 namespace { 6093 6094 class ARMABIInfo : public SwiftABIInfo { 6095 public: 6096 enum ABIKind { 6097 APCS = 0, 6098 AAPCS = 1, 6099 AAPCS_VFP = 2, 6100 AAPCS16_VFP = 3, 6101 }; 6102 6103 private: 6104 ABIKind Kind; 6105 bool IsFloatABISoftFP; 6106 6107 public: 6108 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6109 : SwiftABIInfo(CGT), Kind(_Kind) { 6110 setCCs(); 6111 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6112 CGT.getCodeGenOpts().FloatABI == ""; // default 6113 } 6114 6115 bool isEABI() const { 6116 switch (getTarget().getTriple().getEnvironment()) { 6117 case llvm::Triple::Android: 6118 case llvm::Triple::EABI: 6119 case llvm::Triple::EABIHF: 6120 case llvm::Triple::GNUEABI: 6121 case llvm::Triple::GNUEABIHF: 6122 case llvm::Triple::MuslEABI: 6123 case llvm::Triple::MuslEABIHF: 6124 return true; 6125 default: 6126 return false; 6127 } 6128 } 6129 6130 bool isEABIHF() const { 6131 switch (getTarget().getTriple().getEnvironment()) { 6132 case llvm::Triple::EABIHF: 6133 case llvm::Triple::GNUEABIHF: 6134 case llvm::Triple::MuslEABIHF: 6135 return true; 6136 default: 6137 return false; 6138 } 6139 } 6140 6141 ABIKind getABIKind() const { return Kind; } 6142 6143 bool allowBFloatArgsAndRet() const override { 6144 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6145 } 6146 6147 private: 6148 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6149 unsigned functionCallConv) const; 6150 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6151 unsigned functionCallConv) const; 6152 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6153 uint64_t Members) const; 6154 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6155 bool isIllegalVectorType(QualType Ty) const; 6156 bool containsAnyFP16Vectors(QualType Ty) const; 6157 6158 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6159 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6160 uint64_t Members) const override; 6161 6162 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6163 6164 void computeInfo(CGFunctionInfo &FI) const override; 6165 6166 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6167 QualType Ty) const override; 6168 6169 llvm::CallingConv::ID getLLVMDefaultCC() const; 6170 llvm::CallingConv::ID getABIDefaultCC() const; 6171 void setCCs(); 6172 6173 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6174 bool asReturnValue) const override { 6175 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6176 } 6177 bool isSwiftErrorInRegister() const override { 6178 return true; 6179 } 6180 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6181 unsigned elts) const override; 6182 }; 6183 6184 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6185 public: 6186 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6187 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6188 6189 const ARMABIInfo &getABIInfo() const { 6190 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6191 } 6192 6193 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6194 return 13; 6195 } 6196 6197 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6198 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6199 } 6200 6201 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6202 llvm::Value *Address) const override { 6203 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6204 6205 // 0-15 are the 16 integer registers. 6206 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6207 return false; 6208 } 6209 6210 unsigned getSizeOfUnwindException() const override { 6211 if (getABIInfo().isEABI()) return 88; 6212 return TargetCodeGenInfo::getSizeOfUnwindException(); 6213 } 6214 6215 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6216 CodeGen::CodeGenModule &CGM) const override { 6217 if (GV->isDeclaration()) 6218 return; 6219 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6220 if (!FD) 6221 return; 6222 6223 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6224 if (!Attr) 6225 return; 6226 6227 const char *Kind; 6228 switch (Attr->getInterrupt()) { 6229 case ARMInterruptAttr::Generic: Kind = ""; break; 6230 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6231 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6232 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6233 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6234 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6235 } 6236 6237 llvm::Function *Fn = cast<llvm::Function>(GV); 6238 6239 Fn->addFnAttr("interrupt", Kind); 6240 6241 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6242 if (ABI == ARMABIInfo::APCS) 6243 return; 6244 6245 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6246 // however this is not necessarily true on taking any interrupt. Instruct 6247 // the backend to perform a realignment as part of the function prologue. 6248 llvm::AttrBuilder B; 6249 B.addStackAlignmentAttr(8); 6250 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6251 } 6252 }; 6253 6254 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6255 public: 6256 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6257 : ARMTargetCodeGenInfo(CGT, K) {} 6258 6259 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6260 CodeGen::CodeGenModule &CGM) const override; 6261 6262 void getDependentLibraryOption(llvm::StringRef Lib, 6263 llvm::SmallString<24> &Opt) const override { 6264 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6265 } 6266 6267 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6268 llvm::SmallString<32> &Opt) const override { 6269 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6270 } 6271 }; 6272 6273 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6274 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6275 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6276 if (GV->isDeclaration()) 6277 return; 6278 addStackProbeTargetAttributes(D, GV, CGM); 6279 } 6280 } 6281 6282 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6283 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6284 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6285 FI.getCallingConvention()); 6286 6287 for (auto &I : FI.arguments()) 6288 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6289 FI.getCallingConvention()); 6290 6291 6292 // Always honor user-specified calling convention. 6293 if (FI.getCallingConvention() != llvm::CallingConv::C) 6294 return; 6295 6296 llvm::CallingConv::ID cc = getRuntimeCC(); 6297 if (cc != llvm::CallingConv::C) 6298 FI.setEffectiveCallingConvention(cc); 6299 } 6300 6301 /// Return the default calling convention that LLVM will use. 6302 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6303 // The default calling convention that LLVM will infer. 6304 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6305 return llvm::CallingConv::ARM_AAPCS_VFP; 6306 else if (isEABI()) 6307 return llvm::CallingConv::ARM_AAPCS; 6308 else 6309 return llvm::CallingConv::ARM_APCS; 6310 } 6311 6312 /// Return the calling convention that our ABI would like us to use 6313 /// as the C calling convention. 6314 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6315 switch (getABIKind()) { 6316 case APCS: return llvm::CallingConv::ARM_APCS; 6317 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6318 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6319 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6320 } 6321 llvm_unreachable("bad ABI kind"); 6322 } 6323 6324 void ARMABIInfo::setCCs() { 6325 assert(getRuntimeCC() == llvm::CallingConv::C); 6326 6327 // Don't muddy up the IR with a ton of explicit annotations if 6328 // they'd just match what LLVM will infer from the triple. 6329 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6330 if (abiCC != getLLVMDefaultCC()) 6331 RuntimeCC = abiCC; 6332 } 6333 6334 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6335 uint64_t Size = getContext().getTypeSize(Ty); 6336 if (Size <= 32) { 6337 llvm::Type *ResType = 6338 llvm::Type::getInt32Ty(getVMContext()); 6339 return ABIArgInfo::getDirect(ResType); 6340 } 6341 if (Size == 64 || Size == 128) { 6342 auto *ResType = llvm::FixedVectorType::get( 6343 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6344 return ABIArgInfo::getDirect(ResType); 6345 } 6346 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6347 } 6348 6349 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6350 const Type *Base, 6351 uint64_t Members) const { 6352 assert(Base && "Base class should be set for homogeneous aggregate"); 6353 // Base can be a floating-point or a vector. 6354 if (const VectorType *VT = Base->getAs<VectorType>()) { 6355 // FP16 vectors should be converted to integer vectors 6356 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6357 uint64_t Size = getContext().getTypeSize(VT); 6358 auto *NewVecTy = llvm::FixedVectorType::get( 6359 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6360 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6361 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6362 } 6363 } 6364 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6365 } 6366 6367 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6368 unsigned functionCallConv) const { 6369 // 6.1.2.1 The following argument types are VFP CPRCs: 6370 // A single-precision floating-point type (including promoted 6371 // half-precision types); A double-precision floating-point type; 6372 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6373 // with a Base Type of a single- or double-precision floating-point type, 6374 // 64-bit containerized vectors or 128-bit containerized vectors with one 6375 // to four Elements. 6376 // Variadic functions should always marshal to the base standard. 6377 bool IsAAPCS_VFP = 6378 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6379 6380 Ty = useFirstFieldIfTransparentUnion(Ty); 6381 6382 // Handle illegal vector types here. 6383 if (isIllegalVectorType(Ty)) 6384 return coerceIllegalVector(Ty); 6385 6386 if (!isAggregateTypeForABI(Ty)) { 6387 // Treat an enum type as its underlying type. 6388 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6389 Ty = EnumTy->getDecl()->getIntegerType(); 6390 } 6391 6392 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6393 if (EIT->getNumBits() > 64) 6394 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6395 6396 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6397 : ABIArgInfo::getDirect()); 6398 } 6399 6400 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6401 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6402 } 6403 6404 // Ignore empty records. 6405 if (isEmptyRecord(getContext(), Ty, true)) 6406 return ABIArgInfo::getIgnore(); 6407 6408 if (IsAAPCS_VFP) { 6409 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6410 // into VFP registers. 6411 const Type *Base = nullptr; 6412 uint64_t Members = 0; 6413 if (isHomogeneousAggregate(Ty, Base, Members)) 6414 return classifyHomogeneousAggregate(Ty, Base, Members); 6415 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6416 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6417 // this convention even for a variadic function: the backend will use GPRs 6418 // if needed. 6419 const Type *Base = nullptr; 6420 uint64_t Members = 0; 6421 if (isHomogeneousAggregate(Ty, Base, Members)) { 6422 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6423 llvm::Type *Ty = 6424 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6425 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6426 } 6427 } 6428 6429 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6430 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6431 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6432 // bigger than 128-bits, they get placed in space allocated by the caller, 6433 // and a pointer is passed. 6434 return ABIArgInfo::getIndirect( 6435 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6436 } 6437 6438 // Support byval for ARM. 6439 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6440 // most 8-byte. We realign the indirect argument if type alignment is bigger 6441 // than ABI alignment. 6442 uint64_t ABIAlign = 4; 6443 uint64_t TyAlign; 6444 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6445 getABIKind() == ARMABIInfo::AAPCS) { 6446 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6447 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6448 } else { 6449 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6450 } 6451 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6452 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6453 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6454 /*ByVal=*/true, 6455 /*Realign=*/TyAlign > ABIAlign); 6456 } 6457 6458 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6459 // same size and alignment. 6460 if (getTarget().isRenderScriptTarget()) { 6461 return coerceToIntArray(Ty, getContext(), getVMContext()); 6462 } 6463 6464 // Otherwise, pass by coercing to a structure of the appropriate size. 6465 llvm::Type* ElemTy; 6466 unsigned SizeRegs; 6467 // FIXME: Try to match the types of the arguments more accurately where 6468 // we can. 6469 if (TyAlign <= 4) { 6470 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6471 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6472 } else { 6473 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6474 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6475 } 6476 6477 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6478 } 6479 6480 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6481 llvm::LLVMContext &VMContext) { 6482 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6483 // is called integer-like if its size is less than or equal to one word, and 6484 // the offset of each of its addressable sub-fields is zero. 6485 6486 uint64_t Size = Context.getTypeSize(Ty); 6487 6488 // Check that the type fits in a word. 6489 if (Size > 32) 6490 return false; 6491 6492 // FIXME: Handle vector types! 6493 if (Ty->isVectorType()) 6494 return false; 6495 6496 // Float types are never treated as "integer like". 6497 if (Ty->isRealFloatingType()) 6498 return false; 6499 6500 // If this is a builtin or pointer type then it is ok. 6501 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6502 return true; 6503 6504 // Small complex integer types are "integer like". 6505 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6506 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6507 6508 // Single element and zero sized arrays should be allowed, by the definition 6509 // above, but they are not. 6510 6511 // Otherwise, it must be a record type. 6512 const RecordType *RT = Ty->getAs<RecordType>(); 6513 if (!RT) return false; 6514 6515 // Ignore records with flexible arrays. 6516 const RecordDecl *RD = RT->getDecl(); 6517 if (RD->hasFlexibleArrayMember()) 6518 return false; 6519 6520 // Check that all sub-fields are at offset 0, and are themselves "integer 6521 // like". 6522 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6523 6524 bool HadField = false; 6525 unsigned idx = 0; 6526 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6527 i != e; ++i, ++idx) { 6528 const FieldDecl *FD = *i; 6529 6530 // Bit-fields are not addressable, we only need to verify they are "integer 6531 // like". We still have to disallow a subsequent non-bitfield, for example: 6532 // struct { int : 0; int x } 6533 // is non-integer like according to gcc. 6534 if (FD->isBitField()) { 6535 if (!RD->isUnion()) 6536 HadField = true; 6537 6538 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6539 return false; 6540 6541 continue; 6542 } 6543 6544 // Check if this field is at offset 0. 6545 if (Layout.getFieldOffset(idx) != 0) 6546 return false; 6547 6548 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6549 return false; 6550 6551 // Only allow at most one field in a structure. This doesn't match the 6552 // wording above, but follows gcc in situations with a field following an 6553 // empty structure. 6554 if (!RD->isUnion()) { 6555 if (HadField) 6556 return false; 6557 6558 HadField = true; 6559 } 6560 } 6561 6562 return true; 6563 } 6564 6565 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6566 unsigned functionCallConv) const { 6567 6568 // Variadic functions should always marshal to the base standard. 6569 bool IsAAPCS_VFP = 6570 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6571 6572 if (RetTy->isVoidType()) 6573 return ABIArgInfo::getIgnore(); 6574 6575 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6576 // Large vector types should be returned via memory. 6577 if (getContext().getTypeSize(RetTy) > 128) 6578 return getNaturalAlignIndirect(RetTy); 6579 // TODO: FP16/BF16 vectors should be converted to integer vectors 6580 // This check is similar to isIllegalVectorType - refactor? 6581 if ((!getTarget().hasLegalHalfType() && 6582 (VT->getElementType()->isFloat16Type() || 6583 VT->getElementType()->isHalfType())) || 6584 (IsFloatABISoftFP && 6585 VT->getElementType()->isBFloat16Type())) 6586 return coerceIllegalVector(RetTy); 6587 } 6588 6589 if (!isAggregateTypeForABI(RetTy)) { 6590 // Treat an enum type as its underlying type. 6591 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6592 RetTy = EnumTy->getDecl()->getIntegerType(); 6593 6594 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6595 if (EIT->getNumBits() > 64) 6596 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6597 6598 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6599 : ABIArgInfo::getDirect(); 6600 } 6601 6602 // Are we following APCS? 6603 if (getABIKind() == APCS) { 6604 if (isEmptyRecord(getContext(), RetTy, false)) 6605 return ABIArgInfo::getIgnore(); 6606 6607 // Complex types are all returned as packed integers. 6608 // 6609 // FIXME: Consider using 2 x vector types if the back end handles them 6610 // correctly. 6611 if (RetTy->isAnyComplexType()) 6612 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6613 getVMContext(), getContext().getTypeSize(RetTy))); 6614 6615 // Integer like structures are returned in r0. 6616 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6617 // Return in the smallest viable integer type. 6618 uint64_t Size = getContext().getTypeSize(RetTy); 6619 if (Size <= 8) 6620 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6621 if (Size <= 16) 6622 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6623 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6624 } 6625 6626 // Otherwise return in memory. 6627 return getNaturalAlignIndirect(RetTy); 6628 } 6629 6630 // Otherwise this is an AAPCS variant. 6631 6632 if (isEmptyRecord(getContext(), RetTy, true)) 6633 return ABIArgInfo::getIgnore(); 6634 6635 // Check for homogeneous aggregates with AAPCS-VFP. 6636 if (IsAAPCS_VFP) { 6637 const Type *Base = nullptr; 6638 uint64_t Members = 0; 6639 if (isHomogeneousAggregate(RetTy, Base, Members)) 6640 return classifyHomogeneousAggregate(RetTy, Base, Members); 6641 } 6642 6643 // Aggregates <= 4 bytes are returned in r0; other aggregates 6644 // are returned indirectly. 6645 uint64_t Size = getContext().getTypeSize(RetTy); 6646 if (Size <= 32) { 6647 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6648 // same size and alignment. 6649 if (getTarget().isRenderScriptTarget()) { 6650 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6651 } 6652 if (getDataLayout().isBigEndian()) 6653 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6654 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6655 6656 // Return in the smallest viable integer type. 6657 if (Size <= 8) 6658 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6659 if (Size <= 16) 6660 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6661 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6662 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6663 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6664 llvm::Type *CoerceTy = 6665 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6666 return ABIArgInfo::getDirect(CoerceTy); 6667 } 6668 6669 return getNaturalAlignIndirect(RetTy); 6670 } 6671 6672 /// isIllegalVector - check whether Ty is an illegal vector type. 6673 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6674 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6675 // On targets that don't support half, fp16 or bfloat, they are expanded 6676 // into float, and we don't want the ABI to depend on whether or not they 6677 // are supported in hardware. Thus return false to coerce vectors of these 6678 // types into integer vectors. 6679 // We do not depend on hasLegalHalfType for bfloat as it is a 6680 // separate IR type. 6681 if ((!getTarget().hasLegalHalfType() && 6682 (VT->getElementType()->isFloat16Type() || 6683 VT->getElementType()->isHalfType())) || 6684 (IsFloatABISoftFP && 6685 VT->getElementType()->isBFloat16Type())) 6686 return true; 6687 if (isAndroid()) { 6688 // Android shipped using Clang 3.1, which supported a slightly different 6689 // vector ABI. The primary differences were that 3-element vector types 6690 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6691 // accepts that legacy behavior for Android only. 6692 // Check whether VT is legal. 6693 unsigned NumElements = VT->getNumElements(); 6694 // NumElements should be power of 2 or equal to 3. 6695 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6696 return true; 6697 } else { 6698 // Check whether VT is legal. 6699 unsigned NumElements = VT->getNumElements(); 6700 uint64_t Size = getContext().getTypeSize(VT); 6701 // NumElements should be power of 2. 6702 if (!llvm::isPowerOf2_32(NumElements)) 6703 return true; 6704 // Size should be greater than 32 bits. 6705 return Size <= 32; 6706 } 6707 } 6708 return false; 6709 } 6710 6711 /// Return true if a type contains any 16-bit floating point vectors 6712 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6713 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6714 uint64_t NElements = AT->getSize().getZExtValue(); 6715 if (NElements == 0) 6716 return false; 6717 return containsAnyFP16Vectors(AT->getElementType()); 6718 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6719 const RecordDecl *RD = RT->getDecl(); 6720 6721 // If this is a C++ record, check the bases first. 6722 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6723 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6724 return containsAnyFP16Vectors(B.getType()); 6725 })) 6726 return true; 6727 6728 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6729 return FD && containsAnyFP16Vectors(FD->getType()); 6730 })) 6731 return true; 6732 6733 return false; 6734 } else { 6735 if (const VectorType *VT = Ty->getAs<VectorType>()) 6736 return (VT->getElementType()->isFloat16Type() || 6737 VT->getElementType()->isBFloat16Type() || 6738 VT->getElementType()->isHalfType()); 6739 return false; 6740 } 6741 } 6742 6743 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6744 llvm::Type *eltTy, 6745 unsigned numElts) const { 6746 if (!llvm::isPowerOf2_32(numElts)) 6747 return false; 6748 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6749 if (size > 64) 6750 return false; 6751 if (vectorSize.getQuantity() != 8 && 6752 (vectorSize.getQuantity() != 16 || numElts == 1)) 6753 return false; 6754 return true; 6755 } 6756 6757 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6758 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6759 // double, or 64-bit or 128-bit vectors. 6760 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6761 if (BT->getKind() == BuiltinType::Float || 6762 BT->getKind() == BuiltinType::Double || 6763 BT->getKind() == BuiltinType::LongDouble) 6764 return true; 6765 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6766 unsigned VecSize = getContext().getTypeSize(VT); 6767 if (VecSize == 64 || VecSize == 128) 6768 return true; 6769 } 6770 return false; 6771 } 6772 6773 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6774 uint64_t Members) const { 6775 return Members <= 4; 6776 } 6777 6778 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6779 bool acceptHalf) const { 6780 // Give precedence to user-specified calling conventions. 6781 if (callConvention != llvm::CallingConv::C) 6782 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6783 else 6784 return (getABIKind() == AAPCS_VFP) || 6785 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6786 } 6787 6788 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6789 QualType Ty) const { 6790 CharUnits SlotSize = CharUnits::fromQuantity(4); 6791 6792 // Empty records are ignored for parameter passing purposes. 6793 if (isEmptyRecord(getContext(), Ty, true)) { 6794 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6795 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6796 return Addr; 6797 } 6798 6799 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6800 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6801 6802 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6803 bool IsIndirect = false; 6804 const Type *Base = nullptr; 6805 uint64_t Members = 0; 6806 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6807 IsIndirect = true; 6808 6809 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6810 // allocated by the caller. 6811 } else if (TySize > CharUnits::fromQuantity(16) && 6812 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6813 !isHomogeneousAggregate(Ty, Base, Members)) { 6814 IsIndirect = true; 6815 6816 // Otherwise, bound the type's ABI alignment. 6817 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6818 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6819 // Our callers should be prepared to handle an under-aligned address. 6820 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6821 getABIKind() == ARMABIInfo::AAPCS) { 6822 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6823 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6824 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6825 // ARMv7k allows type alignment up to 16 bytes. 6826 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6827 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6828 } else { 6829 TyAlignForABI = CharUnits::fromQuantity(4); 6830 } 6831 6832 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6833 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6834 SlotSize, /*AllowHigherAlign*/ true); 6835 } 6836 6837 //===----------------------------------------------------------------------===// 6838 // NVPTX ABI Implementation 6839 //===----------------------------------------------------------------------===// 6840 6841 namespace { 6842 6843 class NVPTXTargetCodeGenInfo; 6844 6845 class NVPTXABIInfo : public ABIInfo { 6846 NVPTXTargetCodeGenInfo &CGInfo; 6847 6848 public: 6849 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6850 : ABIInfo(CGT), CGInfo(Info) {} 6851 6852 ABIArgInfo classifyReturnType(QualType RetTy) const; 6853 ABIArgInfo classifyArgumentType(QualType Ty) const; 6854 6855 void computeInfo(CGFunctionInfo &FI) const override; 6856 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6857 QualType Ty) const override; 6858 bool isUnsupportedType(QualType T) const; 6859 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6860 }; 6861 6862 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6863 public: 6864 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6865 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6866 6867 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6868 CodeGen::CodeGenModule &M) const override; 6869 bool shouldEmitStaticExternCAliases() const override; 6870 6871 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6872 // On the device side, surface reference is represented as an object handle 6873 // in 64-bit integer. 6874 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6875 } 6876 6877 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6878 // On the device side, texture reference is represented as an object handle 6879 // in 64-bit integer. 6880 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6881 } 6882 6883 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6884 LValue Src) const override { 6885 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6886 return true; 6887 } 6888 6889 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6890 LValue Src) const override { 6891 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6892 return true; 6893 } 6894 6895 private: 6896 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6897 // resulting MDNode to the nvvm.annotations MDNode. 6898 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6899 int Operand); 6900 6901 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6902 LValue Src) { 6903 llvm::Value *Handle = nullptr; 6904 llvm::Constant *C = 6905 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6906 // Lookup `addrspacecast` through the constant pointer if any. 6907 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6908 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6909 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6910 // Load the handle from the specific global variable using 6911 // `nvvm.texsurf.handle.internal` intrinsic. 6912 Handle = CGF.EmitRuntimeCall( 6913 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6914 {GV->getType()}), 6915 {GV}, "texsurf_handle"); 6916 } else 6917 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6918 CGF.EmitStoreOfScalar(Handle, Dst); 6919 } 6920 }; 6921 6922 /// Checks if the type is unsupported directly by the current target. 6923 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6924 ASTContext &Context = getContext(); 6925 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6926 return true; 6927 if (!Context.getTargetInfo().hasFloat128Type() && 6928 (T->isFloat128Type() || 6929 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6930 return true; 6931 if (const auto *EIT = T->getAs<ExtIntType>()) 6932 return EIT->getNumBits() > 6933 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6934 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6935 Context.getTypeSize(T) > 64U) 6936 return true; 6937 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6938 return isUnsupportedType(AT->getElementType()); 6939 const auto *RT = T->getAs<RecordType>(); 6940 if (!RT) 6941 return false; 6942 const RecordDecl *RD = RT->getDecl(); 6943 6944 // If this is a C++ record, check the bases first. 6945 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6946 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6947 if (isUnsupportedType(I.getType())) 6948 return true; 6949 6950 for (const FieldDecl *I : RD->fields()) 6951 if (isUnsupportedType(I->getType())) 6952 return true; 6953 return false; 6954 } 6955 6956 /// Coerce the given type into an array with maximum allowed size of elements. 6957 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 6958 unsigned MaxSize) const { 6959 // Alignment and Size are measured in bits. 6960 const uint64_t Size = getContext().getTypeSize(Ty); 6961 const uint64_t Alignment = getContext().getTypeAlign(Ty); 6962 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6963 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 6964 const uint64_t NumElements = (Size + Div - 1) / Div; 6965 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6966 } 6967 6968 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6969 if (RetTy->isVoidType()) 6970 return ABIArgInfo::getIgnore(); 6971 6972 if (getContext().getLangOpts().OpenMP && 6973 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 6974 return coerceToIntArrayWithLimit(RetTy, 64); 6975 6976 // note: this is different from default ABI 6977 if (!RetTy->isScalarType()) 6978 return ABIArgInfo::getDirect(); 6979 6980 // Treat an enum type as its underlying type. 6981 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6982 RetTy = EnumTy->getDecl()->getIntegerType(); 6983 6984 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6985 : ABIArgInfo::getDirect()); 6986 } 6987 6988 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6989 // Treat an enum type as its underlying type. 6990 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6991 Ty = EnumTy->getDecl()->getIntegerType(); 6992 6993 // Return aggregates type as indirect by value 6994 if (isAggregateTypeForABI(Ty)) { 6995 // Under CUDA device compilation, tex/surf builtin types are replaced with 6996 // object types and passed directly. 6997 if (getContext().getLangOpts().CUDAIsDevice) { 6998 if (Ty->isCUDADeviceBuiltinSurfaceType()) 6999 return ABIArgInfo::getDirect( 7000 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7001 if (Ty->isCUDADeviceBuiltinTextureType()) 7002 return ABIArgInfo::getDirect( 7003 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7004 } 7005 return getNaturalAlignIndirect(Ty, /* byval */ true); 7006 } 7007 7008 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7009 if ((EIT->getNumBits() > 128) || 7010 (!getContext().getTargetInfo().hasInt128Type() && 7011 EIT->getNumBits() > 64)) 7012 return getNaturalAlignIndirect(Ty, /* byval */ true); 7013 } 7014 7015 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7016 : ABIArgInfo::getDirect()); 7017 } 7018 7019 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7020 if (!getCXXABI().classifyReturnType(FI)) 7021 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7022 for (auto &I : FI.arguments()) 7023 I.info = classifyArgumentType(I.type); 7024 7025 // Always honor user-specified calling convention. 7026 if (FI.getCallingConvention() != llvm::CallingConv::C) 7027 return; 7028 7029 FI.setEffectiveCallingConvention(getRuntimeCC()); 7030 } 7031 7032 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7033 QualType Ty) const { 7034 llvm_unreachable("NVPTX does not support varargs"); 7035 } 7036 7037 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7038 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7039 if (GV->isDeclaration()) 7040 return; 7041 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7042 if (VD) { 7043 if (M.getLangOpts().CUDA) { 7044 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7045 addNVVMMetadata(GV, "surface", 1); 7046 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7047 addNVVMMetadata(GV, "texture", 1); 7048 return; 7049 } 7050 } 7051 7052 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7053 if (!FD) return; 7054 7055 llvm::Function *F = cast<llvm::Function>(GV); 7056 7057 // Perform special handling in OpenCL mode 7058 if (M.getLangOpts().OpenCL) { 7059 // Use OpenCL function attributes to check for kernel functions 7060 // By default, all functions are device functions 7061 if (FD->hasAttr<OpenCLKernelAttr>()) { 7062 // OpenCL __kernel functions get kernel metadata 7063 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7064 addNVVMMetadata(F, "kernel", 1); 7065 // And kernel functions are not subject to inlining 7066 F->addFnAttr(llvm::Attribute::NoInline); 7067 } 7068 } 7069 7070 // Perform special handling in CUDA mode. 7071 if (M.getLangOpts().CUDA) { 7072 // CUDA __global__ functions get a kernel metadata entry. Since 7073 // __global__ functions cannot be called from the device, we do not 7074 // need to set the noinline attribute. 7075 if (FD->hasAttr<CUDAGlobalAttr>()) { 7076 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7077 addNVVMMetadata(F, "kernel", 1); 7078 } 7079 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7080 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7081 llvm::APSInt MaxThreads(32); 7082 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7083 if (MaxThreads > 0) 7084 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7085 7086 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7087 // not specified in __launch_bounds__ or if the user specified a 0 value, 7088 // we don't have to add a PTX directive. 7089 if (Attr->getMinBlocks()) { 7090 llvm::APSInt MinBlocks(32); 7091 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7092 if (MinBlocks > 0) 7093 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7094 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7095 } 7096 } 7097 } 7098 } 7099 7100 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7101 StringRef Name, int Operand) { 7102 llvm::Module *M = GV->getParent(); 7103 llvm::LLVMContext &Ctx = M->getContext(); 7104 7105 // Get "nvvm.annotations" metadata node 7106 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7107 7108 llvm::Metadata *MDVals[] = { 7109 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7110 llvm::ConstantAsMetadata::get( 7111 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7112 // Append metadata to nvvm.annotations 7113 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7114 } 7115 7116 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7117 return false; 7118 } 7119 } 7120 7121 //===----------------------------------------------------------------------===// 7122 // SystemZ ABI Implementation 7123 //===----------------------------------------------------------------------===// 7124 7125 namespace { 7126 7127 class SystemZABIInfo : public SwiftABIInfo { 7128 bool HasVector; 7129 bool IsSoftFloatABI; 7130 7131 public: 7132 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7133 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7134 7135 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7136 bool isCompoundType(QualType Ty) const; 7137 bool isVectorArgumentType(QualType Ty) const; 7138 bool isFPArgumentType(QualType Ty) const; 7139 QualType GetSingleElementType(QualType Ty) const; 7140 7141 ABIArgInfo classifyReturnType(QualType RetTy) const; 7142 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7143 7144 void computeInfo(CGFunctionInfo &FI) const override { 7145 if (!getCXXABI().classifyReturnType(FI)) 7146 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7147 for (auto &I : FI.arguments()) 7148 I.info = classifyArgumentType(I.type); 7149 } 7150 7151 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7152 QualType Ty) const override; 7153 7154 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7155 bool asReturnValue) const override { 7156 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7157 } 7158 bool isSwiftErrorInRegister() const override { 7159 return false; 7160 } 7161 }; 7162 7163 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7164 public: 7165 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7166 : TargetCodeGenInfo( 7167 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7168 }; 7169 7170 } 7171 7172 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7173 // Treat an enum type as its underlying type. 7174 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7175 Ty = EnumTy->getDecl()->getIntegerType(); 7176 7177 // Promotable integer types are required to be promoted by the ABI. 7178 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7179 return true; 7180 7181 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7182 if (EIT->getNumBits() < 64) 7183 return true; 7184 7185 // 32-bit values must also be promoted. 7186 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7187 switch (BT->getKind()) { 7188 case BuiltinType::Int: 7189 case BuiltinType::UInt: 7190 return true; 7191 default: 7192 return false; 7193 } 7194 return false; 7195 } 7196 7197 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7198 return (Ty->isAnyComplexType() || 7199 Ty->isVectorType() || 7200 isAggregateTypeForABI(Ty)); 7201 } 7202 7203 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7204 return (HasVector && 7205 Ty->isVectorType() && 7206 getContext().getTypeSize(Ty) <= 128); 7207 } 7208 7209 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7210 if (IsSoftFloatABI) 7211 return false; 7212 7213 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7214 switch (BT->getKind()) { 7215 case BuiltinType::Float: 7216 case BuiltinType::Double: 7217 return true; 7218 default: 7219 return false; 7220 } 7221 7222 return false; 7223 } 7224 7225 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7226 const RecordType *RT = Ty->getAs<RecordType>(); 7227 7228 if (RT && RT->isStructureOrClassType()) { 7229 const RecordDecl *RD = RT->getDecl(); 7230 QualType Found; 7231 7232 // If this is a C++ record, check the bases first. 7233 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7234 for (const auto &I : CXXRD->bases()) { 7235 QualType Base = I.getType(); 7236 7237 // Empty bases don't affect things either way. 7238 if (isEmptyRecord(getContext(), Base, true)) 7239 continue; 7240 7241 if (!Found.isNull()) 7242 return Ty; 7243 Found = GetSingleElementType(Base); 7244 } 7245 7246 // Check the fields. 7247 for (const auto *FD : RD->fields()) { 7248 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7249 // Unlike isSingleElementStruct(), empty structure and array fields 7250 // do count. So do anonymous bitfields that aren't zero-sized. 7251 if (getContext().getLangOpts().CPlusPlus && 7252 FD->isZeroLengthBitField(getContext())) 7253 continue; 7254 // Like isSingleElementStruct(), ignore C++20 empty data members. 7255 if (FD->hasAttr<NoUniqueAddressAttr>() && 7256 isEmptyRecord(getContext(), FD->getType(), true)) 7257 continue; 7258 7259 // Unlike isSingleElementStruct(), arrays do not count. 7260 // Nested structures still do though. 7261 if (!Found.isNull()) 7262 return Ty; 7263 Found = GetSingleElementType(FD->getType()); 7264 } 7265 7266 // Unlike isSingleElementStruct(), trailing padding is allowed. 7267 // An 8-byte aligned struct s { float f; } is passed as a double. 7268 if (!Found.isNull()) 7269 return Found; 7270 } 7271 7272 return Ty; 7273 } 7274 7275 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7276 QualType Ty) const { 7277 // Assume that va_list type is correct; should be pointer to LLVM type: 7278 // struct { 7279 // i64 __gpr; 7280 // i64 __fpr; 7281 // i8 *__overflow_arg_area; 7282 // i8 *__reg_save_area; 7283 // }; 7284 7285 // Every non-vector argument occupies 8 bytes and is passed by preference 7286 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7287 // always passed on the stack. 7288 Ty = getContext().getCanonicalType(Ty); 7289 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7290 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7291 llvm::Type *DirectTy = ArgTy; 7292 ABIArgInfo AI = classifyArgumentType(Ty); 7293 bool IsIndirect = AI.isIndirect(); 7294 bool InFPRs = false; 7295 bool IsVector = false; 7296 CharUnits UnpaddedSize; 7297 CharUnits DirectAlign; 7298 if (IsIndirect) { 7299 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7300 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7301 } else { 7302 if (AI.getCoerceToType()) 7303 ArgTy = AI.getCoerceToType(); 7304 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7305 IsVector = ArgTy->isVectorTy(); 7306 UnpaddedSize = TyInfo.first; 7307 DirectAlign = TyInfo.second; 7308 } 7309 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7310 if (IsVector && UnpaddedSize > PaddedSize) 7311 PaddedSize = CharUnits::fromQuantity(16); 7312 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7313 7314 CharUnits Padding = (PaddedSize - UnpaddedSize); 7315 7316 llvm::Type *IndexTy = CGF.Int64Ty; 7317 llvm::Value *PaddedSizeV = 7318 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7319 7320 if (IsVector) { 7321 // Work out the address of a vector argument on the stack. 7322 // Vector arguments are always passed in the high bits of a 7323 // single (8 byte) or double (16 byte) stack slot. 7324 Address OverflowArgAreaPtr = 7325 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7326 Address OverflowArgArea = 7327 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7328 TyInfo.second); 7329 Address MemAddr = 7330 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7331 7332 // Update overflow_arg_area_ptr pointer 7333 llvm::Value *NewOverflowArgArea = 7334 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7335 "overflow_arg_area"); 7336 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7337 7338 return MemAddr; 7339 } 7340 7341 assert(PaddedSize.getQuantity() == 8); 7342 7343 unsigned MaxRegs, RegCountField, RegSaveIndex; 7344 CharUnits RegPadding; 7345 if (InFPRs) { 7346 MaxRegs = 4; // Maximum of 4 FPR arguments 7347 RegCountField = 1; // __fpr 7348 RegSaveIndex = 16; // save offset for f0 7349 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7350 } else { 7351 MaxRegs = 5; // Maximum of 5 GPR arguments 7352 RegCountField = 0; // __gpr 7353 RegSaveIndex = 2; // save offset for r2 7354 RegPadding = Padding; // values are passed in the low bits of a GPR 7355 } 7356 7357 Address RegCountPtr = 7358 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7359 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7360 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7361 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7362 "fits_in_regs"); 7363 7364 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7365 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7366 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7367 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7368 7369 // Emit code to load the value if it was passed in registers. 7370 CGF.EmitBlock(InRegBlock); 7371 7372 // Work out the address of an argument register. 7373 llvm::Value *ScaledRegCount = 7374 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7375 llvm::Value *RegBase = 7376 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7377 + RegPadding.getQuantity()); 7378 llvm::Value *RegOffset = 7379 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7380 Address RegSaveAreaPtr = 7381 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7382 llvm::Value *RegSaveArea = 7383 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7384 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7385 "raw_reg_addr"), 7386 PaddedSize); 7387 Address RegAddr = 7388 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7389 7390 // Update the register count 7391 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7392 llvm::Value *NewRegCount = 7393 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7394 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7395 CGF.EmitBranch(ContBlock); 7396 7397 // Emit code to load the value if it was passed in memory. 7398 CGF.EmitBlock(InMemBlock); 7399 7400 // Work out the address of a stack argument. 7401 Address OverflowArgAreaPtr = 7402 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7403 Address OverflowArgArea = 7404 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7405 PaddedSize); 7406 Address RawMemAddr = 7407 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7408 Address MemAddr = 7409 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7410 7411 // Update overflow_arg_area_ptr pointer 7412 llvm::Value *NewOverflowArgArea = 7413 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7414 "overflow_arg_area"); 7415 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7416 CGF.EmitBranch(ContBlock); 7417 7418 // Return the appropriate result. 7419 CGF.EmitBlock(ContBlock); 7420 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7421 MemAddr, InMemBlock, "va_arg.addr"); 7422 7423 if (IsIndirect) 7424 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7425 TyInfo.second); 7426 7427 return ResAddr; 7428 } 7429 7430 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7431 if (RetTy->isVoidType()) 7432 return ABIArgInfo::getIgnore(); 7433 if (isVectorArgumentType(RetTy)) 7434 return ABIArgInfo::getDirect(); 7435 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7436 return getNaturalAlignIndirect(RetTy); 7437 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7438 : ABIArgInfo::getDirect()); 7439 } 7440 7441 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7442 // Handle the generic C++ ABI. 7443 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7444 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7445 7446 // Integers and enums are extended to full register width. 7447 if (isPromotableIntegerTypeForABI(Ty)) 7448 return ABIArgInfo::getExtend(Ty); 7449 7450 // Handle vector types and vector-like structure types. Note that 7451 // as opposed to float-like structure types, we do not allow any 7452 // padding for vector-like structures, so verify the sizes match. 7453 uint64_t Size = getContext().getTypeSize(Ty); 7454 QualType SingleElementTy = GetSingleElementType(Ty); 7455 if (isVectorArgumentType(SingleElementTy) && 7456 getContext().getTypeSize(SingleElementTy) == Size) 7457 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7458 7459 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7460 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7461 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7462 7463 // Handle small structures. 7464 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7465 // Structures with flexible arrays have variable length, so really 7466 // fail the size test above. 7467 const RecordDecl *RD = RT->getDecl(); 7468 if (RD->hasFlexibleArrayMember()) 7469 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7470 7471 // The structure is passed as an unextended integer, a float, or a double. 7472 llvm::Type *PassTy; 7473 if (isFPArgumentType(SingleElementTy)) { 7474 assert(Size == 32 || Size == 64); 7475 if (Size == 32) 7476 PassTy = llvm::Type::getFloatTy(getVMContext()); 7477 else 7478 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7479 } else 7480 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7481 return ABIArgInfo::getDirect(PassTy); 7482 } 7483 7484 // Non-structure compounds are passed indirectly. 7485 if (isCompoundType(Ty)) 7486 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7487 7488 return ABIArgInfo::getDirect(nullptr); 7489 } 7490 7491 //===----------------------------------------------------------------------===// 7492 // MSP430 ABI Implementation 7493 //===----------------------------------------------------------------------===// 7494 7495 namespace { 7496 7497 class MSP430ABIInfo : public DefaultABIInfo { 7498 static ABIArgInfo complexArgInfo() { 7499 ABIArgInfo Info = ABIArgInfo::getDirect(); 7500 Info.setCanBeFlattened(false); 7501 return Info; 7502 } 7503 7504 public: 7505 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7506 7507 ABIArgInfo classifyReturnType(QualType RetTy) const { 7508 if (RetTy->isAnyComplexType()) 7509 return complexArgInfo(); 7510 7511 return DefaultABIInfo::classifyReturnType(RetTy); 7512 } 7513 7514 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7515 if (RetTy->isAnyComplexType()) 7516 return complexArgInfo(); 7517 7518 return DefaultABIInfo::classifyArgumentType(RetTy); 7519 } 7520 7521 // Just copy the original implementations because 7522 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7523 void computeInfo(CGFunctionInfo &FI) const override { 7524 if (!getCXXABI().classifyReturnType(FI)) 7525 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7526 for (auto &I : FI.arguments()) 7527 I.info = classifyArgumentType(I.type); 7528 } 7529 7530 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7531 QualType Ty) const override { 7532 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7533 } 7534 }; 7535 7536 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7537 public: 7538 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7539 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7540 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7541 CodeGen::CodeGenModule &M) const override; 7542 }; 7543 7544 } 7545 7546 void MSP430TargetCodeGenInfo::setTargetAttributes( 7547 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7548 if (GV->isDeclaration()) 7549 return; 7550 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7551 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7552 if (!InterruptAttr) 7553 return; 7554 7555 // Handle 'interrupt' attribute: 7556 llvm::Function *F = cast<llvm::Function>(GV); 7557 7558 // Step 1: Set ISR calling convention. 7559 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7560 7561 // Step 2: Add attributes goodness. 7562 F->addFnAttr(llvm::Attribute::NoInline); 7563 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7564 } 7565 } 7566 7567 //===----------------------------------------------------------------------===// 7568 // MIPS ABI Implementation. This works for both little-endian and 7569 // big-endian variants. 7570 //===----------------------------------------------------------------------===// 7571 7572 namespace { 7573 class MipsABIInfo : public ABIInfo { 7574 bool IsO32; 7575 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7576 void CoerceToIntArgs(uint64_t TySize, 7577 SmallVectorImpl<llvm::Type *> &ArgList) const; 7578 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7579 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7580 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7581 public: 7582 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7583 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7584 StackAlignInBytes(IsO32 ? 8 : 16) {} 7585 7586 ABIArgInfo classifyReturnType(QualType RetTy) const; 7587 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7588 void computeInfo(CGFunctionInfo &FI) const override; 7589 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7590 QualType Ty) const override; 7591 ABIArgInfo extendType(QualType Ty) const; 7592 }; 7593 7594 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7595 unsigned SizeOfUnwindException; 7596 public: 7597 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7598 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7599 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7600 7601 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7602 return 29; 7603 } 7604 7605 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7606 CodeGen::CodeGenModule &CGM) const override { 7607 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7608 if (!FD) return; 7609 llvm::Function *Fn = cast<llvm::Function>(GV); 7610 7611 if (FD->hasAttr<MipsLongCallAttr>()) 7612 Fn->addFnAttr("long-call"); 7613 else if (FD->hasAttr<MipsShortCallAttr>()) 7614 Fn->addFnAttr("short-call"); 7615 7616 // Other attributes do not have a meaning for declarations. 7617 if (GV->isDeclaration()) 7618 return; 7619 7620 if (FD->hasAttr<Mips16Attr>()) { 7621 Fn->addFnAttr("mips16"); 7622 } 7623 else if (FD->hasAttr<NoMips16Attr>()) { 7624 Fn->addFnAttr("nomips16"); 7625 } 7626 7627 if (FD->hasAttr<MicroMipsAttr>()) 7628 Fn->addFnAttr("micromips"); 7629 else if (FD->hasAttr<NoMicroMipsAttr>()) 7630 Fn->addFnAttr("nomicromips"); 7631 7632 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7633 if (!Attr) 7634 return; 7635 7636 const char *Kind; 7637 switch (Attr->getInterrupt()) { 7638 case MipsInterruptAttr::eic: Kind = "eic"; break; 7639 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7640 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7641 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7642 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7643 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7644 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7645 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7646 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7647 } 7648 7649 Fn->addFnAttr("interrupt", Kind); 7650 7651 } 7652 7653 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7654 llvm::Value *Address) const override; 7655 7656 unsigned getSizeOfUnwindException() const override { 7657 return SizeOfUnwindException; 7658 } 7659 }; 7660 } 7661 7662 void MipsABIInfo::CoerceToIntArgs( 7663 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7664 llvm::IntegerType *IntTy = 7665 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7666 7667 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7668 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7669 ArgList.push_back(IntTy); 7670 7671 // If necessary, add one more integer type to ArgList. 7672 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7673 7674 if (R) 7675 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7676 } 7677 7678 // In N32/64, an aligned double precision floating point field is passed in 7679 // a register. 7680 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7681 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7682 7683 if (IsO32) { 7684 CoerceToIntArgs(TySize, ArgList); 7685 return llvm::StructType::get(getVMContext(), ArgList); 7686 } 7687 7688 if (Ty->isComplexType()) 7689 return CGT.ConvertType(Ty); 7690 7691 const RecordType *RT = Ty->getAs<RecordType>(); 7692 7693 // Unions/vectors are passed in integer registers. 7694 if (!RT || !RT->isStructureOrClassType()) { 7695 CoerceToIntArgs(TySize, ArgList); 7696 return llvm::StructType::get(getVMContext(), ArgList); 7697 } 7698 7699 const RecordDecl *RD = RT->getDecl(); 7700 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7701 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7702 7703 uint64_t LastOffset = 0; 7704 unsigned idx = 0; 7705 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7706 7707 // Iterate over fields in the struct/class and check if there are any aligned 7708 // double fields. 7709 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7710 i != e; ++i, ++idx) { 7711 const QualType Ty = i->getType(); 7712 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7713 7714 if (!BT || BT->getKind() != BuiltinType::Double) 7715 continue; 7716 7717 uint64_t Offset = Layout.getFieldOffset(idx); 7718 if (Offset % 64) // Ignore doubles that are not aligned. 7719 continue; 7720 7721 // Add ((Offset - LastOffset) / 64) args of type i64. 7722 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7723 ArgList.push_back(I64); 7724 7725 // Add double type. 7726 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7727 LastOffset = Offset + 64; 7728 } 7729 7730 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7731 ArgList.append(IntArgList.begin(), IntArgList.end()); 7732 7733 return llvm::StructType::get(getVMContext(), ArgList); 7734 } 7735 7736 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7737 uint64_t Offset) const { 7738 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7739 return nullptr; 7740 7741 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7742 } 7743 7744 ABIArgInfo 7745 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7746 Ty = useFirstFieldIfTransparentUnion(Ty); 7747 7748 uint64_t OrigOffset = Offset; 7749 uint64_t TySize = getContext().getTypeSize(Ty); 7750 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7751 7752 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7753 (uint64_t)StackAlignInBytes); 7754 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7755 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7756 7757 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7758 // Ignore empty aggregates. 7759 if (TySize == 0) 7760 return ABIArgInfo::getIgnore(); 7761 7762 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7763 Offset = OrigOffset + MinABIStackAlignInBytes; 7764 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7765 } 7766 7767 // If we have reached here, aggregates are passed directly by coercing to 7768 // another structure type. Padding is inserted if the offset of the 7769 // aggregate is unaligned. 7770 ABIArgInfo ArgInfo = 7771 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7772 getPaddingType(OrigOffset, CurrOffset)); 7773 ArgInfo.setInReg(true); 7774 return ArgInfo; 7775 } 7776 7777 // Treat an enum type as its underlying type. 7778 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7779 Ty = EnumTy->getDecl()->getIntegerType(); 7780 7781 // Make sure we pass indirectly things that are too large. 7782 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7783 if (EIT->getNumBits() > 128 || 7784 (EIT->getNumBits() > 64 && 7785 !getContext().getTargetInfo().hasInt128Type())) 7786 return getNaturalAlignIndirect(Ty); 7787 7788 // All integral types are promoted to the GPR width. 7789 if (Ty->isIntegralOrEnumerationType()) 7790 return extendType(Ty); 7791 7792 return ABIArgInfo::getDirect( 7793 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7794 } 7795 7796 llvm::Type* 7797 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7798 const RecordType *RT = RetTy->getAs<RecordType>(); 7799 SmallVector<llvm::Type*, 8> RTList; 7800 7801 if (RT && RT->isStructureOrClassType()) { 7802 const RecordDecl *RD = RT->getDecl(); 7803 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7804 unsigned FieldCnt = Layout.getFieldCount(); 7805 7806 // N32/64 returns struct/classes in floating point registers if the 7807 // following conditions are met: 7808 // 1. The size of the struct/class is no larger than 128-bit. 7809 // 2. The struct/class has one or two fields all of which are floating 7810 // point types. 7811 // 3. The offset of the first field is zero (this follows what gcc does). 7812 // 7813 // Any other composite results are returned in integer registers. 7814 // 7815 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7816 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7817 for (; b != e; ++b) { 7818 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7819 7820 if (!BT || !BT->isFloatingPoint()) 7821 break; 7822 7823 RTList.push_back(CGT.ConvertType(b->getType())); 7824 } 7825 7826 if (b == e) 7827 return llvm::StructType::get(getVMContext(), RTList, 7828 RD->hasAttr<PackedAttr>()); 7829 7830 RTList.clear(); 7831 } 7832 } 7833 7834 CoerceToIntArgs(Size, RTList); 7835 return llvm::StructType::get(getVMContext(), RTList); 7836 } 7837 7838 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7839 uint64_t Size = getContext().getTypeSize(RetTy); 7840 7841 if (RetTy->isVoidType()) 7842 return ABIArgInfo::getIgnore(); 7843 7844 // O32 doesn't treat zero-sized structs differently from other structs. 7845 // However, N32/N64 ignores zero sized return values. 7846 if (!IsO32 && Size == 0) 7847 return ABIArgInfo::getIgnore(); 7848 7849 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7850 if (Size <= 128) { 7851 if (RetTy->isAnyComplexType()) 7852 return ABIArgInfo::getDirect(); 7853 7854 // O32 returns integer vectors in registers and N32/N64 returns all small 7855 // aggregates in registers. 7856 if (!IsO32 || 7857 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7858 ABIArgInfo ArgInfo = 7859 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7860 ArgInfo.setInReg(true); 7861 return ArgInfo; 7862 } 7863 } 7864 7865 return getNaturalAlignIndirect(RetTy); 7866 } 7867 7868 // Treat an enum type as its underlying type. 7869 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7870 RetTy = EnumTy->getDecl()->getIntegerType(); 7871 7872 // Make sure we pass indirectly things that are too large. 7873 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7874 if (EIT->getNumBits() > 128 || 7875 (EIT->getNumBits() > 64 && 7876 !getContext().getTargetInfo().hasInt128Type())) 7877 return getNaturalAlignIndirect(RetTy); 7878 7879 if (isPromotableIntegerTypeForABI(RetTy)) 7880 return ABIArgInfo::getExtend(RetTy); 7881 7882 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7883 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7884 return ABIArgInfo::getSignExtend(RetTy); 7885 7886 return ABIArgInfo::getDirect(); 7887 } 7888 7889 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7890 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7891 if (!getCXXABI().classifyReturnType(FI)) 7892 RetInfo = classifyReturnType(FI.getReturnType()); 7893 7894 // Check if a pointer to an aggregate is passed as a hidden argument. 7895 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7896 7897 for (auto &I : FI.arguments()) 7898 I.info = classifyArgumentType(I.type, Offset); 7899 } 7900 7901 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7902 QualType OrigTy) const { 7903 QualType Ty = OrigTy; 7904 7905 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7906 // Pointers are also promoted in the same way but this only matters for N32. 7907 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7908 unsigned PtrWidth = getTarget().getPointerWidth(0); 7909 bool DidPromote = false; 7910 if ((Ty->isIntegerType() && 7911 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7912 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7913 DidPromote = true; 7914 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7915 Ty->isSignedIntegerType()); 7916 } 7917 7918 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7919 7920 // The alignment of things in the argument area is never larger than 7921 // StackAlignInBytes. 7922 TyInfo.second = 7923 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7924 7925 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7926 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7927 7928 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7929 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7930 7931 7932 // If there was a promotion, "unpromote" into a temporary. 7933 // TODO: can we just use a pointer into a subset of the original slot? 7934 if (DidPromote) { 7935 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7936 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7937 7938 // Truncate down to the right width. 7939 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7940 : CGF.IntPtrTy); 7941 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7942 if (OrigTy->isPointerType()) 7943 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7944 7945 CGF.Builder.CreateStore(V, Temp); 7946 Addr = Temp; 7947 } 7948 7949 return Addr; 7950 } 7951 7952 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7953 int TySize = getContext().getTypeSize(Ty); 7954 7955 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7956 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7957 return ABIArgInfo::getSignExtend(Ty); 7958 7959 return ABIArgInfo::getExtend(Ty); 7960 } 7961 7962 bool 7963 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7964 llvm::Value *Address) const { 7965 // This information comes from gcc's implementation, which seems to 7966 // as canonical as it gets. 7967 7968 // Everything on MIPS is 4 bytes. Double-precision FP registers 7969 // are aliased to pairs of single-precision FP registers. 7970 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7971 7972 // 0-31 are the general purpose registers, $0 - $31. 7973 // 32-63 are the floating-point registers, $f0 - $f31. 7974 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7975 // 66 is the (notional, I think) register for signal-handler return. 7976 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7977 7978 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7979 // They are one bit wide and ignored here. 7980 7981 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7982 // (coprocessor 1 is the FP unit) 7983 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7984 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7985 // 176-181 are the DSP accumulator registers. 7986 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7987 return false; 7988 } 7989 7990 //===----------------------------------------------------------------------===// 7991 // AVR ABI Implementation. 7992 //===----------------------------------------------------------------------===// 7993 7994 namespace { 7995 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7996 public: 7997 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7998 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 7999 8000 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8001 CodeGen::CodeGenModule &CGM) const override { 8002 if (GV->isDeclaration()) 8003 return; 8004 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8005 if (!FD) return; 8006 auto *Fn = cast<llvm::Function>(GV); 8007 8008 if (FD->getAttr<AVRInterruptAttr>()) 8009 Fn->addFnAttr("interrupt"); 8010 8011 if (FD->getAttr<AVRSignalAttr>()) 8012 Fn->addFnAttr("signal"); 8013 } 8014 }; 8015 } 8016 8017 //===----------------------------------------------------------------------===// 8018 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8019 // Currently subclassed only to implement custom OpenCL C function attribute 8020 // handling. 8021 //===----------------------------------------------------------------------===// 8022 8023 namespace { 8024 8025 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8026 public: 8027 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8028 : DefaultTargetCodeGenInfo(CGT) {} 8029 8030 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8031 CodeGen::CodeGenModule &M) const override; 8032 }; 8033 8034 void TCETargetCodeGenInfo::setTargetAttributes( 8035 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8036 if (GV->isDeclaration()) 8037 return; 8038 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8039 if (!FD) return; 8040 8041 llvm::Function *F = cast<llvm::Function>(GV); 8042 8043 if (M.getLangOpts().OpenCL) { 8044 if (FD->hasAttr<OpenCLKernelAttr>()) { 8045 // OpenCL C Kernel functions are not subject to inlining 8046 F->addFnAttr(llvm::Attribute::NoInline); 8047 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8048 if (Attr) { 8049 // Convert the reqd_work_group_size() attributes to metadata. 8050 llvm::LLVMContext &Context = F->getContext(); 8051 llvm::NamedMDNode *OpenCLMetadata = 8052 M.getModule().getOrInsertNamedMetadata( 8053 "opencl.kernel_wg_size_info"); 8054 8055 SmallVector<llvm::Metadata *, 5> Operands; 8056 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8057 8058 Operands.push_back( 8059 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8060 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8061 Operands.push_back( 8062 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8063 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8064 Operands.push_back( 8065 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8066 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8067 8068 // Add a boolean constant operand for "required" (true) or "hint" 8069 // (false) for implementing the work_group_size_hint attr later. 8070 // Currently always true as the hint is not yet implemented. 8071 Operands.push_back( 8072 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8073 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8074 } 8075 } 8076 } 8077 } 8078 8079 } 8080 8081 //===----------------------------------------------------------------------===// 8082 // Hexagon ABI Implementation 8083 //===----------------------------------------------------------------------===// 8084 8085 namespace { 8086 8087 class HexagonABIInfo : public DefaultABIInfo { 8088 public: 8089 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8090 8091 private: 8092 ABIArgInfo classifyReturnType(QualType RetTy) const; 8093 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8094 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8095 8096 void computeInfo(CGFunctionInfo &FI) const override; 8097 8098 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8099 QualType Ty) const override; 8100 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8101 QualType Ty) const; 8102 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8103 QualType Ty) const; 8104 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8105 QualType Ty) const; 8106 }; 8107 8108 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8109 public: 8110 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8111 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8112 8113 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8114 return 29; 8115 } 8116 8117 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8118 CodeGen::CodeGenModule &GCM) const override { 8119 if (GV->isDeclaration()) 8120 return; 8121 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8122 if (!FD) 8123 return; 8124 } 8125 }; 8126 8127 } // namespace 8128 8129 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8130 unsigned RegsLeft = 6; 8131 if (!getCXXABI().classifyReturnType(FI)) 8132 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8133 for (auto &I : FI.arguments()) 8134 I.info = classifyArgumentType(I.type, &RegsLeft); 8135 } 8136 8137 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8138 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8139 " through registers"); 8140 8141 if (*RegsLeft == 0) 8142 return false; 8143 8144 if (Size <= 32) { 8145 (*RegsLeft)--; 8146 return true; 8147 } 8148 8149 if (2 <= (*RegsLeft & (~1U))) { 8150 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8151 return true; 8152 } 8153 8154 // Next available register was r5 but candidate was greater than 32-bits so it 8155 // has to go on the stack. However we still consume r5 8156 if (*RegsLeft == 1) 8157 *RegsLeft = 0; 8158 8159 return false; 8160 } 8161 8162 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8163 unsigned *RegsLeft) const { 8164 if (!isAggregateTypeForABI(Ty)) { 8165 // Treat an enum type as its underlying type. 8166 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8167 Ty = EnumTy->getDecl()->getIntegerType(); 8168 8169 uint64_t Size = getContext().getTypeSize(Ty); 8170 if (Size <= 64) 8171 HexagonAdjustRegsLeft(Size, RegsLeft); 8172 8173 if (Size > 64 && Ty->isExtIntType()) 8174 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8175 8176 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8177 : ABIArgInfo::getDirect(); 8178 } 8179 8180 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8181 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8182 8183 // Ignore empty records. 8184 if (isEmptyRecord(getContext(), Ty, true)) 8185 return ABIArgInfo::getIgnore(); 8186 8187 uint64_t Size = getContext().getTypeSize(Ty); 8188 unsigned Align = getContext().getTypeAlign(Ty); 8189 8190 if (Size > 64) 8191 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8192 8193 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8194 Align = Size <= 32 ? 32 : 64; 8195 if (Size <= Align) { 8196 // Pass in the smallest viable integer type. 8197 if (!llvm::isPowerOf2_64(Size)) 8198 Size = llvm::NextPowerOf2(Size); 8199 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8200 } 8201 return DefaultABIInfo::classifyArgumentType(Ty); 8202 } 8203 8204 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8205 if (RetTy->isVoidType()) 8206 return ABIArgInfo::getIgnore(); 8207 8208 const TargetInfo &T = CGT.getTarget(); 8209 uint64_t Size = getContext().getTypeSize(RetTy); 8210 8211 if (RetTy->getAs<VectorType>()) { 8212 // HVX vectors are returned in vector registers or register pairs. 8213 if (T.hasFeature("hvx")) { 8214 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8215 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8216 if (Size == VecSize || Size == 2*VecSize) 8217 return ABIArgInfo::getDirectInReg(); 8218 } 8219 // Large vector types should be returned via memory. 8220 if (Size > 64) 8221 return getNaturalAlignIndirect(RetTy); 8222 } 8223 8224 if (!isAggregateTypeForABI(RetTy)) { 8225 // Treat an enum type as its underlying type. 8226 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8227 RetTy = EnumTy->getDecl()->getIntegerType(); 8228 8229 if (Size > 64 && RetTy->isExtIntType()) 8230 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8231 8232 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8233 : ABIArgInfo::getDirect(); 8234 } 8235 8236 if (isEmptyRecord(getContext(), RetTy, true)) 8237 return ABIArgInfo::getIgnore(); 8238 8239 // Aggregates <= 8 bytes are returned in registers, other aggregates 8240 // are returned indirectly. 8241 if (Size <= 64) { 8242 // Return in the smallest viable integer type. 8243 if (!llvm::isPowerOf2_64(Size)) 8244 Size = llvm::NextPowerOf2(Size); 8245 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8246 } 8247 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8248 } 8249 8250 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8251 Address VAListAddr, 8252 QualType Ty) const { 8253 // Load the overflow area pointer. 8254 Address __overflow_area_pointer_p = 8255 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8256 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8257 __overflow_area_pointer_p, "__overflow_area_pointer"); 8258 8259 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8260 if (Align > 4) { 8261 // Alignment should be a power of 2. 8262 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8263 8264 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8265 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8266 8267 // Add offset to the current pointer to access the argument. 8268 __overflow_area_pointer = 8269 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8270 llvm::Value *AsInt = 8271 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8272 8273 // Create a mask which should be "AND"ed 8274 // with (overflow_arg_area + align - 1) 8275 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8276 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8277 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8278 "__overflow_area_pointer.align"); 8279 } 8280 8281 // Get the type of the argument from memory and bitcast 8282 // overflow area pointer to the argument type. 8283 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8284 Address AddrTyped = CGF.Builder.CreateBitCast( 8285 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8286 llvm::PointerType::getUnqual(PTy)); 8287 8288 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8289 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8290 8291 __overflow_area_pointer = CGF.Builder.CreateGEP( 8292 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8293 "__overflow_area_pointer.next"); 8294 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8295 8296 return AddrTyped; 8297 } 8298 8299 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8300 Address VAListAddr, 8301 QualType Ty) const { 8302 // FIXME: Need to handle alignment 8303 llvm::Type *BP = CGF.Int8PtrTy; 8304 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8305 CGBuilderTy &Builder = CGF.Builder; 8306 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8307 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8308 // Handle address alignment for type alignment > 32 bits 8309 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8310 if (TyAlign > 4) { 8311 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8312 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8313 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8314 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8315 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8316 } 8317 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8318 Address AddrTyped = Builder.CreateBitCast( 8319 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8320 8321 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8322 llvm::Value *NextAddr = Builder.CreateGEP( 8323 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8324 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8325 8326 return AddrTyped; 8327 } 8328 8329 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8330 Address VAListAddr, 8331 QualType Ty) const { 8332 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8333 8334 if (ArgSize > 8) 8335 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8336 8337 // Here we have check if the argument is in register area or 8338 // in overflow area. 8339 // If the saved register area pointer + argsize rounded up to alignment > 8340 // saved register area end pointer, argument is in overflow area. 8341 unsigned RegsLeft = 6; 8342 Ty = CGF.getContext().getCanonicalType(Ty); 8343 (void)classifyArgumentType(Ty, &RegsLeft); 8344 8345 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8346 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8347 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8348 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8349 8350 // Get rounded size of the argument.GCC does not allow vararg of 8351 // size < 4 bytes. We follow the same logic here. 8352 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8353 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8354 8355 // Argument may be in saved register area 8356 CGF.EmitBlock(MaybeRegBlock); 8357 8358 // Load the current saved register area pointer. 8359 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8360 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8361 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8362 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8363 8364 // Load the saved register area end pointer. 8365 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8366 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8367 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8368 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8369 8370 // If the size of argument is > 4 bytes, check if the stack 8371 // location is aligned to 8 bytes 8372 if (ArgAlign > 4) { 8373 8374 llvm::Value *__current_saved_reg_area_pointer_int = 8375 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8376 CGF.Int32Ty); 8377 8378 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8379 __current_saved_reg_area_pointer_int, 8380 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8381 "align_current_saved_reg_area_pointer"); 8382 8383 __current_saved_reg_area_pointer_int = 8384 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8385 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8386 "align_current_saved_reg_area_pointer"); 8387 8388 __current_saved_reg_area_pointer = 8389 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8390 __current_saved_reg_area_pointer->getType(), 8391 "align_current_saved_reg_area_pointer"); 8392 } 8393 8394 llvm::Value *__new_saved_reg_area_pointer = 8395 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8396 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8397 "__new_saved_reg_area_pointer"); 8398 8399 llvm::Value *UsingStack = 0; 8400 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8401 __saved_reg_area_end_pointer); 8402 8403 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8404 8405 // Argument in saved register area 8406 // Implement the block where argument is in register saved area 8407 CGF.EmitBlock(InRegBlock); 8408 8409 llvm::Type *PTy = CGF.ConvertType(Ty); 8410 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8411 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8412 8413 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8414 __current_saved_reg_area_pointer_p); 8415 8416 CGF.EmitBranch(ContBlock); 8417 8418 // Argument in overflow area 8419 // Implement the block where the argument is in overflow area. 8420 CGF.EmitBlock(OnStackBlock); 8421 8422 // Load the overflow area pointer 8423 Address __overflow_area_pointer_p = 8424 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8425 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8426 __overflow_area_pointer_p, "__overflow_area_pointer"); 8427 8428 // Align the overflow area pointer according to the alignment of the argument 8429 if (ArgAlign > 4) { 8430 llvm::Value *__overflow_area_pointer_int = 8431 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8432 8433 __overflow_area_pointer_int = 8434 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8435 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8436 "align_overflow_area_pointer"); 8437 8438 __overflow_area_pointer_int = 8439 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8440 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8441 "align_overflow_area_pointer"); 8442 8443 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8444 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8445 "align_overflow_area_pointer"); 8446 } 8447 8448 // Get the pointer for next argument in overflow area and store it 8449 // to overflow area pointer. 8450 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8451 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8452 "__overflow_area_pointer.next"); 8453 8454 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8455 __overflow_area_pointer_p); 8456 8457 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8458 __current_saved_reg_area_pointer_p); 8459 8460 // Bitcast the overflow area pointer to the type of argument. 8461 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8462 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8463 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8464 8465 CGF.EmitBranch(ContBlock); 8466 8467 // Get the correct pointer to load the variable argument 8468 // Implement the ContBlock 8469 CGF.EmitBlock(ContBlock); 8470 8471 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8472 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8473 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8474 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8475 8476 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8477 } 8478 8479 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8480 QualType Ty) const { 8481 8482 if (getTarget().getTriple().isMusl()) 8483 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8484 8485 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8486 } 8487 8488 //===----------------------------------------------------------------------===// 8489 // Lanai ABI Implementation 8490 //===----------------------------------------------------------------------===// 8491 8492 namespace { 8493 class LanaiABIInfo : public DefaultABIInfo { 8494 public: 8495 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8496 8497 bool shouldUseInReg(QualType Ty, CCState &State) const; 8498 8499 void computeInfo(CGFunctionInfo &FI) const override { 8500 CCState State(FI); 8501 // Lanai uses 4 registers to pass arguments unless the function has the 8502 // regparm attribute set. 8503 if (FI.getHasRegParm()) { 8504 State.FreeRegs = FI.getRegParm(); 8505 } else { 8506 State.FreeRegs = 4; 8507 } 8508 8509 if (!getCXXABI().classifyReturnType(FI)) 8510 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8511 for (auto &I : FI.arguments()) 8512 I.info = classifyArgumentType(I.type, State); 8513 } 8514 8515 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8516 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8517 }; 8518 } // end anonymous namespace 8519 8520 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8521 unsigned Size = getContext().getTypeSize(Ty); 8522 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8523 8524 if (SizeInRegs == 0) 8525 return false; 8526 8527 if (SizeInRegs > State.FreeRegs) { 8528 State.FreeRegs = 0; 8529 return false; 8530 } 8531 8532 State.FreeRegs -= SizeInRegs; 8533 8534 return true; 8535 } 8536 8537 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8538 CCState &State) const { 8539 if (!ByVal) { 8540 if (State.FreeRegs) { 8541 --State.FreeRegs; // Non-byval indirects just use one pointer. 8542 return getNaturalAlignIndirectInReg(Ty); 8543 } 8544 return getNaturalAlignIndirect(Ty, false); 8545 } 8546 8547 // Compute the byval alignment. 8548 const unsigned MinABIStackAlignInBytes = 4; 8549 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8550 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8551 /*Realign=*/TypeAlign > 8552 MinABIStackAlignInBytes); 8553 } 8554 8555 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8556 CCState &State) const { 8557 // Check with the C++ ABI first. 8558 const RecordType *RT = Ty->getAs<RecordType>(); 8559 if (RT) { 8560 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8561 if (RAA == CGCXXABI::RAA_Indirect) { 8562 return getIndirectResult(Ty, /*ByVal=*/false, State); 8563 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8564 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 8565 } 8566 } 8567 8568 if (isAggregateTypeForABI(Ty)) { 8569 // Structures with flexible arrays are always indirect. 8570 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8571 return getIndirectResult(Ty, /*ByVal=*/true, State); 8572 8573 // Ignore empty structs/unions. 8574 if (isEmptyRecord(getContext(), Ty, true)) 8575 return ABIArgInfo::getIgnore(); 8576 8577 llvm::LLVMContext &LLVMContext = getVMContext(); 8578 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8579 if (SizeInRegs <= State.FreeRegs) { 8580 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8581 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8582 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8583 State.FreeRegs -= SizeInRegs; 8584 return ABIArgInfo::getDirectInReg(Result); 8585 } else { 8586 State.FreeRegs = 0; 8587 } 8588 return getIndirectResult(Ty, true, State); 8589 } 8590 8591 // Treat an enum type as its underlying type. 8592 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8593 Ty = EnumTy->getDecl()->getIntegerType(); 8594 8595 bool InReg = shouldUseInReg(Ty, State); 8596 8597 // Don't pass >64 bit integers in registers. 8598 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8599 if (EIT->getNumBits() > 64) 8600 return getIndirectResult(Ty, /*ByVal=*/true, State); 8601 8602 if (isPromotableIntegerTypeForABI(Ty)) { 8603 if (InReg) 8604 return ABIArgInfo::getDirectInReg(); 8605 return ABIArgInfo::getExtend(Ty); 8606 } 8607 if (InReg) 8608 return ABIArgInfo::getDirectInReg(); 8609 return ABIArgInfo::getDirect(); 8610 } 8611 8612 namespace { 8613 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8614 public: 8615 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8616 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8617 }; 8618 } 8619 8620 //===----------------------------------------------------------------------===// 8621 // AMDGPU ABI Implementation 8622 //===----------------------------------------------------------------------===// 8623 8624 namespace { 8625 8626 class AMDGPUABIInfo final : public DefaultABIInfo { 8627 private: 8628 static const unsigned MaxNumRegsForArgsRet = 16; 8629 8630 unsigned numRegsForType(QualType Ty) const; 8631 8632 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8633 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8634 uint64_t Members) const override; 8635 8636 // Coerce HIP pointer arguments from generic pointers to global ones. 8637 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8638 unsigned ToAS) const { 8639 // Structure types. 8640 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8641 SmallVector<llvm::Type *, 8> EltTys; 8642 bool Changed = false; 8643 for (auto T : STy->elements()) { 8644 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8645 EltTys.push_back(NT); 8646 Changed |= (NT != T); 8647 } 8648 // Skip if there is no change in element types. 8649 if (!Changed) 8650 return STy; 8651 if (STy->hasName()) 8652 return llvm::StructType::create( 8653 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8654 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8655 } 8656 // Array types. 8657 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8658 auto T = ATy->getElementType(); 8659 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8660 // Skip if there is no change in that element type. 8661 if (NT == T) 8662 return ATy; 8663 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8664 } 8665 // Single value types. 8666 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8667 return llvm::PointerType::get( 8668 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8669 return Ty; 8670 } 8671 8672 public: 8673 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8674 DefaultABIInfo(CGT) {} 8675 8676 ABIArgInfo classifyReturnType(QualType RetTy) const; 8677 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8678 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8679 8680 void computeInfo(CGFunctionInfo &FI) const override; 8681 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8682 QualType Ty) const override; 8683 }; 8684 8685 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8686 return true; 8687 } 8688 8689 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8690 const Type *Base, uint64_t Members) const { 8691 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8692 8693 // Homogeneous Aggregates may occupy at most 16 registers. 8694 return Members * NumRegs <= MaxNumRegsForArgsRet; 8695 } 8696 8697 /// Estimate number of registers the type will use when passed in registers. 8698 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8699 unsigned NumRegs = 0; 8700 8701 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8702 // Compute from the number of elements. The reported size is based on the 8703 // in-memory size, which includes the padding 4th element for 3-vectors. 8704 QualType EltTy = VT->getElementType(); 8705 unsigned EltSize = getContext().getTypeSize(EltTy); 8706 8707 // 16-bit element vectors should be passed as packed. 8708 if (EltSize == 16) 8709 return (VT->getNumElements() + 1) / 2; 8710 8711 unsigned EltNumRegs = (EltSize + 31) / 32; 8712 return EltNumRegs * VT->getNumElements(); 8713 } 8714 8715 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8716 const RecordDecl *RD = RT->getDecl(); 8717 assert(!RD->hasFlexibleArrayMember()); 8718 8719 for (const FieldDecl *Field : RD->fields()) { 8720 QualType FieldTy = Field->getType(); 8721 NumRegs += numRegsForType(FieldTy); 8722 } 8723 8724 return NumRegs; 8725 } 8726 8727 return (getContext().getTypeSize(Ty) + 31) / 32; 8728 } 8729 8730 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8731 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8732 8733 if (!getCXXABI().classifyReturnType(FI)) 8734 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8735 8736 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8737 for (auto &Arg : FI.arguments()) { 8738 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8739 Arg.info = classifyKernelArgumentType(Arg.type); 8740 } else { 8741 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8742 } 8743 } 8744 } 8745 8746 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8747 QualType Ty) const { 8748 llvm_unreachable("AMDGPU does not support varargs"); 8749 } 8750 8751 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8752 if (isAggregateTypeForABI(RetTy)) { 8753 // Records with non-trivial destructors/copy-constructors should not be 8754 // returned by value. 8755 if (!getRecordArgABI(RetTy, getCXXABI())) { 8756 // Ignore empty structs/unions. 8757 if (isEmptyRecord(getContext(), RetTy, true)) 8758 return ABIArgInfo::getIgnore(); 8759 8760 // Lower single-element structs to just return a regular value. 8761 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8762 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8763 8764 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8765 const RecordDecl *RD = RT->getDecl(); 8766 if (RD->hasFlexibleArrayMember()) 8767 return DefaultABIInfo::classifyReturnType(RetTy); 8768 } 8769 8770 // Pack aggregates <= 4 bytes into single VGPR or pair. 8771 uint64_t Size = getContext().getTypeSize(RetTy); 8772 if (Size <= 16) 8773 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8774 8775 if (Size <= 32) 8776 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8777 8778 if (Size <= 64) { 8779 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8780 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8781 } 8782 8783 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8784 return ABIArgInfo::getDirect(); 8785 } 8786 } 8787 8788 // Otherwise just do the default thing. 8789 return DefaultABIInfo::classifyReturnType(RetTy); 8790 } 8791 8792 /// For kernels all parameters are really passed in a special buffer. It doesn't 8793 /// make sense to pass anything byval, so everything must be direct. 8794 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8795 Ty = useFirstFieldIfTransparentUnion(Ty); 8796 8797 // TODO: Can we omit empty structs? 8798 8799 llvm::Type *LTy = nullptr; 8800 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8801 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 8802 8803 if (getContext().getLangOpts().HIP) { 8804 if (!LTy) 8805 LTy = CGT.ConvertType(Ty); 8806 LTy = coerceKernelArgumentType( 8807 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8808 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8809 } 8810 8811 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8812 // individual elements, which confuses the Clover OpenCL backend; therefore we 8813 // have to set it to false here. Other args of getDirect() are just defaults. 8814 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8815 } 8816 8817 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8818 unsigned &NumRegsLeft) const { 8819 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8820 8821 Ty = useFirstFieldIfTransparentUnion(Ty); 8822 8823 if (isAggregateTypeForABI(Ty)) { 8824 // Records with non-trivial destructors/copy-constructors should not be 8825 // passed by value. 8826 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8827 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8828 8829 // Ignore empty structs/unions. 8830 if (isEmptyRecord(getContext(), Ty, true)) 8831 return ABIArgInfo::getIgnore(); 8832 8833 // Lower single-element structs to just pass a regular value. TODO: We 8834 // could do reasonable-size multiple-element structs too, using getExpand(), 8835 // though watch out for things like bitfields. 8836 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8837 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8838 8839 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8840 const RecordDecl *RD = RT->getDecl(); 8841 if (RD->hasFlexibleArrayMember()) 8842 return DefaultABIInfo::classifyArgumentType(Ty); 8843 } 8844 8845 // Pack aggregates <= 8 bytes into single VGPR or pair. 8846 uint64_t Size = getContext().getTypeSize(Ty); 8847 if (Size <= 64) { 8848 unsigned NumRegs = (Size + 31) / 32; 8849 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8850 8851 if (Size <= 16) 8852 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8853 8854 if (Size <= 32) 8855 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8856 8857 // XXX: Should this be i64 instead, and should the limit increase? 8858 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8859 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8860 } 8861 8862 if (NumRegsLeft > 0) { 8863 unsigned NumRegs = numRegsForType(Ty); 8864 if (NumRegsLeft >= NumRegs) { 8865 NumRegsLeft -= NumRegs; 8866 return ABIArgInfo::getDirect(); 8867 } 8868 } 8869 } 8870 8871 // Otherwise just do the default thing. 8872 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8873 if (!ArgInfo.isIndirect()) { 8874 unsigned NumRegs = numRegsForType(Ty); 8875 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8876 } 8877 8878 return ArgInfo; 8879 } 8880 8881 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8882 public: 8883 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8884 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8885 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8886 CodeGen::CodeGenModule &M) const override; 8887 unsigned getOpenCLKernelCallingConv() const override; 8888 8889 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8890 llvm::PointerType *T, QualType QT) const override; 8891 8892 LangAS getASTAllocaAddressSpace() const override { 8893 return getLangASFromTargetAS( 8894 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8895 } 8896 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8897 const VarDecl *D) const override; 8898 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8899 SyncScope Scope, 8900 llvm::AtomicOrdering Ordering, 8901 llvm::LLVMContext &Ctx) const override; 8902 llvm::Function * 8903 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8904 llvm::Function *BlockInvokeFunc, 8905 llvm::Value *BlockLiteral) const override; 8906 bool shouldEmitStaticExternCAliases() const override; 8907 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8908 }; 8909 } 8910 8911 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8912 llvm::GlobalValue *GV) { 8913 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8914 return false; 8915 8916 return D->hasAttr<OpenCLKernelAttr>() || 8917 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8918 (isa<VarDecl>(D) && 8919 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8920 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8921 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8922 } 8923 8924 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8925 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8926 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8927 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8928 GV->setDSOLocal(true); 8929 } 8930 8931 if (GV->isDeclaration()) 8932 return; 8933 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8934 if (!FD) 8935 return; 8936 8937 llvm::Function *F = cast<llvm::Function>(GV); 8938 8939 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8940 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8941 8942 8943 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8944 FD->hasAttr<OpenCLKernelAttr>(); 8945 const bool IsHIPKernel = M.getLangOpts().HIP && 8946 FD->hasAttr<CUDAGlobalAttr>(); 8947 if ((IsOpenCLKernel || IsHIPKernel) && 8948 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8949 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8950 8951 if (IsHIPKernel) 8952 F->addFnAttr("uniform-work-group-size", "true"); 8953 8954 8955 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8956 if (ReqdWGS || FlatWGS) { 8957 unsigned Min = 0; 8958 unsigned Max = 0; 8959 if (FlatWGS) { 8960 Min = FlatWGS->getMin() 8961 ->EvaluateKnownConstInt(M.getContext()) 8962 .getExtValue(); 8963 Max = FlatWGS->getMax() 8964 ->EvaluateKnownConstInt(M.getContext()) 8965 .getExtValue(); 8966 } 8967 if (ReqdWGS && Min == 0 && Max == 0) 8968 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8969 8970 if (Min != 0) { 8971 assert(Min <= Max && "Min must be less than or equal Max"); 8972 8973 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8974 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8975 } else 8976 assert(Max == 0 && "Max must be zero"); 8977 } else if (IsOpenCLKernel || IsHIPKernel) { 8978 // By default, restrict the maximum size to a value specified by 8979 // --gpu-max-threads-per-block=n or its default value for HIP. 8980 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 8981 const unsigned DefaultMaxWorkGroupSize = 8982 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 8983 : M.getLangOpts().GPUMaxThreadsPerBlock; 8984 std::string AttrVal = 8985 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 8986 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8987 } 8988 8989 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8990 unsigned Min = 8991 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8992 unsigned Max = Attr->getMax() ? Attr->getMax() 8993 ->EvaluateKnownConstInt(M.getContext()) 8994 .getExtValue() 8995 : 0; 8996 8997 if (Min != 0) { 8998 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8999 9000 std::string AttrVal = llvm::utostr(Min); 9001 if (Max != 0) 9002 AttrVal = AttrVal + "," + llvm::utostr(Max); 9003 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9004 } else 9005 assert(Max == 0 && "Max must be zero"); 9006 } 9007 9008 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9009 unsigned NumSGPR = Attr->getNumSGPR(); 9010 9011 if (NumSGPR != 0) 9012 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9013 } 9014 9015 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9016 uint32_t NumVGPR = Attr->getNumVGPR(); 9017 9018 if (NumVGPR != 0) 9019 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9020 } 9021 } 9022 9023 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9024 return llvm::CallingConv::AMDGPU_KERNEL; 9025 } 9026 9027 // Currently LLVM assumes null pointers always have value 0, 9028 // which results in incorrectly transformed IR. Therefore, instead of 9029 // emitting null pointers in private and local address spaces, a null 9030 // pointer in generic address space is emitted which is casted to a 9031 // pointer in local or private address space. 9032 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9033 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9034 QualType QT) const { 9035 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9036 return llvm::ConstantPointerNull::get(PT); 9037 9038 auto &Ctx = CGM.getContext(); 9039 auto NPT = llvm::PointerType::get(PT->getElementType(), 9040 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9041 return llvm::ConstantExpr::getAddrSpaceCast( 9042 llvm::ConstantPointerNull::get(NPT), PT); 9043 } 9044 9045 LangAS 9046 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9047 const VarDecl *D) const { 9048 assert(!CGM.getLangOpts().OpenCL && 9049 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9050 "Address space agnostic languages only"); 9051 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9052 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9053 if (!D) 9054 return DefaultGlobalAS; 9055 9056 LangAS AddrSpace = D->getType().getAddressSpace(); 9057 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9058 if (AddrSpace != LangAS::Default) 9059 return AddrSpace; 9060 9061 if (CGM.isTypeConstant(D->getType(), false)) { 9062 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9063 return ConstAS.getValue(); 9064 } 9065 return DefaultGlobalAS; 9066 } 9067 9068 llvm::SyncScope::ID 9069 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9070 SyncScope Scope, 9071 llvm::AtomicOrdering Ordering, 9072 llvm::LLVMContext &Ctx) const { 9073 std::string Name; 9074 switch (Scope) { 9075 case SyncScope::OpenCLWorkGroup: 9076 Name = "workgroup"; 9077 break; 9078 case SyncScope::OpenCLDevice: 9079 Name = "agent"; 9080 break; 9081 case SyncScope::OpenCLAllSVMDevices: 9082 Name = ""; 9083 break; 9084 case SyncScope::OpenCLSubGroup: 9085 Name = "wavefront"; 9086 } 9087 9088 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9089 if (!Name.empty()) 9090 Name = Twine(Twine(Name) + Twine("-")).str(); 9091 9092 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9093 } 9094 9095 return Ctx.getOrInsertSyncScopeID(Name); 9096 } 9097 9098 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9099 return false; 9100 } 9101 9102 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9103 const FunctionType *&FT) const { 9104 FT = getABIInfo().getContext().adjustFunctionType( 9105 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9106 } 9107 9108 //===----------------------------------------------------------------------===// 9109 // SPARC v8 ABI Implementation. 9110 // Based on the SPARC Compliance Definition version 2.4.1. 9111 // 9112 // Ensures that complex values are passed in registers. 9113 // 9114 namespace { 9115 class SparcV8ABIInfo : public DefaultABIInfo { 9116 public: 9117 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9118 9119 private: 9120 ABIArgInfo classifyReturnType(QualType RetTy) const; 9121 void computeInfo(CGFunctionInfo &FI) const override; 9122 }; 9123 } // end anonymous namespace 9124 9125 9126 ABIArgInfo 9127 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9128 if (Ty->isAnyComplexType()) { 9129 return ABIArgInfo::getDirect(); 9130 } 9131 else { 9132 return DefaultABIInfo::classifyReturnType(Ty); 9133 } 9134 } 9135 9136 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9137 9138 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9139 for (auto &Arg : FI.arguments()) 9140 Arg.info = classifyArgumentType(Arg.type); 9141 } 9142 9143 namespace { 9144 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9145 public: 9146 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9147 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9148 }; 9149 } // end anonymous namespace 9150 9151 //===----------------------------------------------------------------------===// 9152 // SPARC v9 ABI Implementation. 9153 // Based on the SPARC Compliance Definition version 2.4.1. 9154 // 9155 // Function arguments a mapped to a nominal "parameter array" and promoted to 9156 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9157 // the array, structs larger than 16 bytes are passed indirectly. 9158 // 9159 // One case requires special care: 9160 // 9161 // struct mixed { 9162 // int i; 9163 // float f; 9164 // }; 9165 // 9166 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9167 // parameter array, but the int is passed in an integer register, and the float 9168 // is passed in a floating point register. This is represented as two arguments 9169 // with the LLVM IR inreg attribute: 9170 // 9171 // declare void f(i32 inreg %i, float inreg %f) 9172 // 9173 // The code generator will only allocate 4 bytes from the parameter array for 9174 // the inreg arguments. All other arguments are allocated a multiple of 8 9175 // bytes. 9176 // 9177 namespace { 9178 class SparcV9ABIInfo : public ABIInfo { 9179 public: 9180 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9181 9182 private: 9183 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9184 void computeInfo(CGFunctionInfo &FI) const override; 9185 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9186 QualType Ty) const override; 9187 9188 // Coercion type builder for structs passed in registers. The coercion type 9189 // serves two purposes: 9190 // 9191 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9192 // in registers. 9193 // 2. Expose aligned floating point elements as first-level elements, so the 9194 // code generator knows to pass them in floating point registers. 9195 // 9196 // We also compute the InReg flag which indicates that the struct contains 9197 // aligned 32-bit floats. 9198 // 9199 struct CoerceBuilder { 9200 llvm::LLVMContext &Context; 9201 const llvm::DataLayout &DL; 9202 SmallVector<llvm::Type*, 8> Elems; 9203 uint64_t Size; 9204 bool InReg; 9205 9206 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9207 : Context(c), DL(dl), Size(0), InReg(false) {} 9208 9209 // Pad Elems with integers until Size is ToSize. 9210 void pad(uint64_t ToSize) { 9211 assert(ToSize >= Size && "Cannot remove elements"); 9212 if (ToSize == Size) 9213 return; 9214 9215 // Finish the current 64-bit word. 9216 uint64_t Aligned = llvm::alignTo(Size, 64); 9217 if (Aligned > Size && Aligned <= ToSize) { 9218 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9219 Size = Aligned; 9220 } 9221 9222 // Add whole 64-bit words. 9223 while (Size + 64 <= ToSize) { 9224 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9225 Size += 64; 9226 } 9227 9228 // Final in-word padding. 9229 if (Size < ToSize) { 9230 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9231 Size = ToSize; 9232 } 9233 } 9234 9235 // Add a floating point element at Offset. 9236 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9237 // Unaligned floats are treated as integers. 9238 if (Offset % Bits) 9239 return; 9240 // The InReg flag is only required if there are any floats < 64 bits. 9241 if (Bits < 64) 9242 InReg = true; 9243 pad(Offset); 9244 Elems.push_back(Ty); 9245 Size = Offset + Bits; 9246 } 9247 9248 // Add a struct type to the coercion type, starting at Offset (in bits). 9249 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9250 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9251 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9252 llvm::Type *ElemTy = StrTy->getElementType(i); 9253 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9254 switch (ElemTy->getTypeID()) { 9255 case llvm::Type::StructTyID: 9256 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9257 break; 9258 case llvm::Type::FloatTyID: 9259 addFloat(ElemOffset, ElemTy, 32); 9260 break; 9261 case llvm::Type::DoubleTyID: 9262 addFloat(ElemOffset, ElemTy, 64); 9263 break; 9264 case llvm::Type::FP128TyID: 9265 addFloat(ElemOffset, ElemTy, 128); 9266 break; 9267 case llvm::Type::PointerTyID: 9268 if (ElemOffset % 64 == 0) { 9269 pad(ElemOffset); 9270 Elems.push_back(ElemTy); 9271 Size += 64; 9272 } 9273 break; 9274 default: 9275 break; 9276 } 9277 } 9278 } 9279 9280 // Check if Ty is a usable substitute for the coercion type. 9281 bool isUsableType(llvm::StructType *Ty) const { 9282 return llvm::makeArrayRef(Elems) == Ty->elements(); 9283 } 9284 9285 // Get the coercion type as a literal struct type. 9286 llvm::Type *getType() const { 9287 if (Elems.size() == 1) 9288 return Elems.front(); 9289 else 9290 return llvm::StructType::get(Context, Elems); 9291 } 9292 }; 9293 }; 9294 } // end anonymous namespace 9295 9296 ABIArgInfo 9297 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9298 if (Ty->isVoidType()) 9299 return ABIArgInfo::getIgnore(); 9300 9301 uint64_t Size = getContext().getTypeSize(Ty); 9302 9303 // Anything too big to fit in registers is passed with an explicit indirect 9304 // pointer / sret pointer. 9305 if (Size > SizeLimit) 9306 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9307 9308 // Treat an enum type as its underlying type. 9309 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9310 Ty = EnumTy->getDecl()->getIntegerType(); 9311 9312 // Integer types smaller than a register are extended. 9313 if (Size < 64 && Ty->isIntegerType()) 9314 return ABIArgInfo::getExtend(Ty); 9315 9316 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9317 if (EIT->getNumBits() < 64) 9318 return ABIArgInfo::getExtend(Ty); 9319 9320 // Other non-aggregates go in registers. 9321 if (!isAggregateTypeForABI(Ty)) 9322 return ABIArgInfo::getDirect(); 9323 9324 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9325 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9326 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9327 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9328 9329 // This is a small aggregate type that should be passed in registers. 9330 // Build a coercion type from the LLVM struct type. 9331 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9332 if (!StrTy) 9333 return ABIArgInfo::getDirect(); 9334 9335 CoerceBuilder CB(getVMContext(), getDataLayout()); 9336 CB.addStruct(0, StrTy); 9337 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9338 9339 // Try to use the original type for coercion. 9340 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9341 9342 if (CB.InReg) 9343 return ABIArgInfo::getDirectInReg(CoerceTy); 9344 else 9345 return ABIArgInfo::getDirect(CoerceTy); 9346 } 9347 9348 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9349 QualType Ty) const { 9350 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9351 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9352 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9353 AI.setCoerceToType(ArgTy); 9354 9355 CharUnits SlotSize = CharUnits::fromQuantity(8); 9356 9357 CGBuilderTy &Builder = CGF.Builder; 9358 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9359 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9360 9361 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9362 9363 Address ArgAddr = Address::invalid(); 9364 CharUnits Stride; 9365 switch (AI.getKind()) { 9366 case ABIArgInfo::Expand: 9367 case ABIArgInfo::CoerceAndExpand: 9368 case ABIArgInfo::InAlloca: 9369 llvm_unreachable("Unsupported ABI kind for va_arg"); 9370 9371 case ABIArgInfo::Extend: { 9372 Stride = SlotSize; 9373 CharUnits Offset = SlotSize - TypeInfo.first; 9374 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9375 break; 9376 } 9377 9378 case ABIArgInfo::Direct: { 9379 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9380 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9381 ArgAddr = Addr; 9382 break; 9383 } 9384 9385 case ABIArgInfo::Indirect: 9386 Stride = SlotSize; 9387 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9388 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9389 TypeInfo.second); 9390 break; 9391 9392 case ABIArgInfo::Ignore: 9393 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 9394 } 9395 9396 // Update VAList. 9397 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9398 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9399 9400 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9401 } 9402 9403 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9404 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9405 for (auto &I : FI.arguments()) 9406 I.info = classifyType(I.type, 16 * 8); 9407 } 9408 9409 namespace { 9410 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9411 public: 9412 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9413 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9414 9415 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9416 return 14; 9417 } 9418 9419 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9420 llvm::Value *Address) const override; 9421 }; 9422 } // end anonymous namespace 9423 9424 bool 9425 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9426 llvm::Value *Address) const { 9427 // This is calculated from the LLVM and GCC tables and verified 9428 // against gcc output. AFAIK all ABIs use the same encoding. 9429 9430 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9431 9432 llvm::IntegerType *i8 = CGF.Int8Ty; 9433 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9434 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9435 9436 // 0-31: the 8-byte general-purpose registers 9437 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9438 9439 // 32-63: f0-31, the 4-byte floating-point registers 9440 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9441 9442 // Y = 64 9443 // PSR = 65 9444 // WIM = 66 9445 // TBR = 67 9446 // PC = 68 9447 // NPC = 69 9448 // FSR = 70 9449 // CSR = 71 9450 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9451 9452 // 72-87: d0-15, the 8-byte floating-point registers 9453 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9454 9455 return false; 9456 } 9457 9458 // ARC ABI implementation. 9459 namespace { 9460 9461 class ARCABIInfo : public DefaultABIInfo { 9462 public: 9463 using DefaultABIInfo::DefaultABIInfo; 9464 9465 private: 9466 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9467 QualType Ty) const override; 9468 9469 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9470 if (!State.FreeRegs) 9471 return; 9472 if (Info.isIndirect() && Info.getInReg()) 9473 State.FreeRegs--; 9474 else if (Info.isDirect() && Info.getInReg()) { 9475 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9476 if (sz < State.FreeRegs) 9477 State.FreeRegs -= sz; 9478 else 9479 State.FreeRegs = 0; 9480 } 9481 } 9482 9483 void computeInfo(CGFunctionInfo &FI) const override { 9484 CCState State(FI); 9485 // ARC uses 8 registers to pass arguments. 9486 State.FreeRegs = 8; 9487 9488 if (!getCXXABI().classifyReturnType(FI)) 9489 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9490 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9491 for (auto &I : FI.arguments()) { 9492 I.info = classifyArgumentType(I.type, State.FreeRegs); 9493 updateState(I.info, I.type, State); 9494 } 9495 } 9496 9497 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9498 ABIArgInfo getIndirectByValue(QualType Ty) const; 9499 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9500 ABIArgInfo classifyReturnType(QualType RetTy) const; 9501 }; 9502 9503 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9504 public: 9505 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9506 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9507 }; 9508 9509 9510 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9511 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9512 getNaturalAlignIndirect(Ty, false); 9513 } 9514 9515 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9516 // Compute the byval alignment. 9517 const unsigned MinABIStackAlignInBytes = 4; 9518 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9519 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9520 TypeAlign > MinABIStackAlignInBytes); 9521 } 9522 9523 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9524 QualType Ty) const { 9525 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9526 getContext().getTypeInfoInChars(Ty), 9527 CharUnits::fromQuantity(4), true); 9528 } 9529 9530 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9531 uint8_t FreeRegs) const { 9532 // Handle the generic C++ ABI. 9533 const RecordType *RT = Ty->getAs<RecordType>(); 9534 if (RT) { 9535 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9536 if (RAA == CGCXXABI::RAA_Indirect) 9537 return getIndirectByRef(Ty, FreeRegs > 0); 9538 9539 if (RAA == CGCXXABI::RAA_DirectInMemory) 9540 return getIndirectByValue(Ty); 9541 } 9542 9543 // Treat an enum type as its underlying type. 9544 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9545 Ty = EnumTy->getDecl()->getIntegerType(); 9546 9547 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9548 9549 if (isAggregateTypeForABI(Ty)) { 9550 // Structures with flexible arrays are always indirect. 9551 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9552 return getIndirectByValue(Ty); 9553 9554 // Ignore empty structs/unions. 9555 if (isEmptyRecord(getContext(), Ty, true)) 9556 return ABIArgInfo::getIgnore(); 9557 9558 llvm::LLVMContext &LLVMContext = getVMContext(); 9559 9560 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9561 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9562 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9563 9564 return FreeRegs >= SizeInRegs ? 9565 ABIArgInfo::getDirectInReg(Result) : 9566 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9567 } 9568 9569 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9570 if (EIT->getNumBits() > 64) 9571 return getIndirectByValue(Ty); 9572 9573 return isPromotableIntegerTypeForABI(Ty) 9574 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9575 : ABIArgInfo::getExtend(Ty)) 9576 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9577 : ABIArgInfo::getDirect()); 9578 } 9579 9580 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9581 if (RetTy->isAnyComplexType()) 9582 return ABIArgInfo::getDirectInReg(); 9583 9584 // Arguments of size > 4 registers are indirect. 9585 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9586 if (RetSize > 4) 9587 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9588 9589 return DefaultABIInfo::classifyReturnType(RetTy); 9590 } 9591 9592 } // End anonymous namespace. 9593 9594 //===----------------------------------------------------------------------===// 9595 // XCore ABI Implementation 9596 //===----------------------------------------------------------------------===// 9597 9598 namespace { 9599 9600 /// A SmallStringEnc instance is used to build up the TypeString by passing 9601 /// it by reference between functions that append to it. 9602 typedef llvm::SmallString<128> SmallStringEnc; 9603 9604 /// TypeStringCache caches the meta encodings of Types. 9605 /// 9606 /// The reason for caching TypeStrings is two fold: 9607 /// 1. To cache a type's encoding for later uses; 9608 /// 2. As a means to break recursive member type inclusion. 9609 /// 9610 /// A cache Entry can have a Status of: 9611 /// NonRecursive: The type encoding is not recursive; 9612 /// Recursive: The type encoding is recursive; 9613 /// Incomplete: An incomplete TypeString; 9614 /// IncompleteUsed: An incomplete TypeString that has been used in a 9615 /// Recursive type encoding. 9616 /// 9617 /// A NonRecursive entry will have all of its sub-members expanded as fully 9618 /// as possible. Whilst it may contain types which are recursive, the type 9619 /// itself is not recursive and thus its encoding may be safely used whenever 9620 /// the type is encountered. 9621 /// 9622 /// A Recursive entry will have all of its sub-members expanded as fully as 9623 /// possible. The type itself is recursive and it may contain other types which 9624 /// are recursive. The Recursive encoding must not be used during the expansion 9625 /// of a recursive type's recursive branch. For simplicity the code uses 9626 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9627 /// 9628 /// An Incomplete entry is always a RecordType and only encodes its 9629 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9630 /// are placed into the cache during type expansion as a means to identify and 9631 /// handle recursive inclusion of types as sub-members. If there is recursion 9632 /// the entry becomes IncompleteUsed. 9633 /// 9634 /// During the expansion of a RecordType's members: 9635 /// 9636 /// If the cache contains a NonRecursive encoding for the member type, the 9637 /// cached encoding is used; 9638 /// 9639 /// If the cache contains a Recursive encoding for the member type, the 9640 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9641 /// 9642 /// If the member is a RecordType, an Incomplete encoding is placed into the 9643 /// cache to break potential recursive inclusion of itself as a sub-member; 9644 /// 9645 /// Once a member RecordType has been expanded, its temporary incomplete 9646 /// entry is removed from the cache. If a Recursive encoding was swapped out 9647 /// it is swapped back in; 9648 /// 9649 /// If an incomplete entry is used to expand a sub-member, the incomplete 9650 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9651 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9652 /// 9653 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9654 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9655 /// Else the member is part of a recursive type and thus the recursion has 9656 /// been exited too soon for the encoding to be correct for the member. 9657 /// 9658 class TypeStringCache { 9659 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9660 struct Entry { 9661 std::string Str; // The encoded TypeString for the type. 9662 enum Status State; // Information about the encoding in 'Str'. 9663 std::string Swapped; // A temporary place holder for a Recursive encoding 9664 // during the expansion of RecordType's members. 9665 }; 9666 std::map<const IdentifierInfo *, struct Entry> Map; 9667 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9668 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9669 public: 9670 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9671 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9672 bool removeIncomplete(const IdentifierInfo *ID); 9673 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9674 bool IsRecursive); 9675 StringRef lookupStr(const IdentifierInfo *ID); 9676 }; 9677 9678 /// TypeString encodings for enum & union fields must be order. 9679 /// FieldEncoding is a helper for this ordering process. 9680 class FieldEncoding { 9681 bool HasName; 9682 std::string Enc; 9683 public: 9684 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9685 StringRef str() { return Enc; } 9686 bool operator<(const FieldEncoding &rhs) const { 9687 if (HasName != rhs.HasName) return HasName; 9688 return Enc < rhs.Enc; 9689 } 9690 }; 9691 9692 class XCoreABIInfo : public DefaultABIInfo { 9693 public: 9694 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9695 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9696 QualType Ty) const override; 9697 }; 9698 9699 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9700 mutable TypeStringCache TSC; 9701 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9702 const CodeGen::CodeGenModule &M) const; 9703 9704 public: 9705 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9706 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9707 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9708 const llvm::MapVector<GlobalDecl, StringRef> 9709 &MangledDeclNames) const override; 9710 }; 9711 9712 } // End anonymous namespace. 9713 9714 // TODO: this implementation is likely now redundant with the default 9715 // EmitVAArg. 9716 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9717 QualType Ty) const { 9718 CGBuilderTy &Builder = CGF.Builder; 9719 9720 // Get the VAList. 9721 CharUnits SlotSize = CharUnits::fromQuantity(4); 9722 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9723 9724 // Handle the argument. 9725 ABIArgInfo AI = classifyArgumentType(Ty); 9726 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9727 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9728 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9729 AI.setCoerceToType(ArgTy); 9730 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9731 9732 Address Val = Address::invalid(); 9733 CharUnits ArgSize = CharUnits::Zero(); 9734 switch (AI.getKind()) { 9735 case ABIArgInfo::Expand: 9736 case ABIArgInfo::CoerceAndExpand: 9737 case ABIArgInfo::InAlloca: 9738 llvm_unreachable("Unsupported ABI kind for va_arg"); 9739 case ABIArgInfo::Ignore: 9740 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9741 ArgSize = CharUnits::Zero(); 9742 break; 9743 case ABIArgInfo::Extend: 9744 case ABIArgInfo::Direct: 9745 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9746 ArgSize = CharUnits::fromQuantity( 9747 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9748 ArgSize = ArgSize.alignTo(SlotSize); 9749 break; 9750 case ABIArgInfo::Indirect: 9751 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9752 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9753 ArgSize = SlotSize; 9754 break; 9755 } 9756 9757 // Increment the VAList. 9758 if (!ArgSize.isZero()) { 9759 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9760 Builder.CreateStore(APN.getPointer(), VAListAddr); 9761 } 9762 9763 return Val; 9764 } 9765 9766 /// During the expansion of a RecordType, an incomplete TypeString is placed 9767 /// into the cache as a means to identify and break recursion. 9768 /// If there is a Recursive encoding in the cache, it is swapped out and will 9769 /// be reinserted by removeIncomplete(). 9770 /// All other types of encoding should have been used rather than arriving here. 9771 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9772 std::string StubEnc) { 9773 if (!ID) 9774 return; 9775 Entry &E = Map[ID]; 9776 assert( (E.Str.empty() || E.State == Recursive) && 9777 "Incorrectly use of addIncomplete"); 9778 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9779 E.Swapped.swap(E.Str); // swap out the Recursive 9780 E.Str.swap(StubEnc); 9781 E.State = Incomplete; 9782 ++IncompleteCount; 9783 } 9784 9785 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9786 /// must be removed from the cache. 9787 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9788 /// Returns true if the RecordType was defined recursively. 9789 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9790 if (!ID) 9791 return false; 9792 auto I = Map.find(ID); 9793 assert(I != Map.end() && "Entry not present"); 9794 Entry &E = I->second; 9795 assert( (E.State == Incomplete || 9796 E.State == IncompleteUsed) && 9797 "Entry must be an incomplete type"); 9798 bool IsRecursive = false; 9799 if (E.State == IncompleteUsed) { 9800 // We made use of our Incomplete encoding, thus we are recursive. 9801 IsRecursive = true; 9802 --IncompleteUsedCount; 9803 } 9804 if (E.Swapped.empty()) 9805 Map.erase(I); 9806 else { 9807 // Swap the Recursive back. 9808 E.Swapped.swap(E.Str); 9809 E.Swapped.clear(); 9810 E.State = Recursive; 9811 } 9812 --IncompleteCount; 9813 return IsRecursive; 9814 } 9815 9816 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9817 /// Recursive (viz: all sub-members were expanded as fully as possible). 9818 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9819 bool IsRecursive) { 9820 if (!ID || IncompleteUsedCount) 9821 return; // No key or it is is an incomplete sub-type so don't add. 9822 Entry &E = Map[ID]; 9823 if (IsRecursive && !E.Str.empty()) { 9824 assert(E.State==Recursive && E.Str.size() == Str.size() && 9825 "This is not the same Recursive entry"); 9826 // The parent container was not recursive after all, so we could have used 9827 // this Recursive sub-member entry after all, but we assumed the worse when 9828 // we started viz: IncompleteCount!=0. 9829 return; 9830 } 9831 assert(E.Str.empty() && "Entry already present"); 9832 E.Str = Str.str(); 9833 E.State = IsRecursive? Recursive : NonRecursive; 9834 } 9835 9836 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9837 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9838 /// encoding is Recursive, return an empty StringRef. 9839 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9840 if (!ID) 9841 return StringRef(); // We have no key. 9842 auto I = Map.find(ID); 9843 if (I == Map.end()) 9844 return StringRef(); // We have no encoding. 9845 Entry &E = I->second; 9846 if (E.State == Recursive && IncompleteCount) 9847 return StringRef(); // We don't use Recursive encodings for member types. 9848 9849 if (E.State == Incomplete) { 9850 // The incomplete type is being used to break out of recursion. 9851 E.State = IncompleteUsed; 9852 ++IncompleteUsedCount; 9853 } 9854 return E.Str; 9855 } 9856 9857 /// The XCore ABI includes a type information section that communicates symbol 9858 /// type information to the linker. The linker uses this information to verify 9859 /// safety/correctness of things such as array bound and pointers et al. 9860 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9861 /// This type information (TypeString) is emitted into meta data for all global 9862 /// symbols: definitions, declarations, functions & variables. 9863 /// 9864 /// The TypeString carries type, qualifier, name, size & value details. 9865 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9866 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9867 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9868 /// 9869 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9870 const CodeGen::CodeGenModule &CGM, 9871 TypeStringCache &TSC); 9872 9873 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9874 void XCoreTargetCodeGenInfo::emitTargetMD( 9875 const Decl *D, llvm::GlobalValue *GV, 9876 const CodeGen::CodeGenModule &CGM) const { 9877 SmallStringEnc Enc; 9878 if (getTypeString(Enc, D, CGM, TSC)) { 9879 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9880 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9881 llvm::MDString::get(Ctx, Enc.str())}; 9882 llvm::NamedMDNode *MD = 9883 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9884 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9885 } 9886 } 9887 9888 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9889 CodeGen::CodeGenModule &CGM, 9890 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9891 // Warning, new MangledDeclNames may be appended within this loop. 9892 // We rely on MapVector insertions adding new elements to the end 9893 // of the container. 9894 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9895 auto Val = *(MangledDeclNames.begin() + I); 9896 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9897 if (GV) { 9898 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9899 emitTargetMD(D, GV, CGM); 9900 } 9901 } 9902 } 9903 //===----------------------------------------------------------------------===// 9904 // SPIR ABI Implementation 9905 //===----------------------------------------------------------------------===// 9906 9907 namespace { 9908 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9909 public: 9910 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9911 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 9912 unsigned getOpenCLKernelCallingConv() const override; 9913 }; 9914 9915 } // End anonymous namespace. 9916 9917 namespace clang { 9918 namespace CodeGen { 9919 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9920 DefaultABIInfo SPIRABI(CGM.getTypes()); 9921 SPIRABI.computeInfo(FI); 9922 } 9923 } 9924 } 9925 9926 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9927 return llvm::CallingConv::SPIR_KERNEL; 9928 } 9929 9930 static bool appendType(SmallStringEnc &Enc, QualType QType, 9931 const CodeGen::CodeGenModule &CGM, 9932 TypeStringCache &TSC); 9933 9934 /// Helper function for appendRecordType(). 9935 /// Builds a SmallVector containing the encoded field types in declaration 9936 /// order. 9937 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9938 const RecordDecl *RD, 9939 const CodeGen::CodeGenModule &CGM, 9940 TypeStringCache &TSC) { 9941 for (const auto *Field : RD->fields()) { 9942 SmallStringEnc Enc; 9943 Enc += "m("; 9944 Enc += Field->getName(); 9945 Enc += "){"; 9946 if (Field->isBitField()) { 9947 Enc += "b("; 9948 llvm::raw_svector_ostream OS(Enc); 9949 OS << Field->getBitWidthValue(CGM.getContext()); 9950 Enc += ':'; 9951 } 9952 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9953 return false; 9954 if (Field->isBitField()) 9955 Enc += ')'; 9956 Enc += '}'; 9957 FE.emplace_back(!Field->getName().empty(), Enc); 9958 } 9959 return true; 9960 } 9961 9962 /// Appends structure and union types to Enc and adds encoding to cache. 9963 /// Recursively calls appendType (via extractFieldType) for each field. 9964 /// Union types have their fields ordered according to the ABI. 9965 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9966 const CodeGen::CodeGenModule &CGM, 9967 TypeStringCache &TSC, const IdentifierInfo *ID) { 9968 // Append the cached TypeString if we have one. 9969 StringRef TypeString = TSC.lookupStr(ID); 9970 if (!TypeString.empty()) { 9971 Enc += TypeString; 9972 return true; 9973 } 9974 9975 // Start to emit an incomplete TypeString. 9976 size_t Start = Enc.size(); 9977 Enc += (RT->isUnionType()? 'u' : 's'); 9978 Enc += '('; 9979 if (ID) 9980 Enc += ID->getName(); 9981 Enc += "){"; 9982 9983 // We collect all encoded fields and order as necessary. 9984 bool IsRecursive = false; 9985 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9986 if (RD && !RD->field_empty()) { 9987 // An incomplete TypeString stub is placed in the cache for this RecordType 9988 // so that recursive calls to this RecordType will use it whilst building a 9989 // complete TypeString for this RecordType. 9990 SmallVector<FieldEncoding, 16> FE; 9991 std::string StubEnc(Enc.substr(Start).str()); 9992 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9993 TSC.addIncomplete(ID, std::move(StubEnc)); 9994 if (!extractFieldType(FE, RD, CGM, TSC)) { 9995 (void) TSC.removeIncomplete(ID); 9996 return false; 9997 } 9998 IsRecursive = TSC.removeIncomplete(ID); 9999 // The ABI requires unions to be sorted but not structures. 10000 // See FieldEncoding::operator< for sort algorithm. 10001 if (RT->isUnionType()) 10002 llvm::sort(FE); 10003 // We can now complete the TypeString. 10004 unsigned E = FE.size(); 10005 for (unsigned I = 0; I != E; ++I) { 10006 if (I) 10007 Enc += ','; 10008 Enc += FE[I].str(); 10009 } 10010 } 10011 Enc += '}'; 10012 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10013 return true; 10014 } 10015 10016 /// Appends enum types to Enc and adds the encoding to the cache. 10017 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10018 TypeStringCache &TSC, 10019 const IdentifierInfo *ID) { 10020 // Append the cached TypeString if we have one. 10021 StringRef TypeString = TSC.lookupStr(ID); 10022 if (!TypeString.empty()) { 10023 Enc += TypeString; 10024 return true; 10025 } 10026 10027 size_t Start = Enc.size(); 10028 Enc += "e("; 10029 if (ID) 10030 Enc += ID->getName(); 10031 Enc += "){"; 10032 10033 // We collect all encoded enumerations and order them alphanumerically. 10034 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10035 SmallVector<FieldEncoding, 16> FE; 10036 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10037 ++I) { 10038 SmallStringEnc EnumEnc; 10039 EnumEnc += "m("; 10040 EnumEnc += I->getName(); 10041 EnumEnc += "){"; 10042 I->getInitVal().toString(EnumEnc); 10043 EnumEnc += '}'; 10044 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10045 } 10046 llvm::sort(FE); 10047 unsigned E = FE.size(); 10048 for (unsigned I = 0; I != E; ++I) { 10049 if (I) 10050 Enc += ','; 10051 Enc += FE[I].str(); 10052 } 10053 } 10054 Enc += '}'; 10055 TSC.addIfComplete(ID, Enc.substr(Start), false); 10056 return true; 10057 } 10058 10059 /// Appends type's qualifier to Enc. 10060 /// This is done prior to appending the type's encoding. 10061 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10062 // Qualifiers are emitted in alphabetical order. 10063 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10064 int Lookup = 0; 10065 if (QT.isConstQualified()) 10066 Lookup += 1<<0; 10067 if (QT.isRestrictQualified()) 10068 Lookup += 1<<1; 10069 if (QT.isVolatileQualified()) 10070 Lookup += 1<<2; 10071 Enc += Table[Lookup]; 10072 } 10073 10074 /// Appends built-in types to Enc. 10075 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10076 const char *EncType; 10077 switch (BT->getKind()) { 10078 case BuiltinType::Void: 10079 EncType = "0"; 10080 break; 10081 case BuiltinType::Bool: 10082 EncType = "b"; 10083 break; 10084 case BuiltinType::Char_U: 10085 EncType = "uc"; 10086 break; 10087 case BuiltinType::UChar: 10088 EncType = "uc"; 10089 break; 10090 case BuiltinType::SChar: 10091 EncType = "sc"; 10092 break; 10093 case BuiltinType::UShort: 10094 EncType = "us"; 10095 break; 10096 case BuiltinType::Short: 10097 EncType = "ss"; 10098 break; 10099 case BuiltinType::UInt: 10100 EncType = "ui"; 10101 break; 10102 case BuiltinType::Int: 10103 EncType = "si"; 10104 break; 10105 case BuiltinType::ULong: 10106 EncType = "ul"; 10107 break; 10108 case BuiltinType::Long: 10109 EncType = "sl"; 10110 break; 10111 case BuiltinType::ULongLong: 10112 EncType = "ull"; 10113 break; 10114 case BuiltinType::LongLong: 10115 EncType = "sll"; 10116 break; 10117 case BuiltinType::Float: 10118 EncType = "ft"; 10119 break; 10120 case BuiltinType::Double: 10121 EncType = "d"; 10122 break; 10123 case BuiltinType::LongDouble: 10124 EncType = "ld"; 10125 break; 10126 default: 10127 return false; 10128 } 10129 Enc += EncType; 10130 return true; 10131 } 10132 10133 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10134 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10135 const CodeGen::CodeGenModule &CGM, 10136 TypeStringCache &TSC) { 10137 Enc += "p("; 10138 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10139 return false; 10140 Enc += ')'; 10141 return true; 10142 } 10143 10144 /// Appends array encoding to Enc before calling appendType for the element. 10145 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10146 const ArrayType *AT, 10147 const CodeGen::CodeGenModule &CGM, 10148 TypeStringCache &TSC, StringRef NoSizeEnc) { 10149 if (AT->getSizeModifier() != ArrayType::Normal) 10150 return false; 10151 Enc += "a("; 10152 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10153 CAT->getSize().toStringUnsigned(Enc); 10154 else 10155 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10156 Enc += ':'; 10157 // The Qualifiers should be attached to the type rather than the array. 10158 appendQualifier(Enc, QT); 10159 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10160 return false; 10161 Enc += ')'; 10162 return true; 10163 } 10164 10165 /// Appends a function encoding to Enc, calling appendType for the return type 10166 /// and the arguments. 10167 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10168 const CodeGen::CodeGenModule &CGM, 10169 TypeStringCache &TSC) { 10170 Enc += "f{"; 10171 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10172 return false; 10173 Enc += "}("; 10174 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10175 // N.B. we are only interested in the adjusted param types. 10176 auto I = FPT->param_type_begin(); 10177 auto E = FPT->param_type_end(); 10178 if (I != E) { 10179 do { 10180 if (!appendType(Enc, *I, CGM, TSC)) 10181 return false; 10182 ++I; 10183 if (I != E) 10184 Enc += ','; 10185 } while (I != E); 10186 if (FPT->isVariadic()) 10187 Enc += ",va"; 10188 } else { 10189 if (FPT->isVariadic()) 10190 Enc += "va"; 10191 else 10192 Enc += '0'; 10193 } 10194 } 10195 Enc += ')'; 10196 return true; 10197 } 10198 10199 /// Handles the type's qualifier before dispatching a call to handle specific 10200 /// type encodings. 10201 static bool appendType(SmallStringEnc &Enc, QualType QType, 10202 const CodeGen::CodeGenModule &CGM, 10203 TypeStringCache &TSC) { 10204 10205 QualType QT = QType.getCanonicalType(); 10206 10207 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10208 // The Qualifiers should be attached to the type rather than the array. 10209 // Thus we don't call appendQualifier() here. 10210 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10211 10212 appendQualifier(Enc, QT); 10213 10214 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10215 return appendBuiltinType(Enc, BT); 10216 10217 if (const PointerType *PT = QT->getAs<PointerType>()) 10218 return appendPointerType(Enc, PT, CGM, TSC); 10219 10220 if (const EnumType *ET = QT->getAs<EnumType>()) 10221 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10222 10223 if (const RecordType *RT = QT->getAsStructureType()) 10224 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10225 10226 if (const RecordType *RT = QT->getAsUnionType()) 10227 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10228 10229 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10230 return appendFunctionType(Enc, FT, CGM, TSC); 10231 10232 return false; 10233 } 10234 10235 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10236 const CodeGen::CodeGenModule &CGM, 10237 TypeStringCache &TSC) { 10238 if (!D) 10239 return false; 10240 10241 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10242 if (FD->getLanguageLinkage() != CLanguageLinkage) 10243 return false; 10244 return appendType(Enc, FD->getType(), CGM, TSC); 10245 } 10246 10247 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10248 if (VD->getLanguageLinkage() != CLanguageLinkage) 10249 return false; 10250 QualType QT = VD->getType().getCanonicalType(); 10251 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10252 // Global ArrayTypes are given a size of '*' if the size is unknown. 10253 // The Qualifiers should be attached to the type rather than the array. 10254 // Thus we don't call appendQualifier() here. 10255 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10256 } 10257 return appendType(Enc, QT, CGM, TSC); 10258 } 10259 return false; 10260 } 10261 10262 //===----------------------------------------------------------------------===// 10263 // RISCV ABI Implementation 10264 //===----------------------------------------------------------------------===// 10265 10266 namespace { 10267 class RISCVABIInfo : public DefaultABIInfo { 10268 private: 10269 // Size of the integer ('x') registers in bits. 10270 unsigned XLen; 10271 // Size of the floating point ('f') registers in bits. Note that the target 10272 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10273 // with soft float ABI has FLen==0). 10274 unsigned FLen; 10275 static const int NumArgGPRs = 8; 10276 static const int NumArgFPRs = 8; 10277 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10278 llvm::Type *&Field1Ty, 10279 CharUnits &Field1Off, 10280 llvm::Type *&Field2Ty, 10281 CharUnits &Field2Off) const; 10282 10283 public: 10284 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10285 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10286 10287 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10288 // non-virtual, but computeInfo is virtual, so we overload it. 10289 void computeInfo(CGFunctionInfo &FI) const override; 10290 10291 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10292 int &ArgFPRsLeft) const; 10293 ABIArgInfo classifyReturnType(QualType RetTy) const; 10294 10295 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10296 QualType Ty) const override; 10297 10298 ABIArgInfo extendType(QualType Ty) const; 10299 10300 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10301 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10302 CharUnits &Field2Off, int &NeededArgGPRs, 10303 int &NeededArgFPRs) const; 10304 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10305 CharUnits Field1Off, 10306 llvm::Type *Field2Ty, 10307 CharUnits Field2Off) const; 10308 }; 10309 } // end anonymous namespace 10310 10311 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10312 QualType RetTy = FI.getReturnType(); 10313 if (!getCXXABI().classifyReturnType(FI)) 10314 FI.getReturnInfo() = classifyReturnType(RetTy); 10315 10316 // IsRetIndirect is true if classifyArgumentType indicated the value should 10317 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10318 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10319 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10320 // list and pass indirectly on RV32. 10321 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10322 if (!IsRetIndirect && RetTy->isScalarType() && 10323 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10324 if (RetTy->isComplexType() && FLen) { 10325 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 10326 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10327 } else { 10328 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10329 IsRetIndirect = true; 10330 } 10331 } 10332 10333 // We must track the number of GPRs used in order to conform to the RISC-V 10334 // ABI, as integer scalars passed in registers should have signext/zeroext 10335 // when promoted, but are anyext if passed on the stack. As GPR usage is 10336 // different for variadic arguments, we must also track whether we are 10337 // examining a vararg or not. 10338 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10339 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10340 int NumFixedArgs = FI.getNumRequiredArgs(); 10341 10342 int ArgNum = 0; 10343 for (auto &ArgInfo : FI.arguments()) { 10344 bool IsFixed = ArgNum < NumFixedArgs; 10345 ArgInfo.info = 10346 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10347 ArgNum++; 10348 } 10349 } 10350 10351 // Returns true if the struct is a potential candidate for the floating point 10352 // calling convention. If this function returns true, the caller is 10353 // responsible for checking that if there is only a single field then that 10354 // field is a float. 10355 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10356 llvm::Type *&Field1Ty, 10357 CharUnits &Field1Off, 10358 llvm::Type *&Field2Ty, 10359 CharUnits &Field2Off) const { 10360 bool IsInt = Ty->isIntegralOrEnumerationType(); 10361 bool IsFloat = Ty->isRealFloatingType(); 10362 10363 if (IsInt || IsFloat) { 10364 uint64_t Size = getContext().getTypeSize(Ty); 10365 if (IsInt && Size > XLen) 10366 return false; 10367 // Can't be eligible if larger than the FP registers. Half precision isn't 10368 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10369 // default to the integer ABI in that case. 10370 if (IsFloat && (Size > FLen || Size < 32)) 10371 return false; 10372 // Can't be eligible if an integer type was already found (int+int pairs 10373 // are not eligible). 10374 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10375 return false; 10376 if (!Field1Ty) { 10377 Field1Ty = CGT.ConvertType(Ty); 10378 Field1Off = CurOff; 10379 return true; 10380 } 10381 if (!Field2Ty) { 10382 Field2Ty = CGT.ConvertType(Ty); 10383 Field2Off = CurOff; 10384 return true; 10385 } 10386 return false; 10387 } 10388 10389 if (auto CTy = Ty->getAs<ComplexType>()) { 10390 if (Field1Ty) 10391 return false; 10392 QualType EltTy = CTy->getElementType(); 10393 if (getContext().getTypeSize(EltTy) > FLen) 10394 return false; 10395 Field1Ty = CGT.ConvertType(EltTy); 10396 Field1Off = CurOff; 10397 Field2Ty = Field1Ty; 10398 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10399 return true; 10400 } 10401 10402 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10403 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10404 QualType EltTy = ATy->getElementType(); 10405 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10406 for (uint64_t i = 0; i < ArraySize; ++i) { 10407 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10408 Field1Off, Field2Ty, Field2Off); 10409 if (!Ret) 10410 return false; 10411 CurOff += EltSize; 10412 } 10413 return true; 10414 } 10415 10416 if (const auto *RTy = Ty->getAs<RecordType>()) { 10417 // Structures with either a non-trivial destructor or a non-trivial 10418 // copy constructor are not eligible for the FP calling convention. 10419 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10420 return false; 10421 if (isEmptyRecord(getContext(), Ty, true)) 10422 return true; 10423 const RecordDecl *RD = RTy->getDecl(); 10424 // Unions aren't eligible unless they're empty (which is caught above). 10425 if (RD->isUnion()) 10426 return false; 10427 int ZeroWidthBitFieldCount = 0; 10428 for (const FieldDecl *FD : RD->fields()) { 10429 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10430 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10431 QualType QTy = FD->getType(); 10432 if (FD->isBitField()) { 10433 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10434 // Allow a bitfield with a type greater than XLen as long as the 10435 // bitwidth is XLen or less. 10436 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10437 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10438 if (BitWidth == 0) { 10439 ZeroWidthBitFieldCount++; 10440 continue; 10441 } 10442 } 10443 10444 bool Ret = detectFPCCEligibleStructHelper( 10445 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10446 Field1Ty, Field1Off, Field2Ty, Field2Off); 10447 if (!Ret) 10448 return false; 10449 10450 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10451 // or int+fp structs, but are ignored for a struct with an fp field and 10452 // any number of zero-width bitfields. 10453 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10454 return false; 10455 } 10456 return Field1Ty != nullptr; 10457 } 10458 10459 return false; 10460 } 10461 10462 // Determine if a struct is eligible for passing according to the floating 10463 // point calling convention (i.e., when flattened it contains a single fp 10464 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10465 // NeededArgGPRs are incremented appropriately. 10466 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10467 CharUnits &Field1Off, 10468 llvm::Type *&Field2Ty, 10469 CharUnits &Field2Off, 10470 int &NeededArgGPRs, 10471 int &NeededArgFPRs) const { 10472 Field1Ty = nullptr; 10473 Field2Ty = nullptr; 10474 NeededArgGPRs = 0; 10475 NeededArgFPRs = 0; 10476 bool IsCandidate = detectFPCCEligibleStructHelper( 10477 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10478 // Not really a candidate if we have a single int but no float. 10479 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10480 return false; 10481 if (!IsCandidate) 10482 return false; 10483 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10484 NeededArgFPRs++; 10485 else if (Field1Ty) 10486 NeededArgGPRs++; 10487 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10488 NeededArgFPRs++; 10489 else if (Field2Ty) 10490 NeededArgGPRs++; 10491 return true; 10492 } 10493 10494 // Call getCoerceAndExpand for the two-element flattened struct described by 10495 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10496 // appropriate coerceToType and unpaddedCoerceToType. 10497 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10498 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10499 CharUnits Field2Off) const { 10500 SmallVector<llvm::Type *, 3> CoerceElts; 10501 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10502 if (!Field1Off.isZero()) 10503 CoerceElts.push_back(llvm::ArrayType::get( 10504 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10505 10506 CoerceElts.push_back(Field1Ty); 10507 UnpaddedCoerceElts.push_back(Field1Ty); 10508 10509 if (!Field2Ty) { 10510 return ABIArgInfo::getCoerceAndExpand( 10511 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10512 UnpaddedCoerceElts[0]); 10513 } 10514 10515 CharUnits Field2Align = 10516 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10517 CharUnits Field1End = Field1Off + 10518 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10519 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10520 10521 CharUnits Padding = CharUnits::Zero(); 10522 if (Field2Off > Field2OffNoPadNoPack) 10523 Padding = Field2Off - Field2OffNoPadNoPack; 10524 else if (Field2Off != Field2Align && Field2Off > Field1End) 10525 Padding = Field2Off - Field1End; 10526 10527 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10528 10529 if (!Padding.isZero()) 10530 CoerceElts.push_back(llvm::ArrayType::get( 10531 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10532 10533 CoerceElts.push_back(Field2Ty); 10534 UnpaddedCoerceElts.push_back(Field2Ty); 10535 10536 auto CoerceToType = 10537 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10538 auto UnpaddedCoerceToType = 10539 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10540 10541 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10542 } 10543 10544 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10545 int &ArgGPRsLeft, 10546 int &ArgFPRsLeft) const { 10547 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10548 Ty = useFirstFieldIfTransparentUnion(Ty); 10549 10550 // Structures with either a non-trivial destructor or a non-trivial 10551 // copy constructor are always passed indirectly. 10552 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10553 if (ArgGPRsLeft) 10554 ArgGPRsLeft -= 1; 10555 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10556 CGCXXABI::RAA_DirectInMemory); 10557 } 10558 10559 // Ignore empty structs/unions. 10560 if (isEmptyRecord(getContext(), Ty, true)) 10561 return ABIArgInfo::getIgnore(); 10562 10563 uint64_t Size = getContext().getTypeSize(Ty); 10564 10565 // Pass floating point values via FPRs if possible. 10566 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10567 FLen >= Size && ArgFPRsLeft) { 10568 ArgFPRsLeft--; 10569 return ABIArgInfo::getDirect(); 10570 } 10571 10572 // Complex types for the hard float ABI must be passed direct rather than 10573 // using CoerceAndExpand. 10574 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10575 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10576 if (getContext().getTypeSize(EltTy) <= FLen) { 10577 ArgFPRsLeft -= 2; 10578 return ABIArgInfo::getDirect(); 10579 } 10580 } 10581 10582 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10583 llvm::Type *Field1Ty = nullptr; 10584 llvm::Type *Field2Ty = nullptr; 10585 CharUnits Field1Off = CharUnits::Zero(); 10586 CharUnits Field2Off = CharUnits::Zero(); 10587 int NeededArgGPRs; 10588 int NeededArgFPRs; 10589 bool IsCandidate = 10590 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10591 NeededArgGPRs, NeededArgFPRs); 10592 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10593 NeededArgFPRs <= ArgFPRsLeft) { 10594 ArgGPRsLeft -= NeededArgGPRs; 10595 ArgFPRsLeft -= NeededArgFPRs; 10596 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10597 Field2Off); 10598 } 10599 } 10600 10601 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10602 bool MustUseStack = false; 10603 // Determine the number of GPRs needed to pass the current argument 10604 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10605 // register pairs, so may consume 3 registers. 10606 int NeededArgGPRs = 1; 10607 if (!IsFixed && NeededAlign == 2 * XLen) 10608 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10609 else if (Size > XLen && Size <= 2 * XLen) 10610 NeededArgGPRs = 2; 10611 10612 if (NeededArgGPRs > ArgGPRsLeft) { 10613 MustUseStack = true; 10614 NeededArgGPRs = ArgGPRsLeft; 10615 } 10616 10617 ArgGPRsLeft -= NeededArgGPRs; 10618 10619 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10620 // Treat an enum type as its underlying type. 10621 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10622 Ty = EnumTy->getDecl()->getIntegerType(); 10623 10624 // All integral types are promoted to XLen width, unless passed on the 10625 // stack. 10626 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10627 return extendType(Ty); 10628 } 10629 10630 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10631 if (EIT->getNumBits() < XLen && !MustUseStack) 10632 return extendType(Ty); 10633 if (EIT->getNumBits() > 128 || 10634 (!getContext().getTargetInfo().hasInt128Type() && 10635 EIT->getNumBits() > 64)) 10636 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10637 } 10638 10639 return ABIArgInfo::getDirect(); 10640 } 10641 10642 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10643 // so coerce to integers. 10644 if (Size <= 2 * XLen) { 10645 unsigned Alignment = getContext().getTypeAlign(Ty); 10646 10647 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10648 // required, and a 2-element XLen array if only XLen alignment is required. 10649 if (Size <= XLen) { 10650 return ABIArgInfo::getDirect( 10651 llvm::IntegerType::get(getVMContext(), XLen)); 10652 } else if (Alignment == 2 * XLen) { 10653 return ABIArgInfo::getDirect( 10654 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10655 } else { 10656 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10657 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10658 } 10659 } 10660 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10661 } 10662 10663 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10664 if (RetTy->isVoidType()) 10665 return ABIArgInfo::getIgnore(); 10666 10667 int ArgGPRsLeft = 2; 10668 int ArgFPRsLeft = FLen ? 2 : 0; 10669 10670 // The rules for return and argument types are the same, so defer to 10671 // classifyArgumentType. 10672 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10673 ArgFPRsLeft); 10674 } 10675 10676 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10677 QualType Ty) const { 10678 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10679 10680 // Empty records are ignored for parameter passing purposes. 10681 if (isEmptyRecord(getContext(), Ty, true)) { 10682 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10683 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10684 return Addr; 10685 } 10686 10687 std::pair<CharUnits, CharUnits> SizeAndAlign = 10688 getContext().getTypeInfoInChars(Ty); 10689 10690 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10691 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 10692 10693 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 10694 SlotSize, /*AllowHigherAlign=*/true); 10695 } 10696 10697 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10698 int TySize = getContext().getTypeSize(Ty); 10699 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10700 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10701 return ABIArgInfo::getSignExtend(Ty); 10702 return ABIArgInfo::getExtend(Ty); 10703 } 10704 10705 namespace { 10706 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10707 public: 10708 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10709 unsigned FLen) 10710 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10711 10712 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10713 CodeGen::CodeGenModule &CGM) const override { 10714 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10715 if (!FD) return; 10716 10717 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10718 if (!Attr) 10719 return; 10720 10721 const char *Kind; 10722 switch (Attr->getInterrupt()) { 10723 case RISCVInterruptAttr::user: Kind = "user"; break; 10724 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10725 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10726 } 10727 10728 auto *Fn = cast<llvm::Function>(GV); 10729 10730 Fn->addFnAttr("interrupt", Kind); 10731 } 10732 }; 10733 } // namespace 10734 10735 //===----------------------------------------------------------------------===// 10736 // VE ABI Implementation. 10737 // 10738 namespace { 10739 class VEABIInfo : public DefaultABIInfo { 10740 public: 10741 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10742 10743 private: 10744 ABIArgInfo classifyReturnType(QualType RetTy) const; 10745 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10746 void computeInfo(CGFunctionInfo &FI) const override; 10747 }; 10748 } // end anonymous namespace 10749 10750 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10751 if (Ty->isAnyComplexType()) { 10752 return ABIArgInfo::getDirect(); 10753 } 10754 return DefaultABIInfo::classifyReturnType(Ty); 10755 } 10756 10757 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10758 if (Ty->isAnyComplexType()) { 10759 return ABIArgInfo::getDirect(); 10760 } 10761 return DefaultABIInfo::classifyArgumentType(Ty); 10762 } 10763 10764 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10765 10766 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10767 for (auto &Arg : FI.arguments()) 10768 Arg.info = classifyArgumentType(Arg.type); 10769 } 10770 10771 namespace { 10772 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10773 public: 10774 VETargetCodeGenInfo(CodeGenTypes &CGT) 10775 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10776 // VE ABI requires the arguments of variadic and prototype-less functions 10777 // are passed in both registers and memory. 10778 bool isNoProtoCallVariadic(const CallArgList &args, 10779 const FunctionNoProtoType *fnType) const override { 10780 return true; 10781 } 10782 }; 10783 } // end anonymous namespace 10784 10785 //===----------------------------------------------------------------------===// 10786 // Driver code 10787 //===----------------------------------------------------------------------===// 10788 10789 bool CodeGenModule::supportsCOMDAT() const { 10790 return getTriple().supportsCOMDAT(); 10791 } 10792 10793 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10794 if (TheTargetCodeGenInfo) 10795 return *TheTargetCodeGenInfo; 10796 10797 // Helper to set the unique_ptr while still keeping the return value. 10798 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10799 this->TheTargetCodeGenInfo.reset(P); 10800 return *P; 10801 }; 10802 10803 const llvm::Triple &Triple = getTarget().getTriple(); 10804 switch (Triple.getArch()) { 10805 default: 10806 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10807 10808 case llvm::Triple::le32: 10809 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10810 case llvm::Triple::mips: 10811 case llvm::Triple::mipsel: 10812 if (Triple.getOS() == llvm::Triple::NaCl) 10813 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10814 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10815 10816 case llvm::Triple::mips64: 10817 case llvm::Triple::mips64el: 10818 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10819 10820 case llvm::Triple::avr: 10821 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10822 10823 case llvm::Triple::aarch64: 10824 case llvm::Triple::aarch64_32: 10825 case llvm::Triple::aarch64_be: { 10826 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10827 if (getTarget().getABI() == "darwinpcs") 10828 Kind = AArch64ABIInfo::DarwinPCS; 10829 else if (Triple.isOSWindows()) 10830 return SetCGInfo( 10831 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10832 10833 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10834 } 10835 10836 case llvm::Triple::wasm32: 10837 case llvm::Triple::wasm64: { 10838 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10839 if (getTarget().getABI() == "experimental-mv") 10840 Kind = WebAssemblyABIInfo::ExperimentalMV; 10841 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10842 } 10843 10844 case llvm::Triple::arm: 10845 case llvm::Triple::armeb: 10846 case llvm::Triple::thumb: 10847 case llvm::Triple::thumbeb: { 10848 if (Triple.getOS() == llvm::Triple::Win32) { 10849 return SetCGInfo( 10850 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10851 } 10852 10853 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10854 StringRef ABIStr = getTarget().getABI(); 10855 if (ABIStr == "apcs-gnu") 10856 Kind = ARMABIInfo::APCS; 10857 else if (ABIStr == "aapcs16") 10858 Kind = ARMABIInfo::AAPCS16_VFP; 10859 else if (CodeGenOpts.FloatABI == "hard" || 10860 (CodeGenOpts.FloatABI != "soft" && 10861 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10862 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10863 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10864 Kind = ARMABIInfo::AAPCS_VFP; 10865 10866 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10867 } 10868 10869 case llvm::Triple::ppc: { 10870 if (Triple.isOSAIX()) 10871 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10872 10873 bool IsSoftFloat = 10874 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10875 bool RetSmallStructInRegABI = 10876 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10877 return SetCGInfo( 10878 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10879 } 10880 case llvm::Triple::ppc64: 10881 if (Triple.isOSAIX()) 10882 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10883 10884 if (Triple.isOSBinFormatELF()) { 10885 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10886 if (getTarget().getABI() == "elfv2") 10887 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10888 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10889 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10890 10891 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10892 IsSoftFloat)); 10893 } 10894 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10895 case llvm::Triple::ppc64le: { 10896 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10897 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10898 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10899 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10900 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10901 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10902 10903 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10904 IsSoftFloat)); 10905 } 10906 10907 case llvm::Triple::nvptx: 10908 case llvm::Triple::nvptx64: 10909 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10910 10911 case llvm::Triple::msp430: 10912 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10913 10914 case llvm::Triple::riscv32: 10915 case llvm::Triple::riscv64: { 10916 StringRef ABIStr = getTarget().getABI(); 10917 unsigned XLen = getTarget().getPointerWidth(0); 10918 unsigned ABIFLen = 0; 10919 if (ABIStr.endswith("f")) 10920 ABIFLen = 32; 10921 else if (ABIStr.endswith("d")) 10922 ABIFLen = 64; 10923 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10924 } 10925 10926 case llvm::Triple::systemz: { 10927 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10928 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10929 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10930 } 10931 10932 case llvm::Triple::tce: 10933 case llvm::Triple::tcele: 10934 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10935 10936 case llvm::Triple::x86: { 10937 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10938 bool RetSmallStructInRegABI = 10939 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10940 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10941 10942 if (Triple.getOS() == llvm::Triple::Win32) { 10943 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10944 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10945 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 10946 } else { 10947 return SetCGInfo(new X86_32TargetCodeGenInfo( 10948 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10949 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 10950 CodeGenOpts.FloatABI == "soft")); 10951 } 10952 } 10953 10954 case llvm::Triple::x86_64: { 10955 StringRef ABI = getTarget().getABI(); 10956 X86AVXABILevel AVXLevel = 10957 (ABI == "avx512" 10958 ? X86AVXABILevel::AVX512 10959 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 10960 10961 switch (Triple.getOS()) { 10962 case llvm::Triple::Win32: 10963 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 10964 default: 10965 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 10966 } 10967 } 10968 case llvm::Triple::hexagon: 10969 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 10970 case llvm::Triple::lanai: 10971 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 10972 case llvm::Triple::r600: 10973 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10974 case llvm::Triple::amdgcn: 10975 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10976 case llvm::Triple::sparc: 10977 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 10978 case llvm::Triple::sparcv9: 10979 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 10980 case llvm::Triple::xcore: 10981 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 10982 case llvm::Triple::arc: 10983 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 10984 case llvm::Triple::spir: 10985 case llvm::Triple::spir64: 10986 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 10987 case llvm::Triple::ve: 10988 return SetCGInfo(new VETargetCodeGenInfo(Types)); 10989 } 10990 } 10991 10992 /// Create an OpenCL kernel for an enqueued block. 10993 /// 10994 /// The kernel has the same function type as the block invoke function. Its 10995 /// name is the name of the block invoke function postfixed with "_kernel". 10996 /// It simply calls the block invoke function then returns. 10997 llvm::Function * 10998 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 10999 llvm::Function *Invoke, 11000 llvm::Value *BlockLiteral) const { 11001 auto *InvokeFT = Invoke->getFunctionType(); 11002 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11003 for (auto &P : InvokeFT->params()) 11004 ArgTys.push_back(P); 11005 auto &C = CGF.getLLVMContext(); 11006 std::string Name = Invoke->getName().str() + "_kernel"; 11007 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11008 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11009 &CGF.CGM.getModule()); 11010 auto IP = CGF.Builder.saveIP(); 11011 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11012 auto &Builder = CGF.Builder; 11013 Builder.SetInsertPoint(BB); 11014 llvm::SmallVector<llvm::Value *, 2> Args; 11015 for (auto &A : F->args()) 11016 Args.push_back(&A); 11017 Builder.CreateCall(Invoke, Args); 11018 Builder.CreateRetVoid(); 11019 Builder.restoreIP(IP); 11020 return F; 11021 } 11022 11023 /// Create an OpenCL kernel for an enqueued block. 11024 /// 11025 /// The type of the first argument (the block literal) is the struct type 11026 /// of the block literal instead of a pointer type. The first argument 11027 /// (block literal) is passed directly by value to the kernel. The kernel 11028 /// allocates the same type of struct on stack and stores the block literal 11029 /// to it and passes its pointer to the block invoke function. The kernel 11030 /// has "enqueued-block" function attribute and kernel argument metadata. 11031 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11032 CodeGenFunction &CGF, llvm::Function *Invoke, 11033 llvm::Value *BlockLiteral) const { 11034 auto &Builder = CGF.Builder; 11035 auto &C = CGF.getLLVMContext(); 11036 11037 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11038 auto *InvokeFT = Invoke->getFunctionType(); 11039 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11040 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11041 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11042 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11043 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11044 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11045 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11046 11047 ArgTys.push_back(BlockTy); 11048 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11049 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11050 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11051 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11052 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11053 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11054 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11055 ArgTys.push_back(InvokeFT->getParamType(I)); 11056 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11057 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11058 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11059 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11060 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11061 ArgNames.push_back( 11062 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11063 } 11064 std::string Name = Invoke->getName().str() + "_kernel"; 11065 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11066 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11067 &CGF.CGM.getModule()); 11068 F->addFnAttr("enqueued-block"); 11069 auto IP = CGF.Builder.saveIP(); 11070 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11071 Builder.SetInsertPoint(BB); 11072 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11073 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11074 BlockPtr->setAlignment(BlockAlign); 11075 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11076 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11077 llvm::SmallVector<llvm::Value *, 2> Args; 11078 Args.push_back(Cast); 11079 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11080 Args.push_back(I); 11081 Builder.CreateCall(Invoke, Args); 11082 Builder.CreateRetVoid(); 11083 Builder.restoreIP(IP); 11084 11085 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11086 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11087 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11088 F->setMetadata("kernel_arg_base_type", 11089 llvm::MDNode::get(C, ArgBaseTypeNames)); 11090 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11091 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11092 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11093 11094 return F; 11095 } 11096