1789Sahrens /* 2789Sahrens * CDDL HEADER START 3789Sahrens * 4789Sahrens * The contents of this file are subject to the terms of the 51485Slling * Common Development and Distribution License (the "License"). 61485Slling * You may not use this file except in compliance with the License. 7789Sahrens * 8789Sahrens * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9789Sahrens * or http://www.opensolaris.org/os/licensing. 10789Sahrens * See the License for the specific language governing permissions 11789Sahrens * and limitations under the License. 12789Sahrens * 13789Sahrens * When distributing Covered Code, include this CDDL HEADER in each 14789Sahrens * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15789Sahrens * If applicable, add the following below this CDDL HEADER, with the 16789Sahrens * fields enclosed by brackets "[]" replaced with your own identifying 17789Sahrens * information: Portions Copyright [yyyy] [name of copyright owner] 18789Sahrens * 19789Sahrens * CDDL HEADER END 20789Sahrens */ 212082Seschrock 22789Sahrens /* 233377Seschrock * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24789Sahrens * Use is subject to license terms. 25789Sahrens */ 26789Sahrens 27789Sahrens #pragma ident "%Z%%M% %I% %E% SMI" 28789Sahrens 29789Sahrens #include <sys/zfs_context.h> 301544Seschrock #include <sys/fm/fs/zfs.h> 31789Sahrens #include <sys/spa.h> 32789Sahrens #include <sys/spa_impl.h> 33789Sahrens #include <sys/dmu.h> 34789Sahrens #include <sys/dmu_tx.h> 35789Sahrens #include <sys/vdev_impl.h> 36789Sahrens #include <sys/uberblock_impl.h> 37789Sahrens #include <sys/metaslab.h> 38789Sahrens #include <sys/metaslab_impl.h> 39789Sahrens #include <sys/space_map.h> 40789Sahrens #include <sys/zio.h> 41789Sahrens #include <sys/zap.h> 42789Sahrens #include <sys/fs/zfs.h> 43789Sahrens 44789Sahrens /* 45789Sahrens * Virtual device management. 46789Sahrens */ 47789Sahrens 48789Sahrens static vdev_ops_t *vdev_ops_table[] = { 49789Sahrens &vdev_root_ops, 50789Sahrens &vdev_raidz_ops, 51789Sahrens &vdev_mirror_ops, 52789Sahrens &vdev_replacing_ops, 532082Seschrock &vdev_spare_ops, 54789Sahrens &vdev_disk_ops, 55789Sahrens &vdev_file_ops, 56789Sahrens &vdev_missing_ops, 57789Sahrens NULL 58789Sahrens }; 59789Sahrens 603697Smishra /* maximum scrub/resilver I/O queue */ 613697Smishra int zfs_scrub_limit = 70; 623697Smishra 63789Sahrens /* 64789Sahrens * Given a vdev type, return the appropriate ops vector. 65789Sahrens */ 66789Sahrens static vdev_ops_t * 67789Sahrens vdev_getops(const char *type) 68789Sahrens { 69789Sahrens vdev_ops_t *ops, **opspp; 70789Sahrens 71789Sahrens for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72789Sahrens if (strcmp(ops->vdev_op_type, type) == 0) 73789Sahrens break; 74789Sahrens 75789Sahrens return (ops); 76789Sahrens } 77789Sahrens 78789Sahrens /* 79789Sahrens * Default asize function: return the MAX of psize with the asize of 80789Sahrens * all children. This is what's used by anything other than RAID-Z. 81789Sahrens */ 82789Sahrens uint64_t 83789Sahrens vdev_default_asize(vdev_t *vd, uint64_t psize) 84789Sahrens { 851732Sbonwick uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86789Sahrens uint64_t csize; 87789Sahrens uint64_t c; 88789Sahrens 89789Sahrens for (c = 0; c < vd->vdev_children; c++) { 90789Sahrens csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91789Sahrens asize = MAX(asize, csize); 92789Sahrens } 93789Sahrens 94789Sahrens return (asize); 95789Sahrens } 96789Sahrens 971175Slling /* 981175Slling * Get the replaceable or attachable device size. 991175Slling * If the parent is a mirror or raidz, the replaceable size is the minimum 1001175Slling * psize of all its children. For the rest, just return our own psize. 1011175Slling * 1021175Slling * e.g. 1031175Slling * psize rsize 1041175Slling * root - - 1051175Slling * mirror/raidz - - 1061175Slling * disk1 20g 20g 1071175Slling * disk2 40g 20g 1081175Slling * disk3 80g 80g 1091175Slling */ 1101175Slling uint64_t 1111175Slling vdev_get_rsize(vdev_t *vd) 1121175Slling { 1131175Slling vdev_t *pvd, *cvd; 1141175Slling uint64_t c, rsize; 1151175Slling 1161175Slling pvd = vd->vdev_parent; 1171175Slling 1181175Slling /* 1191175Slling * If our parent is NULL or the root, just return our own psize. 1201175Slling */ 1211175Slling if (pvd == NULL || pvd->vdev_parent == NULL) 1221175Slling return (vd->vdev_psize); 1231175Slling 1241175Slling rsize = 0; 1251175Slling 1261175Slling for (c = 0; c < pvd->vdev_children; c++) { 1271175Slling cvd = pvd->vdev_child[c]; 1281175Slling rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 1291175Slling } 1301175Slling 1311175Slling return (rsize); 1321175Slling } 1331175Slling 134789Sahrens vdev_t * 135789Sahrens vdev_lookup_top(spa_t *spa, uint64_t vdev) 136789Sahrens { 137789Sahrens vdev_t *rvd = spa->spa_root_vdev; 138789Sahrens 139789Sahrens if (vdev < rvd->vdev_children) 140789Sahrens return (rvd->vdev_child[vdev]); 141789Sahrens 142789Sahrens return (NULL); 143789Sahrens } 144789Sahrens 145789Sahrens vdev_t * 146789Sahrens vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 147789Sahrens { 148789Sahrens int c; 149789Sahrens vdev_t *mvd; 150789Sahrens 1511585Sbonwick if (vd->vdev_guid == guid) 152789Sahrens return (vd); 153789Sahrens 154789Sahrens for (c = 0; c < vd->vdev_children; c++) 155789Sahrens if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 156789Sahrens NULL) 157789Sahrens return (mvd); 158789Sahrens 159789Sahrens return (NULL); 160789Sahrens } 161789Sahrens 162789Sahrens void 163789Sahrens vdev_add_child(vdev_t *pvd, vdev_t *cvd) 164789Sahrens { 165789Sahrens size_t oldsize, newsize; 166789Sahrens uint64_t id = cvd->vdev_id; 167789Sahrens vdev_t **newchild; 168789Sahrens 169789Sahrens ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 170789Sahrens ASSERT(cvd->vdev_parent == NULL); 171789Sahrens 172789Sahrens cvd->vdev_parent = pvd; 173789Sahrens 174789Sahrens if (pvd == NULL) 175789Sahrens return; 176789Sahrens 177789Sahrens ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 178789Sahrens 179789Sahrens oldsize = pvd->vdev_children * sizeof (vdev_t *); 180789Sahrens pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 181789Sahrens newsize = pvd->vdev_children * sizeof (vdev_t *); 182789Sahrens 183789Sahrens newchild = kmem_zalloc(newsize, KM_SLEEP); 184789Sahrens if (pvd->vdev_child != NULL) { 185789Sahrens bcopy(pvd->vdev_child, newchild, oldsize); 186789Sahrens kmem_free(pvd->vdev_child, oldsize); 187789Sahrens } 188789Sahrens 189789Sahrens pvd->vdev_child = newchild; 190789Sahrens pvd->vdev_child[id] = cvd; 191789Sahrens 192789Sahrens cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 193789Sahrens ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 194789Sahrens 195789Sahrens /* 196789Sahrens * Walk up all ancestors to update guid sum. 197789Sahrens */ 198789Sahrens for (; pvd != NULL; pvd = pvd->vdev_parent) 199789Sahrens pvd->vdev_guid_sum += cvd->vdev_guid_sum; 2003697Smishra 2013697Smishra if (cvd->vdev_ops->vdev_op_leaf) 2023697Smishra cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 203789Sahrens } 204789Sahrens 205789Sahrens void 206789Sahrens vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 207789Sahrens { 208789Sahrens int c; 209789Sahrens uint_t id = cvd->vdev_id; 210789Sahrens 211789Sahrens ASSERT(cvd->vdev_parent == pvd); 212789Sahrens 213789Sahrens if (pvd == NULL) 214789Sahrens return; 215789Sahrens 216789Sahrens ASSERT(id < pvd->vdev_children); 217789Sahrens ASSERT(pvd->vdev_child[id] == cvd); 218789Sahrens 219789Sahrens pvd->vdev_child[id] = NULL; 220789Sahrens cvd->vdev_parent = NULL; 221789Sahrens 222789Sahrens for (c = 0; c < pvd->vdev_children; c++) 223789Sahrens if (pvd->vdev_child[c]) 224789Sahrens break; 225789Sahrens 226789Sahrens if (c == pvd->vdev_children) { 227789Sahrens kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 228789Sahrens pvd->vdev_child = NULL; 229789Sahrens pvd->vdev_children = 0; 230789Sahrens } 231789Sahrens 232789Sahrens /* 233789Sahrens * Walk up all ancestors to update guid sum. 234789Sahrens */ 235789Sahrens for (; pvd != NULL; pvd = pvd->vdev_parent) 236789Sahrens pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 2373697Smishra 2383697Smishra if (cvd->vdev_ops->vdev_op_leaf) 2393697Smishra cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 240789Sahrens } 241789Sahrens 242789Sahrens /* 243789Sahrens * Remove any holes in the child array. 244789Sahrens */ 245789Sahrens void 246789Sahrens vdev_compact_children(vdev_t *pvd) 247789Sahrens { 248789Sahrens vdev_t **newchild, *cvd; 249789Sahrens int oldc = pvd->vdev_children; 250789Sahrens int newc, c; 251789Sahrens 252789Sahrens ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 253789Sahrens 254789Sahrens for (c = newc = 0; c < oldc; c++) 255789Sahrens if (pvd->vdev_child[c]) 256789Sahrens newc++; 257789Sahrens 258789Sahrens newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 259789Sahrens 260789Sahrens for (c = newc = 0; c < oldc; c++) { 261789Sahrens if ((cvd = pvd->vdev_child[c]) != NULL) { 262789Sahrens newchild[newc] = cvd; 263789Sahrens cvd->vdev_id = newc++; 264789Sahrens } 265789Sahrens } 266789Sahrens 267789Sahrens kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 268789Sahrens pvd->vdev_child = newchild; 269789Sahrens pvd->vdev_children = newc; 270789Sahrens } 271789Sahrens 272789Sahrens /* 273789Sahrens * Allocate and minimally initialize a vdev_t. 274789Sahrens */ 275789Sahrens static vdev_t * 276789Sahrens vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 277789Sahrens { 278789Sahrens vdev_t *vd; 279789Sahrens 2801585Sbonwick vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 2811585Sbonwick 2821585Sbonwick if (spa->spa_root_vdev == NULL) { 2831585Sbonwick ASSERT(ops == &vdev_root_ops); 2841585Sbonwick spa->spa_root_vdev = vd; 2851585Sbonwick } 286789Sahrens 2871585Sbonwick if (guid == 0) { 2881585Sbonwick if (spa->spa_root_vdev == vd) { 2891585Sbonwick /* 2901585Sbonwick * The root vdev's guid will also be the pool guid, 2911585Sbonwick * which must be unique among all pools. 2921585Sbonwick */ 2931585Sbonwick while (guid == 0 || spa_guid_exists(guid, 0)) 2941585Sbonwick guid = spa_get_random(-1ULL); 2951585Sbonwick } else { 2961585Sbonwick /* 2971585Sbonwick * Any other vdev's guid must be unique within the pool. 2981585Sbonwick */ 2991585Sbonwick while (guid == 0 || 3001585Sbonwick spa_guid_exists(spa_guid(spa), guid)) 3011585Sbonwick guid = spa_get_random(-1ULL); 3021585Sbonwick } 3031585Sbonwick ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 3041585Sbonwick } 305789Sahrens 306789Sahrens vd->vdev_spa = spa; 307789Sahrens vd->vdev_id = id; 308789Sahrens vd->vdev_guid = guid; 309789Sahrens vd->vdev_guid_sum = guid; 310789Sahrens vd->vdev_ops = ops; 311789Sahrens vd->vdev_state = VDEV_STATE_CLOSED; 312789Sahrens 313789Sahrens mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 3142856Snd150628 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 315789Sahrens space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 316789Sahrens space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 317789Sahrens txg_list_create(&vd->vdev_ms_list, 318789Sahrens offsetof(struct metaslab, ms_txg_node)); 319789Sahrens txg_list_create(&vd->vdev_dtl_list, 320789Sahrens offsetof(struct vdev, vdev_dtl_node)); 321789Sahrens vd->vdev_stat.vs_timestamp = gethrtime(); 3224451Seschrock vdev_queue_init(vd); 3234451Seschrock vdev_cache_init(vd); 324789Sahrens 325789Sahrens return (vd); 326789Sahrens } 327789Sahrens 328789Sahrens /* 329789Sahrens * Allocate a new vdev. The 'alloctype' is used to control whether we are 330789Sahrens * creating a new vdev or loading an existing one - the behavior is slightly 331789Sahrens * different for each case. 332789Sahrens */ 3332082Seschrock int 3342082Seschrock vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 3352082Seschrock int alloctype) 336789Sahrens { 337789Sahrens vdev_ops_t *ops; 338789Sahrens char *type; 339*4527Sperrin uint64_t guid = 0, islog, nparity; 340789Sahrens vdev_t *vd; 341789Sahrens 342789Sahrens ASSERT(spa_config_held(spa, RW_WRITER)); 343789Sahrens 344789Sahrens if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 3452082Seschrock return (EINVAL); 346789Sahrens 347789Sahrens if ((ops = vdev_getops(type)) == NULL) 3482082Seschrock return (EINVAL); 349789Sahrens 350789Sahrens /* 351789Sahrens * If this is a load, get the vdev guid from the nvlist. 352789Sahrens * Otherwise, vdev_alloc_common() will generate one for us. 353789Sahrens */ 354789Sahrens if (alloctype == VDEV_ALLOC_LOAD) { 355789Sahrens uint64_t label_id; 356789Sahrens 357789Sahrens if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 358789Sahrens label_id != id) 3592082Seschrock return (EINVAL); 360789Sahrens 361789Sahrens if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 3622082Seschrock return (EINVAL); 3632082Seschrock } else if (alloctype == VDEV_ALLOC_SPARE) { 3642082Seschrock if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 3652082Seschrock return (EINVAL); 366789Sahrens } 367789Sahrens 3682082Seschrock /* 3692082Seschrock * The first allocated vdev must be of type 'root'. 3702082Seschrock */ 3712082Seschrock if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 3722082Seschrock return (EINVAL); 3732082Seschrock 374*4527Sperrin /* 375*4527Sperrin * Determine whether we're a log vdev. 376*4527Sperrin */ 377*4527Sperrin islog = 0; 378*4527Sperrin (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 379*4527Sperrin if (islog && spa_version(spa) < ZFS_VERSION_SLOGS) 380*4527Sperrin return (ENOTSUP); 381*4527Sperrin 382*4527Sperrin /* 383*4527Sperrin * Set the nparity property for RAID-Z vdevs. 384*4527Sperrin */ 385*4527Sperrin nparity = -1ULL; 386*4527Sperrin if (ops == &vdev_raidz_ops) { 387*4527Sperrin if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 388*4527Sperrin &nparity) == 0) { 389*4527Sperrin /* 390*4527Sperrin * Currently, we can only support 2 parity devices. 391*4527Sperrin */ 392*4527Sperrin if (nparity == 0 || nparity > 2) 393*4527Sperrin return (EINVAL); 394*4527Sperrin /* 395*4527Sperrin * Older versions can only support 1 parity device. 396*4527Sperrin */ 397*4527Sperrin if (nparity == 2 && 398*4527Sperrin spa_version(spa) < ZFS_VERSION_RAID6) 399*4527Sperrin return (ENOTSUP); 400*4527Sperrin } else { 401*4527Sperrin /* 402*4527Sperrin * We require the parity to be specified for SPAs that 403*4527Sperrin * support multiple parity levels. 404*4527Sperrin */ 405*4527Sperrin if (spa_version(spa) >= ZFS_VERSION_RAID6) 406*4527Sperrin return (EINVAL); 407*4527Sperrin /* 408*4527Sperrin * Otherwise, we default to 1 parity device for RAID-Z. 409*4527Sperrin */ 410*4527Sperrin nparity = 1; 411*4527Sperrin } 412*4527Sperrin } else { 413*4527Sperrin nparity = 0; 414*4527Sperrin } 415*4527Sperrin ASSERT(nparity != -1ULL); 416*4527Sperrin 417789Sahrens vd = vdev_alloc_common(spa, id, guid, ops); 418789Sahrens 419*4527Sperrin vd->vdev_islog = islog; 420*4527Sperrin vd->vdev_nparity = nparity; 421*4527Sperrin 422789Sahrens if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 423789Sahrens vd->vdev_path = spa_strdup(vd->vdev_path); 424789Sahrens if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 425789Sahrens vd->vdev_devid = spa_strdup(vd->vdev_devid); 4264451Seschrock if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 4274451Seschrock &vd->vdev_physpath) == 0) 4284451Seschrock vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 429789Sahrens 430789Sahrens /* 4311171Seschrock * Set the whole_disk property. If it's not specified, leave the value 4321171Seschrock * as -1. 4331171Seschrock */ 4341171Seschrock if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 4351171Seschrock &vd->vdev_wholedisk) != 0) 4361171Seschrock vd->vdev_wholedisk = -1ULL; 4371171Seschrock 4381171Seschrock /* 4391544Seschrock * Look for the 'not present' flag. This will only be set if the device 4401544Seschrock * was not present at the time of import. 4411544Seschrock */ 4421544Seschrock (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 4431544Seschrock &vd->vdev_not_present); 4441544Seschrock 4451544Seschrock /* 4461732Sbonwick * Get the alignment requirement. 4471732Sbonwick */ 4481732Sbonwick (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 4491732Sbonwick 4501732Sbonwick /* 451789Sahrens * If we're a top-level vdev, try to load the allocation parameters. 452789Sahrens */ 453789Sahrens if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 454789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 455789Sahrens &vd->vdev_ms_array); 456789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 457789Sahrens &vd->vdev_ms_shift); 458789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 459789Sahrens &vd->vdev_asize); 460789Sahrens } 461789Sahrens 462789Sahrens /* 4634451Seschrock * If we're a leaf vdev, try to load the DTL object and other state. 464789Sahrens */ 465789Sahrens if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 466789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 467789Sahrens &vd->vdev_dtl.smo_object); 4681732Sbonwick (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 4691732Sbonwick &vd->vdev_offline); 4704451Seschrock (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 4714451Seschrock &vd->vdev_unspare); 4724451Seschrock /* 4734451Seschrock * When importing a pool, we want to ignore the persistent fault 4744451Seschrock * state, as the diagnosis made on another system may not be 4754451Seschrock * valid in the current context. 4764451Seschrock */ 4774451Seschrock if (spa->spa_load_state == SPA_LOAD_OPEN) { 4784451Seschrock (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 4794451Seschrock &vd->vdev_faulted); 4804451Seschrock (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 4814451Seschrock &vd->vdev_degraded); 4824451Seschrock (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 4834451Seschrock &vd->vdev_removed); 4844451Seschrock } 485789Sahrens } 486789Sahrens 487789Sahrens /* 488789Sahrens * Add ourselves to the parent's list of children. 489789Sahrens */ 490789Sahrens vdev_add_child(parent, vd); 491789Sahrens 4922082Seschrock *vdp = vd; 4932082Seschrock 4942082Seschrock return (0); 495789Sahrens } 496789Sahrens 497789Sahrens void 498789Sahrens vdev_free(vdev_t *vd) 499789Sahrens { 500789Sahrens int c; 5014451Seschrock spa_t *spa = vd->vdev_spa; 502789Sahrens 503789Sahrens /* 504789Sahrens * vdev_free() implies closing the vdev first. This is simpler than 505789Sahrens * trying to ensure complicated semantics for all callers. 506789Sahrens */ 507789Sahrens vdev_close(vd); 508789Sahrens 5094451Seschrock 5101732Sbonwick ASSERT(!list_link_active(&vd->vdev_dirty_node)); 511789Sahrens 512789Sahrens /* 513789Sahrens * Free all children. 514789Sahrens */ 515789Sahrens for (c = 0; c < vd->vdev_children; c++) 516789Sahrens vdev_free(vd->vdev_child[c]); 517789Sahrens 518789Sahrens ASSERT(vd->vdev_child == NULL); 519789Sahrens ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 520789Sahrens 521789Sahrens /* 522789Sahrens * Discard allocation state. 523789Sahrens */ 524789Sahrens if (vd == vd->vdev_top) 525789Sahrens vdev_metaslab_fini(vd); 526789Sahrens 527789Sahrens ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 5282082Seschrock ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 529789Sahrens ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 530789Sahrens 531789Sahrens /* 532789Sahrens * Remove this vdev from its parent's child list. 533789Sahrens */ 534789Sahrens vdev_remove_child(vd->vdev_parent, vd); 535789Sahrens 536789Sahrens ASSERT(vd->vdev_parent == NULL); 537789Sahrens 5384451Seschrock /* 5394451Seschrock * Clean up vdev structure. 5404451Seschrock */ 5414451Seschrock vdev_queue_fini(vd); 5424451Seschrock vdev_cache_fini(vd); 5434451Seschrock 5444451Seschrock if (vd->vdev_path) 5454451Seschrock spa_strfree(vd->vdev_path); 5464451Seschrock if (vd->vdev_devid) 5474451Seschrock spa_strfree(vd->vdev_devid); 5484451Seschrock if (vd->vdev_physpath) 5494451Seschrock spa_strfree(vd->vdev_physpath); 5504451Seschrock 5514451Seschrock if (vd->vdev_isspare) 5524451Seschrock spa_spare_remove(vd); 5534451Seschrock 5544451Seschrock txg_list_destroy(&vd->vdev_ms_list); 5554451Seschrock txg_list_destroy(&vd->vdev_dtl_list); 5564451Seschrock mutex_enter(&vd->vdev_dtl_lock); 5574451Seschrock space_map_unload(&vd->vdev_dtl_map); 5584451Seschrock space_map_destroy(&vd->vdev_dtl_map); 5594451Seschrock space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 5604451Seschrock space_map_destroy(&vd->vdev_dtl_scrub); 5614451Seschrock mutex_exit(&vd->vdev_dtl_lock); 5624451Seschrock mutex_destroy(&vd->vdev_dtl_lock); 5634451Seschrock mutex_destroy(&vd->vdev_stat_lock); 5644451Seschrock 5654451Seschrock if (vd == spa->spa_root_vdev) 5664451Seschrock spa->spa_root_vdev = NULL; 5674451Seschrock 5684451Seschrock kmem_free(vd, sizeof (vdev_t)); 569789Sahrens } 570789Sahrens 571789Sahrens /* 572789Sahrens * Transfer top-level vdev state from svd to tvd. 573789Sahrens */ 574789Sahrens static void 575789Sahrens vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 576789Sahrens { 577789Sahrens spa_t *spa = svd->vdev_spa; 578789Sahrens metaslab_t *msp; 579789Sahrens vdev_t *vd; 580789Sahrens int t; 581789Sahrens 582789Sahrens ASSERT(tvd == tvd->vdev_top); 583789Sahrens 584789Sahrens tvd->vdev_ms_array = svd->vdev_ms_array; 585789Sahrens tvd->vdev_ms_shift = svd->vdev_ms_shift; 586789Sahrens tvd->vdev_ms_count = svd->vdev_ms_count; 587789Sahrens 588789Sahrens svd->vdev_ms_array = 0; 589789Sahrens svd->vdev_ms_shift = 0; 590789Sahrens svd->vdev_ms_count = 0; 591789Sahrens 592789Sahrens tvd->vdev_mg = svd->vdev_mg; 593789Sahrens tvd->vdev_ms = svd->vdev_ms; 594789Sahrens 595789Sahrens svd->vdev_mg = NULL; 596789Sahrens svd->vdev_ms = NULL; 5971732Sbonwick 5981732Sbonwick if (tvd->vdev_mg != NULL) 5991732Sbonwick tvd->vdev_mg->mg_vd = tvd; 600789Sahrens 601789Sahrens tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 602789Sahrens tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 6032082Seschrock tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 604789Sahrens 605789Sahrens svd->vdev_stat.vs_alloc = 0; 606789Sahrens svd->vdev_stat.vs_space = 0; 6072082Seschrock svd->vdev_stat.vs_dspace = 0; 608789Sahrens 609789Sahrens for (t = 0; t < TXG_SIZE; t++) { 610789Sahrens while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 611789Sahrens (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 612789Sahrens while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 613789Sahrens (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 614789Sahrens if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 615789Sahrens (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 616789Sahrens } 617789Sahrens 6181732Sbonwick if (list_link_active(&svd->vdev_dirty_node)) { 619789Sahrens vdev_config_clean(svd); 620789Sahrens vdev_config_dirty(tvd); 621789Sahrens } 622789Sahrens 6232082Seschrock tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 6242082Seschrock svd->vdev_deflate_ratio = 0; 625*4527Sperrin 626*4527Sperrin tvd->vdev_islog = svd->vdev_islog; 627*4527Sperrin svd->vdev_islog = 0; 628789Sahrens } 629789Sahrens 630789Sahrens static void 631789Sahrens vdev_top_update(vdev_t *tvd, vdev_t *vd) 632789Sahrens { 633789Sahrens int c; 634789Sahrens 635789Sahrens if (vd == NULL) 636789Sahrens return; 637789Sahrens 638789Sahrens vd->vdev_top = tvd; 639789Sahrens 640789Sahrens for (c = 0; c < vd->vdev_children; c++) 641789Sahrens vdev_top_update(tvd, vd->vdev_child[c]); 642789Sahrens } 643789Sahrens 644789Sahrens /* 645789Sahrens * Add a mirror/replacing vdev above an existing vdev. 646789Sahrens */ 647789Sahrens vdev_t * 648789Sahrens vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 649789Sahrens { 650789Sahrens spa_t *spa = cvd->vdev_spa; 651789Sahrens vdev_t *pvd = cvd->vdev_parent; 652789Sahrens vdev_t *mvd; 653789Sahrens 654789Sahrens ASSERT(spa_config_held(spa, RW_WRITER)); 655789Sahrens 656789Sahrens mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 6571732Sbonwick 6581732Sbonwick mvd->vdev_asize = cvd->vdev_asize; 6591732Sbonwick mvd->vdev_ashift = cvd->vdev_ashift; 6601732Sbonwick mvd->vdev_state = cvd->vdev_state; 6611732Sbonwick 662789Sahrens vdev_remove_child(pvd, cvd); 663789Sahrens vdev_add_child(pvd, mvd); 664789Sahrens cvd->vdev_id = mvd->vdev_children; 665789Sahrens vdev_add_child(mvd, cvd); 666789Sahrens vdev_top_update(cvd->vdev_top, cvd->vdev_top); 667789Sahrens 668789Sahrens if (mvd == mvd->vdev_top) 669789Sahrens vdev_top_transfer(cvd, mvd); 670789Sahrens 671789Sahrens return (mvd); 672789Sahrens } 673789Sahrens 674789Sahrens /* 675789Sahrens * Remove a 1-way mirror/replacing vdev from the tree. 676789Sahrens */ 677789Sahrens void 678789Sahrens vdev_remove_parent(vdev_t *cvd) 679789Sahrens { 680789Sahrens vdev_t *mvd = cvd->vdev_parent; 681789Sahrens vdev_t *pvd = mvd->vdev_parent; 682789Sahrens 683789Sahrens ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 684789Sahrens 685789Sahrens ASSERT(mvd->vdev_children == 1); 686789Sahrens ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 6872082Seschrock mvd->vdev_ops == &vdev_replacing_ops || 6882082Seschrock mvd->vdev_ops == &vdev_spare_ops); 6891732Sbonwick cvd->vdev_ashift = mvd->vdev_ashift; 690789Sahrens 691789Sahrens vdev_remove_child(mvd, cvd); 692789Sahrens vdev_remove_child(pvd, mvd); 693789Sahrens cvd->vdev_id = mvd->vdev_id; 694789Sahrens vdev_add_child(pvd, cvd); 6952082Seschrock /* 6962082Seschrock * If we created a new toplevel vdev, then we need to change the child's 6972082Seschrock * vdev GUID to match the old toplevel vdev. Otherwise, we could have 6982082Seschrock * detached an offline device, and when we go to import the pool we'll 6992082Seschrock * think we have two toplevel vdevs, instead of a different version of 7002082Seschrock * the same toplevel vdev. 7012082Seschrock */ 7022082Seschrock if (cvd->vdev_top == cvd) { 7032082Seschrock pvd->vdev_guid_sum -= cvd->vdev_guid; 7042082Seschrock cvd->vdev_guid_sum -= cvd->vdev_guid; 7052082Seschrock cvd->vdev_guid = mvd->vdev_guid; 7062082Seschrock cvd->vdev_guid_sum += mvd->vdev_guid; 7072082Seschrock pvd->vdev_guid_sum += cvd->vdev_guid; 7082082Seschrock } 709789Sahrens vdev_top_update(cvd->vdev_top, cvd->vdev_top); 710789Sahrens 711789Sahrens if (cvd == cvd->vdev_top) 712789Sahrens vdev_top_transfer(mvd, cvd); 713789Sahrens 714789Sahrens ASSERT(mvd->vdev_children == 0); 715789Sahrens vdev_free(mvd); 716789Sahrens } 717789Sahrens 7181544Seschrock int 719789Sahrens vdev_metaslab_init(vdev_t *vd, uint64_t txg) 720789Sahrens { 721789Sahrens spa_t *spa = vd->vdev_spa; 7221732Sbonwick objset_t *mos = spa->spa_meta_objset; 723*4527Sperrin metaslab_class_t *mc; 7241732Sbonwick uint64_t m; 725789Sahrens uint64_t oldc = vd->vdev_ms_count; 726789Sahrens uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 7271732Sbonwick metaslab_t **mspp; 7281732Sbonwick int error; 729789Sahrens 7301585Sbonwick if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 7311585Sbonwick return (0); 7321585Sbonwick 733789Sahrens dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 734789Sahrens 735789Sahrens ASSERT(oldc <= newc); 736789Sahrens 737*4527Sperrin if (vd->vdev_islog) 738*4527Sperrin mc = spa->spa_log_class; 739*4527Sperrin else 740*4527Sperrin mc = spa->spa_normal_class; 741*4527Sperrin 7421732Sbonwick if (vd->vdev_mg == NULL) 7431732Sbonwick vd->vdev_mg = metaslab_group_create(mc, vd); 7441732Sbonwick 7451732Sbonwick mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 7461732Sbonwick 7471732Sbonwick if (oldc != 0) { 7481732Sbonwick bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 7491732Sbonwick kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 7501732Sbonwick } 7511732Sbonwick 7521732Sbonwick vd->vdev_ms = mspp; 753789Sahrens vd->vdev_ms_count = newc; 754789Sahrens 7551732Sbonwick for (m = oldc; m < newc; m++) { 7561732Sbonwick space_map_obj_t smo = { 0, 0, 0 }; 757789Sahrens if (txg == 0) { 7581732Sbonwick uint64_t object = 0; 7591732Sbonwick error = dmu_read(mos, vd->vdev_ms_array, 7601732Sbonwick m * sizeof (uint64_t), sizeof (uint64_t), &object); 7611732Sbonwick if (error) 7621732Sbonwick return (error); 7631732Sbonwick if (object != 0) { 7641732Sbonwick dmu_buf_t *db; 7651732Sbonwick error = dmu_bonus_hold(mos, object, FTAG, &db); 7661732Sbonwick if (error) 7671732Sbonwick return (error); 7681732Sbonwick ASSERT3U(db->db_size, ==, sizeof (smo)); 7691732Sbonwick bcopy(db->db_data, &smo, db->db_size); 7701732Sbonwick ASSERT3U(smo.smo_object, ==, object); 7711544Seschrock dmu_buf_rele(db, FTAG); 772789Sahrens } 773789Sahrens } 7741732Sbonwick vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 7751732Sbonwick m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 776789Sahrens } 777789Sahrens 7781544Seschrock return (0); 779789Sahrens } 780789Sahrens 781789Sahrens void 782789Sahrens vdev_metaslab_fini(vdev_t *vd) 783789Sahrens { 784789Sahrens uint64_t m; 785789Sahrens uint64_t count = vd->vdev_ms_count; 786789Sahrens 787789Sahrens if (vd->vdev_ms != NULL) { 788789Sahrens for (m = 0; m < count; m++) 7891732Sbonwick if (vd->vdev_ms[m] != NULL) 7901732Sbonwick metaslab_fini(vd->vdev_ms[m]); 791789Sahrens kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 792789Sahrens vd->vdev_ms = NULL; 793789Sahrens } 794789Sahrens } 795789Sahrens 796789Sahrens /* 797789Sahrens * Prepare a virtual device for access. 798789Sahrens */ 799789Sahrens int 800789Sahrens vdev_open(vdev_t *vd) 801789Sahrens { 802789Sahrens int error; 803789Sahrens int c; 804789Sahrens uint64_t osize = 0; 805789Sahrens uint64_t asize, psize; 8061732Sbonwick uint64_t ashift = 0; 807789Sahrens 808789Sahrens ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 809789Sahrens vd->vdev_state == VDEV_STATE_CANT_OPEN || 810789Sahrens vd->vdev_state == VDEV_STATE_OFFLINE); 811789Sahrens 812789Sahrens if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 813789Sahrens vd->vdev_fault_arg >>= 1; 814789Sahrens else 815789Sahrens vd->vdev_fault_mode = VDEV_FAULT_NONE; 816789Sahrens 817789Sahrens vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 818789Sahrens 8194451Seschrock if (!vd->vdev_removed && vd->vdev_faulted) { 8204451Seschrock ASSERT(vd->vdev_children == 0); 8214451Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 8224451Seschrock VDEV_AUX_ERR_EXCEEDED); 8234451Seschrock return (ENXIO); 8244451Seschrock } else if (vd->vdev_offline) { 825789Sahrens ASSERT(vd->vdev_children == 0); 8261544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 827789Sahrens return (ENXIO); 828789Sahrens } 829789Sahrens 830789Sahrens error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 831789Sahrens 8321544Seschrock if (zio_injection_enabled && error == 0) 8331544Seschrock error = zio_handle_device_injection(vd, ENXIO); 8341544Seschrock 8354451Seschrock if (error) { 8364451Seschrock if (vd->vdev_removed && 8374451Seschrock vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 8384451Seschrock vd->vdev_removed = B_FALSE; 839789Sahrens 8401544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 841789Sahrens vd->vdev_stat.vs_aux); 842789Sahrens return (error); 843789Sahrens } 844789Sahrens 8454451Seschrock vd->vdev_removed = B_FALSE; 8464451Seschrock 8474451Seschrock if (vd->vdev_degraded) { 8484451Seschrock ASSERT(vd->vdev_children == 0); 8494451Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 8504451Seschrock VDEV_AUX_ERR_EXCEEDED); 8514451Seschrock } else { 8524451Seschrock vd->vdev_state = VDEV_STATE_HEALTHY; 8534451Seschrock } 854789Sahrens 855789Sahrens for (c = 0; c < vd->vdev_children; c++) 8561544Seschrock if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 8571544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 8581544Seschrock VDEV_AUX_NONE); 8591544Seschrock break; 8601544Seschrock } 861789Sahrens 862789Sahrens osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 863789Sahrens 864789Sahrens if (vd->vdev_children == 0) { 865789Sahrens if (osize < SPA_MINDEVSIZE) { 8661544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8671544Seschrock VDEV_AUX_TOO_SMALL); 868789Sahrens return (EOVERFLOW); 869789Sahrens } 870789Sahrens psize = osize; 871789Sahrens asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 872789Sahrens } else { 8731732Sbonwick if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 874789Sahrens (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 8751544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8761544Seschrock VDEV_AUX_TOO_SMALL); 877789Sahrens return (EOVERFLOW); 878789Sahrens } 879789Sahrens psize = 0; 880789Sahrens asize = osize; 881789Sahrens } 882789Sahrens 883789Sahrens vd->vdev_psize = psize; 884789Sahrens 885789Sahrens if (vd->vdev_asize == 0) { 886789Sahrens /* 887789Sahrens * This is the first-ever open, so use the computed values. 8881732Sbonwick * For testing purposes, a higher ashift can be requested. 889789Sahrens */ 890789Sahrens vd->vdev_asize = asize; 8911732Sbonwick vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 892789Sahrens } else { 893789Sahrens /* 894789Sahrens * Make sure the alignment requirement hasn't increased. 895789Sahrens */ 8961732Sbonwick if (ashift > vd->vdev_top->vdev_ashift) { 8971544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8981544Seschrock VDEV_AUX_BAD_LABEL); 899789Sahrens return (EINVAL); 900789Sahrens } 901789Sahrens 902789Sahrens /* 903789Sahrens * Make sure the device hasn't shrunk. 904789Sahrens */ 905789Sahrens if (asize < vd->vdev_asize) { 9061544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 9071544Seschrock VDEV_AUX_BAD_LABEL); 908789Sahrens return (EINVAL); 909789Sahrens } 910789Sahrens 911789Sahrens /* 912789Sahrens * If all children are healthy and the asize has increased, 913789Sahrens * then we've experienced dynamic LUN growth. 914789Sahrens */ 915789Sahrens if (vd->vdev_state == VDEV_STATE_HEALTHY && 916789Sahrens asize > vd->vdev_asize) { 917789Sahrens vd->vdev_asize = asize; 918789Sahrens } 919789Sahrens } 920789Sahrens 9211544Seschrock /* 9222082Seschrock * If this is a top-level vdev, compute the raidz-deflation 9232082Seschrock * ratio. Note, we hard-code in 128k (1<<17) because it is the 9242082Seschrock * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 9252082Seschrock * changes, this algorithm must never change, or we will 9262082Seschrock * inconsistently account for existing bp's. 9272082Seschrock */ 9282082Seschrock if (vd->vdev_top == vd) { 9292082Seschrock vd->vdev_deflate_ratio = (1<<17) / 9302082Seschrock (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 9312082Seschrock } 9322082Seschrock 9332082Seschrock /* 9341544Seschrock * This allows the ZFS DE to close cases appropriately. If a device 9351544Seschrock * goes away and later returns, we want to close the associated case. 9361544Seschrock * But it's not enough to simply post this only when a device goes from 9371544Seschrock * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 9381544Seschrock * back, we also need to close the case (otherwise we will try to replay 9391544Seschrock * it). So we have to post this notifier every time. Since this only 9401544Seschrock * occurs during pool open or error recovery, this should not be an 9411544Seschrock * issue. 9421544Seschrock */ 9431544Seschrock zfs_post_ok(vd->vdev_spa, vd); 9441544Seschrock 945789Sahrens return (0); 946789Sahrens } 947789Sahrens 948789Sahrens /* 9491986Seschrock * Called once the vdevs are all opened, this routine validates the label 9501986Seschrock * contents. This needs to be done before vdev_load() so that we don't 9514451Seschrock * inadvertently do repair I/Os to the wrong device. 9521986Seschrock * 9531986Seschrock * This function will only return failure if one of the vdevs indicates that it 9541986Seschrock * has since been destroyed or exported. This is only possible if 9551986Seschrock * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 9561986Seschrock * will be updated but the function will return 0. 9571986Seschrock */ 9581986Seschrock int 9591986Seschrock vdev_validate(vdev_t *vd) 9601986Seschrock { 9611986Seschrock spa_t *spa = vd->vdev_spa; 9621986Seschrock int c; 9631986Seschrock nvlist_t *label; 9641986Seschrock uint64_t guid; 9651986Seschrock uint64_t state; 9661986Seschrock 9671986Seschrock for (c = 0; c < vd->vdev_children; c++) 9681986Seschrock if (vdev_validate(vd->vdev_child[c]) != 0) 9694070Smc142369 return (EBADF); 9701986Seschrock 9712174Seschrock /* 9722174Seschrock * If the device has already failed, or was marked offline, don't do 9732174Seschrock * any further validation. Otherwise, label I/O will fail and we will 9742174Seschrock * overwrite the previous state. 9752174Seschrock */ 9762174Seschrock if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) { 9771986Seschrock 9781986Seschrock if ((label = vdev_label_read_config(vd)) == NULL) { 9791986Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 9801986Seschrock VDEV_AUX_BAD_LABEL); 9811986Seschrock return (0); 9821986Seschrock } 9831986Seschrock 9841986Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 9851986Seschrock &guid) != 0 || guid != spa_guid(spa)) { 9861986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 9871986Seschrock VDEV_AUX_CORRUPT_DATA); 9881986Seschrock nvlist_free(label); 9891986Seschrock return (0); 9901986Seschrock } 9911986Seschrock 9921986Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 9931986Seschrock &guid) != 0 || guid != vd->vdev_guid) { 9941986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 9951986Seschrock VDEV_AUX_CORRUPT_DATA); 9961986Seschrock nvlist_free(label); 9971986Seschrock return (0); 9981986Seschrock } 9991986Seschrock 10001986Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 10011986Seschrock &state) != 0) { 10021986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 10031986Seschrock VDEV_AUX_CORRUPT_DATA); 10041986Seschrock nvlist_free(label); 10051986Seschrock return (0); 10061986Seschrock } 10071986Seschrock 10081986Seschrock nvlist_free(label); 10091986Seschrock 10101986Seschrock if (spa->spa_load_state == SPA_LOAD_OPEN && 10111986Seschrock state != POOL_STATE_ACTIVE) 10124070Smc142369 return (EBADF); 10131986Seschrock } 10141986Seschrock 10151986Seschrock /* 10161986Seschrock * If we were able to open and validate a vdev that was previously 10171986Seschrock * marked permanently unavailable, clear that state now. 10181986Seschrock */ 10191986Seschrock if (vd->vdev_not_present) 10201986Seschrock vd->vdev_not_present = 0; 10211986Seschrock 10221986Seschrock return (0); 10231986Seschrock } 10241986Seschrock 10251986Seschrock /* 1026789Sahrens * Close a virtual device. 1027789Sahrens */ 1028789Sahrens void 1029789Sahrens vdev_close(vdev_t *vd) 1030789Sahrens { 1031789Sahrens vd->vdev_ops->vdev_op_close(vd); 1032789Sahrens 10334451Seschrock vdev_cache_purge(vd); 1034789Sahrens 10351986Seschrock /* 10361986Seschrock * We record the previous state before we close it, so that if we are 10371986Seschrock * doing a reopen(), we don't generate FMA ereports if we notice that 10381986Seschrock * it's still faulted. 10391986Seschrock */ 10401986Seschrock vd->vdev_prevstate = vd->vdev_state; 10411986Seschrock 1042789Sahrens if (vd->vdev_offline) 1043789Sahrens vd->vdev_state = VDEV_STATE_OFFLINE; 1044789Sahrens else 1045789Sahrens vd->vdev_state = VDEV_STATE_CLOSED; 10461544Seschrock vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1047789Sahrens } 1048789Sahrens 1049789Sahrens void 10501544Seschrock vdev_reopen(vdev_t *vd) 1051789Sahrens { 10521544Seschrock spa_t *spa = vd->vdev_spa; 1053789Sahrens 10541544Seschrock ASSERT(spa_config_held(spa, RW_WRITER)); 10551544Seschrock 1056789Sahrens vdev_close(vd); 1057789Sahrens (void) vdev_open(vd); 1058789Sahrens 1059789Sahrens /* 10603377Seschrock * Call vdev_validate() here to make sure we have the same device. 10613377Seschrock * Otherwise, a device with an invalid label could be successfully 10623377Seschrock * opened in response to vdev_reopen(). 10633377Seschrock */ 10643377Seschrock (void) vdev_validate(vd); 10653377Seschrock 10663377Seschrock /* 10674451Seschrock * Reassess parent vdev's health. 1068789Sahrens */ 10694451Seschrock vdev_propagate_state(vd); 1070789Sahrens } 1071789Sahrens 1072789Sahrens int 10732082Seschrock vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1074789Sahrens { 1075789Sahrens int error; 1076789Sahrens 1077789Sahrens /* 1078789Sahrens * Normally, partial opens (e.g. of a mirror) are allowed. 1079789Sahrens * For a create, however, we want to fail the request if 1080789Sahrens * there are any components we can't open. 1081789Sahrens */ 1082789Sahrens error = vdev_open(vd); 1083789Sahrens 1084789Sahrens if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1085789Sahrens vdev_close(vd); 1086789Sahrens return (error ? error : ENXIO); 1087789Sahrens } 1088789Sahrens 1089789Sahrens /* 1090789Sahrens * Recursively initialize all labels. 1091789Sahrens */ 10923377Seschrock if ((error = vdev_label_init(vd, txg, isreplacing ? 10933377Seschrock VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1094789Sahrens vdev_close(vd); 1095789Sahrens return (error); 1096789Sahrens } 1097789Sahrens 1098789Sahrens return (0); 1099789Sahrens } 1100789Sahrens 1101789Sahrens /* 1102789Sahrens * The is the latter half of vdev_create(). It is distinct because it 1103789Sahrens * involves initiating transactions in order to do metaslab creation. 1104789Sahrens * For creation, we want to try to create all vdevs at once and then undo it 1105789Sahrens * if anything fails; this is much harder if we have pending transactions. 1106789Sahrens */ 11071585Sbonwick void 1108789Sahrens vdev_init(vdev_t *vd, uint64_t txg) 1109789Sahrens { 1110789Sahrens /* 1111789Sahrens * Aim for roughly 200 metaslabs per vdev. 1112789Sahrens */ 1113789Sahrens vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1114789Sahrens vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1115789Sahrens 1116789Sahrens /* 11171585Sbonwick * Initialize the vdev's metaslabs. This can't fail because 11181585Sbonwick * there's nothing to read when creating all new metaslabs. 1119789Sahrens */ 11201585Sbonwick VERIFY(vdev_metaslab_init(vd, txg) == 0); 1121789Sahrens } 1122789Sahrens 1123789Sahrens void 11241732Sbonwick vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1125789Sahrens { 11261732Sbonwick ASSERT(vd == vd->vdev_top); 11271732Sbonwick ASSERT(ISP2(flags)); 1128789Sahrens 11291732Sbonwick if (flags & VDD_METASLAB) 11301732Sbonwick (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 11311732Sbonwick 11321732Sbonwick if (flags & VDD_DTL) 11331732Sbonwick (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 11341732Sbonwick 11351732Sbonwick (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1136789Sahrens } 1137789Sahrens 1138789Sahrens void 1139789Sahrens vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1140789Sahrens { 1141789Sahrens mutex_enter(sm->sm_lock); 1142789Sahrens if (!space_map_contains(sm, txg, size)) 1143789Sahrens space_map_add(sm, txg, size); 1144789Sahrens mutex_exit(sm->sm_lock); 1145789Sahrens } 1146789Sahrens 1147789Sahrens int 1148789Sahrens vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1149789Sahrens { 1150789Sahrens int dirty; 1151789Sahrens 1152789Sahrens /* 1153789Sahrens * Quick test without the lock -- covers the common case that 1154789Sahrens * there are no dirty time segments. 1155789Sahrens */ 1156789Sahrens if (sm->sm_space == 0) 1157789Sahrens return (0); 1158789Sahrens 1159789Sahrens mutex_enter(sm->sm_lock); 1160789Sahrens dirty = space_map_contains(sm, txg, size); 1161789Sahrens mutex_exit(sm->sm_lock); 1162789Sahrens 1163789Sahrens return (dirty); 1164789Sahrens } 1165789Sahrens 1166789Sahrens /* 1167789Sahrens * Reassess DTLs after a config change or scrub completion. 1168789Sahrens */ 1169789Sahrens void 1170789Sahrens vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1171789Sahrens { 11721544Seschrock spa_t *spa = vd->vdev_spa; 1173789Sahrens int c; 1174789Sahrens 11751544Seschrock ASSERT(spa_config_held(spa, RW_WRITER)); 1176789Sahrens 1177789Sahrens if (vd->vdev_children == 0) { 1178789Sahrens mutex_enter(&vd->vdev_dtl_lock); 1179789Sahrens /* 1180789Sahrens * We're successfully scrubbed everything up to scrub_txg. 1181789Sahrens * Therefore, excise all old DTLs up to that point, then 1182789Sahrens * fold in the DTLs for everything we couldn't scrub. 1183789Sahrens */ 1184789Sahrens if (scrub_txg != 0) { 1185789Sahrens space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1186789Sahrens space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1187789Sahrens } 1188789Sahrens if (scrub_done) 1189789Sahrens space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1190789Sahrens mutex_exit(&vd->vdev_dtl_lock); 11911732Sbonwick if (txg != 0) 11921732Sbonwick vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1193789Sahrens return; 1194789Sahrens } 1195789Sahrens 11961544Seschrock /* 11971544Seschrock * Make sure the DTLs are always correct under the scrub lock. 11981544Seschrock */ 11991544Seschrock if (vd == spa->spa_root_vdev) 12001544Seschrock mutex_enter(&spa->spa_scrub_lock); 12011544Seschrock 1202789Sahrens mutex_enter(&vd->vdev_dtl_lock); 1203789Sahrens space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1204789Sahrens space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1205789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1206789Sahrens 1207789Sahrens for (c = 0; c < vd->vdev_children; c++) { 1208789Sahrens vdev_t *cvd = vd->vdev_child[c]; 1209789Sahrens vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1210789Sahrens mutex_enter(&vd->vdev_dtl_lock); 1211789Sahrens space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1212789Sahrens space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1213789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1214789Sahrens } 12151544Seschrock 12161544Seschrock if (vd == spa->spa_root_vdev) 12171544Seschrock mutex_exit(&spa->spa_scrub_lock); 1218789Sahrens } 1219789Sahrens 1220789Sahrens static int 1221789Sahrens vdev_dtl_load(vdev_t *vd) 1222789Sahrens { 1223789Sahrens spa_t *spa = vd->vdev_spa; 1224789Sahrens space_map_obj_t *smo = &vd->vdev_dtl; 12251732Sbonwick objset_t *mos = spa->spa_meta_objset; 1226789Sahrens dmu_buf_t *db; 1227789Sahrens int error; 1228789Sahrens 1229789Sahrens ASSERT(vd->vdev_children == 0); 1230789Sahrens 1231789Sahrens if (smo->smo_object == 0) 1232789Sahrens return (0); 1233789Sahrens 12341732Sbonwick if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 12351544Seschrock return (error); 12361732Sbonwick 1237789Sahrens ASSERT3U(db->db_size, ==, sizeof (*smo)); 1238789Sahrens bcopy(db->db_data, smo, db->db_size); 12391544Seschrock dmu_buf_rele(db, FTAG); 1240789Sahrens 1241789Sahrens mutex_enter(&vd->vdev_dtl_lock); 12421732Sbonwick error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1243789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1244789Sahrens 1245789Sahrens return (error); 1246789Sahrens } 1247789Sahrens 1248789Sahrens void 1249789Sahrens vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1250789Sahrens { 1251789Sahrens spa_t *spa = vd->vdev_spa; 1252789Sahrens space_map_obj_t *smo = &vd->vdev_dtl; 1253789Sahrens space_map_t *sm = &vd->vdev_dtl_map; 12541732Sbonwick objset_t *mos = spa->spa_meta_objset; 1255789Sahrens space_map_t smsync; 1256789Sahrens kmutex_t smlock; 1257789Sahrens dmu_buf_t *db; 1258789Sahrens dmu_tx_t *tx; 1259789Sahrens 1260789Sahrens dprintf("%s in txg %llu pass %d\n", 1261789Sahrens vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1262789Sahrens 1263789Sahrens tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1264789Sahrens 1265789Sahrens if (vd->vdev_detached) { 1266789Sahrens if (smo->smo_object != 0) { 12671732Sbonwick int err = dmu_object_free(mos, smo->smo_object, tx); 1268789Sahrens ASSERT3U(err, ==, 0); 1269789Sahrens smo->smo_object = 0; 1270789Sahrens } 1271789Sahrens dmu_tx_commit(tx); 12721732Sbonwick dprintf("detach %s committed in txg %llu\n", 12731732Sbonwick vdev_description(vd), txg); 1274789Sahrens return; 1275789Sahrens } 1276789Sahrens 1277789Sahrens if (smo->smo_object == 0) { 1278789Sahrens ASSERT(smo->smo_objsize == 0); 1279789Sahrens ASSERT(smo->smo_alloc == 0); 12801732Sbonwick smo->smo_object = dmu_object_alloc(mos, 1281789Sahrens DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1282789Sahrens DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1283789Sahrens ASSERT(smo->smo_object != 0); 1284789Sahrens vdev_config_dirty(vd->vdev_top); 1285789Sahrens } 1286789Sahrens 1287789Sahrens mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1288789Sahrens 1289789Sahrens space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1290789Sahrens &smlock); 1291789Sahrens 1292789Sahrens mutex_enter(&smlock); 1293789Sahrens 1294789Sahrens mutex_enter(&vd->vdev_dtl_lock); 12951732Sbonwick space_map_walk(sm, space_map_add, &smsync); 1296789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1297789Sahrens 12981732Sbonwick space_map_truncate(smo, mos, tx); 12991732Sbonwick space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1300789Sahrens 1301789Sahrens space_map_destroy(&smsync); 1302789Sahrens 1303789Sahrens mutex_exit(&smlock); 1304789Sahrens mutex_destroy(&smlock); 1305789Sahrens 13061732Sbonwick VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1307789Sahrens dmu_buf_will_dirty(db, tx); 1308789Sahrens ASSERT3U(db->db_size, ==, sizeof (*smo)); 1309789Sahrens bcopy(smo, db->db_data, db->db_size); 13101544Seschrock dmu_buf_rele(db, FTAG); 1311789Sahrens 1312789Sahrens dmu_tx_commit(tx); 1313789Sahrens } 1314789Sahrens 13151986Seschrock void 13161544Seschrock vdev_load(vdev_t *vd) 1317789Sahrens { 13181986Seschrock int c; 1319789Sahrens 1320789Sahrens /* 1321789Sahrens * Recursively load all children. 1322789Sahrens */ 1323789Sahrens for (c = 0; c < vd->vdev_children; c++) 13241986Seschrock vdev_load(vd->vdev_child[c]); 1325789Sahrens 1326789Sahrens /* 13271585Sbonwick * If this is a top-level vdev, initialize its metaslabs. 1328789Sahrens */ 13291986Seschrock if (vd == vd->vdev_top && 13301986Seschrock (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 13311986Seschrock vdev_metaslab_init(vd, 0) != 0)) 13321986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 13331986Seschrock VDEV_AUX_CORRUPT_DATA); 1334789Sahrens 1335789Sahrens /* 1336789Sahrens * If this is a leaf vdev, load its DTL. 1337789Sahrens */ 13381986Seschrock if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 13391986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 13401986Seschrock VDEV_AUX_CORRUPT_DATA); 1341789Sahrens } 1342789Sahrens 13432082Seschrock /* 13442082Seschrock * This special case of vdev_spare() is used for hot spares. It's sole purpose 13452082Seschrock * it to set the vdev state for the associated vdev. To do this, we make sure 13462082Seschrock * that we can open the underlying device, then try to read the label, and make 13472082Seschrock * sure that the label is sane and that it hasn't been repurposed to another 13482082Seschrock * pool. 13492082Seschrock */ 13502082Seschrock int 13512082Seschrock vdev_validate_spare(vdev_t *vd) 13522082Seschrock { 13532082Seschrock nvlist_t *label; 13542082Seschrock uint64_t guid, version; 13552082Seschrock uint64_t state; 13562082Seschrock 13572082Seschrock if ((label = vdev_label_read_config(vd)) == NULL) { 13582082Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 13592082Seschrock VDEV_AUX_CORRUPT_DATA); 13602082Seschrock return (-1); 13612082Seschrock } 13622082Seschrock 13632082Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 13642082Seschrock version > ZFS_VERSION || 13652082Seschrock nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 13662082Seschrock guid != vd->vdev_guid || 13672082Seschrock nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 13682082Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 13692082Seschrock VDEV_AUX_CORRUPT_DATA); 13702082Seschrock nvlist_free(label); 13712082Seschrock return (-1); 13722082Seschrock } 13732082Seschrock 13743377Seschrock spa_spare_add(vd); 13753377Seschrock 13762082Seschrock /* 13772082Seschrock * We don't actually check the pool state here. If it's in fact in 13782082Seschrock * use by another pool, we update this fact on the fly when requested. 13792082Seschrock */ 13802082Seschrock nvlist_free(label); 13812082Seschrock return (0); 13822082Seschrock } 13832082Seschrock 1384789Sahrens void 1385789Sahrens vdev_sync_done(vdev_t *vd, uint64_t txg) 1386789Sahrens { 1387789Sahrens metaslab_t *msp; 1388789Sahrens 1389789Sahrens dprintf("%s txg %llu\n", vdev_description(vd), txg); 1390789Sahrens 1391789Sahrens while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1392789Sahrens metaslab_sync_done(msp, txg); 1393789Sahrens } 1394789Sahrens 1395789Sahrens void 1396789Sahrens vdev_sync(vdev_t *vd, uint64_t txg) 1397789Sahrens { 1398789Sahrens spa_t *spa = vd->vdev_spa; 1399789Sahrens vdev_t *lvd; 1400789Sahrens metaslab_t *msp; 14011732Sbonwick dmu_tx_t *tx; 1402789Sahrens 1403789Sahrens dprintf("%s txg %llu pass %d\n", 1404789Sahrens vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1405789Sahrens 14061732Sbonwick if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 14071732Sbonwick ASSERT(vd == vd->vdev_top); 14081732Sbonwick tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 14091732Sbonwick vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 14101732Sbonwick DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 14111732Sbonwick ASSERT(vd->vdev_ms_array != 0); 14121732Sbonwick vdev_config_dirty(vd); 14131732Sbonwick dmu_tx_commit(tx); 14141732Sbonwick } 1415789Sahrens 14161732Sbonwick while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1417789Sahrens metaslab_sync(msp, txg); 14181732Sbonwick (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 14191732Sbonwick } 1420789Sahrens 1421789Sahrens while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1422789Sahrens vdev_dtl_sync(lvd, txg); 1423789Sahrens 1424789Sahrens (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1425789Sahrens } 1426789Sahrens 1427789Sahrens uint64_t 1428789Sahrens vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1429789Sahrens { 1430789Sahrens return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1431789Sahrens } 1432789Sahrens 1433789Sahrens void 1434789Sahrens vdev_io_start(zio_t *zio) 1435789Sahrens { 1436789Sahrens zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1437789Sahrens } 1438789Sahrens 1439789Sahrens void 1440789Sahrens vdev_io_done(zio_t *zio) 1441789Sahrens { 1442789Sahrens zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1443789Sahrens } 1444789Sahrens 1445789Sahrens const char * 1446789Sahrens vdev_description(vdev_t *vd) 1447789Sahrens { 1448789Sahrens if (vd == NULL || vd->vdev_ops == NULL) 1449789Sahrens return ("<unknown>"); 1450789Sahrens 1451789Sahrens if (vd->vdev_path != NULL) 1452789Sahrens return (vd->vdev_path); 1453789Sahrens 1454789Sahrens if (vd->vdev_parent == NULL) 1455789Sahrens return (spa_name(vd->vdev_spa)); 1456789Sahrens 1457789Sahrens return (vd->vdev_ops->vdev_op_type); 1458789Sahrens } 1459789Sahrens 14604451Seschrock /* 14614451Seschrock * Mark the given vdev faulted. A faulted vdev behaves as if the device could 14624451Seschrock * not be opened, and no I/O is attempted. 14634451Seschrock */ 1464789Sahrens int 14654451Seschrock vdev_fault(spa_t *spa, uint64_t guid) 14664451Seschrock { 14674451Seschrock vdev_t *rvd, *vd; 14684451Seschrock uint64_t txg; 14694451Seschrock 14704451Seschrock txg = spa_vdev_enter(spa); 14714451Seschrock 14724451Seschrock rvd = spa->spa_root_vdev; 14734451Seschrock 14744451Seschrock if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 14754451Seschrock return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 14764451Seschrock if (!vd->vdev_ops->vdev_op_leaf) 14774451Seschrock return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 14784451Seschrock 14794451Seschrock /* 14804451Seschrock * Faulted state takes precedence over degraded. 14814451Seschrock */ 14824451Seschrock vd->vdev_faulted = 1ULL; 14834451Seschrock vd->vdev_degraded = 0ULL; 14844451Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, 14854451Seschrock VDEV_AUX_ERR_EXCEEDED); 14864451Seschrock 14874451Seschrock /* 14884451Seschrock * If marking the vdev as faulted cause the toplevel vdev to become 14894451Seschrock * unavailable, then back off and simply mark the vdev as degraded 14904451Seschrock * instead. 14914451Seschrock */ 14924451Seschrock if (vdev_is_dead(vd->vdev_top)) { 14934451Seschrock vd->vdev_degraded = 1ULL; 14944451Seschrock vd->vdev_faulted = 0ULL; 14954451Seschrock 14964451Seschrock /* 14974451Seschrock * If we reopen the device and it's not dead, only then do we 14984451Seschrock * mark it degraded. 14994451Seschrock */ 15004451Seschrock vdev_reopen(vd); 15014451Seschrock 15024451Seschrock if (!vdev_is_dead(vd)) { 15034451Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 15044451Seschrock VDEV_AUX_ERR_EXCEEDED); 15054451Seschrock } 15064451Seschrock } 15074451Seschrock 15084451Seschrock vdev_config_dirty(vd->vdev_top); 15094451Seschrock 15104451Seschrock (void) spa_vdev_exit(spa, NULL, txg, 0); 15114451Seschrock 15124451Seschrock return (0); 15134451Seschrock } 15144451Seschrock 15154451Seschrock /* 15164451Seschrock * Mark the given vdev degraded. A degraded vdev is purely an indication to the 15174451Seschrock * user that something is wrong. The vdev continues to operate as normal as far 15184451Seschrock * as I/O is concerned. 15194451Seschrock */ 15204451Seschrock int 15214451Seschrock vdev_degrade(spa_t *spa, uint64_t guid) 15224451Seschrock { 15234451Seschrock vdev_t *rvd, *vd; 15244451Seschrock uint64_t txg; 15254451Seschrock 15264451Seschrock txg = spa_vdev_enter(spa); 15274451Seschrock 15284451Seschrock rvd = spa->spa_root_vdev; 15294451Seschrock 15304451Seschrock if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 15314451Seschrock return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 15324451Seschrock if (!vd->vdev_ops->vdev_op_leaf) 15334451Seschrock return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 15344451Seschrock 15354451Seschrock /* 15364451Seschrock * If the vdev is already faulted, then don't do anything. 15374451Seschrock */ 15384451Seschrock if (vd->vdev_faulted || vd->vdev_degraded) { 15394451Seschrock (void) spa_vdev_exit(spa, NULL, txg, 0); 15404451Seschrock return (0); 15414451Seschrock } 15424451Seschrock 15434451Seschrock vd->vdev_degraded = 1ULL; 15444451Seschrock if (!vdev_is_dead(vd)) 15454451Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 15464451Seschrock VDEV_AUX_ERR_EXCEEDED); 15474451Seschrock vdev_config_dirty(vd->vdev_top); 15484451Seschrock 15494451Seschrock (void) spa_vdev_exit(spa, NULL, txg, 0); 15504451Seschrock 15514451Seschrock return (0); 15524451Seschrock } 15534451Seschrock 15544451Seschrock /* 15554451Seschrock * Online the given vdev. If 'unspare' is set, it implies two things. First, 15564451Seschrock * any attached spare device should be detached when the device finishes 15574451Seschrock * resilvering. Second, the online should be treated like a 'test' online case, 15584451Seschrock * so no FMA events are generated if the device fails to open. 15594451Seschrock */ 15604451Seschrock int 15614451Seschrock vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, 15624451Seschrock vdev_state_t *newstate) 1563789Sahrens { 15641485Slling vdev_t *rvd, *vd; 15651485Slling uint64_t txg; 1566789Sahrens 15671485Slling txg = spa_vdev_enter(spa); 15681485Slling 15691485Slling rvd = spa->spa_root_vdev; 15701585Sbonwick 15711544Seschrock if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 15721485Slling return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1573789Sahrens 15741585Sbonwick if (!vd->vdev_ops->vdev_op_leaf) 15751585Sbonwick return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 15761585Sbonwick 1577789Sahrens vd->vdev_offline = B_FALSE; 15781485Slling vd->vdev_tmpoffline = B_FALSE; 15794451Seschrock vd->vdev_checkremove = (flags & ZFS_ONLINE_CHECKREMOVE) ? 15804451Seschrock B_TRUE : B_FALSE; 15814451Seschrock vd->vdev_forcefault = (flags & ZFS_ONLINE_FORCEFAULT) ? 15824451Seschrock B_TRUE : B_FALSE; 15831544Seschrock vdev_reopen(vd->vdev_top); 15844451Seschrock vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 15854451Seschrock 15864451Seschrock if (newstate) 15874451Seschrock *newstate = vd->vdev_state; 15884451Seschrock if ((flags & ZFS_ONLINE_UNSPARE) && 15894451Seschrock !vdev_is_dead(vd) && vd->vdev_parent && 15904451Seschrock vd->vdev_parent->vdev_ops == &vdev_spare_ops && 15914451Seschrock vd->vdev_parent->vdev_child[0] == vd) 15924451Seschrock vd->vdev_unspare = B_TRUE; 1593789Sahrens 15941485Slling vdev_config_dirty(vd->vdev_top); 15951485Slling 15961485Slling (void) spa_vdev_exit(spa, NULL, txg, 0); 1597789Sahrens 15984451Seschrock /* 15994451Seschrock * Must hold spa_namespace_lock in order to post resilver sysevent 16004451Seschrock * w/pool name. 16014451Seschrock */ 16024451Seschrock mutex_enter(&spa_namespace_lock); 1603789Sahrens VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 16044451Seschrock mutex_exit(&spa_namespace_lock); 1605789Sahrens 1606789Sahrens return (0); 1607789Sahrens } 1608789Sahrens 1609789Sahrens int 16104451Seschrock vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1611789Sahrens { 16121485Slling vdev_t *rvd, *vd; 16131485Slling uint64_t txg; 1614789Sahrens 16151485Slling txg = spa_vdev_enter(spa); 1616789Sahrens 16171485Slling rvd = spa->spa_root_vdev; 16181585Sbonwick 16191544Seschrock if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 16201485Slling return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1621789Sahrens 16221585Sbonwick if (!vd->vdev_ops->vdev_op_leaf) 16231585Sbonwick return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 16241585Sbonwick 1625789Sahrens /* 16261732Sbonwick * If the device isn't already offline, try to offline it. 1627789Sahrens */ 16281732Sbonwick if (!vd->vdev_offline) { 16291732Sbonwick /* 16301732Sbonwick * If this device's top-level vdev has a non-empty DTL, 16311732Sbonwick * don't allow the device to be offlined. 16321732Sbonwick * 16331732Sbonwick * XXX -- make this more precise by allowing the offline 16341732Sbonwick * as long as the remaining devices don't have any DTL holes. 16351732Sbonwick */ 16361732Sbonwick if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 16371732Sbonwick return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1638789Sahrens 16391732Sbonwick /* 16401732Sbonwick * Offline this device and reopen its top-level vdev. 16411732Sbonwick * If this action results in the top-level vdev becoming 16421732Sbonwick * unusable, undo it and fail the request. 16431732Sbonwick */ 16441732Sbonwick vd->vdev_offline = B_TRUE; 16451544Seschrock vdev_reopen(vd->vdev_top); 16461732Sbonwick if (vdev_is_dead(vd->vdev_top)) { 16471732Sbonwick vd->vdev_offline = B_FALSE; 16481732Sbonwick vdev_reopen(vd->vdev_top); 16491732Sbonwick return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 16501732Sbonwick } 1651789Sahrens } 1652789Sahrens 16534451Seschrock vd->vdev_tmpoffline = (flags & ZFS_OFFLINE_TEMPORARY) ? 16544451Seschrock B_TRUE : B_FALSE; 16551732Sbonwick 16561732Sbonwick vdev_config_dirty(vd->vdev_top); 16571485Slling 16581485Slling return (spa_vdev_exit(spa, NULL, txg, 0)); 1659789Sahrens } 1660789Sahrens 16611544Seschrock /* 16621544Seschrock * Clear the error counts associated with this vdev. Unlike vdev_online() and 16631544Seschrock * vdev_offline(), we assume the spa config is locked. We also clear all 16641544Seschrock * children. If 'vd' is NULL, then the user wants to clear all vdevs. 16651544Seschrock */ 16661544Seschrock void 16671544Seschrock vdev_clear(spa_t *spa, vdev_t *vd) 1668789Sahrens { 16691544Seschrock int c; 1670789Sahrens 16711544Seschrock if (vd == NULL) 16721544Seschrock vd = spa->spa_root_vdev; 1673789Sahrens 16741544Seschrock vd->vdev_stat.vs_read_errors = 0; 16751544Seschrock vd->vdev_stat.vs_write_errors = 0; 16761544Seschrock vd->vdev_stat.vs_checksum_errors = 0; 1677789Sahrens 16781544Seschrock for (c = 0; c < vd->vdev_children; c++) 16791544Seschrock vdev_clear(spa, vd->vdev_child[c]); 16804451Seschrock 16814451Seschrock /* 16824451Seschrock * If we're in the FAULTED state, then clear the persistent state and 16834451Seschrock * attempt to reopen the device. We also mark the vdev config dirty, so 16844451Seschrock * that the new faulted state is written out to disk. 16854451Seschrock */ 16864451Seschrock if (vd->vdev_faulted || vd->vdev_degraded) { 16874451Seschrock vd->vdev_faulted = vd->vdev_degraded = 0; 16884451Seschrock vdev_reopen(vd); 16894451Seschrock vdev_config_dirty(vd->vdev_top); 16904451Seschrock 16914451Seschrock if (vd->vdev_faulted) 16924451Seschrock VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, 16934451Seschrock B_TRUE) == 0); 16944451Seschrock 16954451Seschrock spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 16964451Seschrock } 1697789Sahrens } 1698789Sahrens 1699789Sahrens int 1700789Sahrens vdev_is_dead(vdev_t *vd) 1701789Sahrens { 17024451Seschrock return (vd->vdev_state < VDEV_STATE_DEGRADED); 1703789Sahrens } 1704789Sahrens 1705789Sahrens int 1706789Sahrens vdev_error_inject(vdev_t *vd, zio_t *zio) 1707789Sahrens { 1708789Sahrens int error = 0; 1709789Sahrens 1710789Sahrens if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1711789Sahrens return (0); 1712789Sahrens 1713789Sahrens if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1714789Sahrens return (0); 1715789Sahrens 1716789Sahrens switch (vd->vdev_fault_mode) { 1717789Sahrens case VDEV_FAULT_RANDOM: 1718789Sahrens if (spa_get_random(vd->vdev_fault_arg) == 0) 1719789Sahrens error = EIO; 1720789Sahrens break; 1721789Sahrens 1722789Sahrens case VDEV_FAULT_COUNT: 1723789Sahrens if ((int64_t)--vd->vdev_fault_arg <= 0) 1724789Sahrens vd->vdev_fault_mode = VDEV_FAULT_NONE; 1725789Sahrens error = EIO; 1726789Sahrens break; 1727789Sahrens } 1728789Sahrens 1729789Sahrens return (error); 1730789Sahrens } 1731789Sahrens 1732789Sahrens /* 1733789Sahrens * Get statistics for the given vdev. 1734789Sahrens */ 1735789Sahrens void 1736789Sahrens vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1737789Sahrens { 1738789Sahrens vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1739789Sahrens int c, t; 1740789Sahrens 1741789Sahrens mutex_enter(&vd->vdev_stat_lock); 1742789Sahrens bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1743789Sahrens vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1744789Sahrens vs->vs_state = vd->vdev_state; 17451175Slling vs->vs_rsize = vdev_get_rsize(vd); 1746789Sahrens mutex_exit(&vd->vdev_stat_lock); 1747789Sahrens 1748789Sahrens /* 1749789Sahrens * If we're getting stats on the root vdev, aggregate the I/O counts 1750789Sahrens * over all top-level vdevs (i.e. the direct children of the root). 1751789Sahrens */ 1752789Sahrens if (vd == rvd) { 1753789Sahrens for (c = 0; c < rvd->vdev_children; c++) { 1754789Sahrens vdev_t *cvd = rvd->vdev_child[c]; 1755789Sahrens vdev_stat_t *cvs = &cvd->vdev_stat; 1756789Sahrens 1757789Sahrens mutex_enter(&vd->vdev_stat_lock); 1758789Sahrens for (t = 0; t < ZIO_TYPES; t++) { 1759789Sahrens vs->vs_ops[t] += cvs->vs_ops[t]; 1760789Sahrens vs->vs_bytes[t] += cvs->vs_bytes[t]; 1761789Sahrens } 1762789Sahrens vs->vs_read_errors += cvs->vs_read_errors; 1763789Sahrens vs->vs_write_errors += cvs->vs_write_errors; 1764789Sahrens vs->vs_checksum_errors += cvs->vs_checksum_errors; 1765789Sahrens vs->vs_scrub_examined += cvs->vs_scrub_examined; 1766789Sahrens vs->vs_scrub_errors += cvs->vs_scrub_errors; 1767789Sahrens mutex_exit(&vd->vdev_stat_lock); 1768789Sahrens } 1769789Sahrens } 1770789Sahrens } 1771789Sahrens 1772789Sahrens void 1773789Sahrens vdev_stat_update(zio_t *zio) 1774789Sahrens { 1775789Sahrens vdev_t *vd = zio->io_vd; 1776789Sahrens vdev_t *pvd; 1777789Sahrens uint64_t txg = zio->io_txg; 1778789Sahrens vdev_stat_t *vs = &vd->vdev_stat; 1779789Sahrens zio_type_t type = zio->io_type; 1780789Sahrens int flags = zio->io_flags; 1781789Sahrens 1782789Sahrens if (zio->io_error == 0) { 1783789Sahrens if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1784789Sahrens mutex_enter(&vd->vdev_stat_lock); 1785789Sahrens vs->vs_ops[type]++; 1786789Sahrens vs->vs_bytes[type] += zio->io_size; 1787789Sahrens mutex_exit(&vd->vdev_stat_lock); 1788789Sahrens } 1789789Sahrens if ((flags & ZIO_FLAG_IO_REPAIR) && 1790789Sahrens zio->io_delegate_list == NULL) { 1791789Sahrens mutex_enter(&vd->vdev_stat_lock); 17921807Sbonwick if (flags & ZIO_FLAG_SCRUB_THREAD) 1793789Sahrens vs->vs_scrub_repaired += zio->io_size; 1794789Sahrens else 1795789Sahrens vs->vs_self_healed += zio->io_size; 1796789Sahrens mutex_exit(&vd->vdev_stat_lock); 1797789Sahrens } 1798789Sahrens return; 1799789Sahrens } 1800789Sahrens 1801789Sahrens if (flags & ZIO_FLAG_SPECULATIVE) 1802789Sahrens return; 1803789Sahrens 1804789Sahrens if (!vdev_is_dead(vd)) { 1805789Sahrens mutex_enter(&vd->vdev_stat_lock); 1806789Sahrens if (type == ZIO_TYPE_READ) { 1807789Sahrens if (zio->io_error == ECKSUM) 1808789Sahrens vs->vs_checksum_errors++; 1809789Sahrens else 1810789Sahrens vs->vs_read_errors++; 1811789Sahrens } 1812789Sahrens if (type == ZIO_TYPE_WRITE) 1813789Sahrens vs->vs_write_errors++; 1814789Sahrens mutex_exit(&vd->vdev_stat_lock); 1815789Sahrens } 1816789Sahrens 1817789Sahrens if (type == ZIO_TYPE_WRITE) { 1818789Sahrens if (txg == 0 || vd->vdev_children != 0) 1819789Sahrens return; 18201807Sbonwick if (flags & ZIO_FLAG_SCRUB_THREAD) { 1821789Sahrens ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1822789Sahrens for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1823789Sahrens vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1824789Sahrens } 1825789Sahrens if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1826789Sahrens if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1827789Sahrens return; 18281732Sbonwick vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1829789Sahrens for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1830789Sahrens vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1831789Sahrens } 1832789Sahrens } 1833789Sahrens } 1834789Sahrens 1835789Sahrens void 1836789Sahrens vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1837789Sahrens { 1838789Sahrens int c; 1839789Sahrens vdev_stat_t *vs = &vd->vdev_stat; 1840789Sahrens 1841789Sahrens for (c = 0; c < vd->vdev_children; c++) 1842789Sahrens vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1843789Sahrens 1844789Sahrens mutex_enter(&vd->vdev_stat_lock); 1845789Sahrens 1846789Sahrens if (type == POOL_SCRUB_NONE) { 1847789Sahrens /* 1848789Sahrens * Update completion and end time. Leave everything else alone 1849789Sahrens * so we can report what happened during the previous scrub. 1850789Sahrens */ 1851789Sahrens vs->vs_scrub_complete = complete; 1852789Sahrens vs->vs_scrub_end = gethrestime_sec(); 1853789Sahrens } else { 1854789Sahrens vs->vs_scrub_type = type; 1855789Sahrens vs->vs_scrub_complete = 0; 1856789Sahrens vs->vs_scrub_examined = 0; 1857789Sahrens vs->vs_scrub_repaired = 0; 1858789Sahrens vs->vs_scrub_errors = 0; 1859789Sahrens vs->vs_scrub_start = gethrestime_sec(); 1860789Sahrens vs->vs_scrub_end = 0; 1861789Sahrens } 1862789Sahrens 1863789Sahrens mutex_exit(&vd->vdev_stat_lock); 1864789Sahrens } 1865789Sahrens 1866789Sahrens /* 1867789Sahrens * Update the in-core space usage stats for this vdev and the root vdev. 1868789Sahrens */ 1869789Sahrens void 18702082Seschrock vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta) 1871789Sahrens { 1872*4527Sperrin int64_t dspace_delta = space_delta; 1873*4527Sperrin spa_t *spa = vd->vdev_spa; 1874*4527Sperrin vdev_t *rvd = spa->spa_root_vdev; 1875*4527Sperrin 1876789Sahrens ASSERT(vd == vd->vdev_top); 1877*4527Sperrin ASSERT(rvd == vd->vdev_parent); 1878*4527Sperrin ASSERT(vd->vdev_ms_count != 0); 1879*4527Sperrin 1880*4527Sperrin /* 1881*4527Sperrin * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 1882*4527Sperrin * factor. We must calculate this here and not at the root vdev 1883*4527Sperrin * because the root vdev's psize-to-asize is simply the max of its 1884*4527Sperrin * childrens', thus not accurate enough for us. 1885*4527Sperrin */ 1886*4527Sperrin ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 1887*4527Sperrin dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 1888*4527Sperrin vd->vdev_deflate_ratio; 1889789Sahrens 1890*4527Sperrin mutex_enter(&vd->vdev_stat_lock); 1891*4527Sperrin vd->vdev_stat.vs_space += space_delta; 1892*4527Sperrin vd->vdev_stat.vs_alloc += alloc_delta; 1893*4527Sperrin vd->vdev_stat.vs_dspace += dspace_delta; 1894*4527Sperrin mutex_exit(&vd->vdev_stat_lock); 18952082Seschrock 1896*4527Sperrin /* 1897*4527Sperrin * Don't count non-normal (e.g. intent log) space as part of 1898*4527Sperrin * the pool's capacity. 1899*4527Sperrin */ 1900*4527Sperrin if (vd->vdev_mg->mg_class != spa->spa_normal_class) 1901*4527Sperrin return; 1902*4527Sperrin 1903*4527Sperrin mutex_enter(&rvd->vdev_stat_lock); 1904*4527Sperrin rvd->vdev_stat.vs_space += space_delta; 1905*4527Sperrin rvd->vdev_stat.vs_alloc += alloc_delta; 1906*4527Sperrin rvd->vdev_stat.vs_dspace += dspace_delta; 1907*4527Sperrin mutex_exit(&rvd->vdev_stat_lock); 1908789Sahrens } 1909789Sahrens 1910789Sahrens /* 1911789Sahrens * Mark a top-level vdev's config as dirty, placing it on the dirty list 1912789Sahrens * so that it will be written out next time the vdev configuration is synced. 1913789Sahrens * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1914789Sahrens */ 1915789Sahrens void 1916789Sahrens vdev_config_dirty(vdev_t *vd) 1917789Sahrens { 1918789Sahrens spa_t *spa = vd->vdev_spa; 1919789Sahrens vdev_t *rvd = spa->spa_root_vdev; 1920789Sahrens int c; 1921789Sahrens 19221601Sbonwick /* 19231601Sbonwick * The dirty list is protected by the config lock. The caller must 19241601Sbonwick * either hold the config lock as writer, or must be the sync thread 19251601Sbonwick * (which holds the lock as reader). There's only one sync thread, 19261601Sbonwick * so this is sufficient to ensure mutual exclusion. 19271601Sbonwick */ 19281601Sbonwick ASSERT(spa_config_held(spa, RW_WRITER) || 19291601Sbonwick dsl_pool_sync_context(spa_get_dsl(spa))); 19301601Sbonwick 1931789Sahrens if (vd == rvd) { 1932789Sahrens for (c = 0; c < rvd->vdev_children; c++) 1933789Sahrens vdev_config_dirty(rvd->vdev_child[c]); 1934789Sahrens } else { 1935789Sahrens ASSERT(vd == vd->vdev_top); 1936789Sahrens 19371732Sbonwick if (!list_link_active(&vd->vdev_dirty_node)) 1938789Sahrens list_insert_head(&spa->spa_dirty_list, vd); 1939789Sahrens } 1940789Sahrens } 1941789Sahrens 1942789Sahrens void 1943789Sahrens vdev_config_clean(vdev_t *vd) 1944789Sahrens { 19451601Sbonwick spa_t *spa = vd->vdev_spa; 19461601Sbonwick 19471601Sbonwick ASSERT(spa_config_held(spa, RW_WRITER) || 19481601Sbonwick dsl_pool_sync_context(spa_get_dsl(spa))); 19491601Sbonwick 19501732Sbonwick ASSERT(list_link_active(&vd->vdev_dirty_node)); 19511601Sbonwick list_remove(&spa->spa_dirty_list, vd); 1952789Sahrens } 1953789Sahrens 19541775Sbillm void 19551775Sbillm vdev_propagate_state(vdev_t *vd) 19561775Sbillm { 19571775Sbillm vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 19581775Sbillm int degraded = 0, faulted = 0; 19591775Sbillm int corrupted = 0; 19601775Sbillm int c; 19611775Sbillm vdev_t *child; 19621775Sbillm 19634451Seschrock if (vd->vdev_children > 0) { 19644451Seschrock for (c = 0; c < vd->vdev_children; c++) { 19654451Seschrock child = vd->vdev_child[c]; 19664451Seschrock if (vdev_is_dead(child)) 19674451Seschrock faulted++; 19684451Seschrock else if (child->vdev_state == VDEV_STATE_DEGRADED) 19694451Seschrock degraded++; 19704451Seschrock 19714451Seschrock if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 19724451Seschrock corrupted++; 19734451Seschrock } 19741775Sbillm 19754451Seschrock vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 19764451Seschrock 19774451Seschrock /* 19784451Seschrock * Root special: if there is a toplevel vdev that cannot be 19794451Seschrock * opened due to corrupted metadata, then propagate the root 19804451Seschrock * vdev's aux state as 'corrupt' rather than 'insufficient 19814451Seschrock * replicas'. 19824451Seschrock */ 19834451Seschrock if (corrupted && vd == rvd && 19844451Seschrock rvd->vdev_state == VDEV_STATE_CANT_OPEN) 19854451Seschrock vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 19864451Seschrock VDEV_AUX_CORRUPT_DATA); 19871775Sbillm } 19881775Sbillm 1989*4527Sperrin if (vd->vdev_parent && !vd->vdev_islog) 19904451Seschrock vdev_propagate_state(vd->vdev_parent); 19911775Sbillm } 19921775Sbillm 1993789Sahrens /* 19941544Seschrock * Set a vdev's state. If this is during an open, we don't update the parent 19951544Seschrock * state, because we're in the process of opening children depth-first. 19961544Seschrock * Otherwise, we propagate the change to the parent. 19971544Seschrock * 19981544Seschrock * If this routine places a device in a faulted state, an appropriate ereport is 19991544Seschrock * generated. 2000789Sahrens */ 2001789Sahrens void 20021544Seschrock vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2003789Sahrens { 20041986Seschrock uint64_t save_state; 20051544Seschrock 20061544Seschrock if (state == vd->vdev_state) { 20071544Seschrock vd->vdev_stat.vs_aux = aux; 2008789Sahrens return; 20091544Seschrock } 20101544Seschrock 20111986Seschrock save_state = vd->vdev_state; 2012789Sahrens 2013789Sahrens vd->vdev_state = state; 2014789Sahrens vd->vdev_stat.vs_aux = aux; 2015789Sahrens 20164451Seschrock /* 20174451Seschrock * If we are setting the vdev state to anything but an open state, then 20184451Seschrock * always close the underlying device. Otherwise, we keep accessible 20194451Seschrock * but invalid devices open forever. We don't call vdev_close() itself, 20204451Seschrock * because that implies some extra checks (offline, etc) that we don't 20214451Seschrock * want here. This is limited to leaf devices, because otherwise 20224451Seschrock * closing the device will affect other children. 20234451Seschrock */ 20244451Seschrock if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 20254451Seschrock vd->vdev_ops->vdev_op_close(vd); 20264451Seschrock 20274451Seschrock if (vd->vdev_removed && 20284451Seschrock state == VDEV_STATE_CANT_OPEN && 20294451Seschrock (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 20304451Seschrock /* 20314451Seschrock * If the previous state is set to VDEV_STATE_REMOVED, then this 20324451Seschrock * device was previously marked removed and someone attempted to 20334451Seschrock * reopen it. If this failed due to a nonexistent device, then 20344451Seschrock * keep the device in the REMOVED state. We also let this be if 20354451Seschrock * it is one of our special test online cases, which is only 20364451Seschrock * attempting to online the device and shouldn't generate an FMA 20374451Seschrock * fault. 20384451Seschrock */ 20394451Seschrock vd->vdev_state = VDEV_STATE_REMOVED; 20404451Seschrock vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 20414451Seschrock } else if (state == VDEV_STATE_REMOVED) { 20424451Seschrock /* 20434451Seschrock * Indicate to the ZFS DE that this device has been removed, and 20444451Seschrock * any recent errors should be ignored. 20454451Seschrock */ 20464451Seschrock zfs_post_remove(vd->vdev_spa, vd); 20474451Seschrock vd->vdev_removed = B_TRUE; 20484451Seschrock } else if (state == VDEV_STATE_CANT_OPEN) { 20491544Seschrock /* 20501544Seschrock * If we fail to open a vdev during an import, we mark it as 20511544Seschrock * "not available", which signifies that it was never there to 20521544Seschrock * begin with. Failure to open such a device is not considered 20531544Seschrock * an error. 20541544Seschrock */ 20551986Seschrock if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 20561986Seschrock vd->vdev_ops->vdev_op_leaf) 20571986Seschrock vd->vdev_not_present = 1; 20581986Seschrock 20591986Seschrock /* 20601986Seschrock * Post the appropriate ereport. If the 'prevstate' field is 20611986Seschrock * set to something other than VDEV_STATE_UNKNOWN, it indicates 20621986Seschrock * that this is part of a vdev_reopen(). In this case, we don't 20631986Seschrock * want to post the ereport if the device was already in the 20641986Seschrock * CANT_OPEN state beforehand. 20654451Seschrock * 20664451Seschrock * If the 'checkremove' flag is set, then this is an attempt to 20674451Seschrock * online the device in response to an insertion event. If we 20684451Seschrock * hit this case, then we have detected an insertion event for a 20694451Seschrock * faulted or offline device that wasn't in the removed state. 20704451Seschrock * In this scenario, we don't post an ereport because we are 20714451Seschrock * about to replace the device, or attempt an online with 20724451Seschrock * vdev_forcefault, which will generate the fault for us. 20731986Seschrock */ 20744451Seschrock if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 20754451Seschrock !vd->vdev_not_present && !vd->vdev_checkremove && 20761544Seschrock vd != vd->vdev_spa->spa_root_vdev) { 20771544Seschrock const char *class; 20781544Seschrock 20791544Seschrock switch (aux) { 20801544Seschrock case VDEV_AUX_OPEN_FAILED: 20811544Seschrock class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 20821544Seschrock break; 20831544Seschrock case VDEV_AUX_CORRUPT_DATA: 20841544Seschrock class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 20851544Seschrock break; 20861544Seschrock case VDEV_AUX_NO_REPLICAS: 20871544Seschrock class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 20881544Seschrock break; 20891544Seschrock case VDEV_AUX_BAD_GUID_SUM: 20901544Seschrock class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 20911544Seschrock break; 20921544Seschrock case VDEV_AUX_TOO_SMALL: 20931544Seschrock class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 20941544Seschrock break; 20951544Seschrock case VDEV_AUX_BAD_LABEL: 20961544Seschrock class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 20971544Seschrock break; 20981544Seschrock default: 20991544Seschrock class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 21001544Seschrock } 21011544Seschrock 21021544Seschrock zfs_ereport_post(class, vd->vdev_spa, 21031986Seschrock vd, NULL, save_state, 0); 21041544Seschrock } 21054451Seschrock 21064451Seschrock /* Erase any notion of persistent removed state */ 21074451Seschrock vd->vdev_removed = B_FALSE; 21084451Seschrock } else { 21094451Seschrock vd->vdev_removed = B_FALSE; 21101544Seschrock } 21111544Seschrock 21124451Seschrock if (!isopen) 21134451Seschrock vdev_propagate_state(vd); 2114789Sahrens } 2115