15084Sjohnlev /*
25084Sjohnlev * CDDL HEADER START
35084Sjohnlev *
45084Sjohnlev * The contents of this file are subject to the terms of the
55084Sjohnlev * Common Development and Distribution License (the "License").
65084Sjohnlev * You may not use this file except in compliance with the License.
75084Sjohnlev *
85084Sjohnlev * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
95084Sjohnlev * or http://www.opensolaris.org/os/licensing.
105084Sjohnlev * See the License for the specific language governing permissions
115084Sjohnlev * and limitations under the License.
125084Sjohnlev *
135084Sjohnlev * When distributing Covered Code, include this CDDL HEADER in each
145084Sjohnlev * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
155084Sjohnlev * If applicable, add the following below this CDDL HEADER, with the
165084Sjohnlev * fields enclosed by brackets "[]" replaced with your own identifying
175084Sjohnlev * information: Portions Copyright [yyyy] [name of copyright owner]
185084Sjohnlev *
195084Sjohnlev * CDDL HEADER END
205084Sjohnlev */
215084Sjohnlev
225084Sjohnlev /*
23*9489SJoe.Bonasera@sun.com * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
245084Sjohnlev * Use is subject to license terms.
255084Sjohnlev */
265084Sjohnlev
275159Sjohnlev /*
285159Sjohnlev * Virtual CPU management.
295159Sjohnlev *
305159Sjohnlev * VCPUs can be controlled in one of two ways; through the domain itself
315159Sjohnlev * (psradm, p_online(), etc.), and via changes in xenstore (vcpu_config()).
325159Sjohnlev * Unfortunately, the terminology is used in different ways; they work out as
335159Sjohnlev * follows:
345159Sjohnlev *
355159Sjohnlev * P_ONLINE: the VCPU is up and running, taking interrupts and running threads
365159Sjohnlev *
375159Sjohnlev * P_OFFLINE: the VCPU is up and running, but quiesced (i.e. blocked in the
385159Sjohnlev * hypervisor on the idle thread). It must be up since a downed VCPU cannot
395159Sjohnlev * receive interrupts, and we require this for offline CPUs in Solaris.
405159Sjohnlev *
415159Sjohnlev * P_POWEROFF: the VCPU is down (we never called xen_vcpu_up(), or called
425159Sjohnlev * xen_vcpu_down() for it). It can't take interrupts or run anything, though
435159Sjohnlev * if it has run previously, its software state (cpu_t, machcpu structures, IPI
445159Sjohnlev * event channels, etc.) will still exist.
455159Sjohnlev *
465159Sjohnlev * The hypervisor has two notions of CPU states as represented in the store:
475159Sjohnlev *
485159Sjohnlev * "offline": the VCPU is down. Corresponds to P_POWEROFF.
495159Sjohnlev *
505159Sjohnlev * "online": the VCPU is running. Corresponds to a CPU state other than
515159Sjohnlev * P_POWEROFF.
525159Sjohnlev *
535159Sjohnlev * Currently, only a notification via xenstore can bring a CPU into a
545159Sjohnlev * P_POWEROFF state, and only the domain can change between P_ONLINE, P_NOINTR,
555159Sjohnlev * P_OFFLINE, etc. We need to be careful to treat xenstore notifications
565159Sjohnlev * idempotently, as we'll get 'duplicate' entries when we resume a domain.
575159Sjohnlev *
585159Sjohnlev * Note that the xenstore configuration is strictly advisory, in that a domain
595159Sjohnlev * can choose to ignore it and still power up a VCPU in the offline state. To
605159Sjohnlev * play nice, we don't allow it. Thus, any attempt to power on/off a CPU is
615159Sjohnlev * ENOTSUP from within Solaris.
625159Sjohnlev *
635159Sjohnlev * Powering off a VCPU and suspending the domain use similar code. The
645159Sjohnlev * difficulty here is that we must ensure that each VCPU is in a stable
655159Sjohnlev * state: it must have a saved PCB, and not be responding to interrupts
665159Sjohnlev * (since we are just about to remove its ability to run on a real CPU,
675159Sjohnlev * possibly forever). However, an offline CPU in Solaris can take
685159Sjohnlev * cross-call interrupts, as mentioned, so we must go through a
695159Sjohnlev * two-stage process. First, we use the standard Solaris pause_cpus().
705159Sjohnlev * This ensures that all CPUs are either in mach_cpu_pause() or
715159Sjohnlev * mach_cpu_idle(), and nothing will cross-call them.
725159Sjohnlev *
735159Sjohnlev * Powered-off-CPUs are already safe, as we own the cpu_lock needed to
745159Sjohnlev * bring them back up, and in state CPU_PHASE_POWERED_OFF.
755159Sjohnlev *
765159Sjohnlev * Running CPUs are spinning in mach_cpu_pause() waiting for either
775159Sjohnlev * PAUSE_IDLE or CPU_PHASE_WAIT_SAFE.
785159Sjohnlev *
795159Sjohnlev * Offline CPUs are either running the idle thread and periodically
805159Sjohnlev * checking for CPU_PHASE_WAIT_SAFE, or blocked in the hypervisor.
815159Sjohnlev *
825159Sjohnlev * Thus, we set CPU_PHASE_WAIT_SAFE for every powered-on CPU, as well as
835159Sjohnlev * poking them to make sure they're not blocked[1]. When every CPU has
845159Sjohnlev * responded by reaching a safe state and setting CPU_PHASE_SAFE, we
855159Sjohnlev * know we can suspend, or power-off a CPU, without problems.
865159Sjohnlev *
875159Sjohnlev * [1] note that we have to repeatedly poke offline CPUs: it's the only
885159Sjohnlev * way to ensure that the CPU doesn't miss the state change before
895159Sjohnlev * dropping into HYPERVISOR_block().
905159Sjohnlev */
915159Sjohnlev
925084Sjohnlev #include <sys/types.h>
935084Sjohnlev #include <sys/systm.h>
945084Sjohnlev #include <sys/param.h>
955084Sjohnlev #include <sys/taskq.h>
965084Sjohnlev #include <sys/cmn_err.h>
975084Sjohnlev #include <sys/archsystm.h>
985084Sjohnlev #include <sys/machsystm.h>
995084Sjohnlev #include <sys/segments.h>
1005084Sjohnlev #include <sys/cpuvar.h>
1015084Sjohnlev #include <sys/x86_archext.h>
1025084Sjohnlev #include <sys/controlregs.h>
1035159Sjohnlev #include <sys/hypervisor.h>
1045159Sjohnlev #include <sys/xpv_panic.h>
1055084Sjohnlev #include <sys/mman.h>
1065159Sjohnlev #include <sys/psw.h>
1075159Sjohnlev #include <sys/cpu.h>
1085159Sjohnlev #include <sys/sunddi.h>
1095084Sjohnlev #include <util/sscanf.h>
1105159Sjohnlev #include <vm/hat_i86.h>
1115159Sjohnlev #include <vm/hat.h>
1125159Sjohnlev #include <vm/as.h>
1135084Sjohnlev
1145159Sjohnlev #include <xen/public/io/xs_wire.h>
1155159Sjohnlev #include <xen/sys/xenbus_impl.h>
1165084Sjohnlev #include <xen/public/vcpu.h>
1175159Sjohnlev
118*9489SJoe.Bonasera@sun.com extern cpuset_t cpu_ready_set;
119*9489SJoe.Bonasera@sun.com
1205159Sjohnlev #define CPU_PHASE_NONE 0
1215159Sjohnlev #define CPU_PHASE_WAIT_SAFE 1
1225159Sjohnlev #define CPU_PHASE_SAFE 2
1235159Sjohnlev #define CPU_PHASE_POWERED_OFF 3
1245084Sjohnlev
1255159Sjohnlev /*
1265159Sjohnlev * We can only poke CPUs during barrier enter 256 times a second at
1275159Sjohnlev * most.
1285159Sjohnlev */
1295159Sjohnlev #define POKE_TIMEOUT (NANOSEC / 256)
1305084Sjohnlev
1315084Sjohnlev static taskq_t *cpu_config_tq;
1325159Sjohnlev static int cpu_phase[NCPU];
1335159Sjohnlev
1345084Sjohnlev static void vcpu_config_event(struct xenbus_watch *, const char **, uint_t);
1355084Sjohnlev static int xen_vcpu_initialize(processorid_t, vcpu_guest_context_t *);
1365084Sjohnlev
1375084Sjohnlev /*
1385529Ssmaybe * Return whether or not the vcpu is actually running on a pcpu
1395529Ssmaybe */
1405529Ssmaybe int
vcpu_on_pcpu(processorid_t cpu)1415529Ssmaybe vcpu_on_pcpu(processorid_t cpu)
1425529Ssmaybe {
1435529Ssmaybe struct vcpu_runstate_info runstate;
1445529Ssmaybe int ret = VCPU_STATE_UNKNOWN;
1455529Ssmaybe
1465529Ssmaybe ASSERT(cpu < NCPU);
1475529Ssmaybe /*
1485529Ssmaybe * Don't bother with hypercall if we are asking about ourself
1495529Ssmaybe */
1505529Ssmaybe if (cpu == CPU->cpu_id)
1515529Ssmaybe return (VCPU_ON_PCPU);
1525529Ssmaybe if (HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info, cpu, &runstate) != 0)
1535529Ssmaybe goto out;
1545529Ssmaybe
1555529Ssmaybe switch (runstate.state) {
1565529Ssmaybe case RUNSTATE_running:
1575529Ssmaybe ret = VCPU_ON_PCPU;
1585529Ssmaybe break;
1595529Ssmaybe
1605529Ssmaybe case RUNSTATE_runnable:
1615529Ssmaybe case RUNSTATE_offline:
1625529Ssmaybe case RUNSTATE_blocked:
1635529Ssmaybe ret = VCPU_NOT_ON_PCPU;
1645529Ssmaybe break;
1655529Ssmaybe
1665529Ssmaybe default:
1675529Ssmaybe break;
1685529Ssmaybe }
1695529Ssmaybe
1705529Ssmaybe out:
1715529Ssmaybe return (ret);
1725529Ssmaybe }
1735529Ssmaybe
1745529Ssmaybe /*
1755084Sjohnlev * These routines allocate any global state that might be needed
1765084Sjohnlev * while starting cpus. For virtual cpus, there is no such state.
1775084Sjohnlev */
1785084Sjohnlev int
mach_cpucontext_init(void)1795084Sjohnlev mach_cpucontext_init(void)
1805084Sjohnlev {
1815084Sjohnlev return (0);
1825084Sjohnlev }
1835084Sjohnlev
1845084Sjohnlev void
do_cpu_config_watch(int state)1855084Sjohnlev do_cpu_config_watch(int state)
1865084Sjohnlev {
1875084Sjohnlev static struct xenbus_watch cpu_config_watch;
1885084Sjohnlev
1895084Sjohnlev if (state != XENSTORE_UP)
1905084Sjohnlev return;
1915084Sjohnlev cpu_config_watch.node = "cpu";
1925084Sjohnlev cpu_config_watch.callback = vcpu_config_event;
1935084Sjohnlev if (register_xenbus_watch(&cpu_config_watch)) {
1945084Sjohnlev taskq_destroy(cpu_config_tq);
1955084Sjohnlev cmn_err(CE_WARN, "do_cpu_config_watch: "
1965084Sjohnlev "failed to set vcpu config watch");
1975084Sjohnlev }
1985084Sjohnlev
1995084Sjohnlev }
2005084Sjohnlev
2015084Sjohnlev /*
2025084Sjohnlev * This routine is called after all the "normal" MP startup has
2035084Sjohnlev * been done; a good place to start watching xen store for virtual
2045084Sjohnlev * cpu hot plug events.
2055084Sjohnlev */
2065084Sjohnlev void
mach_cpucontext_fini(void)2075084Sjohnlev mach_cpucontext_fini(void)
2085084Sjohnlev {
2095084Sjohnlev
2105084Sjohnlev cpu_config_tq = taskq_create("vcpu config taskq", 1,
2115084Sjohnlev maxclsyspri - 1, 1, 1, TASKQ_PREPOPULATE);
2125084Sjohnlev
2135084Sjohnlev (void) xs_register_xenbus_callback(do_cpu_config_watch);
2145084Sjohnlev }
2155084Sjohnlev
2165084Sjohnlev /*
2175084Sjohnlev * Fill in the remaining CPU context and initialize it.
2185084Sjohnlev */
2195084Sjohnlev static int
mp_set_cpu_context(vcpu_guest_context_t * vgc,cpu_t * cp)2205084Sjohnlev mp_set_cpu_context(vcpu_guest_context_t *vgc, cpu_t *cp)
2215084Sjohnlev {
2225084Sjohnlev uint_t vec, iopl;
2235084Sjohnlev
2245084Sjohnlev vgc->flags = VGCF_IN_KERNEL;
2255084Sjohnlev
2265084Sjohnlev /*
2275084Sjohnlev * fpu_ctx we leave as zero; on first fault we'll store
2285084Sjohnlev * sse_initial into it anyway.
2295084Sjohnlev */
2305084Sjohnlev
2315084Sjohnlev #if defined(__amd64)
2325084Sjohnlev vgc->user_regs.cs = KCS_SEL | SEL_KPL; /* force to ring 3 */
2335084Sjohnlev #else
2345084Sjohnlev vgc->user_regs.cs = KCS_SEL;
2355084Sjohnlev #endif
2365084Sjohnlev vgc->user_regs.ds = KDS_SEL;
2375084Sjohnlev vgc->user_regs.es = KDS_SEL;
2385084Sjohnlev vgc->user_regs.ss = KDS_SEL;
2395084Sjohnlev vgc->kernel_ss = KDS_SEL;
2405084Sjohnlev
2415084Sjohnlev /*
2425084Sjohnlev * Allow I/O privilege level for Dom0 kernel.
2435084Sjohnlev */
2445084Sjohnlev if (DOMAIN_IS_INITDOMAIN(xen_info))
2455084Sjohnlev iopl = (PS_IOPL & 0x1000); /* ring 1 */
2465084Sjohnlev else
2475084Sjohnlev iopl = 0;
2485084Sjohnlev
2495084Sjohnlev #if defined(__amd64)
2505084Sjohnlev vgc->user_regs.fs = 0;
2515084Sjohnlev vgc->user_regs.gs = 0;
2525084Sjohnlev vgc->user_regs.rflags = F_OFF | iopl;
2535084Sjohnlev #elif defined(__i386)
2545084Sjohnlev vgc->user_regs.fs = KFS_SEL;
2555084Sjohnlev vgc->user_regs.gs = KGS_SEL;
2565084Sjohnlev vgc->user_regs.eflags = F_OFF | iopl;
2575084Sjohnlev vgc->event_callback_cs = vgc->user_regs.cs;
2585084Sjohnlev vgc->failsafe_callback_cs = vgc->user_regs.cs;
2595084Sjohnlev #endif
2605084Sjohnlev
2615084Sjohnlev /*
2625084Sjohnlev * Initialize the trap_info_t from the IDT
2635084Sjohnlev */
2645084Sjohnlev #if !defined(__lint)
2655084Sjohnlev ASSERT(NIDT == sizeof (vgc->trap_ctxt) / sizeof (vgc->trap_ctxt[0]));
2665084Sjohnlev #endif
2675084Sjohnlev for (vec = 0; vec < NIDT; vec++) {
2685084Sjohnlev trap_info_t *ti = &vgc->trap_ctxt[vec];
2695084Sjohnlev
2705084Sjohnlev if (xen_idt_to_trap_info(vec,
2715084Sjohnlev &cp->cpu_m.mcpu_idt[vec], ti) == 0) {
2725084Sjohnlev ti->cs = KCS_SEL;
2735084Sjohnlev ti->vector = vec;
2745084Sjohnlev }
2755084Sjohnlev }
2765084Sjohnlev
2775084Sjohnlev /*
2785084Sjohnlev * No LDT
2795084Sjohnlev */
2805084Sjohnlev
2815084Sjohnlev /*
2825084Sjohnlev * (We assert in various places that the GDT is (a) aligned on a
2835084Sjohnlev * page boundary and (b) one page long, so this really should fit..)
2845084Sjohnlev */
2855084Sjohnlev #ifdef CRASH_XEN
2865084Sjohnlev vgc->gdt_frames[0] = pa_to_ma(mmu_btop(cp->cpu_m.mcpu_gdtpa));
2875084Sjohnlev #else
2885084Sjohnlev vgc->gdt_frames[0] = pfn_to_mfn(mmu_btop(cp->cpu_m.mcpu_gdtpa));
2895084Sjohnlev #endif
2905084Sjohnlev vgc->gdt_ents = NGDT;
2915084Sjohnlev
2925084Sjohnlev vgc->ctrlreg[0] = CR0_ENABLE_FPU_FLAGS(getcr0());
2935084Sjohnlev
2945084Sjohnlev #if defined(__i386)
2955084Sjohnlev if (mmu.pae_hat)
2965084Sjohnlev vgc->ctrlreg[3] =
2975084Sjohnlev xen_pfn_to_cr3(pfn_to_mfn(kas.a_hat->hat_htable->ht_pfn));
2985084Sjohnlev else
2995084Sjohnlev #endif
3005084Sjohnlev vgc->ctrlreg[3] =
3015084Sjohnlev pa_to_ma(mmu_ptob(kas.a_hat->hat_htable->ht_pfn));
3025084Sjohnlev
3035084Sjohnlev vgc->ctrlreg[4] = getcr4();
3045084Sjohnlev
3055084Sjohnlev vgc->event_callback_eip = (uintptr_t)xen_callback;
3065084Sjohnlev vgc->failsafe_callback_eip = (uintptr_t)xen_failsafe_callback;
3075084Sjohnlev vgc->flags |= VGCF_failsafe_disables_events;
3085084Sjohnlev
3095084Sjohnlev #if defined(__amd64)
3105084Sjohnlev /*
3115084Sjohnlev * XXPV should this be moved to init_cpu_syscall?
3125084Sjohnlev */
3135084Sjohnlev vgc->syscall_callback_eip = (uintptr_t)sys_syscall;
3145084Sjohnlev vgc->flags |= VGCF_syscall_disables_events;
3155084Sjohnlev
3165084Sjohnlev ASSERT(vgc->user_regs.gs == 0);
3175084Sjohnlev vgc->gs_base_kernel = (uintptr_t)cp;
3185084Sjohnlev #endif
3195084Sjohnlev
3205084Sjohnlev return (xen_vcpu_initialize(cp->cpu_id, vgc));
3215084Sjohnlev }
3225084Sjohnlev
3235084Sjohnlev /*
3245084Sjohnlev * Create a guest virtual cpu context so that the virtual cpu
3255084Sjohnlev * springs into life in the domain just about to call mp_startup()
3265084Sjohnlev *
3275084Sjohnlev * Virtual CPUs must be initialized once in the lifetime of the domain;
3285084Sjohnlev * after that subsequent attempts to start them will fail with X_EEXIST.
3295084Sjohnlev *
3305084Sjohnlev * Thus 'alloc' -really- creates and initializes the virtual
3315084Sjohnlev * CPU context just once. Once the initialisation succeeds, we never
3325084Sjohnlev * free it, nor the regular cpu_t to which it refers.
3335084Sjohnlev */
3345084Sjohnlev void *
mach_cpucontext_alloc(struct cpu * cp)3355084Sjohnlev mach_cpucontext_alloc(struct cpu *cp)
3365084Sjohnlev {
3375084Sjohnlev kthread_t *tp = cp->cpu_thread;
3385084Sjohnlev vcpu_guest_context_t vgc;
3395084Sjohnlev
3405084Sjohnlev int err = 1;
3415084Sjohnlev
3425084Sjohnlev /*
3435084Sjohnlev * First, augment the incoming cpu structure
3445084Sjohnlev * - vcpu pointer reference
3455084Sjohnlev * - pending event storage area
3465084Sjohnlev * - physical address of GDT
3475084Sjohnlev */
3485084Sjohnlev cp->cpu_m.mcpu_vcpu_info =
3495084Sjohnlev &HYPERVISOR_shared_info->vcpu_info[cp->cpu_id];
3505084Sjohnlev cp->cpu_m.mcpu_evt_pend = kmem_zalloc(
3515084Sjohnlev sizeof (struct xen_evt_data), KM_SLEEP);
3525084Sjohnlev cp->cpu_m.mcpu_gdtpa =
3535084Sjohnlev mmu_ptob(hat_getpfnum(kas.a_hat, (caddr_t)cp->cpu_gdt));
3545084Sjohnlev
3555084Sjohnlev if ((err = xen_gdt_setprot(cp, PROT_READ)) != 0)
3565084Sjohnlev goto done;
3575084Sjohnlev
3585084Sjohnlev /*
3595084Sjohnlev * Now set up the vcpu context so that we can start this vcpu
3605084Sjohnlev * in the kernel at tp->t_pc (mp_startup). Note that the
3615084Sjohnlev * thread will thread_exit() shortly after performing the
3625084Sjohnlev * initialization; in particular, we will *never* take a
3635084Sjohnlev * privilege transition on this thread.
3645084Sjohnlev */
3655084Sjohnlev
3665084Sjohnlev bzero(&vgc, sizeof (vgc));
3675084Sjohnlev
3685084Sjohnlev #ifdef __amd64
3695084Sjohnlev vgc.user_regs.rip = tp->t_pc;
3705084Sjohnlev vgc.user_regs.rsp = tp->t_sp;
3715084Sjohnlev vgc.user_regs.rbp = tp->t_sp - 2 * sizeof (greg_t);
3725084Sjohnlev #else
3735084Sjohnlev vgc.user_regs.eip = tp->t_pc;
3745084Sjohnlev vgc.user_regs.esp = tp->t_sp;
3755084Sjohnlev vgc.user_regs.ebp = tp->t_sp - 2 * sizeof (greg_t);
3765084Sjohnlev #endif
3775084Sjohnlev /*
3785084Sjohnlev * XXPV Fix resume, if Russ didn't already fix it.
3795084Sjohnlev *
3805084Sjohnlev * Note that resume unconditionally puts t->t_stk + sizeof (regs)
3815084Sjohnlev * into kernel_sp via HYPERVISOR_stack_switch. This anticipates
3825084Sjohnlev * that only lwps take traps that switch to the kernel stack;
3835084Sjohnlev * part of creating an lwp adjusts the stack by subtracting
3845084Sjohnlev * sizeof (struct regs) off t_stk.
3855084Sjohnlev *
3865084Sjohnlev * The more interesting question is, why do we do all the work
3875084Sjohnlev * of a fully fledged lwp for a plain thread? In particular
3885084Sjohnlev * we don't have to call HYPERVISOR_stack_switch for lwp-less threads
3895084Sjohnlev * or futz with the LDT. This should probably all be done with
3905084Sjohnlev * an lwp context operator to keep pure thread context switch fast.
3915084Sjohnlev */
3925084Sjohnlev vgc.kernel_sp = (ulong_t)tp->t_stk;
3935084Sjohnlev
3945084Sjohnlev err = mp_set_cpu_context(&vgc, cp);
3955084Sjohnlev
3965084Sjohnlev done:
3975084Sjohnlev if (err) {
3985084Sjohnlev mach_cpucontext_free(cp, NULL, err);
3995084Sjohnlev return (NULL);
4005084Sjohnlev }
4015084Sjohnlev return (cp);
4025084Sjohnlev }
4035084Sjohnlev
4045084Sjohnlev /*
4055084Sjohnlev * By the time we are called either we have successfully started
4065084Sjohnlev * the cpu, or our attempt to start it has failed.
4075084Sjohnlev */
4085084Sjohnlev
4095084Sjohnlev /*ARGSUSED*/
4105084Sjohnlev void
mach_cpucontext_free(struct cpu * cp,void * arg,int err)4115084Sjohnlev mach_cpucontext_free(struct cpu *cp, void *arg, int err)
4125084Sjohnlev {
4135084Sjohnlev switch (err) {
4145084Sjohnlev case 0:
4155084Sjohnlev break;
4165084Sjohnlev case ETIMEDOUT:
4175084Sjohnlev /*
4185084Sjohnlev * The vcpu context is loaded into the hypervisor, and
4195084Sjohnlev * we've tried to start it, but the vcpu has not been set
4205084Sjohnlev * running yet, for whatever reason. We arrange to -not-
4215084Sjohnlev * free any data structures it may be referencing. In
4225084Sjohnlev * particular, we've already told the hypervisor about
4235084Sjohnlev * the GDT, and so we can't map it read-write again.
4245084Sjohnlev */
4255084Sjohnlev break;
4265084Sjohnlev default:
4275084Sjohnlev (void) xen_gdt_setprot(cp, PROT_READ | PROT_WRITE);
4285084Sjohnlev kmem_free(cp->cpu_m.mcpu_evt_pend,
4295084Sjohnlev sizeof (struct xen_evt_data));
4305084Sjohnlev break;
4315084Sjohnlev }
4325084Sjohnlev }
4335084Sjohnlev
4345084Sjohnlev /*
4355084Sjohnlev * Reset this CPU's context. Clear out any pending evtchn data, since event
4365084Sjohnlev * channel numbers will all change when we resume.
4375084Sjohnlev */
4385084Sjohnlev void
mach_cpucontext_reset(cpu_t * cp)4395084Sjohnlev mach_cpucontext_reset(cpu_t *cp)
4405084Sjohnlev {
4415084Sjohnlev bzero(cp->cpu_m.mcpu_evt_pend, sizeof (struct xen_evt_data));
4425084Sjohnlev /* mcpu_intr_pending ? */
4435084Sjohnlev }
4445084Sjohnlev
4455084Sjohnlev static void
pcb_to_user_regs(label_t * pcb,vcpu_guest_context_t * vgc)4465084Sjohnlev pcb_to_user_regs(label_t *pcb, vcpu_guest_context_t *vgc)
4475084Sjohnlev {
4485084Sjohnlev #ifdef __amd64
4495084Sjohnlev vgc->user_regs.rip = pcb->val[REG_LABEL_PC];
4505084Sjohnlev vgc->user_regs.rsp = pcb->val[REG_LABEL_SP];
4515084Sjohnlev vgc->user_regs.rbp = pcb->val[REG_LABEL_BP];
4525084Sjohnlev vgc->user_regs.rbx = pcb->val[REG_LABEL_RBX];
4535084Sjohnlev vgc->user_regs.r12 = pcb->val[REG_LABEL_R12];
4545084Sjohnlev vgc->user_regs.r13 = pcb->val[REG_LABEL_R13];
4555084Sjohnlev vgc->user_regs.r14 = pcb->val[REG_LABEL_R14];
4565084Sjohnlev vgc->user_regs.r15 = pcb->val[REG_LABEL_R15];
4575084Sjohnlev #else /* __amd64 */
4585084Sjohnlev vgc->user_regs.eip = pcb->val[REG_LABEL_PC];
4595084Sjohnlev vgc->user_regs.esp = pcb->val[REG_LABEL_SP];
4605084Sjohnlev vgc->user_regs.ebp = pcb->val[REG_LABEL_BP];
4615084Sjohnlev vgc->user_regs.ebx = pcb->val[REG_LABEL_EBX];
4625084Sjohnlev vgc->user_regs.esi = pcb->val[REG_LABEL_ESI];
4635084Sjohnlev vgc->user_regs.edi = pcb->val[REG_LABEL_EDI];
4645084Sjohnlev #endif /* __amd64 */
4655084Sjohnlev }
4665084Sjohnlev
4675084Sjohnlev /*
4685159Sjohnlev * Restore the context of a CPU during resume. This context is always
4695159Sjohnlev * inside enter_safe_phase(), below.
4705084Sjohnlev */
4715084Sjohnlev void
mach_cpucontext_restore(cpu_t * cp)4725084Sjohnlev mach_cpucontext_restore(cpu_t *cp)
4735084Sjohnlev {
4745084Sjohnlev vcpu_guest_context_t vgc;
4755084Sjohnlev int err;
4765084Sjohnlev
4775084Sjohnlev ASSERT(cp->cpu_thread == cp->cpu_pause_thread ||
4785084Sjohnlev cp->cpu_thread == cp->cpu_idle_thread);
4795084Sjohnlev
4805084Sjohnlev bzero(&vgc, sizeof (vgc));
4815084Sjohnlev
4825084Sjohnlev pcb_to_user_regs(&cp->cpu_thread->t_pcb, &vgc);
4835084Sjohnlev
4845084Sjohnlev /*
4855084Sjohnlev * We're emulating a longjmp() here: in particular, we need to bump the
4865084Sjohnlev * stack pointer to account for the pop of xIP that returning from
4875084Sjohnlev * longjmp() normally would do, and set the return value in xAX to 1.
4885084Sjohnlev */
4895084Sjohnlev #ifdef __amd64
4905084Sjohnlev vgc.user_regs.rax = 1;
4915084Sjohnlev vgc.user_regs.rsp += sizeof (ulong_t);
4925084Sjohnlev #else
4935084Sjohnlev vgc.user_regs.eax = 1;
4945084Sjohnlev vgc.user_regs.esp += sizeof (ulong_t);
4955084Sjohnlev #endif
4965084Sjohnlev
4975084Sjohnlev vgc.kernel_sp = cp->cpu_thread->t_sp;
4985084Sjohnlev
4995084Sjohnlev err = mp_set_cpu_context(&vgc, cp);
5005084Sjohnlev
5015084Sjohnlev ASSERT(err == 0);
5025084Sjohnlev }
5035084Sjohnlev
5045159Sjohnlev /*
5055159Sjohnlev * Reach a point at which the CPU can be safely powered-off or
5065159Sjohnlev * suspended. Nothing can wake this CPU out of the loop.
5075159Sjohnlev */
5085159Sjohnlev static void
enter_safe_phase(void)5095159Sjohnlev enter_safe_phase(void)
5105159Sjohnlev {
5115159Sjohnlev ulong_t flags = intr_clear();
5125159Sjohnlev
5135159Sjohnlev if (setjmp(&curthread->t_pcb) == 0) {
5145159Sjohnlev cpu_phase[CPU->cpu_id] = CPU_PHASE_SAFE;
5155159Sjohnlev while (cpu_phase[CPU->cpu_id] == CPU_PHASE_SAFE)
5165159Sjohnlev SMT_PAUSE();
5175159Sjohnlev }
5185159Sjohnlev
5195159Sjohnlev ASSERT(!interrupts_enabled());
5205159Sjohnlev
5215159Sjohnlev intr_restore(flags);
5225159Sjohnlev }
5235159Sjohnlev
5245159Sjohnlev /*
5255159Sjohnlev * Offline CPUs run this code even under a pause_cpus(), so we must
5265159Sjohnlev * check if we need to enter the safe phase.
5275159Sjohnlev */
5285084Sjohnlev void
mach_cpu_idle(void)5295084Sjohnlev mach_cpu_idle(void)
5305084Sjohnlev {
5315084Sjohnlev if (IN_XPV_PANIC()) {
5325084Sjohnlev xpv_panic_halt();
5335084Sjohnlev } else {
5345084Sjohnlev (void) HYPERVISOR_block();
5355159Sjohnlev if (cpu_phase[CPU->cpu_id] == CPU_PHASE_WAIT_SAFE)
5365159Sjohnlev enter_safe_phase();
5375159Sjohnlev }
5385159Sjohnlev }
5395159Sjohnlev
5405159Sjohnlev /*
5415159Sjohnlev * Spin until either start_cpus() wakes us up, or we get a request to
5425159Sjohnlev * enter the safe phase (followed by a later start_cpus()).
5435159Sjohnlev */
5445159Sjohnlev void
mach_cpu_pause(volatile char * safe)5455159Sjohnlev mach_cpu_pause(volatile char *safe)
5465159Sjohnlev {
5475159Sjohnlev *safe = PAUSE_WAIT;
5485159Sjohnlev membar_enter();
5495159Sjohnlev
5505159Sjohnlev while (*safe != PAUSE_IDLE) {
5515159Sjohnlev if (cpu_phase[CPU->cpu_id] == CPU_PHASE_WAIT_SAFE)
5525159Sjohnlev enter_safe_phase();
5535159Sjohnlev SMT_PAUSE();
5545084Sjohnlev }
5555084Sjohnlev }
5565084Sjohnlev
5575084Sjohnlev void
mach_cpu_halt(char * msg)5585084Sjohnlev mach_cpu_halt(char *msg)
5595084Sjohnlev {
5605084Sjohnlev if (msg)
5615084Sjohnlev prom_printf("%s\n", msg);
5625084Sjohnlev (void) xen_vcpu_down(CPU->cpu_id);
5635084Sjohnlev }
5645084Sjohnlev
5655084Sjohnlev /*ARGSUSED*/
5665084Sjohnlev int
mp_cpu_poweron(struct cpu * cp)5675084Sjohnlev mp_cpu_poweron(struct cpu *cp)
5685084Sjohnlev {
5695084Sjohnlev return (ENOTSUP);
5705084Sjohnlev }
5715084Sjohnlev
5725084Sjohnlev /*ARGSUSED*/
5735084Sjohnlev int
mp_cpu_poweroff(struct cpu * cp)5745084Sjohnlev mp_cpu_poweroff(struct cpu *cp)
5755084Sjohnlev {
5765084Sjohnlev return (ENOTSUP);
5775084Sjohnlev }
5785084Sjohnlev
5795159Sjohnlev void
mp_enter_barrier(void)5805159Sjohnlev mp_enter_barrier(void)
5815084Sjohnlev {
5825159Sjohnlev hrtime_t last_poke_time = 0;
5835159Sjohnlev int poke_allowed = 0;
5845159Sjohnlev int done = 0;
5855159Sjohnlev int i;
5865084Sjohnlev
5875084Sjohnlev ASSERT(MUTEX_HELD(&cpu_lock));
5885084Sjohnlev
5895159Sjohnlev pause_cpus(NULL);
5905159Sjohnlev
5915159Sjohnlev while (!done) {
5925159Sjohnlev done = 1;
5935159Sjohnlev poke_allowed = 0;
5945159Sjohnlev
5955159Sjohnlev if (xpv_gethrtime() - last_poke_time > POKE_TIMEOUT) {
5965159Sjohnlev last_poke_time = xpv_gethrtime();
5975159Sjohnlev poke_allowed = 1;
5985159Sjohnlev }
5995159Sjohnlev
6005159Sjohnlev for (i = 0; i < NCPU; i++) {
6015159Sjohnlev cpu_t *cp = cpu_get(i);
6025159Sjohnlev
6035159Sjohnlev if (cp == NULL || cp == CPU)
6045159Sjohnlev continue;
6055159Sjohnlev
6065159Sjohnlev switch (cpu_phase[i]) {
6075159Sjohnlev case CPU_PHASE_NONE:
6085159Sjohnlev cpu_phase[i] = CPU_PHASE_WAIT_SAFE;
6095159Sjohnlev poke_cpu(i);
6105159Sjohnlev done = 0;
6115159Sjohnlev break;
6125159Sjohnlev
6135159Sjohnlev case CPU_PHASE_WAIT_SAFE:
6145159Sjohnlev if (poke_allowed)
6155159Sjohnlev poke_cpu(i);
6165159Sjohnlev done = 0;
6175159Sjohnlev break;
6185159Sjohnlev
6195159Sjohnlev case CPU_PHASE_SAFE:
6205159Sjohnlev case CPU_PHASE_POWERED_OFF:
6215159Sjohnlev break;
6225159Sjohnlev }
6235159Sjohnlev }
6245159Sjohnlev
6255159Sjohnlev SMT_PAUSE();
6265159Sjohnlev }
6275159Sjohnlev }
6285159Sjohnlev
6295159Sjohnlev void
mp_leave_barrier(void)6305159Sjohnlev mp_leave_barrier(void)
6315159Sjohnlev {
6325159Sjohnlev int i;
6335159Sjohnlev
6345159Sjohnlev ASSERT(MUTEX_HELD(&cpu_lock));
6355159Sjohnlev
6365159Sjohnlev for (i = 0; i < NCPU; i++) {
6375159Sjohnlev cpu_t *cp = cpu_get(i);
6385159Sjohnlev
6395159Sjohnlev if (cp == NULL || cp == CPU)
6405159Sjohnlev continue;
6415159Sjohnlev
6425159Sjohnlev switch (cpu_phase[i]) {
6435159Sjohnlev /*
6445159Sjohnlev * If we see a CPU in one of these phases, something has
6455159Sjohnlev * gone badly wrong with the guarantees
6465159Sjohnlev * mp_enter_barrier() is supposed to provide. Rather
6475159Sjohnlev * than attempt to stumble along (and since we can't
6485159Sjohnlev * panic properly in this context), we tell the
6495159Sjohnlev * hypervisor we've crashed.
6505159Sjohnlev */
6515159Sjohnlev case CPU_PHASE_NONE:
6525159Sjohnlev case CPU_PHASE_WAIT_SAFE:
6535159Sjohnlev (void) HYPERVISOR_shutdown(SHUTDOWN_crash);
6545159Sjohnlev break;
6555159Sjohnlev
6565159Sjohnlev case CPU_PHASE_POWERED_OFF:
6575159Sjohnlev break;
6585159Sjohnlev
6595159Sjohnlev case CPU_PHASE_SAFE:
6605159Sjohnlev cpu_phase[i] = CPU_PHASE_NONE;
6615159Sjohnlev }
6625084Sjohnlev }
6635084Sjohnlev
6645159Sjohnlev start_cpus();
6655084Sjohnlev }
6665084Sjohnlev
6675084Sjohnlev static int
poweroff_vcpu(struct cpu * cp)6685084Sjohnlev poweroff_vcpu(struct cpu *cp)
6695084Sjohnlev {
6705084Sjohnlev int error;
6715084Sjohnlev
6725084Sjohnlev ASSERT(MUTEX_HELD(&cpu_lock));
6735084Sjohnlev
6745084Sjohnlev ASSERT(CPU->cpu_id != cp->cpu_id);
6755084Sjohnlev ASSERT(cp->cpu_flags & CPU_QUIESCED);
6765084Sjohnlev
6775159Sjohnlev mp_enter_barrier();
6785084Sjohnlev
6795084Sjohnlev if ((error = xen_vcpu_down(cp->cpu_id)) == 0) {
6805159Sjohnlev ASSERT(cpu_phase[cp->cpu_id] == CPU_PHASE_SAFE);
6815159Sjohnlev
6825084Sjohnlev CPUSET_DEL(cpu_ready_set, cp->cpu_id);
6835159Sjohnlev
6845084Sjohnlev cp->cpu_flags |= CPU_POWEROFF | CPU_OFFLINE;
6855084Sjohnlev cp->cpu_flags &=
6865084Sjohnlev ~(CPU_RUNNING | CPU_READY | CPU_EXISTS | CPU_ENABLE);
6875084Sjohnlev
6885159Sjohnlev cpu_phase[cp->cpu_id] = CPU_PHASE_POWERED_OFF;
6895159Sjohnlev
6905084Sjohnlev cpu_set_state(cp);
6915084Sjohnlev }
6925159Sjohnlev
6935159Sjohnlev mp_leave_barrier();
6945159Sjohnlev
6955084Sjohnlev return (error);
6965084Sjohnlev }
6975084Sjohnlev
6985084Sjohnlev static int
vcpu_config_poweroff(processorid_t id)6995084Sjohnlev vcpu_config_poweroff(processorid_t id)
7005084Sjohnlev {
7015084Sjohnlev int oldstate;
7025084Sjohnlev int error;
7035084Sjohnlev cpu_t *cp;
7045084Sjohnlev
7055084Sjohnlev mutex_enter(&cpu_lock);
7065084Sjohnlev
7075084Sjohnlev if ((cp = cpu_get(id)) == NULL) {
7085084Sjohnlev mutex_exit(&cpu_lock);
7095084Sjohnlev return (ESRCH);
7105084Sjohnlev }
7115084Sjohnlev
7125084Sjohnlev if (cpu_get_state(cp) == P_POWEROFF) {
7135084Sjohnlev mutex_exit(&cpu_lock);
7145084Sjohnlev return (0);
7155084Sjohnlev }
7165084Sjohnlev
7175084Sjohnlev mutex_exit(&cpu_lock);
7185084Sjohnlev
7195084Sjohnlev do {
7205084Sjohnlev error = p_online_internal(id, P_OFFLINE,
7215084Sjohnlev &oldstate);
7225084Sjohnlev
7235084Sjohnlev if (error != 0)
7245084Sjohnlev break;
7255084Sjohnlev
7265084Sjohnlev /*
7275084Sjohnlev * So we just changed it to P_OFFLINE. But then we dropped
7285084Sjohnlev * cpu_lock, so now it is possible for another thread to change
7295084Sjohnlev * the cpu back to a different, non-quiesced state e.g.
7305084Sjohnlev * P_ONLINE.
7315084Sjohnlev */
7325084Sjohnlev mutex_enter(&cpu_lock);
7335084Sjohnlev if ((cp = cpu_get(id)) == NULL)
7345084Sjohnlev error = ESRCH;
7355084Sjohnlev else {
7365084Sjohnlev if (cp->cpu_flags & CPU_QUIESCED)
7375084Sjohnlev error = poweroff_vcpu(cp);
7385084Sjohnlev else
7395084Sjohnlev error = EBUSY;
7405084Sjohnlev }
7415084Sjohnlev mutex_exit(&cpu_lock);
7425084Sjohnlev } while (error == EBUSY);
7435084Sjohnlev
7445084Sjohnlev return (error);
7455084Sjohnlev }
7465084Sjohnlev
7475084Sjohnlev /*
7485084Sjohnlev * Add a new virtual cpu to the domain.
7495084Sjohnlev */
7505084Sjohnlev static int
vcpu_config_new(processorid_t id)7515084Sjohnlev vcpu_config_new(processorid_t id)
7525084Sjohnlev {
7535084Sjohnlev extern int start_cpu(processorid_t);
7545084Sjohnlev int error;
7555084Sjohnlev
7565084Sjohnlev if (ncpus == 1) {
7575084Sjohnlev printf("cannot (yet) add cpus to a single-cpu domain\n");
7585084Sjohnlev return (ENOTSUP);
7595084Sjohnlev }
7605084Sjohnlev
7615084Sjohnlev affinity_set(CPU_CURRENT);
7625084Sjohnlev error = start_cpu(id);
7635084Sjohnlev affinity_clear();
7645084Sjohnlev return (error);
7655084Sjohnlev }
7665084Sjohnlev
7675084Sjohnlev static int
poweron_vcpu(struct cpu * cp)7685159Sjohnlev poweron_vcpu(struct cpu *cp)
7695159Sjohnlev {
7705159Sjohnlev int error;
7715159Sjohnlev
7725159Sjohnlev ASSERT(MUTEX_HELD(&cpu_lock));
7735159Sjohnlev
7745159Sjohnlev if (HYPERVISOR_vcpu_op(VCPUOP_is_up, cp->cpu_id, NULL) != 0) {
7755159Sjohnlev printf("poweron_vcpu: vcpu%d is not available!\n",
7765159Sjohnlev cp->cpu_id);
7775159Sjohnlev return (ENXIO);
7785159Sjohnlev }
7795159Sjohnlev
7805159Sjohnlev if ((error = xen_vcpu_up(cp->cpu_id)) == 0) {
7815159Sjohnlev CPUSET_ADD(cpu_ready_set, cp->cpu_id);
7825159Sjohnlev cp->cpu_flags |= CPU_EXISTS | CPU_READY | CPU_RUNNING;
7835159Sjohnlev cp->cpu_flags &= ~CPU_POWEROFF;
7845159Sjohnlev /*
7855159Sjohnlev * There are some nasty races possible here.
7865159Sjohnlev * Tell the vcpu it's up one more time.
7875159Sjohnlev * XXPV Is this enough? Is this safe?
7885159Sjohnlev */
7895159Sjohnlev (void) xen_vcpu_up(cp->cpu_id);
7905159Sjohnlev
7915159Sjohnlev cpu_phase[cp->cpu_id] = CPU_PHASE_NONE;
7925159Sjohnlev
7935159Sjohnlev cpu_set_state(cp);
7945159Sjohnlev }
7955159Sjohnlev return (error);
7965159Sjohnlev }
7975159Sjohnlev
7985159Sjohnlev static int
vcpu_config_poweron(processorid_t id)7995084Sjohnlev vcpu_config_poweron(processorid_t id)
8005084Sjohnlev {
8015084Sjohnlev cpu_t *cp;
8025084Sjohnlev int oldstate;
8035084Sjohnlev int error;
8045084Sjohnlev
8055084Sjohnlev if (id >= ncpus)
8065084Sjohnlev return (vcpu_config_new(id));
8075084Sjohnlev
8085084Sjohnlev mutex_enter(&cpu_lock);
8095084Sjohnlev
8105084Sjohnlev if ((cp = cpu_get(id)) == NULL) {
8115084Sjohnlev mutex_exit(&cpu_lock);
8125084Sjohnlev return (ESRCH);
8135084Sjohnlev }
8145084Sjohnlev
8155084Sjohnlev if (cpu_get_state(cp) != P_POWEROFF) {
8165084Sjohnlev mutex_exit(&cpu_lock);
8175084Sjohnlev return (0);
8185084Sjohnlev }
8195084Sjohnlev
8205084Sjohnlev if ((error = poweron_vcpu(cp)) != 0) {
8215084Sjohnlev mutex_exit(&cpu_lock);
8225084Sjohnlev return (error);
8235084Sjohnlev }
8245084Sjohnlev
8255084Sjohnlev mutex_exit(&cpu_lock);
8265084Sjohnlev
8275084Sjohnlev return (p_online_internal(id, P_ONLINE, &oldstate));
8285084Sjohnlev }
8295084Sjohnlev
8305084Sjohnlev #define REPORT_LEN 128
8315084Sjohnlev
8325084Sjohnlev static void
vcpu_config_report(processorid_t id,uint_t newstate,int error)8335084Sjohnlev vcpu_config_report(processorid_t id, uint_t newstate, int error)
8345084Sjohnlev {
8355084Sjohnlev char *report = kmem_alloc(REPORT_LEN, KM_SLEEP);
8365084Sjohnlev size_t len;
8375084Sjohnlev char *ps;
8385084Sjohnlev
8395084Sjohnlev switch (newstate) {
8405084Sjohnlev case P_ONLINE:
8415084Sjohnlev ps = PS_ONLINE;
8425084Sjohnlev break;
8435084Sjohnlev case P_POWEROFF:
8445084Sjohnlev ps = PS_POWEROFF;
8455084Sjohnlev break;
8465084Sjohnlev default:
8475084Sjohnlev cmn_err(CE_PANIC, "unknown state %u\n", newstate);
8485084Sjohnlev break;
8495084Sjohnlev }
8505084Sjohnlev
8515084Sjohnlev len = snprintf(report, REPORT_LEN,
8525084Sjohnlev "cpu%d: externally initiated %s", id, ps);
8535084Sjohnlev
8545084Sjohnlev if (!error) {
8555084Sjohnlev cmn_err(CE_CONT, "!%s\n", report);
8565084Sjohnlev kmem_free(report, REPORT_LEN);
8575084Sjohnlev return;
8585084Sjohnlev }
8595084Sjohnlev
8605084Sjohnlev len += snprintf(report + len, REPORT_LEN - len,
8615084Sjohnlev " failed, error %d: ", error);
8625084Sjohnlev switch (error) {
8635084Sjohnlev case EEXIST:
8645084Sjohnlev len += snprintf(report + len, REPORT_LEN - len,
8655084Sjohnlev "cpu already %s", ps ? ps : "?");
8665084Sjohnlev break;
8675084Sjohnlev case ESRCH:
8685084Sjohnlev len += snprintf(report + len, REPORT_LEN - len,
8695084Sjohnlev "cpu not found");
8705084Sjohnlev break;
8715084Sjohnlev case EINVAL:
8725084Sjohnlev case EALREADY:
8735084Sjohnlev break;
8745084Sjohnlev case EPERM:
8755084Sjohnlev len += snprintf(report + len, REPORT_LEN - len,
8765084Sjohnlev "insufficient privilege (0x%x)", id);
8775084Sjohnlev break;
8785084Sjohnlev case EBUSY:
8795084Sjohnlev switch (newstate) {
8805084Sjohnlev case P_ONLINE:
8815084Sjohnlev /*
8825084Sjohnlev * This return comes from mp_cpu_start -
8835084Sjohnlev * we cannot 'start' the boot CPU.
8845084Sjohnlev */
8855084Sjohnlev len += snprintf(report + len, REPORT_LEN - len,
8865084Sjohnlev "already running");
8875084Sjohnlev break;
8885084Sjohnlev case P_POWEROFF:
8895084Sjohnlev len += snprintf(report + len, REPORT_LEN - len,
8905084Sjohnlev "bound lwps?");
8915084Sjohnlev break;
8925084Sjohnlev default:
8935084Sjohnlev break;
8945084Sjohnlev }
8955084Sjohnlev default:
8965084Sjohnlev break;
8975084Sjohnlev }
8985084Sjohnlev
8995084Sjohnlev cmn_err(CE_CONT, "%s\n", report);
9005084Sjohnlev kmem_free(report, REPORT_LEN);
9015084Sjohnlev }
9025084Sjohnlev
9035084Sjohnlev static void
vcpu_config(void * arg)9045084Sjohnlev vcpu_config(void *arg)
9055084Sjohnlev {
9065084Sjohnlev int id = (int)(uintptr_t)arg;
9075084Sjohnlev int error;
9085084Sjohnlev char dir[16];
9095084Sjohnlev char *state;
9105084Sjohnlev
9115084Sjohnlev if ((uint_t)id >= max_ncpus) {
9125084Sjohnlev cmn_err(CE_WARN,
9135084Sjohnlev "vcpu_config: cpu%d does not fit in this domain", id);
9145084Sjohnlev return;
9155084Sjohnlev }
9165084Sjohnlev
9175084Sjohnlev (void) snprintf(dir, sizeof (dir), "cpu/%d", id);
9185084Sjohnlev state = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9195084Sjohnlev if (xenbus_scanf(XBT_NULL, dir, "availability", "%s", state) == 0) {
9205084Sjohnlev if (strcmp(state, "online") == 0) {
9215084Sjohnlev error = vcpu_config_poweron(id);
9225084Sjohnlev vcpu_config_report(id, P_ONLINE, error);
9235084Sjohnlev } else if (strcmp(state, "offline") == 0) {
9245084Sjohnlev error = vcpu_config_poweroff(id);
9255084Sjohnlev vcpu_config_report(id, P_POWEROFF, error);
9265084Sjohnlev } else {
9275084Sjohnlev cmn_err(CE_WARN,
9285084Sjohnlev "cpu%d: unknown target state '%s'", id, state);
9295084Sjohnlev }
9305084Sjohnlev } else
9315084Sjohnlev cmn_err(CE_WARN,
9325084Sjohnlev "cpu%d: unable to read target state from xenstore", id);
9335084Sjohnlev
9345084Sjohnlev kmem_free(state, MAXPATHLEN);
9355084Sjohnlev }
9365084Sjohnlev
9375084Sjohnlev /*ARGSUSED*/
9385084Sjohnlev static void
vcpu_config_event(struct xenbus_watch * watch,const char ** vec,uint_t len)9395084Sjohnlev vcpu_config_event(struct xenbus_watch *watch, const char **vec, uint_t len)
9405084Sjohnlev {
9415084Sjohnlev const char *path = vec[XS_WATCH_PATH];
9425084Sjohnlev processorid_t id;
9435084Sjohnlev char *s;
9445084Sjohnlev
9455084Sjohnlev if ((s = strstr(path, "cpu/")) != NULL &&
9465084Sjohnlev sscanf(s, "cpu/%d", &id) == 1) {
9475084Sjohnlev /*
9485084Sjohnlev * Run the virtual CPU configuration on a separate thread to
9495084Sjohnlev * avoid blocking on this event for too long (and for now,
9505084Sjohnlev * to ensure configuration requests are serialized.)
9515084Sjohnlev */
9525084Sjohnlev (void) taskq_dispatch(cpu_config_tq,
9535084Sjohnlev vcpu_config, (void *)(uintptr_t)id, 0);
9545084Sjohnlev }
9555084Sjohnlev }
9565084Sjohnlev
9575084Sjohnlev static int
xen_vcpu_initialize(processorid_t id,vcpu_guest_context_t * vgc)9585084Sjohnlev xen_vcpu_initialize(processorid_t id, vcpu_guest_context_t *vgc)
9595084Sjohnlev {
9605084Sjohnlev int err;
9615084Sjohnlev
9625084Sjohnlev if ((err = HYPERVISOR_vcpu_op(VCPUOP_initialise, id, vgc)) != 0) {
9635084Sjohnlev char *str;
9645084Sjohnlev int level = CE_WARN;
9655084Sjohnlev
9665084Sjohnlev switch (err) {
9675084Sjohnlev case -X_EINVAL:
9685084Sjohnlev /*
9695084Sjohnlev * This interface squashes multiple error sources
9705084Sjohnlev * to one error code. In particular, an X_EINVAL
9715084Sjohnlev * code can mean:
9725084Sjohnlev *
9735084Sjohnlev * - the vcpu id is out of range
9745084Sjohnlev * - cs or ss are in ring 0
9755084Sjohnlev * - cr3 is wrong
9765084Sjohnlev * - an entry in the new gdt is above the
9775084Sjohnlev * reserved entry
9785084Sjohnlev * - a frame underneath the new gdt is bad
9795084Sjohnlev */
9805084Sjohnlev str = "something is wrong :(";
9815084Sjohnlev break;
9825084Sjohnlev case -X_ENOENT:
9835084Sjohnlev str = "no such cpu";
9845084Sjohnlev break;
9855084Sjohnlev case -X_ENOMEM:
9865084Sjohnlev str = "no mem to copy ctxt";
9875084Sjohnlev break;
9885084Sjohnlev case -X_EFAULT:
9895084Sjohnlev str = "bad address";
9905084Sjohnlev break;
9915084Sjohnlev case -X_EEXIST:
9925084Sjohnlev /*
9935084Sjohnlev * Hmm. This error is returned if the vcpu has already
9945084Sjohnlev * been initialized once before in the lifetime of this
9955084Sjohnlev * domain. This is a logic error in the kernel.
9965084Sjohnlev */
9975084Sjohnlev level = CE_PANIC;
9985084Sjohnlev str = "already initialized";
9995084Sjohnlev break;
10005084Sjohnlev default:
10015084Sjohnlev level = CE_PANIC;
10025084Sjohnlev str = "<unexpected>";
10035084Sjohnlev break;
10045084Sjohnlev }
10055084Sjohnlev
10065084Sjohnlev cmn_err(level, "vcpu%d: failed to init: error %d: %s",
10075084Sjohnlev id, -err, str);
10085084Sjohnlev }
10095084Sjohnlev return (err);
10105084Sjohnlev }
10115084Sjohnlev
10125084Sjohnlev long
xen_vcpu_up(processorid_t id)10135084Sjohnlev xen_vcpu_up(processorid_t id)
10145084Sjohnlev {
10155084Sjohnlev long err;
10165084Sjohnlev
10175084Sjohnlev if ((err = HYPERVISOR_vcpu_op(VCPUOP_up, id, NULL)) != 0) {
10185084Sjohnlev char *str;
10195084Sjohnlev
10205084Sjohnlev switch (err) {
10215084Sjohnlev case -X_ENOENT:
10225084Sjohnlev str = "no such cpu";
10235084Sjohnlev break;
10245084Sjohnlev case -X_EINVAL:
10255084Sjohnlev /*
10265084Sjohnlev * Perhaps this is diagnostic overkill.
10275084Sjohnlev */
10285084Sjohnlev if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) < 0)
10295084Sjohnlev str = "bad cpuid";
10305084Sjohnlev else
10315084Sjohnlev str = "not initialized";
10325084Sjohnlev break;
10335084Sjohnlev default:
10345084Sjohnlev str = "<unexpected>";
10355084Sjohnlev break;
10365084Sjohnlev }
10375084Sjohnlev
10385084Sjohnlev printf("vcpu%d: failed to start: error %d: %s\n",
10395084Sjohnlev id, -(int)err, str);
10405084Sjohnlev return (EBFONT); /* deliberately silly */
10415084Sjohnlev }
10425084Sjohnlev return (err);
10435084Sjohnlev }
10445084Sjohnlev
10455084Sjohnlev long
xen_vcpu_down(processorid_t id)10465084Sjohnlev xen_vcpu_down(processorid_t id)
10475084Sjohnlev {
10485084Sjohnlev long err;
10495084Sjohnlev
10505084Sjohnlev if ((err = HYPERVISOR_vcpu_op(VCPUOP_down, id, NULL)) != 0) {
10515084Sjohnlev /*
10525084Sjohnlev * X_ENOENT: no such cpu
10535084Sjohnlev * X_EINVAL: bad cpuid
10545084Sjohnlev */
10555084Sjohnlev panic("vcpu%d: failed to stop: error %d", id, -(int)err);
10565084Sjohnlev }
10575084Sjohnlev
10585084Sjohnlev return (err);
10595084Sjohnlev }
1060