xref: /openbsd-src/gnu/llvm/clang/docs/ControlFlowIntegrityDesign.rst (revision 12c855180aad702bbcca06e0398d774beeafb155)
1e5dd7070Spatrick===========================================
2e5dd7070SpatrickControl Flow Integrity Design Documentation
3e5dd7070Spatrick===========================================
4e5dd7070Spatrick
5e5dd7070SpatrickThis page documents the design of the :doc:`ControlFlowIntegrity` schemes
6e5dd7070Spatricksupported by Clang.
7e5dd7070Spatrick
8e5dd7070SpatrickForward-Edge CFI for Virtual Calls
9e5dd7070Spatrick==================================
10e5dd7070Spatrick
11e5dd7070SpatrickThis scheme works by allocating, for each static type used to make a virtual
12e5dd7070Spatrickcall, a region of read-only storage in the object file holding a bit vector
13e5dd7070Spatrickthat maps onto to the region of storage used for those virtual tables. Each
14e5dd7070Spatrickset bit in the bit vector corresponds to the `address point`_ for a virtual
15e5dd7070Spatricktable compatible with the static type for which the bit vector is being built.
16e5dd7070Spatrick
17e5dd7070SpatrickFor example, consider the following three C++ classes:
18e5dd7070Spatrick
19e5dd7070Spatrick.. code-block:: c++
20e5dd7070Spatrick
21e5dd7070Spatrick  struct A {
22e5dd7070Spatrick    virtual void f1();
23e5dd7070Spatrick    virtual void f2();
24e5dd7070Spatrick    virtual void f3();
25e5dd7070Spatrick  };
26e5dd7070Spatrick
27e5dd7070Spatrick  struct B : A {
28e5dd7070Spatrick    virtual void f1();
29e5dd7070Spatrick    virtual void f2();
30e5dd7070Spatrick    virtual void f3();
31e5dd7070Spatrick  };
32e5dd7070Spatrick
33e5dd7070Spatrick  struct C : A {
34e5dd7070Spatrick    virtual void f1();
35e5dd7070Spatrick    virtual void f2();
36e5dd7070Spatrick    virtual void f3();
37e5dd7070Spatrick  };
38e5dd7070Spatrick
39e5dd7070SpatrickThe scheme will cause the virtual tables for A, B and C to be laid out
40e5dd7070Spatrickconsecutively:
41e5dd7070Spatrick
42e5dd7070Spatrick.. csv-table:: Virtual Table Layout for A, B, C
43e5dd7070Spatrick  :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
44e5dd7070Spatrick
45e5dd7070Spatrick  A::offset-to-top, &A::rtti, &A::f1, &A::f2, &A::f3, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, C::offset-to-top, &C::rtti, &C::f1, &C::f2, &C::f3
46e5dd7070Spatrick
47e5dd7070SpatrickThe bit vector for static types A, B and C will look like this:
48e5dd7070Spatrick
49e5dd7070Spatrick.. csv-table:: Bit Vectors for A, B, C
50e5dd7070Spatrick  :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
51e5dd7070Spatrick
52e5dd7070Spatrick  A, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0
53e5dd7070Spatrick  B, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
54e5dd7070Spatrick  C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
55e5dd7070Spatrick
56e5dd7070SpatrickBit vectors are represented in the object file as byte arrays. By loading
57e5dd7070Spatrickfrom indexed offsets into the byte array and applying a mask, a program can
58e5dd7070Spatricktest bits from the bit set with a relatively short instruction sequence. Bit
59e5dd7070Spatrickvectors may overlap so long as they use different bits. For the full details,
60e5dd7070Spatricksee the `ByteArrayBuilder`_ class.
61e5dd7070Spatrick
62e5dd7070SpatrickIn this case, assuming A is laid out at offset 0 in bit 0, B at offset 0 in
63e5dd7070Spatrickbit 1 and C at offset 0 in bit 2, the byte array would look like this:
64e5dd7070Spatrick
65e5dd7070Spatrick.. code-block:: c++
66e5dd7070Spatrick
67e5dd7070Spatrick  char bits[] = { 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0 };
68e5dd7070Spatrick
69e5dd7070SpatrickTo emit a virtual call, the compiler will assemble code that checks that
70e5dd7070Spatrickthe object's virtual table pointer is in-bounds and aligned and that the
71e5dd7070Spatrickrelevant bit is set in the bit vector.
72e5dd7070Spatrick
73e5dd7070SpatrickFor example on x86 a typical virtual call may look like this:
74e5dd7070Spatrick
75e5dd7070Spatrick.. code-block:: none
76e5dd7070Spatrick
77e5dd7070Spatrick  ca7fbb:       48 8b 0f                mov    (%rdi),%rcx
78e5dd7070Spatrick  ca7fbe:       48 8d 15 c3 42 fb 07    lea    0x7fb42c3(%rip),%rdx
79e5dd7070Spatrick  ca7fc5:       48 89 c8                mov    %rcx,%rax
80e5dd7070Spatrick  ca7fc8:       48 29 d0                sub    %rdx,%rax
81e5dd7070Spatrick  ca7fcb:       48 c1 c0 3d             rol    $0x3d,%rax
82e5dd7070Spatrick  ca7fcf:       48 3d 7f 01 00 00       cmp    $0x17f,%rax
83e5dd7070Spatrick  ca7fd5:       0f 87 36 05 00 00       ja     ca8511
84e5dd7070Spatrick  ca7fdb:       48 8d 15 c0 0b f7 06    lea    0x6f70bc0(%rip),%rdx
85e5dd7070Spatrick  ca7fe2:       f6 04 10 10             testb  $0x10,(%rax,%rdx,1)
86e5dd7070Spatrick  ca7fe6:       0f 84 25 05 00 00       je     ca8511
87e5dd7070Spatrick  ca7fec:       ff 91 98 00 00 00       callq  *0x98(%rcx)
88e5dd7070Spatrick    [...]
89e5dd7070Spatrick  ca8511:       0f 0b                   ud2
90e5dd7070Spatrick
91e5dd7070SpatrickThe compiler relies on co-operation from the linker in order to assemble
92e5dd7070Spatrickthe bit vectors for the whole program. It currently does this using LLVM's
93e5dd7070Spatrick`type metadata`_ mechanism together with link-time optimization.
94e5dd7070Spatrick
95e5dd7070Spatrick.. _address point: https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general
96e5dd7070Spatrick.. _type metadata: https://llvm.org/docs/TypeMetadata.html
97e5dd7070Spatrick.. _ByteArrayBuilder: https://llvm.org/docs/doxygen/html/structllvm_1_1ByteArrayBuilder.html
98e5dd7070Spatrick
99e5dd7070SpatrickOptimizations
100e5dd7070Spatrick-------------
101e5dd7070Spatrick
102e5dd7070SpatrickThe scheme as described above is the fully general variant of the scheme.
103e5dd7070SpatrickMost of the time we are able to apply one or more of the following
104e5dd7070Spatrickoptimizations to improve binary size or performance.
105e5dd7070Spatrick
106e5dd7070SpatrickIn fact, if you try the above example with the current version of the
107e5dd7070Spatrickcompiler, you will probably find that it will not use the described virtual
108e5dd7070Spatricktable layout or machine instructions. Some of the optimizations we are about
109e5dd7070Spatrickto introduce cause the compiler to use a different layout or a different
110e5dd7070Spatricksequence of machine instructions.
111e5dd7070Spatrick
112e5dd7070SpatrickStripping Leading/Trailing Zeros in Bit Vectors
113e5dd7070Spatrick~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
114e5dd7070Spatrick
115e5dd7070SpatrickIf a bit vector contains leading or trailing zeros, we can strip them from
116e5dd7070Spatrickthe vector. The compiler will emit code to check if the pointer is in range
117e5dd7070Spatrickof the region covered by ones, and perform the bit vector check using a
118e5dd7070Spatricktruncated version of the bit vector. For example, the bit vectors for our
119e5dd7070Spatrickexample class hierarchy will be emitted like this:
120e5dd7070Spatrick
121e5dd7070Spatrick.. csv-table:: Bit Vectors for A, B, C
122e5dd7070Spatrick  :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
123e5dd7070Spatrick
124e5dd7070Spatrick  A,  ,  , 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,  ,
125e5dd7070Spatrick  B,  ,  ,  ,  ,  ,  ,  , 1,  ,  ,  ,  ,  ,  ,
126e5dd7070Spatrick  C,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 1,  ,
127e5dd7070Spatrick
128e5dd7070SpatrickShort Inline Bit Vectors
129e5dd7070Spatrick~~~~~~~~~~~~~~~~~~~~~~~~
130e5dd7070Spatrick
131e5dd7070SpatrickIf the vector is sufficiently short, we can represent it as an inline constant
132e5dd7070Spatrickon x86. This saves us a few instructions when reading the correct element
133e5dd7070Spatrickof the bit vector.
134e5dd7070Spatrick
135e5dd7070SpatrickIf the bit vector fits in 32 bits, the code looks like this:
136e5dd7070Spatrick
137e5dd7070Spatrick.. code-block:: none
138e5dd7070Spatrick
139e5dd7070Spatrick     dc2:       48 8b 03                mov    (%rbx),%rax
140e5dd7070Spatrick     dc5:       48 8d 15 14 1e 00 00    lea    0x1e14(%rip),%rdx
141e5dd7070Spatrick     dcc:       48 89 c1                mov    %rax,%rcx
142e5dd7070Spatrick     dcf:       48 29 d1                sub    %rdx,%rcx
143e5dd7070Spatrick     dd2:       48 c1 c1 3d             rol    $0x3d,%rcx
144e5dd7070Spatrick     dd6:       48 83 f9 03             cmp    $0x3,%rcx
145e5dd7070Spatrick     dda:       77 2f                   ja     e0b <main+0x9b>
146e5dd7070Spatrick     ddc:       ba 09 00 00 00          mov    $0x9,%edx
147e5dd7070Spatrick     de1:       0f a3 ca                bt     %ecx,%edx
148e5dd7070Spatrick     de4:       73 25                   jae    e0b <main+0x9b>
149e5dd7070Spatrick     de6:       48 89 df                mov    %rbx,%rdi
150e5dd7070Spatrick     de9:       ff 10                   callq  *(%rax)
151e5dd7070Spatrick    [...]
152e5dd7070Spatrick     e0b:       0f 0b                   ud2
153e5dd7070Spatrick
154e5dd7070SpatrickOr if the bit vector fits in 64 bits:
155e5dd7070Spatrick
156e5dd7070Spatrick.. code-block:: none
157e5dd7070Spatrick
158e5dd7070Spatrick    11a6:       48 8b 03                mov    (%rbx),%rax
159e5dd7070Spatrick    11a9:       48 8d 15 d0 28 00 00    lea    0x28d0(%rip),%rdx
160e5dd7070Spatrick    11b0:       48 89 c1                mov    %rax,%rcx
161e5dd7070Spatrick    11b3:       48 29 d1                sub    %rdx,%rcx
162e5dd7070Spatrick    11b6:       48 c1 c1 3d             rol    $0x3d,%rcx
163e5dd7070Spatrick    11ba:       48 83 f9 2a             cmp    $0x2a,%rcx
164e5dd7070Spatrick    11be:       77 35                   ja     11f5 <main+0xb5>
165e5dd7070Spatrick    11c0:       48 ba 09 00 00 00 00    movabs $0x40000000009,%rdx
166e5dd7070Spatrick    11c7:       04 00 00
167e5dd7070Spatrick    11ca:       48 0f a3 ca             bt     %rcx,%rdx
168e5dd7070Spatrick    11ce:       73 25                   jae    11f5 <main+0xb5>
169e5dd7070Spatrick    11d0:       48 89 df                mov    %rbx,%rdi
170e5dd7070Spatrick    11d3:       ff 10                   callq  *(%rax)
171e5dd7070Spatrick    [...]
172e5dd7070Spatrick    11f5:       0f 0b                   ud2
173e5dd7070Spatrick
174e5dd7070SpatrickIf the bit vector consists of a single bit, there is only one possible
175e5dd7070Spatrickvirtual table, and the check can consist of a single equality comparison:
176e5dd7070Spatrick
177e5dd7070Spatrick.. code-block:: none
178e5dd7070Spatrick
179e5dd7070Spatrick     9a2:   48 8b 03                mov    (%rbx),%rax
180e5dd7070Spatrick     9a5:   48 8d 0d a4 13 00 00    lea    0x13a4(%rip),%rcx
181e5dd7070Spatrick     9ac:   48 39 c8                cmp    %rcx,%rax
182e5dd7070Spatrick     9af:   75 25                   jne    9d6 <main+0x86>
183e5dd7070Spatrick     9b1:   48 89 df                mov    %rbx,%rdi
184e5dd7070Spatrick     9b4:   ff 10                   callq  *(%rax)
185e5dd7070Spatrick     [...]
186e5dd7070Spatrick     9d6:   0f 0b                   ud2
187e5dd7070Spatrick
188e5dd7070SpatrickVirtual Table Layout
189e5dd7070Spatrick~~~~~~~~~~~~~~~~~~~~
190e5dd7070Spatrick
191e5dd7070SpatrickThe compiler lays out classes of disjoint hierarchies in separate regions
192e5dd7070Spatrickof the object file. At worst, bit vectors in disjoint hierarchies only
193e5dd7070Spatrickneed to cover their disjoint hierarchy. But the closer that classes in
194e5dd7070Spatricksub-hierarchies are laid out to each other, the smaller the bit vectors for
195e5dd7070Spatrickthose sub-hierarchies need to be (see "Stripping Leading/Trailing Zeros in Bit
196e5dd7070SpatrickVectors" above). The `GlobalLayoutBuilder`_ class is responsible for laying
197e5dd7070Spatrickout the globals efficiently to minimize the sizes of the underlying bitsets.
198e5dd7070Spatrick
199*a9ac8606Spatrick.. _GlobalLayoutBuilder: https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Transforms/IPO/LowerTypeTests.h
200e5dd7070Spatrick
201e5dd7070SpatrickAlignment
202e5dd7070Spatrick~~~~~~~~~
203e5dd7070Spatrick
204e5dd7070SpatrickIf all gaps between address points in a particular bit vector are multiples
205e5dd7070Spatrickof powers of 2, the compiler can compress the bit vector by strengthening
206e5dd7070Spatrickthe alignment requirements of the virtual table pointer. For example, given
207e5dd7070Spatrickthis class hierarchy:
208e5dd7070Spatrick
209e5dd7070Spatrick.. code-block:: c++
210e5dd7070Spatrick
211e5dd7070Spatrick  struct A {
212e5dd7070Spatrick    virtual void f1();
213e5dd7070Spatrick    virtual void f2();
214e5dd7070Spatrick  };
215e5dd7070Spatrick
216e5dd7070Spatrick  struct B : A {
217e5dd7070Spatrick    virtual void f1();
218e5dd7070Spatrick    virtual void f2();
219e5dd7070Spatrick    virtual void f3();
220e5dd7070Spatrick    virtual void f4();
221e5dd7070Spatrick    virtual void f5();
222e5dd7070Spatrick    virtual void f6();
223e5dd7070Spatrick  };
224e5dd7070Spatrick
225e5dd7070Spatrick  struct C : A {
226e5dd7070Spatrick    virtual void f1();
227e5dd7070Spatrick    virtual void f2();
228e5dd7070Spatrick  };
229e5dd7070Spatrick
230e5dd7070SpatrickThe virtual tables will be laid out like this:
231e5dd7070Spatrick
232e5dd7070Spatrick.. csv-table:: Virtual Table Layout for A, B, C
233e5dd7070Spatrick  :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
234e5dd7070Spatrick
235e5dd7070Spatrick  A::offset-to-top, &A::rtti, &A::f1, &A::f2, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, &B::f4, &B::f5, &B::f6, C::offset-to-top, &C::rtti, &C::f1, &C::f2
236e5dd7070Spatrick
237e5dd7070SpatrickNotice that each address point for A is separated by 4 words. This lets us
238e5dd7070Spatrickemit a compressed bit vector for A that looks like this:
239e5dd7070Spatrick
240e5dd7070Spatrick.. csv-table::
241e5dd7070Spatrick  :header: 2, 6, 10, 14
242e5dd7070Spatrick
243e5dd7070Spatrick  1, 1, 0, 1
244e5dd7070Spatrick
245e5dd7070SpatrickAt call sites, the compiler will strengthen the alignment requirements by
246e5dd7070Spatrickusing a different rotate count. For example, on a 64-bit machine where the
247e5dd7070Spatrickaddress points are 4-word aligned (as in A from our example), the ``rol``
248e5dd7070Spatrickinstruction may look like this:
249e5dd7070Spatrick
250e5dd7070Spatrick.. code-block:: none
251e5dd7070Spatrick
252e5dd7070Spatrick     dd2:       48 c1 c1 3b             rol    $0x3b,%rcx
253e5dd7070Spatrick
254e5dd7070SpatrickPadding to Powers of 2
255e5dd7070Spatrick~~~~~~~~~~~~~~~~~~~~~~
256e5dd7070Spatrick
257e5dd7070SpatrickOf course, this alignment scheme works best if the address points are
258e5dd7070Spatrickin fact aligned correctly. To make this more likely to happen, we insert
259e5dd7070Spatrickpadding between virtual tables that in many cases aligns address points to
260e5dd7070Spatricka power of 2. Specifically, our padding aligns virtual tables to the next
261e5dd7070Spatrickhighest power of 2 bytes; because address points for specific base classes
262e5dd7070Spatricknormally appear at fixed offsets within the virtual table, this normally
263e5dd7070Spatrickhas the effect of aligning the address points as well.
264e5dd7070Spatrick
265e5dd7070SpatrickThis scheme introduces tradeoffs between decreased space overhead for
266e5dd7070Spatrickinstructions and bit vectors and increased overhead in the form of padding. We
267e5dd7070Spatricktherefore limit the amount of padding so that we align to no more than 128
268e5dd7070Spatrickbytes. This number was found experimentally to provide a good tradeoff.
269e5dd7070Spatrick
270e5dd7070SpatrickEliminating Bit Vector Checks for All-Ones Bit Vectors
271e5dd7070Spatrick~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
272e5dd7070Spatrick
273e5dd7070SpatrickIf the bit vector is all ones, the bit vector check is redundant; we simply
274e5dd7070Spatrickneed to check that the address is in range and well aligned. This is more
275e5dd7070Spatricklikely to occur if the virtual tables are padded.
276e5dd7070Spatrick
277e5dd7070SpatrickForward-Edge CFI for Virtual Calls by Interleaving Virtual Tables
278e5dd7070Spatrick-----------------------------------------------------------------
279e5dd7070Spatrick
280e5dd7070SpatrickDimitar et. al. proposed a novel approach that interleaves virtual tables in [1]_.
281e5dd7070SpatrickThis approach is more efficient in terms of space because padding and bit vectors are no longer needed.
282e5dd7070SpatrickAt the same time, it is also more efficient in terms of performance because in the interleaved layout
283e5dd7070Spatrickaddress points of the virtual tables are consecutive, thus the validity check of a virtual
284e5dd7070Spatrickvtable pointer is always a range check.
285e5dd7070Spatrick
286e5dd7070SpatrickAt a high level, the interleaving scheme consists of three steps: 1) split virtual table groups into
287e5dd7070Spatrickseparate virtual tables, 2) order virtual tables by a pre-order traversal of the class hierarchy
288e5dd7070Spatrickand 3) interleave virtual tables.
289e5dd7070Spatrick
290e5dd7070SpatrickThe interleaving scheme implemented in LLVM is inspired by [1]_ but has its own
291e5dd7070Spatrickenhancements (more in `Interleave virtual tables`_).
292e5dd7070Spatrick
293e5dd7070Spatrick.. [1] `Protecting C++ Dynamic Dispatch Through VTable Interleaving <https://cseweb.ucsd.edu/~lerner/papers/ivtbl-ndss16.pdf>`_. Dimitar Bounov, Rami Gökhan Kıcı, Sorin Lerner.
294e5dd7070Spatrick
295e5dd7070SpatrickSplit virtual table groups into separate virtual tables
296e5dd7070Spatrick~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
297e5dd7070Spatrick
298e5dd7070SpatrickThe Itanium C++ ABI glues multiple individual virtual tables for a class into a combined virtual table (virtual table group).
299e5dd7070SpatrickThe interleaving scheme, however, can only work with individual virtual tables so it must split the combined virtual tables first.
300e5dd7070SpatrickIn comparison, the old scheme does not require the splitting but it is more efficient when the combined virtual tables have been split.
301e5dd7070SpatrickThe `GlobalSplit`_ pass is responsible for splitting combined virtual tables into individual ones.
302e5dd7070Spatrick
303*a9ac8606Spatrick.. _GlobalSplit: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/IPO/GlobalSplit.cpp
304e5dd7070Spatrick
305e5dd7070SpatrickOrder virtual tables by a pre-order traversal of the class hierarchy
306e5dd7070Spatrick~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
307e5dd7070Spatrick
308e5dd7070SpatrickThis step is common to both the old scheme described above and the interleaving scheme.
309e5dd7070SpatrickFor the interleaving scheme, since the combined virtual tables have been split in the previous step,
310e5dd7070Spatrickthis step ensures that for any class all the compatible virtual tables will appear consecutively.
311e5dd7070SpatrickFor the old scheme, the same property may not hold since it may work on combined virtual tables.
312e5dd7070Spatrick
313e5dd7070SpatrickFor example, consider the following four C++ classes:
314e5dd7070Spatrick
315e5dd7070Spatrick.. code-block:: c++
316e5dd7070Spatrick
317e5dd7070Spatrick  struct A {
318e5dd7070Spatrick    virtual void f1();
319e5dd7070Spatrick  };
320e5dd7070Spatrick
321e5dd7070Spatrick  struct B : A {
322e5dd7070Spatrick    virtual void f1();
323e5dd7070Spatrick    virtual void f2();
324e5dd7070Spatrick  };
325e5dd7070Spatrick
326e5dd7070Spatrick  struct C : A {
327e5dd7070Spatrick    virtual void f1();
328e5dd7070Spatrick    virtual void f3();
329e5dd7070Spatrick  };
330e5dd7070Spatrick
331e5dd7070Spatrick  struct D : B {
332e5dd7070Spatrick    virtual void f1();
333e5dd7070Spatrick    virtual void f2();
334e5dd7070Spatrick  };
335e5dd7070Spatrick
336e5dd7070SpatrickThis step will arrange the virtual tables for A, B, C, and D in the order of *vtable-of-A, vtable-of-B, vtable-of-D, vtable-of-C*.
337e5dd7070Spatrick
338e5dd7070SpatrickInterleave virtual tables
339e5dd7070Spatrick~~~~~~~~~~~~~~~~~~~~~~~~~
340e5dd7070Spatrick
341e5dd7070SpatrickThis step is where the interleaving scheme deviates from the old scheme. Instead of laying out
342e5dd7070Spatrickwhole virtual tables in the previously computed order, the interleaving scheme lays out table
343e5dd7070Spatrickentries of the virtual tables strategically to ensure the following properties:
344e5dd7070Spatrick
345e5dd7070Spatrick(1) offset-to-top and RTTI fields layout property
346e5dd7070Spatrick
347e5dd7070SpatrickThe Itanium C++ ABI specifies that offset-to-top and RTTI fields appear at the offsets behind the
348e5dd7070Spatrickaddress point. Note that libraries like libcxxabi do assume this property.
349e5dd7070Spatrick
350e5dd7070Spatrick(2) virtual function entry layout property
351e5dd7070Spatrick
352e5dd7070SpatrickFor each virtual function the distance between an virtual table entry for this function and the corresponding
353e5dd7070Spatrickaddress point is always the same. This property ensures that dynamic dispatch still works with the interleaving layout.
354e5dd7070Spatrick
355e5dd7070SpatrickNote that the interleaving scheme in the CFI implementation guarantees both properties above whereas the original scheme proposed
356e5dd7070Spatrickin [1]_ only guarantees the second property.
357e5dd7070Spatrick
358e5dd7070SpatrickTo illustrate how the interleaving algorithm works, let us continue with the running example.
359e5dd7070SpatrickThe algorithm first separates all the virtual table entries into two work lists. To do so,
360e5dd7070Spatrickit starts by allocating two work lists, one initialized with all the offset-to-top entries of virtual tables in the order
361e5dd7070Spatrickcomputed in the last step, one initialized with all the RTTI entries in the same order.
362e5dd7070Spatrick
363e5dd7070Spatrick.. csv-table:: Work list 1 Layout
364e5dd7070Spatrick  :header: 0, 1, 2, 3
365e5dd7070Spatrick
366e5dd7070Spatrick  A::offset-to-top, B::offset-to-top, D::offset-to-top, C::offset-to-top
367e5dd7070Spatrick
368e5dd7070Spatrick
369e5dd7070Spatrick.. csv-table:: Work list 2 layout
370e5dd7070Spatrick  :header: 0, 1, 2, 3,
371e5dd7070Spatrick
372e5dd7070Spatrick  &A::rtti, &B::rtti, &D::rtti, &C::rtti
373e5dd7070Spatrick
374e5dd7070SpatrickThen for each virtual function the algorithm goes through all the virtual tables in the previously computed order
375e5dd7070Spatrickto collect all the related entries into a virtual function list.
376e5dd7070SpatrickAfter this step, there are the following virtual function lists:
377e5dd7070Spatrick
378e5dd7070Spatrick.. csv-table:: f1 list
379e5dd7070Spatrick  :header: 0, 1, 2, 3
380e5dd7070Spatrick
381e5dd7070Spatrick  &A::f1, &B::f1, &D::f1, &C::f1
382e5dd7070Spatrick
383e5dd7070Spatrick
384e5dd7070Spatrick.. csv-table:: f2 list
385e5dd7070Spatrick  :header: 0, 1
386e5dd7070Spatrick
387e5dd7070Spatrick  &B::f2, &D::f2
388e5dd7070Spatrick
389e5dd7070Spatrick
390e5dd7070Spatrick.. csv-table:: f3 list
391e5dd7070Spatrick  :header: 0
392e5dd7070Spatrick
393e5dd7070Spatrick  &C::f3
394e5dd7070Spatrick
395e5dd7070SpatrickNext, the algorithm picks the longest remaining virtual function list and appends the whole list to the shortest work list
396e5dd7070Spatrickuntil no function lists are left, and pads the shorter work list so that they are of the same length.
397e5dd7070SpatrickIn the example, f1 list will be first added to work list 1, then f2 list will be added
398e5dd7070Spatrickto work list 2, and finally f3 list will be added to the work list 2. Since work list 1 now has one more entry than
399e5dd7070Spatrickwork list 2, a padding entry is added to the latter. After this step, the two work lists look like:
400e5dd7070Spatrick
401e5dd7070Spatrick.. csv-table:: Work list 1 Layout
402e5dd7070Spatrick  :header: 0, 1, 2, 3, 4, 5, 6, 7
403e5dd7070Spatrick
404e5dd7070Spatrick  A::offset-to-top, B::offset-to-top, D::offset-to-top, C::offset-to-top, &A::f1, &B::f1, &D::f1, &C::f1
405e5dd7070Spatrick
406e5dd7070Spatrick
407e5dd7070Spatrick.. csv-table:: Work list 2 layout
408e5dd7070Spatrick  :header: 0, 1, 2, 3, 4, 5, 6, 7
409e5dd7070Spatrick
410e5dd7070Spatrick  &A::rtti, &B::rtti, &D::rtti, &C::rtti, &B::f2, &D::f2, &C::f3, padding
411e5dd7070Spatrick
412e5dd7070SpatrickFinally, the algorithm merges the two work lists into the interleaved layout by alternatingly
413e5dd7070Spatrickmoving the head of each list to the final layout. After this step, the final interleaved layout looks like:
414e5dd7070Spatrick
415e5dd7070Spatrick.. csv-table:: Interleaved layout
416e5dd7070Spatrick  :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
417e5dd7070Spatrick
418e5dd7070Spatrick  A::offset-to-top, &A::rtti, B::offset-to-top, &B::rtti, D::offset-to-top, &D::rtti, C::offset-to-top, &C::rtti, &A::f1, &B::f2, &B::f1, &D::f2, &D::f1, &C::f3, &C::f1, padding
419e5dd7070Spatrick
420e5dd7070SpatrickIn the above interleaved layout, each virtual table's offset-to-top and RTTI are always adjacent, which shows that the layout has the first property.
421e5dd7070SpatrickFor the second property, let us look at f2 as an example. In the interleaved layout,
422e5dd7070Spatrickthere are two entries for f2: B::f2 and D::f2. The distance between &B::f2
423e5dd7070Spatrickand its address point D::offset-to-top (the entry immediately after &B::rtti) is 5 entry-length, so is the distance between &D::f2 and C::offset-to-top (the entry immediately after &D::rtti).
424e5dd7070Spatrick
425e5dd7070SpatrickForward-Edge CFI for Indirect Function Calls
426e5dd7070Spatrick============================================
427e5dd7070Spatrick
428e5dd7070SpatrickUnder forward-edge CFI for indirect function calls, each unique function
429e5dd7070Spatricktype has its own bit vector, and at each call site we need to check that the
430e5dd7070Spatrickfunction pointer is a member of the function type's bit vector. This scheme
431e5dd7070Spatrickworks in a similar way to forward-edge CFI for virtual calls, the distinction
432e5dd7070Spatrickbeing that we need to build bit vectors of function entry points rather than
433e5dd7070Spatrickof virtual tables.
434e5dd7070Spatrick
435e5dd7070SpatrickUnlike when re-arranging global variables, we cannot re-arrange functions
436e5dd7070Spatrickin a particular order and base our calculations on the layout of the
437e5dd7070Spatrickfunctions' entry points, as we have no idea how large a particular function
438e5dd7070Spatrickwill end up being (the function sizes could even depend on how we arrange
439e5dd7070Spatrickthe functions). Instead, we build a jump table, which is a block of code
440e5dd7070Spatrickconsisting of one branch instruction for each of the functions in the bit
441e5dd7070Spatrickset that branches to the target function, and redirect any taken function
442e5dd7070Spatrickaddresses to the corresponding jump table entry. In this way, the distance
443e5dd7070Spatrickbetween function entry points is predictable and controllable. In the object
444e5dd7070Spatrickfile's symbol table, the symbols for the target functions also refer to the
445e5dd7070Spatrickjump table entries, so that addresses taken outside the module will pass
446e5dd7070Spatrickany verification done inside the module.
447e5dd7070Spatrick
448e5dd7070SpatrickIn more concrete terms, suppose we have three functions ``f``, ``g``,
449e5dd7070Spatrick``h`` which are all of the same type, and a function foo that returns their
450e5dd7070Spatrickaddresses:
451e5dd7070Spatrick
452e5dd7070Spatrick.. code-block:: none
453e5dd7070Spatrick
454e5dd7070Spatrick  f:
455e5dd7070Spatrick  mov 0, %eax
456e5dd7070Spatrick  ret
457e5dd7070Spatrick
458e5dd7070Spatrick  g:
459e5dd7070Spatrick  mov 1, %eax
460e5dd7070Spatrick  ret
461e5dd7070Spatrick
462e5dd7070Spatrick  h:
463e5dd7070Spatrick  mov 2, %eax
464e5dd7070Spatrick  ret
465e5dd7070Spatrick
466e5dd7070Spatrick  foo:
467e5dd7070Spatrick  mov f, %eax
468e5dd7070Spatrick  mov g, %edx
469e5dd7070Spatrick  mov h, %ecx
470e5dd7070Spatrick  ret
471e5dd7070Spatrick
472e5dd7070SpatrickOur jump table will (conceptually) look like this:
473e5dd7070Spatrick
474e5dd7070Spatrick.. code-block:: none
475e5dd7070Spatrick
476e5dd7070Spatrick  f:
477e5dd7070Spatrick  jmp .Ltmp0 ; 5 bytes
478e5dd7070Spatrick  int3       ; 1 byte
479e5dd7070Spatrick  int3       ; 1 byte
480e5dd7070Spatrick  int3       ; 1 byte
481e5dd7070Spatrick
482e5dd7070Spatrick  g:
483e5dd7070Spatrick  jmp .Ltmp1 ; 5 bytes
484e5dd7070Spatrick  int3       ; 1 byte
485e5dd7070Spatrick  int3       ; 1 byte
486e5dd7070Spatrick  int3       ; 1 byte
487e5dd7070Spatrick
488e5dd7070Spatrick  h:
489e5dd7070Spatrick  jmp .Ltmp2 ; 5 bytes
490e5dd7070Spatrick  int3       ; 1 byte
491e5dd7070Spatrick  int3       ; 1 byte
492e5dd7070Spatrick  int3       ; 1 byte
493e5dd7070Spatrick
494e5dd7070Spatrick  .Ltmp0:
495e5dd7070Spatrick  mov 0, %eax
496e5dd7070Spatrick  ret
497e5dd7070Spatrick
498e5dd7070Spatrick  .Ltmp1:
499e5dd7070Spatrick  mov 1, %eax
500e5dd7070Spatrick  ret
501e5dd7070Spatrick
502e5dd7070Spatrick  .Ltmp2:
503e5dd7070Spatrick  mov 2, %eax
504e5dd7070Spatrick  ret
505e5dd7070Spatrick
506e5dd7070Spatrick  foo:
507e5dd7070Spatrick  mov f, %eax
508e5dd7070Spatrick  mov g, %edx
509e5dd7070Spatrick  mov h, %ecx
510e5dd7070Spatrick  ret
511e5dd7070Spatrick
512e5dd7070SpatrickBecause the addresses of ``f``, ``g``, ``h`` are evenly spaced at a power of
513e5dd7070Spatrick2, and function types do not overlap (unlike class types with base classes),
514e5dd7070Spatrickwe can normally apply the `Alignment`_ and `Eliminating Bit Vector Checks
515e5dd7070Spatrickfor All-Ones Bit Vectors`_ optimizations thus simplifying the check at each
516e5dd7070Spatrickcall site to a range and alignment check.
517e5dd7070Spatrick
518e5dd7070SpatrickShared library support
519e5dd7070Spatrick======================
520e5dd7070Spatrick
521e5dd7070Spatrick**EXPERIMENTAL**
522e5dd7070Spatrick
523e5dd7070SpatrickThe basic CFI mode described above assumes that the application is a
524e5dd7070Spatrickmonolithic binary; at least that all possible virtual/indirect call
525e5dd7070Spatricktargets and the entire class hierarchy are known at link time. The
526e5dd7070Spatrickcross-DSO mode, enabled with **-f[no-]sanitize-cfi-cross-dso** relaxes
527e5dd7070Spatrickthis requirement by allowing virtual and indirect calls to cross the
528e5dd7070SpatrickDSO boundary.
529e5dd7070Spatrick
530e5dd7070SpatrickAssuming the following setup: the binary consists of several
531e5dd7070Spatrickinstrumented and several uninstrumented DSOs. Some of them may be
532e5dd7070Spatrickdlopen-ed/dlclose-d periodically, even frequently.
533e5dd7070Spatrick
534e5dd7070Spatrick  - Calls made from uninstrumented DSOs are not checked and just work.
535e5dd7070Spatrick  - Calls inside any instrumented DSO are fully protected.
536e5dd7070Spatrick  - Calls between different instrumented DSOs are also protected, with
537e5dd7070Spatrick     a performance penalty (in addition to the monolithic CFI
538e5dd7070Spatrick     overhead).
539e5dd7070Spatrick  - Calls from an instrumented DSO to an uninstrumented one are
540e5dd7070Spatrick     unchecked and just work, with performance penalty.
541e5dd7070Spatrick  - Calls from an instrumented DSO outside of any known DSO are
542e5dd7070Spatrick     detected as CFI violations.
543e5dd7070Spatrick
544e5dd7070SpatrickIn the monolithic scheme a call site is instrumented as
545e5dd7070Spatrick
546e5dd7070Spatrick.. code-block:: none
547e5dd7070Spatrick
548e5dd7070Spatrick   if (!InlinedFastCheck(f))
549e5dd7070Spatrick     abort();
550e5dd7070Spatrick   call *f
551e5dd7070Spatrick
552e5dd7070SpatrickIn the cross-DSO scheme it becomes
553e5dd7070Spatrick
554e5dd7070Spatrick.. code-block:: none
555e5dd7070Spatrick
556e5dd7070Spatrick   if (!InlinedFastCheck(f))
557e5dd7070Spatrick     __cfi_slowpath(CallSiteTypeId, f);
558e5dd7070Spatrick   call *f
559e5dd7070Spatrick
560e5dd7070SpatrickCallSiteTypeId
561e5dd7070Spatrick--------------
562e5dd7070Spatrick
563e5dd7070Spatrick``CallSiteTypeId`` is a stable process-wide identifier of the
564e5dd7070Spatrickcall-site type. For a virtual call site, the type in question is the class
565e5dd7070Spatricktype; for an indirect function call it is the function signature. The
566e5dd7070Spatrickmapping from a type to an identifier is an ABI detail. In the current,
567e5dd7070Spatrickexperimental, implementation the identifier of type T is calculated as
568e5dd7070Spatrickfollows:
569e5dd7070Spatrick
570e5dd7070Spatrick  -  Obtain the mangled name for "typeinfo name for T".
571e5dd7070Spatrick  -  Calculate MD5 hash of the name as a string.
572e5dd7070Spatrick  -  Reinterpret the first 8 bytes of the hash as a little-endian
573e5dd7070Spatrick     64-bit integer.
574e5dd7070Spatrick
575e5dd7070SpatrickIt is possible, but unlikely, that collisions in the
576e5dd7070Spatrick``CallSiteTypeId`` hashing will result in weaker CFI checks that would
577e5dd7070Spatrickstill be conservatively correct.
578e5dd7070Spatrick
579e5dd7070SpatrickCFI_Check
580e5dd7070Spatrick---------
581e5dd7070Spatrick
582e5dd7070SpatrickIn the general case, only the target DSO knows whether the call to
583e5dd7070Spatrickfunction ``f`` with type ``CallSiteTypeId`` is valid or not.  To
584e5dd7070Spatrickexport this information, every DSO implements
585e5dd7070Spatrick
586e5dd7070Spatrick.. code-block:: none
587e5dd7070Spatrick
588e5dd7070Spatrick   void __cfi_check(uint64 CallSiteTypeId, void *TargetAddr, void *DiagData)
589e5dd7070Spatrick
590e5dd7070SpatrickThis function provides external modules with access to CFI checks for
591e5dd7070Spatrickthe targets inside this DSO.  For each known ``CallSiteTypeId``, this
592e5dd7070Spatrickfunction performs an ``llvm.type.test`` with the corresponding type
593e5dd7070Spatrickidentifier. It reports an error if the type is unknown, or if the
594e5dd7070Spatrickcheck fails. Depending on the values of compiler flags
595e5dd7070Spatrick``-fsanitize-trap`` and ``-fsanitize-recover``, this function may
596e5dd7070Spatrickprint an error, abort and/or return to the caller. ``DiagData`` is an
597e5dd7070Spatrickopaque pointer to the diagnostic information about the error, or
598e5dd7070Spatrick``null`` if the caller does not provide this information.
599e5dd7070Spatrick
600e5dd7070SpatrickThe basic implementation is a large switch statement over all values
601e5dd7070Spatrickof CallSiteTypeId supported by this DSO, and each case is similar to
602e5dd7070Spatrickthe InlinedFastCheck() in the basic CFI mode.
603e5dd7070Spatrick
604e5dd7070SpatrickCFI Shadow
605e5dd7070Spatrick----------
606e5dd7070Spatrick
607e5dd7070SpatrickTo route CFI checks to the target DSO's __cfi_check function, a
608e5dd7070Spatrickmapping from possible virtual / indirect call targets to the
609e5dd7070Spatrickcorresponding __cfi_check functions is maintained. This mapping is
610e5dd7070Spatrickimplemented as a sparse array of 2 bytes for every possible page (4096
611e5dd7070Spatrickbytes) of memory. The table is kept readonly most of the time.
612e5dd7070Spatrick
613e5dd7070SpatrickThere are 3 types of shadow values:
614e5dd7070Spatrick
615e5dd7070Spatrick  -  Address in a CFI-instrumented DSO.
616e5dd7070Spatrick  -  Unchecked address (a “trusted” non-instrumented DSO). Encoded as
617e5dd7070Spatrick     value 0xFFFF.
618e5dd7070Spatrick  -  Invalid address (everything else). Encoded as value 0.
619e5dd7070Spatrick
620e5dd7070SpatrickFor a CFI-instrumented DSO, a shadow value encodes the address of the
621e5dd7070Spatrick__cfi_check function for all call targets in the corresponding memory
622e5dd7070Spatrickpage. If Addr is the target address, and V is the shadow value, then
623e5dd7070Spatrickthe address of __cfi_check is calculated as
624e5dd7070Spatrick
625e5dd7070Spatrick.. code-block:: none
626e5dd7070Spatrick
627e5dd7070Spatrick  __cfi_check = AlignUpTo(Addr, 4096) - (V + 1) * 4096
628e5dd7070Spatrick
629e5dd7070SpatrickThis works as long as __cfi_check is aligned by 4096 bytes and located
630e5dd7070Spatrickbelow any call targets in its DSO, but not more than 256MB apart from
631e5dd7070Spatrickthem.
632e5dd7070Spatrick
633e5dd7070SpatrickCFI_SlowPath
634e5dd7070Spatrick------------
635e5dd7070Spatrick
636e5dd7070SpatrickThe slow path check is implemented in a runtime support library as
637e5dd7070Spatrick
638e5dd7070Spatrick.. code-block:: none
639e5dd7070Spatrick
640e5dd7070Spatrick  void __cfi_slowpath(uint64 CallSiteTypeId, void *TargetAddr)
641e5dd7070Spatrick  void __cfi_slowpath_diag(uint64 CallSiteTypeId, void *TargetAddr, void *DiagData)
642e5dd7070Spatrick
643e5dd7070SpatrickThese functions loads a shadow value for ``TargetAddr``, finds the
644e5dd7070Spatrickaddress of ``__cfi_check`` as described above and calls
645e5dd7070Spatrickthat. ``DiagData`` is an opaque pointer to diagnostic data which is
646e5dd7070Spatrickpassed verbatim to ``__cfi_check``, and ``__cfi_slowpath`` passes
647e5dd7070Spatrick``nullptr`` instead.
648e5dd7070Spatrick
649e5dd7070SpatrickCompiler-RT library contains reference implementations of slowpath
650e5dd7070Spatrickfunctions, but they have unresolvable issues with correctness and
651e5dd7070Spatrickperformance in the handling of dlopen(). It is recommended that
652e5dd7070Spatrickplatforms provide their own implementations, usually as part of libc
653e5dd7070Spatrickor libdl.
654e5dd7070Spatrick
655e5dd7070SpatrickPosition-independent executable requirement
656e5dd7070Spatrick-------------------------------------------
657e5dd7070Spatrick
658e5dd7070SpatrickCross-DSO CFI mode requires that the main executable is built as PIE.
659e5dd7070SpatrickIn non-PIE executables the address of an external function (taken from
660e5dd7070Spatrickthe main executable) is the address of that function’s PLT record in
661e5dd7070Spatrickthe main executable. This would break the CFI checks.
662e5dd7070Spatrick
663e5dd7070SpatrickBackward-edge CFI for return statements (RCFI)
664e5dd7070Spatrick==============================================
665e5dd7070Spatrick
666e5dd7070SpatrickThis section is a proposal. As of March 2017 it is not implemented.
667e5dd7070Spatrick
668e5dd7070SpatrickBackward-edge control flow (`RET` instructions) can be hijacked
669e5dd7070Spatrickvia overwriting the return address (`RA`) on stack.
670e5dd7070SpatrickVarious mitigation techniques (e.g. `SafeStack`_, `RFG`_, `Intel CET`_)
671e5dd7070Spatricktry to detect or prevent `RA` corruption on stack.
672e5dd7070Spatrick
673e5dd7070SpatrickRCFI enforces the expected control flow in several different ways described below.
674e5dd7070SpatrickRCFI heavily relies on LTO.
675e5dd7070Spatrick
676e5dd7070SpatrickLeaf Functions
677e5dd7070Spatrick--------------
678e5dd7070SpatrickIf `f()` is a leaf function (i.e. it has no calls
679e5dd7070Spatrickexcept maybe no-return calls) it can be called using a special calling convention
680e5dd7070Spatrickthat stores `RA` in a dedicated register `R` before the `CALL` instruction.
681e5dd7070Spatrick`f()` does not spill `R` and does not use the `RET` instruction,
682e5dd7070Spatrickinstead it uses the value in `R` to `JMP` to `RA`.
683e5dd7070Spatrick
684e5dd7070SpatrickThis flavour of CFI is *precise*, i.e. the function is guaranteed to return
685e5dd7070Spatrickto the point exactly following the call.
686e5dd7070Spatrick
687e5dd7070SpatrickAn alternative approach is to
688e5dd7070Spatrickcopy `RA` from stack to `R` in the first instruction of `f()`,
689e5dd7070Spatrickthen `JMP` to `R`.
690e5dd7070SpatrickThis approach is simpler to implement (does not require changing the caller)
691e5dd7070Spatrickbut weaker (there is a small window when `RA` is actually stored on stack).
692e5dd7070Spatrick
693e5dd7070Spatrick
694e5dd7070SpatrickFunctions called once
695e5dd7070Spatrick---------------------
696e5dd7070SpatrickSuppose `f()` is called in just one place in the program
697e5dd7070Spatrick(assuming we can verify this in LTO mode).
698e5dd7070SpatrickIn this case we can replace the `RET` instruction with a `JMP` instruction
699e5dd7070Spatrickwith the immediate constant for `RA`.
700e5dd7070SpatrickThis will *precisely* enforce the return control flow no matter what is stored on stack.
701e5dd7070Spatrick
702e5dd7070SpatrickAnother variant is to compare `RA` on stack with the known constant and abort
703e5dd7070Spatrickif they don't match; then `JMP` to the known constant address.
704e5dd7070Spatrick
705e5dd7070SpatrickFunctions called in a small number of call sites
706e5dd7070Spatrick------------------------------------------------
707e5dd7070SpatrickWe may extend the above approach to cases where `f()`
708e5dd7070Spatrickis called more than once (but still a small number of times).
709e5dd7070SpatrickWith LTO we know all possible values of `RA` and we check them
710e5dd7070Spatrickone-by-one (or using binary search) against the value on stack.
711e5dd7070SpatrickIf the match is found, we `JMP` to the known constant address, otherwise abort.
712e5dd7070Spatrick
713e5dd7070SpatrickThis protection is *near-precise*, i.e. it guarantees that the control flow will
714e5dd7070Spatrickbe transferred to one of the valid return addresses for this function,
715e5dd7070Spatrickbut not necessary to the point of the most recent `CALL`.
716e5dd7070Spatrick
717e5dd7070SpatrickGeneral case
718e5dd7070Spatrick------------
719e5dd7070SpatrickFor functions called multiple times a *return jump table* is constructed
720e5dd7070Spatrickin the same manner as jump tables for indirect function calls (see above).
721*a9ac8606SpatrickThe correct jump table entry (or its index) is passed by `CALL` to `f()`
722e5dd7070Spatrick(as an extra argument) and then spilled to stack.
723e5dd7070SpatrickThe `RET` instruction is replaced with a load of the jump table entry,
724e5dd7070Spatrickjump table range check, and `JMP` to the jump table entry.
725e5dd7070Spatrick
726e5dd7070SpatrickThis protection is also *near-precise*.
727e5dd7070Spatrick
728e5dd7070SpatrickReturns from functions called indirectly
729e5dd7070Spatrick----------------------------------------
730e5dd7070Spatrick
731e5dd7070SpatrickIf a function is called indirectly, the return jump table is constructed for the
732e5dd7070Spatrickequivalence class of functions instead of a single function.
733e5dd7070Spatrick
734e5dd7070SpatrickCross-DSO calls
735e5dd7070Spatrick---------------
736e5dd7070SpatrickConsider two instrumented DSOs, `A` and `B`. `A` defines `f()` and `B` calls it.
737e5dd7070Spatrick
738e5dd7070SpatrickThis case will be handled similarly to the cross-DSO scheme using the slow path callback.
739e5dd7070Spatrick
740e5dd7070SpatrickNon-goals
741e5dd7070Spatrick---------
742e5dd7070Spatrick
743e5dd7070SpatrickRCFI does not protect `RET` instructions:
744e5dd7070Spatrick  * in non-instrumented DSOs,
745e5dd7070Spatrick  * in instrumented DSOs for functions that are called from non-instrumented DSOs,
746e5dd7070Spatrick  * embedded into other instructions (e.g. `0f4fc3 cmovg %ebx,%eax`).
747e5dd7070Spatrick
748e5dd7070Spatrick.. _SafeStack: https://clang.llvm.org/docs/SafeStack.html
749e5dd7070Spatrick.. _RFG: https://xlab.tencent.com/en/2016/11/02/return-flow-guard
750e5dd7070Spatrick.. _Intel CET: https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks
751e5dd7070Spatrick
752e5dd7070SpatrickHardware support
753e5dd7070Spatrick================
754e5dd7070Spatrick
755e5dd7070SpatrickWe believe that the above design can be efficiently implemented in hardware.
756e5dd7070SpatrickA single new instruction added to an ISA would allow to perform the forward-edge CFI check
757e5dd7070Spatrickwith fewer bytes per check (smaller code size overhead) and potentially more
758e5dd7070Spatrickefficiently. The current software-only instrumentation requires at least
759e5dd7070Spatrick32-bytes per check (on x86_64).
760e5dd7070SpatrickA hardware instruction may probably be less than ~ 12 bytes.
761e5dd7070SpatrickSuch instruction would check that the argument pointer is in-bounds,
762e5dd7070Spatrickand is properly aligned, and if the checks fail it will either trap (in monolithic scheme)
763e5dd7070Spatrickor call the slow path function (cross-DSO scheme).
764e5dd7070SpatrickThe bit vector lookup is probably too complex for a hardware implementation.
765e5dd7070Spatrick
766e5dd7070Spatrick.. code-block:: none
767e5dd7070Spatrick
768e5dd7070Spatrick  //  This instruction checks that 'Ptr'
769e5dd7070Spatrick  //   * is aligned by (1 << kAlignment) and
770e5dd7070Spatrick  //   * is inside [kRangeBeg, kRangeBeg+(kRangeSize<<kAlignment))
771e5dd7070Spatrick  //  and if the check fails it jumps to the given target (slow path).
772e5dd7070Spatrick  //
773e5dd7070Spatrick  // 'Ptr' is a register, pointing to the virtual function table
774e5dd7070Spatrick  //    or to the function which we need to check. We may require an explicit
775e5dd7070Spatrick  //    fixed register to be used.
776e5dd7070Spatrick  // 'kAlignment' is a 4-bit constant.
777e5dd7070Spatrick  // 'kRangeSize' is a ~20-bit constant.
778e5dd7070Spatrick  // 'kRangeBeg' is a PC-relative constant (~28 bits)
779e5dd7070Spatrick  //    pointing to the beginning of the allowed range for 'Ptr'.
780e5dd7070Spatrick  // 'kFailedCheckTarget': is a PC-relative constant (~28 bits)
781e5dd7070Spatrick  //    representing the target to branch to when the check fails.
782e5dd7070Spatrick  //    If kFailedCheckTarget==0, the process will trap
783e5dd7070Spatrick  //    (monolithic binary scheme).
784e5dd7070Spatrick  //    Otherwise it will jump to a handler that implements `CFI_SlowPath`
785e5dd7070Spatrick  //    (cross-DSO scheme).
786e5dd7070Spatrick  CFI_Check(Ptr, kAlignment, kRangeSize, kRangeBeg, kFailedCheckTarget) {
787e5dd7070Spatrick     if (Ptr < kRangeBeg ||
788e5dd7070Spatrick         Ptr >= kRangeBeg + (kRangeSize << kAlignment) ||
789e5dd7070Spatrick         Ptr & ((1 << kAlignment) - 1))
790e5dd7070Spatrick           Jump(kFailedCheckTarget);
791e5dd7070Spatrick  }
792e5dd7070Spatrick
793e5dd7070SpatrickAn alternative and more compact encoding would not use `kFailedCheckTarget`,
794e5dd7070Spatrickand will trap on check failure instead.
795e5dd7070SpatrickThis will allow us to fit the instruction into **8-9 bytes**.
796e5dd7070SpatrickThe cross-DSO checks will be performed by a trap handler and
797e5dd7070Spatrickperformance-critical ones will have to be black-listed and checked using the
798e5dd7070Spatricksoftware-only scheme.
799e5dd7070Spatrick
800e5dd7070SpatrickNote that such hardware extension would be complementary to checks
801e5dd7070Spatrickat the callee side, such as e.g. **Intel ENDBRANCH**.
802e5dd7070SpatrickMoreover, CFI would have two benefits over ENDBRANCH: a) precision and b)
803e5dd7070Spatrickability to protect against invalid casts between polymorphic types.
804