xref: /onnv-gate/usr/src/uts/common/os/msacct.c (revision 11173:87f3734e64df)
10Sstevel@tonic-gate /*
20Sstevel@tonic-gate  * CDDL HEADER START
30Sstevel@tonic-gate  *
40Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
53426Sjohansen  * Common Development and Distribution License (the "License").
63426Sjohansen  * You may not use this file except in compliance with the License.
70Sstevel@tonic-gate  *
80Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
90Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
100Sstevel@tonic-gate  * See the License for the specific language governing permissions
110Sstevel@tonic-gate  * and limitations under the License.
120Sstevel@tonic-gate  *
130Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
140Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
150Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
160Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
170Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
180Sstevel@tonic-gate  *
190Sstevel@tonic-gate  * CDDL HEADER END
200Sstevel@tonic-gate  */
210Sstevel@tonic-gate /*
22*11173SJonathan.Adams@Sun.COM  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
230Sstevel@tonic-gate  * Use is subject to license terms.
240Sstevel@tonic-gate  */
250Sstevel@tonic-gate 
260Sstevel@tonic-gate #include <sys/types.h>
270Sstevel@tonic-gate #include <sys/param.h>
280Sstevel@tonic-gate #include <sys/systm.h>
290Sstevel@tonic-gate #include <sys/user.h>
300Sstevel@tonic-gate #include <sys/proc.h>
310Sstevel@tonic-gate #include <sys/cpuvar.h>
320Sstevel@tonic-gate #include <sys/thread.h>
330Sstevel@tonic-gate #include <sys/debug.h>
340Sstevel@tonic-gate #include <sys/msacct.h>
350Sstevel@tonic-gate #include <sys/time.h>
360Sstevel@tonic-gate 
370Sstevel@tonic-gate /*
380Sstevel@tonic-gate  * Mega-theory block comment:
390Sstevel@tonic-gate  *
400Sstevel@tonic-gate  * Microstate accounting uses finite states and the transitions between these
410Sstevel@tonic-gate  * states to measure timing and accounting information.  The state information
420Sstevel@tonic-gate  * is presently tracked for threads (via microstate accounting) and cpus (via
430Sstevel@tonic-gate  * cpu microstate accounting).  In each case, these accounting mechanisms use
440Sstevel@tonic-gate  * states and transitions to measure time spent in each state instead of
450Sstevel@tonic-gate  * clock-based sampling methodologies.
460Sstevel@tonic-gate  *
470Sstevel@tonic-gate  * For microstate accounting:
480Sstevel@tonic-gate  * state transitions are accomplished by calling new_mstate() to switch between
490Sstevel@tonic-gate  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
500Sstevel@tonic-gate  * by calling restore_mstate() which restores a thread to its previously running
510Sstevel@tonic-gate  * state.  This code is primarialy executed by the dispatcher in disp() before
520Sstevel@tonic-gate  * running a process that was put to sleep.  If the thread was not in a sleeping
530Sstevel@tonic-gate  * state, this call has little effect other than to update the count of time the
540Sstevel@tonic-gate  * thread has spent waiting on run-queues in its lifetime.
550Sstevel@tonic-gate  *
560Sstevel@tonic-gate  * For cpu microstate accounting:
570Sstevel@tonic-gate  * Cpu microstate accounting is similar to the microstate accounting for threads
580Sstevel@tonic-gate  * but it tracks user, system, and idle time for cpus.  Cpu microstate
590Sstevel@tonic-gate  * accounting does not track interrupt times as there is a pre-existing
600Sstevel@tonic-gate  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
610Sstevel@tonic-gate  * tracks time that user threads have spent active, idle, or in the system on a
620Sstevel@tonic-gate  * given cpu.  Cpu microstate accounting has fewer states which allows it to
630Sstevel@tonic-gate  * have better defined transitions.  The states transition in the following
640Sstevel@tonic-gate  * order:
650Sstevel@tonic-gate  *
660Sstevel@tonic-gate  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
670Sstevel@tonic-gate  *
680Sstevel@tonic-gate  * In order to get to the idle state, the cpu microstate must first go through
690Sstevel@tonic-gate  * the system state, and vice-versa for the user state from idle.  The switching
700Sstevel@tonic-gate  * of the microstates from user to system is done as part of the regular thread
710Sstevel@tonic-gate  * microstate accounting code, except for the idle state which is switched by
720Sstevel@tonic-gate  * the dispatcher before it runs the idle loop.
730Sstevel@tonic-gate  *
740Sstevel@tonic-gate  * Cpu percentages:
750Sstevel@tonic-gate  * Cpu percentages are now handled by and based upon microstate accounting
760Sstevel@tonic-gate  * information (the same is true for load averages).  The routines which handle
770Sstevel@tonic-gate  * the growing/shrinking and exponentiation of cpu percentages have been moved
780Sstevel@tonic-gate  * here as it now makes more sense for them to be generated from the microstate
790Sstevel@tonic-gate  * code.  Cpu percentages are generated similarly to the way they were before;
800Sstevel@tonic-gate  * however, now they are based upon high-resolution timestamps and the
810Sstevel@tonic-gate  * timestamps are modified at various state changes instead of during a clock()
820Sstevel@tonic-gate  * interrupt.  This allows us to generate more accurate cpu percentages which
830Sstevel@tonic-gate  * are also in-sync with microstate data.
840Sstevel@tonic-gate  */
850Sstevel@tonic-gate 
860Sstevel@tonic-gate /*
870Sstevel@tonic-gate  * Initialize the microstate level and the
880Sstevel@tonic-gate  * associated accounting information for an LWP.
890Sstevel@tonic-gate  */
900Sstevel@tonic-gate void
init_mstate(kthread_t * t,int init_state)910Sstevel@tonic-gate init_mstate(
920Sstevel@tonic-gate 	kthread_t	*t,
930Sstevel@tonic-gate 	int		init_state)
940Sstevel@tonic-gate {
950Sstevel@tonic-gate 	struct mstate *ms;
960Sstevel@tonic-gate 	klwp_t *lwp;
970Sstevel@tonic-gate 	hrtime_t curtime;
980Sstevel@tonic-gate 
990Sstevel@tonic-gate 	ASSERT(init_state != LMS_WAIT_CPU);
1000Sstevel@tonic-gate 	ASSERT((unsigned)init_state < NMSTATES);
1010Sstevel@tonic-gate 
1020Sstevel@tonic-gate 	if ((lwp = ttolwp(t)) != NULL) {
1030Sstevel@tonic-gate 		ms = &lwp->lwp_mstate;
1040Sstevel@tonic-gate 		curtime = gethrtime_unscaled();
1050Sstevel@tonic-gate 		ms->ms_prev = LMS_SYSTEM;
1060Sstevel@tonic-gate 		ms->ms_start = curtime;
1070Sstevel@tonic-gate 		ms->ms_term = 0;
1080Sstevel@tonic-gate 		ms->ms_state_start = curtime;
1090Sstevel@tonic-gate 		t->t_mstate = init_state;
1100Sstevel@tonic-gate 		t->t_waitrq = 0;
1110Sstevel@tonic-gate 		t->t_hrtime = curtime;
1120Sstevel@tonic-gate 		if ((t->t_proc_flag & TP_MSACCT) == 0)
1130Sstevel@tonic-gate 			t->t_proc_flag |= TP_MSACCT;
1140Sstevel@tonic-gate 		bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
1150Sstevel@tonic-gate 	}
1160Sstevel@tonic-gate }
1170Sstevel@tonic-gate 
1180Sstevel@tonic-gate /*
1190Sstevel@tonic-gate  * Initialize the microstate level and associated accounting information
1200Sstevel@tonic-gate  * for the specified cpu
1210Sstevel@tonic-gate  */
1220Sstevel@tonic-gate 
1230Sstevel@tonic-gate void
init_cpu_mstate(cpu_t * cpu,int init_state)1240Sstevel@tonic-gate init_cpu_mstate(
1250Sstevel@tonic-gate 	cpu_t *cpu,
1260Sstevel@tonic-gate 	int init_state)
1270Sstevel@tonic-gate {
1280Sstevel@tonic-gate 	ASSERT(init_state != CMS_DISABLED);
1290Sstevel@tonic-gate 
1300Sstevel@tonic-gate 	cpu->cpu_mstate = init_state;
1310Sstevel@tonic-gate 	cpu->cpu_mstate_start = gethrtime_unscaled();
1320Sstevel@tonic-gate 	cpu->cpu_waitrq = 0;
1330Sstevel@tonic-gate 	bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
1340Sstevel@tonic-gate }
1350Sstevel@tonic-gate 
1360Sstevel@tonic-gate /*
1370Sstevel@tonic-gate  * sets cpu state to OFFLINE.  We don't actually track this time,
1380Sstevel@tonic-gate  * but it serves as a useful placeholder state for when we're not
1390Sstevel@tonic-gate  * doing anything.
1400Sstevel@tonic-gate  */
1410Sstevel@tonic-gate 
1420Sstevel@tonic-gate void
term_cpu_mstate(struct cpu * cpu)1430Sstevel@tonic-gate term_cpu_mstate(struct cpu *cpu)
1440Sstevel@tonic-gate {
1450Sstevel@tonic-gate 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
1460Sstevel@tonic-gate 	cpu->cpu_mstate = CMS_DISABLED;
1470Sstevel@tonic-gate 	cpu->cpu_mstate_start = 0;
1480Sstevel@tonic-gate }
1490Sstevel@tonic-gate 
1501058Sesolom /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */
1511058Sesolom 
1521058Sesolom #define	NEW_CPU_MSTATE(state)						\
1531058Sesolom 	gen = cpu->cpu_mstate_gen;					\
1541058Sesolom 	cpu->cpu_mstate_gen = 0;					\
1551058Sesolom 	/* Need membar_producer() here if stores not ordered / TSO */	\
1561058Sesolom 	cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \
1571058Sesolom 	cpu->cpu_mstate = state;					\
1581058Sesolom 	cpu->cpu_mstate_start = curtime;				\
1591058Sesolom 	/* Need membar_producer() here if stores not ordered / TSO */	\
1601058Sesolom 	cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
1611058Sesolom 
1620Sstevel@tonic-gate void
new_cpu_mstate(int cmstate,hrtime_t curtime)163590Sesolom new_cpu_mstate(int cmstate, hrtime_t curtime)
1640Sstevel@tonic-gate {
165590Sesolom 	cpu_t *cpu = CPU;
166590Sesolom 	uint16_t gen;
1670Sstevel@tonic-gate 
1680Sstevel@tonic-gate 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
1690Sstevel@tonic-gate 	ASSERT(cmstate < NCMSTATES);
1700Sstevel@tonic-gate 	ASSERT(cmstate != CMS_DISABLED);
171590Sesolom 
172590Sesolom 	/*
173590Sesolom 	 * This function cannot be re-entrant on a given CPU. As such,
174590Sesolom 	 * we ASSERT and panic if we are called on behalf of an interrupt.
175590Sesolom 	 * The one exception is for an interrupt which has previously
176590Sesolom 	 * blocked. Such an interrupt is being scheduled by the dispatcher
177590Sesolom 	 * just like a normal thread, and as such cannot arrive here
178590Sesolom 	 * in a re-entrant manner.
179590Sesolom 	 */
180590Sesolom 
181590Sesolom 	ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
1820Sstevel@tonic-gate 	ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
1830Sstevel@tonic-gate 
184590Sesolom 	/*
185590Sesolom 	 * LOCKING, or lack thereof:
186590Sesolom 	 *
187590Sesolom 	 * Updates to CPU mstate can only be made by the CPU
188590Sesolom 	 * itself, and the above check to ignore interrupts
189590Sesolom 	 * should prevent recursion into this function on a given
190590Sesolom 	 * processor. i.e. no possible write contention.
191590Sesolom 	 *
192590Sesolom 	 * However, reads of CPU mstate can occur at any time
193590Sesolom 	 * from any CPU. Any locking added to this code path
194590Sesolom 	 * would seriously impact syscall performance. So,
195590Sesolom 	 * instead we have a best-effort protection for readers.
196590Sesolom 	 * The reader will want to account for any time between
197590Sesolom 	 * cpu_mstate_start and the present time. This requires
198590Sesolom 	 * some guarantees that the reader is getting coherent
199590Sesolom 	 * information.
200590Sesolom 	 *
201590Sesolom 	 * We use a generation counter, which is set to 0 before
202590Sesolom 	 * we start making changes, and is set to a new value
203590Sesolom 	 * after we're done. Someone reading the CPU mstate
204590Sesolom 	 * should check for the same non-zero value of this
205590Sesolom 	 * counter both before and after reading all state. The
206590Sesolom 	 * important point is that the reader is not a
207590Sesolom 	 * performance-critical path, but this function is.
2081058Sesolom 	 *
2091058Sesolom 	 * The ordering of writes is critical. cpu_mstate_gen must
2101058Sesolom 	 * be visibly zero on all CPUs before we change cpu_mstate
2111058Sesolom 	 * and cpu_mstate_start. Additionally, cpu_mstate_gen must
2121058Sesolom 	 * not be restored to oldgen+1 until after all of the other
2131058Sesolom 	 * writes have become visible.
2141058Sesolom 	 *
2151058Sesolom 	 * Normally one puts membar_producer() calls to accomplish
2161058Sesolom 	 * this. Unfortunately this routine is extremely performance
2171058Sesolom 	 * critical (esp. in syscall_mstate below) and we cannot
2181058Sesolom 	 * afford the additional time, particularly on some x86
2191058Sesolom 	 * architectures with extremely slow sfence calls. On a
2201058Sesolom 	 * CPU which guarantees write ordering (including sparc, x86,
2211058Sesolom 	 * and amd64) this is not a problem. The compiler could still
2221058Sesolom 	 * reorder the writes, so we make the four cpu fields
2231058Sesolom 	 * volatile to prevent this.
2241058Sesolom 	 *
2251058Sesolom 	 * TSO warning: should we port to a non-TSO (or equivalent)
2261058Sesolom 	 * CPU, this will break.
2271058Sesolom 	 *
2281058Sesolom 	 * The reader stills needs the membar_consumer() calls because,
2291058Sesolom 	 * although the volatiles prevent the compiler from reordering
2301058Sesolom 	 * loads, the CPU can still do so.
231590Sesolom 	 */
232590Sesolom 
2331058Sesolom 	NEW_CPU_MSTATE(cmstate);
2340Sstevel@tonic-gate }
2350Sstevel@tonic-gate 
2360Sstevel@tonic-gate /*
2373792Sakolb  * Return an aggregation of user and system CPU time consumed by
2383792Sakolb  * the specified thread in scaled nanoseconds.
2393792Sakolb  */
2403792Sakolb hrtime_t
mstate_thread_onproc_time(kthread_t * t)2413792Sakolb mstate_thread_onproc_time(kthread_t *t)
2423792Sakolb {
2433792Sakolb 	hrtime_t aggr_time;
2443792Sakolb 	hrtime_t now;
245*11173SJonathan.Adams@Sun.COM 	hrtime_t waitrq;
2463792Sakolb 	hrtime_t state_start;
2473792Sakolb 	struct mstate *ms;
2483792Sakolb 	klwp_t *lwp;
2493792Sakolb 	int	mstate;
2503792Sakolb 
2513792Sakolb 	ASSERT(THREAD_LOCK_HELD(t));
2523792Sakolb 
2533792Sakolb 	if ((lwp = ttolwp(t)) == NULL)
2543792Sakolb 		return (0);
2553792Sakolb 
2563792Sakolb 	mstate = t->t_mstate;
257*11173SJonathan.Adams@Sun.COM 	waitrq = t->t_waitrq;
2583792Sakolb 	ms = &lwp->lwp_mstate;
2593792Sakolb 	state_start = ms->ms_state_start;
2603792Sakolb 
2613792Sakolb 	aggr_time = ms->ms_acct[LMS_USER] +
2623792Sakolb 	    ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
2633792Sakolb 
2643792Sakolb 	now = gethrtime_unscaled();
2653792Sakolb 
2663792Sakolb 	/*
2673792Sakolb 	 * NOTE: gethrtime_unscaled on X86 taken on different CPUs is
2683792Sakolb 	 * inconsistent, so it is possible that now < state_start.
2693792Sakolb 	 */
270*11173SJonathan.Adams@Sun.COM 	if (mstate == LMS_USER || mstate == LMS_SYSTEM || mstate == LMS_TRAP) {
271*11173SJonathan.Adams@Sun.COM 		/* if waitrq is zero, count all of the time. */
272*11173SJonathan.Adams@Sun.COM 		if (waitrq == 0) {
273*11173SJonathan.Adams@Sun.COM 			waitrq = now;
274*11173SJonathan.Adams@Sun.COM 		}
275*11173SJonathan.Adams@Sun.COM 
276*11173SJonathan.Adams@Sun.COM 		if (waitrq > state_start) {
277*11173SJonathan.Adams@Sun.COM 			aggr_time += waitrq - state_start;
278*11173SJonathan.Adams@Sun.COM 		}
2793792Sakolb 	}
2803792Sakolb 
2813792Sakolb 	scalehrtime(&aggr_time);
2823792Sakolb 	return (aggr_time);
2833792Sakolb }
2843792Sakolb 
2853792Sakolb /*
286*11173SJonathan.Adams@Sun.COM  * Return the amount of onproc and runnable time this thread has experienced.
287*11173SJonathan.Adams@Sun.COM  *
288*11173SJonathan.Adams@Sun.COM  * Because the fields we read are not protected by locks when updated
289*11173SJonathan.Adams@Sun.COM  * by the thread itself, this is an inherently racey interface.  In
290*11173SJonathan.Adams@Sun.COM  * particular, the ASSERT(THREAD_LOCK_HELD(t)) doesn't guarantee as much
291*11173SJonathan.Adams@Sun.COM  * as it might appear to.
292*11173SJonathan.Adams@Sun.COM  *
293*11173SJonathan.Adams@Sun.COM  * The implication for users of this interface is that onproc and runnable
294*11173SJonathan.Adams@Sun.COM  * are *NOT* monotonically increasing; they may temporarily be larger than
295*11173SJonathan.Adams@Sun.COM  * they should be.
296*11173SJonathan.Adams@Sun.COM  */
297*11173SJonathan.Adams@Sun.COM void
mstate_systhread_times(kthread_t * t,hrtime_t * onproc,hrtime_t * runnable)298*11173SJonathan.Adams@Sun.COM mstate_systhread_times(kthread_t *t, hrtime_t *onproc, hrtime_t *runnable)
299*11173SJonathan.Adams@Sun.COM {
300*11173SJonathan.Adams@Sun.COM 	struct mstate	*const	ms = &ttolwp(t)->lwp_mstate;
301*11173SJonathan.Adams@Sun.COM 
302*11173SJonathan.Adams@Sun.COM 	int		mstate;
303*11173SJonathan.Adams@Sun.COM 	hrtime_t	now;
304*11173SJonathan.Adams@Sun.COM 	hrtime_t	state_start;
305*11173SJonathan.Adams@Sun.COM 	hrtime_t	waitrq;
306*11173SJonathan.Adams@Sun.COM 	hrtime_t	aggr_onp;
307*11173SJonathan.Adams@Sun.COM 	hrtime_t	aggr_run;
308*11173SJonathan.Adams@Sun.COM 
309*11173SJonathan.Adams@Sun.COM 	ASSERT(THREAD_LOCK_HELD(t));
310*11173SJonathan.Adams@Sun.COM 	ASSERT(t->t_procp->p_flag & SSYS);
311*11173SJonathan.Adams@Sun.COM 	ASSERT(ttolwp(t) != NULL);
312*11173SJonathan.Adams@Sun.COM 
313*11173SJonathan.Adams@Sun.COM 	/* shouldn't be any non-SYSTEM on-CPU time */
314*11173SJonathan.Adams@Sun.COM 	ASSERT(ms->ms_acct[LMS_USER] == 0);
315*11173SJonathan.Adams@Sun.COM 	ASSERT(ms->ms_acct[LMS_TRAP] == 0);
316*11173SJonathan.Adams@Sun.COM 
317*11173SJonathan.Adams@Sun.COM 	mstate = t->t_mstate;
318*11173SJonathan.Adams@Sun.COM 	waitrq = t->t_waitrq;
319*11173SJonathan.Adams@Sun.COM 	state_start = ms->ms_state_start;
320*11173SJonathan.Adams@Sun.COM 
321*11173SJonathan.Adams@Sun.COM 	aggr_onp = ms->ms_acct[LMS_SYSTEM];
322*11173SJonathan.Adams@Sun.COM 	aggr_run = ms->ms_acct[LMS_WAIT_CPU];
323*11173SJonathan.Adams@Sun.COM 
324*11173SJonathan.Adams@Sun.COM 	now = gethrtime_unscaled();
325*11173SJonathan.Adams@Sun.COM 
326*11173SJonathan.Adams@Sun.COM 	/* if waitrq == 0, then there is no time to account to TS_RUN */
327*11173SJonathan.Adams@Sun.COM 	if (waitrq == 0)
328*11173SJonathan.Adams@Sun.COM 		waitrq = now;
329*11173SJonathan.Adams@Sun.COM 
330*11173SJonathan.Adams@Sun.COM 	/* If there is system time to accumulate, do so */
331*11173SJonathan.Adams@Sun.COM 	if (mstate == LMS_SYSTEM && state_start < waitrq)
332*11173SJonathan.Adams@Sun.COM 		aggr_onp += waitrq - state_start;
333*11173SJonathan.Adams@Sun.COM 
334*11173SJonathan.Adams@Sun.COM 	if (waitrq < now)
335*11173SJonathan.Adams@Sun.COM 		aggr_run += now - waitrq;
336*11173SJonathan.Adams@Sun.COM 
337*11173SJonathan.Adams@Sun.COM 	scalehrtime(&aggr_onp);
338*11173SJonathan.Adams@Sun.COM 	scalehrtime(&aggr_run);
339*11173SJonathan.Adams@Sun.COM 
340*11173SJonathan.Adams@Sun.COM 	*onproc = aggr_onp;
341*11173SJonathan.Adams@Sun.COM 	*runnable = aggr_run;
342*11173SJonathan.Adams@Sun.COM }
343*11173SJonathan.Adams@Sun.COM 
344*11173SJonathan.Adams@Sun.COM /*
3450Sstevel@tonic-gate  * Return an aggregation of microstate times in scaled nanoseconds (high-res
3460Sstevel@tonic-gate  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
3470Sstevel@tonic-gate  * not.
3480Sstevel@tonic-gate  */
3490Sstevel@tonic-gate hrtime_t
mstate_aggr_state(proc_t * p,int a_state)3500Sstevel@tonic-gate mstate_aggr_state(proc_t *p, int a_state)
3510Sstevel@tonic-gate {
3520Sstevel@tonic-gate 	struct mstate *ms;
3530Sstevel@tonic-gate 	kthread_t *t;
3540Sstevel@tonic-gate 	klwp_t *lwp;
3550Sstevel@tonic-gate 	hrtime_t aggr_time;
3560Sstevel@tonic-gate 	hrtime_t scaledtime;
3570Sstevel@tonic-gate 
3580Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&p->p_lock));
3590Sstevel@tonic-gate 	ASSERT((unsigned)a_state < NMSTATES);
3600Sstevel@tonic-gate 
3610Sstevel@tonic-gate 	aggr_time = p->p_acct[a_state];
3620Sstevel@tonic-gate 	if (a_state == LMS_SYSTEM)
3630Sstevel@tonic-gate 		aggr_time += p->p_acct[LMS_TRAP];
3640Sstevel@tonic-gate 
3650Sstevel@tonic-gate 	t = p->p_tlist;
3660Sstevel@tonic-gate 	if (t == NULL)
3670Sstevel@tonic-gate 		return (aggr_time);
3680Sstevel@tonic-gate 
3690Sstevel@tonic-gate 	do {
3700Sstevel@tonic-gate 		if (t->t_proc_flag & TP_LWPEXIT)
3710Sstevel@tonic-gate 			continue;
3720Sstevel@tonic-gate 
3730Sstevel@tonic-gate 		lwp = ttolwp(t);
3740Sstevel@tonic-gate 		ms = &lwp->lwp_mstate;
3750Sstevel@tonic-gate 		scaledtime = ms->ms_acct[a_state];
3760Sstevel@tonic-gate 		scalehrtime(&scaledtime);
3770Sstevel@tonic-gate 		aggr_time += scaledtime;
3780Sstevel@tonic-gate 		if (a_state == LMS_SYSTEM) {
3790Sstevel@tonic-gate 			scaledtime = ms->ms_acct[LMS_TRAP];
3800Sstevel@tonic-gate 			scalehrtime(&scaledtime);
3810Sstevel@tonic-gate 			aggr_time += scaledtime;
3820Sstevel@tonic-gate 		}
3830Sstevel@tonic-gate 	} while ((t = t->t_forw) != p->p_tlist);
3840Sstevel@tonic-gate 
3850Sstevel@tonic-gate 	return (aggr_time);
3860Sstevel@tonic-gate }
3870Sstevel@tonic-gate 
3881058Sesolom 
3890Sstevel@tonic-gate void
syscall_mstate(int fromms,int toms)3900Sstevel@tonic-gate syscall_mstate(int fromms, int toms)
3910Sstevel@tonic-gate {
3920Sstevel@tonic-gate 	kthread_t *t = curthread;
3930Sstevel@tonic-gate 	struct mstate *ms;
3940Sstevel@tonic-gate 	hrtime_t *mstimep;
3950Sstevel@tonic-gate 	hrtime_t curtime;
3960Sstevel@tonic-gate 	klwp_t *lwp;
3970Sstevel@tonic-gate 	hrtime_t newtime;
3981058Sesolom 	cpu_t *cpu;
3991058Sesolom 	uint16_t gen;
4000Sstevel@tonic-gate 
4010Sstevel@tonic-gate 	if ((lwp = ttolwp(t)) == NULL)
4020Sstevel@tonic-gate 		return;
4030Sstevel@tonic-gate 
4040Sstevel@tonic-gate 	ASSERT(fromms < NMSTATES);
4050Sstevel@tonic-gate 	ASSERT(toms < NMSTATES);
4060Sstevel@tonic-gate 
4070Sstevel@tonic-gate 	ms = &lwp->lwp_mstate;
4080Sstevel@tonic-gate 	mstimep = &ms->ms_acct[fromms];
4090Sstevel@tonic-gate 	curtime = gethrtime_unscaled();
4100Sstevel@tonic-gate 	newtime = curtime - ms->ms_state_start;
4110Sstevel@tonic-gate 	while (newtime < 0) {
4120Sstevel@tonic-gate 		curtime = gethrtime_unscaled();
4130Sstevel@tonic-gate 		newtime = curtime - ms->ms_state_start;
4140Sstevel@tonic-gate 	}
4150Sstevel@tonic-gate 	*mstimep += newtime;
4160Sstevel@tonic-gate 	t->t_mstate = toms;
4170Sstevel@tonic-gate 	ms->ms_state_start = curtime;
4180Sstevel@tonic-gate 	ms->ms_prev = fromms;
419590Sesolom 	kpreempt_disable(); /* don't change CPU while changing CPU's state */
4201058Sesolom 	cpu = CPU;
4211058Sesolom 	ASSERT(cpu == t->t_cpu);
4221058Sesolom 	if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) {
4231058Sesolom 		NEW_CPU_MSTATE(CMS_SYSTEM);
4241058Sesolom 	} else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) {
4251058Sesolom 		NEW_CPU_MSTATE(CMS_USER);
4261058Sesolom 	}
4270Sstevel@tonic-gate 	kpreempt_enable();
4280Sstevel@tonic-gate }
4290Sstevel@tonic-gate 
4301058Sesolom #undef NEW_CPU_MSTATE
4311058Sesolom 
4320Sstevel@tonic-gate /*
4330Sstevel@tonic-gate  * The following is for computing the percentage of cpu time used recently
4340Sstevel@tonic-gate  * by an lwp.  The function cpu_decay() is also called from /proc code.
4350Sstevel@tonic-gate  *
4360Sstevel@tonic-gate  * exp_x(x):
4370Sstevel@tonic-gate  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
4380Sstevel@tonic-gate  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
4390Sstevel@tonic-gate  *
4400Sstevel@tonic-gate  * Scaling for 64-bit scaled integer:
4410Sstevel@tonic-gate  * The binary point is to the right of the high-order bit
4420Sstevel@tonic-gate  * of the low-order 32-bit word.
4430Sstevel@tonic-gate  */
4440Sstevel@tonic-gate 
4450Sstevel@tonic-gate #define	LSHIFT	31
4460Sstevel@tonic-gate #define	LSI_ONE	((uint32_t)1 << LSHIFT)	/* 32-bit scaled integer 1 */
4470Sstevel@tonic-gate 
4480Sstevel@tonic-gate #ifdef DEBUG
4490Sstevel@tonic-gate uint_t expx_cnt = 0;	/* number of calls to exp_x() */
4500Sstevel@tonic-gate uint_t expx_mul = 0;	/* number of long multiplies in exp_x() */
4510Sstevel@tonic-gate #endif
4520Sstevel@tonic-gate 
4530Sstevel@tonic-gate static uint64_t
exp_x(uint64_t x)4540Sstevel@tonic-gate exp_x(uint64_t x)
4550Sstevel@tonic-gate {
4560Sstevel@tonic-gate 	int i;
4570Sstevel@tonic-gate 	uint64_t ull;
4580Sstevel@tonic-gate 	uint32_t ui;
4590Sstevel@tonic-gate 
4600Sstevel@tonic-gate #ifdef DEBUG
4610Sstevel@tonic-gate 	expx_cnt++;
4620Sstevel@tonic-gate #endif
4630Sstevel@tonic-gate 	/*
4640Sstevel@tonic-gate 	 * By the formula:
4650Sstevel@tonic-gate 	 *	exp(-x) = exp(-x/2) * exp(-x/2)
4660Sstevel@tonic-gate 	 * we keep halving x until it becomes small enough for
4670Sstevel@tonic-gate 	 * the following approximation to be accurate enough:
4680Sstevel@tonic-gate 	 *	exp(-x) = 1 - x
4690Sstevel@tonic-gate 	 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
4700Sstevel@tonic-gate 	 * Our final error will be smaller than 4% .
4710Sstevel@tonic-gate 	 */
4720Sstevel@tonic-gate 
4730Sstevel@tonic-gate 	/*
4740Sstevel@tonic-gate 	 * Use a uint64_t for the initial shift calculation.
4750Sstevel@tonic-gate 	 */
4760Sstevel@tonic-gate 	ull = x >> (LSHIFT-2);
4770Sstevel@tonic-gate 
4780Sstevel@tonic-gate 	/*
4790Sstevel@tonic-gate 	 * Short circuit:
4800Sstevel@tonic-gate 	 * A number this large produces effectively 0 (actually .005).
4810Sstevel@tonic-gate 	 * This way, we will never do more than 5 multiplies.
4820Sstevel@tonic-gate 	 */
4830Sstevel@tonic-gate 	if (ull >= (1 << 5))
4840Sstevel@tonic-gate 		return (0);
4850Sstevel@tonic-gate 
4860Sstevel@tonic-gate 	ui = ull;	/* OK.  Now we can use a uint_t. */
4870Sstevel@tonic-gate 	for (i = 0; ui != 0; i++)
4880Sstevel@tonic-gate 		ui >>= 1;
4890Sstevel@tonic-gate 
4900Sstevel@tonic-gate 	if (i != 0) {
4910Sstevel@tonic-gate #ifdef DEBUG
4920Sstevel@tonic-gate 		expx_mul += i;	/* seldom happens */
4930Sstevel@tonic-gate #endif
4940Sstevel@tonic-gate 		x >>= i;
4950Sstevel@tonic-gate 	}
4960Sstevel@tonic-gate 
4970Sstevel@tonic-gate 	/*
4980Sstevel@tonic-gate 	 * Now we compute 1 - x and square it the number of times
4990Sstevel@tonic-gate 	 * that we halved x above to produce the final result:
5000Sstevel@tonic-gate 	 */
5010Sstevel@tonic-gate 	x = LSI_ONE - x;
5020Sstevel@tonic-gate 	while (i--)
5030Sstevel@tonic-gate 		x = (x * x) >> LSHIFT;
5040Sstevel@tonic-gate 
5050Sstevel@tonic-gate 	return (x);
5060Sstevel@tonic-gate }
5070Sstevel@tonic-gate 
5080Sstevel@tonic-gate /*
5090Sstevel@tonic-gate  * Given the old percent cpu and a time delta in nanoseconds,
5100Sstevel@tonic-gate  * return the new decayed percent cpu:  pct * exp(-tau),
5110Sstevel@tonic-gate  * where 'tau' is the time delta multiplied by a decay factor.
5120Sstevel@tonic-gate  * We have chosen the decay factor (cpu_decay_factor in param.c)
5130Sstevel@tonic-gate  * to make the decay over five seconds be approximately 20%.
5140Sstevel@tonic-gate  *
5150Sstevel@tonic-gate  * 'pct' is a 32-bit scaled integer <= 1
5160Sstevel@tonic-gate  * The binary point is to the right of the high-order bit
5170Sstevel@tonic-gate  * of the 32-bit word.
5180Sstevel@tonic-gate  */
5190Sstevel@tonic-gate static uint32_t
cpu_decay(uint32_t pct,hrtime_t nsec)5200Sstevel@tonic-gate cpu_decay(uint32_t pct, hrtime_t nsec)
5210Sstevel@tonic-gate {
5220Sstevel@tonic-gate 	uint64_t delta = (uint64_t)nsec;
5230Sstevel@tonic-gate 
5240Sstevel@tonic-gate 	delta /= cpu_decay_factor;
5250Sstevel@tonic-gate 	return ((pct * exp_x(delta)) >> LSHIFT);
5260Sstevel@tonic-gate }
5270Sstevel@tonic-gate 
5280Sstevel@tonic-gate /*
5290Sstevel@tonic-gate  * Given the old percent cpu and a time delta in nanoseconds,
5300Sstevel@tonic-gate  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
5310Sstevel@tonic-gate  */
5320Sstevel@tonic-gate static uint32_t
cpu_grow(uint32_t pct,hrtime_t nsec)5330Sstevel@tonic-gate cpu_grow(uint32_t pct, hrtime_t nsec)
5340Sstevel@tonic-gate {
5350Sstevel@tonic-gate 	return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
5360Sstevel@tonic-gate }
5370Sstevel@tonic-gate 
5380Sstevel@tonic-gate 
5390Sstevel@tonic-gate /*
5400Sstevel@tonic-gate  * Defined to determine whether a lwp is still on a processor.
5410Sstevel@tonic-gate  */
5420Sstevel@tonic-gate 
5430Sstevel@tonic-gate #define	T_ONPROC(kt)	\
5440Sstevel@tonic-gate 	((kt)->t_mstate < LMS_SLEEP)
5450Sstevel@tonic-gate #define	T_OFFPROC(kt)	\
5460Sstevel@tonic-gate 	((kt)->t_mstate >= LMS_SLEEP)
5470Sstevel@tonic-gate 
5480Sstevel@tonic-gate uint_t
cpu_update_pct(kthread_t * t,hrtime_t newtime)5490Sstevel@tonic-gate cpu_update_pct(kthread_t *t, hrtime_t newtime)
5500Sstevel@tonic-gate {
5510Sstevel@tonic-gate 	hrtime_t delta;
5520Sstevel@tonic-gate 	hrtime_t hrlb;
5530Sstevel@tonic-gate 	uint_t pctcpu;
5540Sstevel@tonic-gate 	uint_t npctcpu;
5550Sstevel@tonic-gate 
5560Sstevel@tonic-gate 	/*
5570Sstevel@tonic-gate 	 * This routine can get called at PIL > 0, this *has* to be
5580Sstevel@tonic-gate 	 * done atomically. Holding locks here causes bad things to happen.
5590Sstevel@tonic-gate 	 * (read: deadlock).
5600Sstevel@tonic-gate 	 */
5610Sstevel@tonic-gate 
5620Sstevel@tonic-gate 	do {
5630Sstevel@tonic-gate 		if (T_ONPROC(t) && t->t_waitrq == 0) {
5640Sstevel@tonic-gate 			hrlb = t->t_hrtime;
5650Sstevel@tonic-gate 			delta = newtime - hrlb;
5660Sstevel@tonic-gate 			if (delta < 0) {
5670Sstevel@tonic-gate 				newtime = gethrtime_unscaled();
5680Sstevel@tonic-gate 				delta = newtime - hrlb;
5690Sstevel@tonic-gate 			}
5700Sstevel@tonic-gate 			t->t_hrtime = newtime;
5710Sstevel@tonic-gate 			scalehrtime(&delta);
5720Sstevel@tonic-gate 			pctcpu = t->t_pctcpu;
5730Sstevel@tonic-gate 			npctcpu = cpu_grow(pctcpu, delta);
5740Sstevel@tonic-gate 		} else {
5750Sstevel@tonic-gate 			hrlb = t->t_hrtime;
5760Sstevel@tonic-gate 			delta = newtime - hrlb;
5770Sstevel@tonic-gate 			if (delta < 0) {
5780Sstevel@tonic-gate 				newtime = gethrtime_unscaled();
5790Sstevel@tonic-gate 				delta = newtime - hrlb;
5800Sstevel@tonic-gate 			}
5810Sstevel@tonic-gate 			t->t_hrtime = newtime;
5820Sstevel@tonic-gate 			scalehrtime(&delta);
5830Sstevel@tonic-gate 			pctcpu = t->t_pctcpu;
5840Sstevel@tonic-gate 			npctcpu = cpu_decay(pctcpu, delta);
5850Sstevel@tonic-gate 		}
5860Sstevel@tonic-gate 	} while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
5870Sstevel@tonic-gate 
5880Sstevel@tonic-gate 	return (npctcpu);
5890Sstevel@tonic-gate }
5900Sstevel@tonic-gate 
5910Sstevel@tonic-gate /*
5920Sstevel@tonic-gate  * Change the microstate level for the LWP and update the
5930Sstevel@tonic-gate  * associated accounting information.  Return the previous
5940Sstevel@tonic-gate  * LWP state.
5950Sstevel@tonic-gate  */
5960Sstevel@tonic-gate int
new_mstate(kthread_t * t,int new_state)5970Sstevel@tonic-gate new_mstate(kthread_t *t, int new_state)
5980Sstevel@tonic-gate {
5990Sstevel@tonic-gate 	struct mstate *ms;
6000Sstevel@tonic-gate 	unsigned state;
6010Sstevel@tonic-gate 	hrtime_t *mstimep;
6020Sstevel@tonic-gate 	hrtime_t curtime;
6030Sstevel@tonic-gate 	hrtime_t newtime;
6040Sstevel@tonic-gate 	hrtime_t oldtime;
6050Sstevel@tonic-gate 	klwp_t *lwp;
6060Sstevel@tonic-gate 
6070Sstevel@tonic-gate 	ASSERT(new_state != LMS_WAIT_CPU);
6080Sstevel@tonic-gate 	ASSERT((unsigned)new_state < NMSTATES);
6090Sstevel@tonic-gate 	ASSERT(t == curthread || THREAD_LOCK_HELD(t));
6100Sstevel@tonic-gate 
6114071Sjohansen 	/*
6124071Sjohansen 	 * Don't do microstate processing for threads without a lwp (kernel
6134071Sjohansen 	 * threads).  Also, if we're an interrupt thread that is pinning another
6144071Sjohansen 	 * thread, our t_mstate hasn't been initialized.  We'd be modifying the
6154071Sjohansen 	 * microstate of the underlying lwp which doesn't realize that it's
6164071Sjohansen 	 * pinned.  In this case, also don't change the microstate.
6174071Sjohansen 	 */
6184071Sjohansen 	if (((lwp = ttolwp(t)) == NULL) || t->t_intr)
6190Sstevel@tonic-gate 		return (LMS_SYSTEM);
6200Sstevel@tonic-gate 
6210Sstevel@tonic-gate 	curtime = gethrtime_unscaled();
6220Sstevel@tonic-gate 
6230Sstevel@tonic-gate 	/* adjust cpu percentages before we go any further */
6240Sstevel@tonic-gate 	(void) cpu_update_pct(t, curtime);
6250Sstevel@tonic-gate 
6260Sstevel@tonic-gate 	ms = &lwp->lwp_mstate;
6270Sstevel@tonic-gate 	state = t->t_mstate;
6280Sstevel@tonic-gate 	do {
6290Sstevel@tonic-gate 		switch (state) {
6300Sstevel@tonic-gate 		case LMS_TFAULT:
6310Sstevel@tonic-gate 		case LMS_DFAULT:
6320Sstevel@tonic-gate 		case LMS_KFAULT:
6330Sstevel@tonic-gate 		case LMS_USER_LOCK:
6340Sstevel@tonic-gate 			mstimep = &ms->ms_acct[LMS_SYSTEM];
6350Sstevel@tonic-gate 			break;
6360Sstevel@tonic-gate 		default:
6370Sstevel@tonic-gate 			mstimep = &ms->ms_acct[state];
6380Sstevel@tonic-gate 			break;
6390Sstevel@tonic-gate 		}
6400Sstevel@tonic-gate 		newtime = curtime - ms->ms_state_start;
6410Sstevel@tonic-gate 		if (newtime < 0) {
6420Sstevel@tonic-gate 			curtime = gethrtime_unscaled();
6430Sstevel@tonic-gate 			oldtime = *mstimep - 1; /* force CAS to fail */
6440Sstevel@tonic-gate 			continue;
6450Sstevel@tonic-gate 		}
6460Sstevel@tonic-gate 		oldtime = *mstimep;
6470Sstevel@tonic-gate 		newtime += oldtime;
6480Sstevel@tonic-gate 		t->t_mstate = new_state;
6490Sstevel@tonic-gate 		ms->ms_state_start = curtime;
6500Sstevel@tonic-gate 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
6510Sstevel@tonic-gate 	/*
6520Sstevel@tonic-gate 	 * Remember the previous running microstate.
6530Sstevel@tonic-gate 	 */
6540Sstevel@tonic-gate 	if (state != LMS_SLEEP && state != LMS_STOPPED)
6550Sstevel@tonic-gate 		ms->ms_prev = state;
6560Sstevel@tonic-gate 
6570Sstevel@tonic-gate 	/*
6580Sstevel@tonic-gate 	 * Switch CPU microstate if appropriate
6590Sstevel@tonic-gate 	 */
660590Sesolom 
6610Sstevel@tonic-gate 	kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
662590Sesolom 	ASSERT(t->t_cpu == CPU);
663590Sesolom 	if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
664590Sesolom 		if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
665590Sesolom 			new_cpu_mstate(CMS_USER, curtime);
666590Sesolom 		else if (new_state != LMS_USER &&
667590Sesolom 		    t->t_cpu->cpu_mstate != CMS_SYSTEM)
668590Sesolom 			new_cpu_mstate(CMS_SYSTEM, curtime);
6690Sstevel@tonic-gate 	}
6700Sstevel@tonic-gate 	kpreempt_enable();
6710Sstevel@tonic-gate 
6720Sstevel@tonic-gate 	return (ms->ms_prev);
6730Sstevel@tonic-gate }
6740Sstevel@tonic-gate 
6750Sstevel@tonic-gate /*
6760Sstevel@tonic-gate  * Restore the LWP microstate to the previous runnable state.
6770Sstevel@tonic-gate  * Called from disp() with the newly selected lwp.
6780Sstevel@tonic-gate  */
6790Sstevel@tonic-gate void
restore_mstate(kthread_t * t)6800Sstevel@tonic-gate restore_mstate(kthread_t *t)
6810Sstevel@tonic-gate {
6820Sstevel@tonic-gate 	struct mstate *ms;
6830Sstevel@tonic-gate 	hrtime_t *mstimep;
6840Sstevel@tonic-gate 	klwp_t *lwp;
6850Sstevel@tonic-gate 	hrtime_t curtime;
6860Sstevel@tonic-gate 	hrtime_t waitrq;
6870Sstevel@tonic-gate 	hrtime_t newtime;
6880Sstevel@tonic-gate 	hrtime_t oldtime;
6890Sstevel@tonic-gate 
6904071Sjohansen 	/*
6914071Sjohansen 	 * Don't call restore mstate of threads without lwps.  (Kernel threads)
6924071Sjohansen 	 *
6934071Sjohansen 	 * threads with t_intr set shouldn't be in the dispatcher, so assert
6944071Sjohansen 	 * that nobody here has t_intr.
6954071Sjohansen 	 */
6964071Sjohansen 	ASSERT(t->t_intr == NULL);
6974071Sjohansen 
6980Sstevel@tonic-gate 	if ((lwp = ttolwp(t)) == NULL)
6990Sstevel@tonic-gate 		return;
7000Sstevel@tonic-gate 
7010Sstevel@tonic-gate 	curtime = gethrtime_unscaled();
7020Sstevel@tonic-gate 	(void) cpu_update_pct(t, curtime);
7030Sstevel@tonic-gate 	ms = &lwp->lwp_mstate;
7040Sstevel@tonic-gate 	ASSERT((unsigned)t->t_mstate < NMSTATES);
7050Sstevel@tonic-gate 	do {
7060Sstevel@tonic-gate 		switch (t->t_mstate) {
7070Sstevel@tonic-gate 		case LMS_SLEEP:
7080Sstevel@tonic-gate 			/*
7090Sstevel@tonic-gate 			 * Update the timer for the current sleep state.
7100Sstevel@tonic-gate 			 */
7110Sstevel@tonic-gate 			ASSERT((unsigned)ms->ms_prev < NMSTATES);
7120Sstevel@tonic-gate 			switch (ms->ms_prev) {
7130Sstevel@tonic-gate 			case LMS_TFAULT:
7140Sstevel@tonic-gate 			case LMS_DFAULT:
7150Sstevel@tonic-gate 			case LMS_KFAULT:
7160Sstevel@tonic-gate 			case LMS_USER_LOCK:
7170Sstevel@tonic-gate 				mstimep = &ms->ms_acct[ms->ms_prev];
7180Sstevel@tonic-gate 				break;
7190Sstevel@tonic-gate 			default:
7200Sstevel@tonic-gate 				mstimep = &ms->ms_acct[LMS_SLEEP];
7210Sstevel@tonic-gate 				break;
7220Sstevel@tonic-gate 			}
7230Sstevel@tonic-gate 			/*
7240Sstevel@tonic-gate 			 * Return to the previous run state.
7250Sstevel@tonic-gate 			 */
7260Sstevel@tonic-gate 			t->t_mstate = ms->ms_prev;
7270Sstevel@tonic-gate 			break;
7280Sstevel@tonic-gate 		case LMS_STOPPED:
7290Sstevel@tonic-gate 			mstimep = &ms->ms_acct[LMS_STOPPED];
7300Sstevel@tonic-gate 			/*
7310Sstevel@tonic-gate 			 * Return to the previous run state.
7320Sstevel@tonic-gate 			 */
7330Sstevel@tonic-gate 			t->t_mstate = ms->ms_prev;
7340Sstevel@tonic-gate 			break;
7350Sstevel@tonic-gate 		case LMS_TFAULT:
7360Sstevel@tonic-gate 		case LMS_DFAULT:
7370Sstevel@tonic-gate 		case LMS_KFAULT:
7380Sstevel@tonic-gate 		case LMS_USER_LOCK:
7390Sstevel@tonic-gate 			mstimep = &ms->ms_acct[LMS_SYSTEM];
7400Sstevel@tonic-gate 			break;
7410Sstevel@tonic-gate 		default:
7420Sstevel@tonic-gate 			mstimep = &ms->ms_acct[t->t_mstate];
7430Sstevel@tonic-gate 			break;
7440Sstevel@tonic-gate 		}
7450Sstevel@tonic-gate 		waitrq = t->t_waitrq;	/* hopefully atomic */
7463426Sjohansen 		if (waitrq == 0) {
7470Sstevel@tonic-gate 			waitrq = curtime;
7480Sstevel@tonic-gate 		}
7493426Sjohansen 		t->t_waitrq = 0;
7500Sstevel@tonic-gate 		newtime = waitrq - ms->ms_state_start;
7510Sstevel@tonic-gate 		if (newtime < 0) {
7520Sstevel@tonic-gate 			curtime = gethrtime_unscaled();
7530Sstevel@tonic-gate 			oldtime = *mstimep - 1; /* force CAS to fail */
7540Sstevel@tonic-gate 			continue;
7550Sstevel@tonic-gate 		}
7560Sstevel@tonic-gate 		oldtime = *mstimep;
7570Sstevel@tonic-gate 		newtime += oldtime;
7580Sstevel@tonic-gate 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
7590Sstevel@tonic-gate 	/*
7600Sstevel@tonic-gate 	 * Update the WAIT_CPU timer and per-cpu waitrq total.
7610Sstevel@tonic-gate 	 */
7620Sstevel@tonic-gate 	ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq);
763477Smishra 	CPU->cpu_waitrq += (curtime - waitrq);
7640Sstevel@tonic-gate 	ms->ms_state_start = curtime;
7650Sstevel@tonic-gate }
7660Sstevel@tonic-gate 
7670Sstevel@tonic-gate /*
7680Sstevel@tonic-gate  * Copy lwp microstate accounting and resource usage information
7690Sstevel@tonic-gate  * to the process.  (lwp is terminating)
7700Sstevel@tonic-gate  */
7710Sstevel@tonic-gate void
term_mstate(kthread_t * t)7720Sstevel@tonic-gate term_mstate(kthread_t *t)
7730Sstevel@tonic-gate {
7740Sstevel@tonic-gate 	struct mstate *ms;
7750Sstevel@tonic-gate 	proc_t *p = ttoproc(t);
7760Sstevel@tonic-gate 	klwp_t *lwp = ttolwp(t);
7770Sstevel@tonic-gate 	int i;
7780Sstevel@tonic-gate 	hrtime_t tmp;
7790Sstevel@tonic-gate 
7800Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&p->p_lock));
7810Sstevel@tonic-gate 
7820Sstevel@tonic-gate 	ms = &lwp->lwp_mstate;
7830Sstevel@tonic-gate 	(void) new_mstate(t, LMS_STOPPED);
7840Sstevel@tonic-gate 	ms->ms_term = ms->ms_state_start;
7850Sstevel@tonic-gate 	tmp = ms->ms_term - ms->ms_start;
7860Sstevel@tonic-gate 	scalehrtime(&tmp);
7870Sstevel@tonic-gate 	p->p_mlreal += tmp;
7880Sstevel@tonic-gate 	for (i = 0; i < NMSTATES; i++) {
7890Sstevel@tonic-gate 		tmp = ms->ms_acct[i];
7900Sstevel@tonic-gate 		scalehrtime(&tmp);
7910Sstevel@tonic-gate 		p->p_acct[i] += tmp;
7920Sstevel@tonic-gate 	}
7930Sstevel@tonic-gate 	p->p_ru.minflt   += lwp->lwp_ru.minflt;
7940Sstevel@tonic-gate 	p->p_ru.majflt   += lwp->lwp_ru.majflt;
7950Sstevel@tonic-gate 	p->p_ru.nswap    += lwp->lwp_ru.nswap;
7960Sstevel@tonic-gate 	p->p_ru.inblock  += lwp->lwp_ru.inblock;
7970Sstevel@tonic-gate 	p->p_ru.oublock  += lwp->lwp_ru.oublock;
7980Sstevel@tonic-gate 	p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
7990Sstevel@tonic-gate 	p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
8000Sstevel@tonic-gate 	p->p_ru.nsignals += lwp->lwp_ru.nsignals;
8010Sstevel@tonic-gate 	p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
8020Sstevel@tonic-gate 	p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
8030Sstevel@tonic-gate 	p->p_ru.sysc	 += lwp->lwp_ru.sysc;
8040Sstevel@tonic-gate 	p->p_ru.ioch	 += lwp->lwp_ru.ioch;
8050Sstevel@tonic-gate 	p->p_defunct++;
8060Sstevel@tonic-gate }
807