1789Sahrens /* 2789Sahrens * CDDL HEADER START 3789Sahrens * 4789Sahrens * The contents of this file are subject to the terms of the 51485Slling * Common Development and Distribution License (the "License"). 61485Slling * You may not use this file except in compliance with the License. 7789Sahrens * 8789Sahrens * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9789Sahrens * or http://www.opensolaris.org/os/licensing. 10789Sahrens * See the License for the specific language governing permissions 11789Sahrens * and limitations under the License. 12789Sahrens * 13789Sahrens * When distributing Covered Code, include this CDDL HEADER in each 14789Sahrens * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15789Sahrens * If applicable, add the following below this CDDL HEADER, with the 16789Sahrens * fields enclosed by brackets "[]" replaced with your own identifying 17789Sahrens * information: Portions Copyright [yyyy] [name of copyright owner] 18789Sahrens * 19789Sahrens * CDDL HEADER END 20789Sahrens */ 212082Seschrock 22789Sahrens /* 231199Seschrock * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24789Sahrens * Use is subject to license terms. 25789Sahrens */ 26789Sahrens 27789Sahrens #pragma ident "%Z%%M% %I% %E% SMI" 28789Sahrens 29789Sahrens #include <sys/zfs_context.h> 301544Seschrock #include <sys/fm/fs/zfs.h> 31789Sahrens #include <sys/spa.h> 32789Sahrens #include <sys/spa_impl.h> 33789Sahrens #include <sys/dmu.h> 34789Sahrens #include <sys/dmu_tx.h> 35789Sahrens #include <sys/vdev_impl.h> 36789Sahrens #include <sys/uberblock_impl.h> 37789Sahrens #include <sys/metaslab.h> 38789Sahrens #include <sys/metaslab_impl.h> 39789Sahrens #include <sys/space_map.h> 40789Sahrens #include <sys/zio.h> 41789Sahrens #include <sys/zap.h> 42789Sahrens #include <sys/fs/zfs.h> 43789Sahrens 44789Sahrens /* 45789Sahrens * Virtual device management. 46789Sahrens */ 47789Sahrens 48789Sahrens static vdev_ops_t *vdev_ops_table[] = { 49789Sahrens &vdev_root_ops, 50789Sahrens &vdev_raidz_ops, 51789Sahrens &vdev_mirror_ops, 52789Sahrens &vdev_replacing_ops, 532082Seschrock &vdev_spare_ops, 54789Sahrens &vdev_disk_ops, 55789Sahrens &vdev_file_ops, 56789Sahrens &vdev_missing_ops, 57789Sahrens NULL 58789Sahrens }; 59789Sahrens 60789Sahrens /* 61789Sahrens * Given a vdev type, return the appropriate ops vector. 62789Sahrens */ 63789Sahrens static vdev_ops_t * 64789Sahrens vdev_getops(const char *type) 65789Sahrens { 66789Sahrens vdev_ops_t *ops, **opspp; 67789Sahrens 68789Sahrens for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 69789Sahrens if (strcmp(ops->vdev_op_type, type) == 0) 70789Sahrens break; 71789Sahrens 72789Sahrens return (ops); 73789Sahrens } 74789Sahrens 75789Sahrens /* 76789Sahrens * Default asize function: return the MAX of psize with the asize of 77789Sahrens * all children. This is what's used by anything other than RAID-Z. 78789Sahrens */ 79789Sahrens uint64_t 80789Sahrens vdev_default_asize(vdev_t *vd, uint64_t psize) 81789Sahrens { 821732Sbonwick uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 83789Sahrens uint64_t csize; 84789Sahrens uint64_t c; 85789Sahrens 86789Sahrens for (c = 0; c < vd->vdev_children; c++) { 87789Sahrens csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 88789Sahrens asize = MAX(asize, csize); 89789Sahrens } 90789Sahrens 91789Sahrens return (asize); 92789Sahrens } 93789Sahrens 941175Slling /* 951175Slling * Get the replaceable or attachable device size. 961175Slling * If the parent is a mirror or raidz, the replaceable size is the minimum 971175Slling * psize of all its children. For the rest, just return our own psize. 981175Slling * 991175Slling * e.g. 1001175Slling * psize rsize 1011175Slling * root - - 1021175Slling * mirror/raidz - - 1031175Slling * disk1 20g 20g 1041175Slling * disk2 40g 20g 1051175Slling * disk3 80g 80g 1061175Slling */ 1071175Slling uint64_t 1081175Slling vdev_get_rsize(vdev_t *vd) 1091175Slling { 1101175Slling vdev_t *pvd, *cvd; 1111175Slling uint64_t c, rsize; 1121175Slling 1131175Slling pvd = vd->vdev_parent; 1141175Slling 1151175Slling /* 1161175Slling * If our parent is NULL or the root, just return our own psize. 1171175Slling */ 1181175Slling if (pvd == NULL || pvd->vdev_parent == NULL) 1191175Slling return (vd->vdev_psize); 1201175Slling 1211175Slling rsize = 0; 1221175Slling 1231175Slling for (c = 0; c < pvd->vdev_children; c++) { 1241175Slling cvd = pvd->vdev_child[c]; 1251175Slling rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 1261175Slling } 1271175Slling 1281175Slling return (rsize); 1291175Slling } 1301175Slling 131789Sahrens vdev_t * 132789Sahrens vdev_lookup_top(spa_t *spa, uint64_t vdev) 133789Sahrens { 134789Sahrens vdev_t *rvd = spa->spa_root_vdev; 135789Sahrens 136789Sahrens if (vdev < rvd->vdev_children) 137789Sahrens return (rvd->vdev_child[vdev]); 138789Sahrens 139789Sahrens return (NULL); 140789Sahrens } 141789Sahrens 142789Sahrens vdev_t * 143789Sahrens vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 144789Sahrens { 145789Sahrens int c; 146789Sahrens vdev_t *mvd; 147789Sahrens 1481585Sbonwick if (vd->vdev_guid == guid) 149789Sahrens return (vd); 150789Sahrens 151789Sahrens for (c = 0; c < vd->vdev_children; c++) 152789Sahrens if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 153789Sahrens NULL) 154789Sahrens return (mvd); 155789Sahrens 156789Sahrens return (NULL); 157789Sahrens } 158789Sahrens 159789Sahrens void 160789Sahrens vdev_add_child(vdev_t *pvd, vdev_t *cvd) 161789Sahrens { 162789Sahrens size_t oldsize, newsize; 163789Sahrens uint64_t id = cvd->vdev_id; 164789Sahrens vdev_t **newchild; 165789Sahrens 166789Sahrens ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 167789Sahrens ASSERT(cvd->vdev_parent == NULL); 168789Sahrens 169789Sahrens cvd->vdev_parent = pvd; 170789Sahrens 171789Sahrens if (pvd == NULL) 172789Sahrens return; 173789Sahrens 174789Sahrens ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 175789Sahrens 176789Sahrens oldsize = pvd->vdev_children * sizeof (vdev_t *); 177789Sahrens pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 178789Sahrens newsize = pvd->vdev_children * sizeof (vdev_t *); 179789Sahrens 180789Sahrens newchild = kmem_zalloc(newsize, KM_SLEEP); 181789Sahrens if (pvd->vdev_child != NULL) { 182789Sahrens bcopy(pvd->vdev_child, newchild, oldsize); 183789Sahrens kmem_free(pvd->vdev_child, oldsize); 184789Sahrens } 185789Sahrens 186789Sahrens pvd->vdev_child = newchild; 187789Sahrens pvd->vdev_child[id] = cvd; 188789Sahrens 189789Sahrens cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 190789Sahrens ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 191789Sahrens 192789Sahrens /* 193789Sahrens * Walk up all ancestors to update guid sum. 194789Sahrens */ 195789Sahrens for (; pvd != NULL; pvd = pvd->vdev_parent) 196789Sahrens pvd->vdev_guid_sum += cvd->vdev_guid_sum; 197789Sahrens } 198789Sahrens 199789Sahrens void 200789Sahrens vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 201789Sahrens { 202789Sahrens int c; 203789Sahrens uint_t id = cvd->vdev_id; 204789Sahrens 205789Sahrens ASSERT(cvd->vdev_parent == pvd); 206789Sahrens 207789Sahrens if (pvd == NULL) 208789Sahrens return; 209789Sahrens 210789Sahrens ASSERT(id < pvd->vdev_children); 211789Sahrens ASSERT(pvd->vdev_child[id] == cvd); 212789Sahrens 213789Sahrens pvd->vdev_child[id] = NULL; 214789Sahrens cvd->vdev_parent = NULL; 215789Sahrens 216789Sahrens for (c = 0; c < pvd->vdev_children; c++) 217789Sahrens if (pvd->vdev_child[c]) 218789Sahrens break; 219789Sahrens 220789Sahrens if (c == pvd->vdev_children) { 221789Sahrens kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 222789Sahrens pvd->vdev_child = NULL; 223789Sahrens pvd->vdev_children = 0; 224789Sahrens } 225789Sahrens 226789Sahrens /* 227789Sahrens * Walk up all ancestors to update guid sum. 228789Sahrens */ 229789Sahrens for (; pvd != NULL; pvd = pvd->vdev_parent) 230789Sahrens pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 231789Sahrens } 232789Sahrens 233789Sahrens /* 234789Sahrens * Remove any holes in the child array. 235789Sahrens */ 236789Sahrens void 237789Sahrens vdev_compact_children(vdev_t *pvd) 238789Sahrens { 239789Sahrens vdev_t **newchild, *cvd; 240789Sahrens int oldc = pvd->vdev_children; 241789Sahrens int newc, c; 242789Sahrens 243789Sahrens ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 244789Sahrens 245789Sahrens for (c = newc = 0; c < oldc; c++) 246789Sahrens if (pvd->vdev_child[c]) 247789Sahrens newc++; 248789Sahrens 249789Sahrens newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 250789Sahrens 251789Sahrens for (c = newc = 0; c < oldc; c++) { 252789Sahrens if ((cvd = pvd->vdev_child[c]) != NULL) { 253789Sahrens newchild[newc] = cvd; 254789Sahrens cvd->vdev_id = newc++; 255789Sahrens } 256789Sahrens } 257789Sahrens 258789Sahrens kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 259789Sahrens pvd->vdev_child = newchild; 260789Sahrens pvd->vdev_children = newc; 261789Sahrens } 262789Sahrens 263789Sahrens /* 264789Sahrens * Allocate and minimally initialize a vdev_t. 265789Sahrens */ 266789Sahrens static vdev_t * 267789Sahrens vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 268789Sahrens { 269789Sahrens vdev_t *vd; 270789Sahrens 2711585Sbonwick vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 2721585Sbonwick 2731585Sbonwick if (spa->spa_root_vdev == NULL) { 2741585Sbonwick ASSERT(ops == &vdev_root_ops); 2751585Sbonwick spa->spa_root_vdev = vd; 2761585Sbonwick } 277789Sahrens 2781585Sbonwick if (guid == 0) { 2791585Sbonwick if (spa->spa_root_vdev == vd) { 2801585Sbonwick /* 2811585Sbonwick * The root vdev's guid will also be the pool guid, 2821585Sbonwick * which must be unique among all pools. 2831585Sbonwick */ 2841585Sbonwick while (guid == 0 || spa_guid_exists(guid, 0)) 2851585Sbonwick guid = spa_get_random(-1ULL); 2861585Sbonwick } else { 2871585Sbonwick /* 2881585Sbonwick * Any other vdev's guid must be unique within the pool. 2891585Sbonwick */ 2901585Sbonwick while (guid == 0 || 2911585Sbonwick spa_guid_exists(spa_guid(spa), guid)) 2921585Sbonwick guid = spa_get_random(-1ULL); 2931585Sbonwick } 2941585Sbonwick ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 2951585Sbonwick } 296789Sahrens 297789Sahrens vd->vdev_spa = spa; 298789Sahrens vd->vdev_id = id; 299789Sahrens vd->vdev_guid = guid; 300789Sahrens vd->vdev_guid_sum = guid; 301789Sahrens vd->vdev_ops = ops; 302789Sahrens vd->vdev_state = VDEV_STATE_CLOSED; 303789Sahrens 304789Sahrens mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 305789Sahrens space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 306789Sahrens space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 307789Sahrens txg_list_create(&vd->vdev_ms_list, 308789Sahrens offsetof(struct metaslab, ms_txg_node)); 309789Sahrens txg_list_create(&vd->vdev_dtl_list, 310789Sahrens offsetof(struct vdev, vdev_dtl_node)); 311789Sahrens vd->vdev_stat.vs_timestamp = gethrtime(); 312789Sahrens 313789Sahrens return (vd); 314789Sahrens } 315789Sahrens 316789Sahrens /* 317789Sahrens * Free a vdev_t that has been removed from service. 318789Sahrens */ 319789Sahrens static void 320789Sahrens vdev_free_common(vdev_t *vd) 321789Sahrens { 3221585Sbonwick spa_t *spa = vd->vdev_spa; 3231585Sbonwick 324789Sahrens if (vd->vdev_path) 325789Sahrens spa_strfree(vd->vdev_path); 326789Sahrens if (vd->vdev_devid) 327789Sahrens spa_strfree(vd->vdev_devid); 328789Sahrens 3292082Seschrock if (vd->vdev_isspare) 3302082Seschrock spa_spare_remove(vd->vdev_guid); 3312082Seschrock 332789Sahrens txg_list_destroy(&vd->vdev_ms_list); 333789Sahrens txg_list_destroy(&vd->vdev_dtl_list); 334789Sahrens mutex_enter(&vd->vdev_dtl_lock); 3351732Sbonwick space_map_unload(&vd->vdev_dtl_map); 336789Sahrens space_map_destroy(&vd->vdev_dtl_map); 337789Sahrens space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 338789Sahrens space_map_destroy(&vd->vdev_dtl_scrub); 339789Sahrens mutex_exit(&vd->vdev_dtl_lock); 340789Sahrens mutex_destroy(&vd->vdev_dtl_lock); 341789Sahrens 3421585Sbonwick if (vd == spa->spa_root_vdev) 3431585Sbonwick spa->spa_root_vdev = NULL; 3441585Sbonwick 345789Sahrens kmem_free(vd, sizeof (vdev_t)); 346789Sahrens } 347789Sahrens 348789Sahrens /* 349789Sahrens * Allocate a new vdev. The 'alloctype' is used to control whether we are 350789Sahrens * creating a new vdev or loading an existing one - the behavior is slightly 351789Sahrens * different for each case. 352789Sahrens */ 3532082Seschrock int 3542082Seschrock vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 3552082Seschrock int alloctype) 356789Sahrens { 357789Sahrens vdev_ops_t *ops; 358789Sahrens char *type; 3591732Sbonwick uint64_t guid = 0; 360789Sahrens vdev_t *vd; 361789Sahrens 362789Sahrens ASSERT(spa_config_held(spa, RW_WRITER)); 363789Sahrens 364789Sahrens if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 3652082Seschrock return (EINVAL); 366789Sahrens 367789Sahrens if ((ops = vdev_getops(type)) == NULL) 3682082Seschrock return (EINVAL); 369789Sahrens 370789Sahrens /* 371789Sahrens * If this is a load, get the vdev guid from the nvlist. 372789Sahrens * Otherwise, vdev_alloc_common() will generate one for us. 373789Sahrens */ 374789Sahrens if (alloctype == VDEV_ALLOC_LOAD) { 375789Sahrens uint64_t label_id; 376789Sahrens 377789Sahrens if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 378789Sahrens label_id != id) 3792082Seschrock return (EINVAL); 380789Sahrens 381789Sahrens if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 3822082Seschrock return (EINVAL); 3832082Seschrock } else if (alloctype == VDEV_ALLOC_SPARE) { 3842082Seschrock if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 3852082Seschrock return (EINVAL); 386789Sahrens } 387789Sahrens 3882082Seschrock /* 3892082Seschrock * The first allocated vdev must be of type 'root'. 3902082Seschrock */ 3912082Seschrock if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 3922082Seschrock return (EINVAL); 3932082Seschrock 394789Sahrens vd = vdev_alloc_common(spa, id, guid, ops); 395789Sahrens 396789Sahrens if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 397789Sahrens vd->vdev_path = spa_strdup(vd->vdev_path); 398789Sahrens if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 399789Sahrens vd->vdev_devid = spa_strdup(vd->vdev_devid); 400789Sahrens 401789Sahrens /* 4022082Seschrock * Set the nparity propery for RAID-Z vdevs. 4032082Seschrock */ 4042082Seschrock if (ops == &vdev_raidz_ops) { 4052082Seschrock if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 4062082Seschrock &vd->vdev_nparity) == 0) { 4072082Seschrock /* 4082082Seschrock * Currently, we can only support 2 parity devices. 4092082Seschrock */ 4102082Seschrock if (vd->vdev_nparity > 2) 4112082Seschrock return (EINVAL); 4122082Seschrock /* 4132082Seschrock * Older versions can only support 1 parity device. 4142082Seschrock */ 4152082Seschrock if (vd->vdev_nparity == 2 && 4162082Seschrock spa_version(spa) < ZFS_VERSION_RAID6) 4172082Seschrock return (ENOTSUP); 4182082Seschrock 4192082Seschrock } else { 4202082Seschrock /* 4212082Seschrock * We require the parity to be specified for SPAs that 4222082Seschrock * support multiple parity levels. 4232082Seschrock */ 4242082Seschrock if (spa_version(spa) >= ZFS_VERSION_RAID6) 4252082Seschrock return (EINVAL); 4262082Seschrock 4272082Seschrock /* 4282082Seschrock * Otherwise, we default to 1 parity device for RAID-Z. 4292082Seschrock */ 4302082Seschrock vd->vdev_nparity = 1; 4312082Seschrock } 4322082Seschrock } else { 4332082Seschrock vd->vdev_nparity = 0; 4342082Seschrock } 4352082Seschrock 4362082Seschrock /* 4371171Seschrock * Set the whole_disk property. If it's not specified, leave the value 4381171Seschrock * as -1. 4391171Seschrock */ 4401171Seschrock if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 4411171Seschrock &vd->vdev_wholedisk) != 0) 4421171Seschrock vd->vdev_wholedisk = -1ULL; 4431171Seschrock 4441171Seschrock /* 4451544Seschrock * Look for the 'not present' flag. This will only be set if the device 4461544Seschrock * was not present at the time of import. 4471544Seschrock */ 4481544Seschrock (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 4491544Seschrock &vd->vdev_not_present); 4501544Seschrock 4511544Seschrock /* 4521732Sbonwick * Get the alignment requirement. 4531732Sbonwick */ 4541732Sbonwick (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 4551732Sbonwick 4561732Sbonwick /* 4572082Seschrock * Look for the 'is_spare' flag. If this is the case, then we are a 4582082Seschrock * repurposed hot spare. 4592082Seschrock */ 4602082Seschrock (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 4612082Seschrock &vd->vdev_isspare); 4622082Seschrock if (vd->vdev_isspare) 4632082Seschrock spa_spare_add(vd->vdev_guid); 4642082Seschrock 4652082Seschrock /* 466789Sahrens * If we're a top-level vdev, try to load the allocation parameters. 467789Sahrens */ 468789Sahrens if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 469789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 470789Sahrens &vd->vdev_ms_array); 471789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 472789Sahrens &vd->vdev_ms_shift); 473789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 474789Sahrens &vd->vdev_asize); 475789Sahrens } 476789Sahrens 477789Sahrens /* 4781732Sbonwick * If we're a leaf vdev, try to load the DTL object and offline state. 479789Sahrens */ 480789Sahrens if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 481789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 482789Sahrens &vd->vdev_dtl.smo_object); 4831732Sbonwick (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 4841732Sbonwick &vd->vdev_offline); 485789Sahrens } 486789Sahrens 487789Sahrens /* 488789Sahrens * Add ourselves to the parent's list of children. 489789Sahrens */ 490789Sahrens vdev_add_child(parent, vd); 491789Sahrens 4922082Seschrock *vdp = vd; 4932082Seschrock 4942082Seschrock return (0); 495789Sahrens } 496789Sahrens 497789Sahrens void 498789Sahrens vdev_free(vdev_t *vd) 499789Sahrens { 500789Sahrens int c; 501789Sahrens 502789Sahrens /* 503789Sahrens * vdev_free() implies closing the vdev first. This is simpler than 504789Sahrens * trying to ensure complicated semantics for all callers. 505789Sahrens */ 506789Sahrens vdev_close(vd); 507789Sahrens 5081732Sbonwick ASSERT(!list_link_active(&vd->vdev_dirty_node)); 509789Sahrens 510789Sahrens /* 511789Sahrens * Free all children. 512789Sahrens */ 513789Sahrens for (c = 0; c < vd->vdev_children; c++) 514789Sahrens vdev_free(vd->vdev_child[c]); 515789Sahrens 516789Sahrens ASSERT(vd->vdev_child == NULL); 517789Sahrens ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 518789Sahrens 519789Sahrens /* 520789Sahrens * Discard allocation state. 521789Sahrens */ 522789Sahrens if (vd == vd->vdev_top) 523789Sahrens vdev_metaslab_fini(vd); 524789Sahrens 525789Sahrens ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 5262082Seschrock ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 527789Sahrens ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 528789Sahrens 529789Sahrens /* 530789Sahrens * Remove this vdev from its parent's child list. 531789Sahrens */ 532789Sahrens vdev_remove_child(vd->vdev_parent, vd); 533789Sahrens 534789Sahrens ASSERT(vd->vdev_parent == NULL); 535789Sahrens 536789Sahrens vdev_free_common(vd); 537789Sahrens } 538789Sahrens 539789Sahrens /* 540789Sahrens * Transfer top-level vdev state from svd to tvd. 541789Sahrens */ 542789Sahrens static void 543789Sahrens vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 544789Sahrens { 545789Sahrens spa_t *spa = svd->vdev_spa; 546789Sahrens metaslab_t *msp; 547789Sahrens vdev_t *vd; 548789Sahrens int t; 549789Sahrens 550789Sahrens ASSERT(tvd == tvd->vdev_top); 551789Sahrens 552789Sahrens tvd->vdev_ms_array = svd->vdev_ms_array; 553789Sahrens tvd->vdev_ms_shift = svd->vdev_ms_shift; 554789Sahrens tvd->vdev_ms_count = svd->vdev_ms_count; 555789Sahrens 556789Sahrens svd->vdev_ms_array = 0; 557789Sahrens svd->vdev_ms_shift = 0; 558789Sahrens svd->vdev_ms_count = 0; 559789Sahrens 560789Sahrens tvd->vdev_mg = svd->vdev_mg; 561789Sahrens tvd->vdev_ms = svd->vdev_ms; 562789Sahrens 563789Sahrens svd->vdev_mg = NULL; 564789Sahrens svd->vdev_ms = NULL; 5651732Sbonwick 5661732Sbonwick if (tvd->vdev_mg != NULL) 5671732Sbonwick tvd->vdev_mg->mg_vd = tvd; 568789Sahrens 569789Sahrens tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 570789Sahrens tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 5712082Seschrock tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 572789Sahrens 573789Sahrens svd->vdev_stat.vs_alloc = 0; 574789Sahrens svd->vdev_stat.vs_space = 0; 5752082Seschrock svd->vdev_stat.vs_dspace = 0; 576789Sahrens 577789Sahrens for (t = 0; t < TXG_SIZE; t++) { 578789Sahrens while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 579789Sahrens (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 580789Sahrens while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 581789Sahrens (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 582789Sahrens if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 583789Sahrens (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 584789Sahrens } 585789Sahrens 5861732Sbonwick if (list_link_active(&svd->vdev_dirty_node)) { 587789Sahrens vdev_config_clean(svd); 588789Sahrens vdev_config_dirty(tvd); 589789Sahrens } 590789Sahrens 5911544Seschrock tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted; 5921544Seschrock svd->vdev_reopen_wanted = 0; 5932082Seschrock 5942082Seschrock tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 5952082Seschrock svd->vdev_deflate_ratio = 0; 596789Sahrens } 597789Sahrens 598789Sahrens static void 599789Sahrens vdev_top_update(vdev_t *tvd, vdev_t *vd) 600789Sahrens { 601789Sahrens int c; 602789Sahrens 603789Sahrens if (vd == NULL) 604789Sahrens return; 605789Sahrens 606789Sahrens vd->vdev_top = tvd; 607789Sahrens 608789Sahrens for (c = 0; c < vd->vdev_children; c++) 609789Sahrens vdev_top_update(tvd, vd->vdev_child[c]); 610789Sahrens } 611789Sahrens 612789Sahrens /* 613789Sahrens * Add a mirror/replacing vdev above an existing vdev. 614789Sahrens */ 615789Sahrens vdev_t * 616789Sahrens vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 617789Sahrens { 618789Sahrens spa_t *spa = cvd->vdev_spa; 619789Sahrens vdev_t *pvd = cvd->vdev_parent; 620789Sahrens vdev_t *mvd; 621789Sahrens 622789Sahrens ASSERT(spa_config_held(spa, RW_WRITER)); 623789Sahrens 624789Sahrens mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 6251732Sbonwick 6261732Sbonwick mvd->vdev_asize = cvd->vdev_asize; 6271732Sbonwick mvd->vdev_ashift = cvd->vdev_ashift; 6281732Sbonwick mvd->vdev_state = cvd->vdev_state; 6291732Sbonwick 630789Sahrens vdev_remove_child(pvd, cvd); 631789Sahrens vdev_add_child(pvd, mvd); 632789Sahrens cvd->vdev_id = mvd->vdev_children; 633789Sahrens vdev_add_child(mvd, cvd); 634789Sahrens vdev_top_update(cvd->vdev_top, cvd->vdev_top); 635789Sahrens 636789Sahrens if (mvd == mvd->vdev_top) 637789Sahrens vdev_top_transfer(cvd, mvd); 638789Sahrens 639789Sahrens return (mvd); 640789Sahrens } 641789Sahrens 642789Sahrens /* 643789Sahrens * Remove a 1-way mirror/replacing vdev from the tree. 644789Sahrens */ 645789Sahrens void 646789Sahrens vdev_remove_parent(vdev_t *cvd) 647789Sahrens { 648789Sahrens vdev_t *mvd = cvd->vdev_parent; 649789Sahrens vdev_t *pvd = mvd->vdev_parent; 650789Sahrens 651789Sahrens ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 652789Sahrens 653789Sahrens ASSERT(mvd->vdev_children == 1); 654789Sahrens ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 6552082Seschrock mvd->vdev_ops == &vdev_replacing_ops || 6562082Seschrock mvd->vdev_ops == &vdev_spare_ops); 6571732Sbonwick cvd->vdev_ashift = mvd->vdev_ashift; 658789Sahrens 659789Sahrens vdev_remove_child(mvd, cvd); 660789Sahrens vdev_remove_child(pvd, mvd); 661789Sahrens cvd->vdev_id = mvd->vdev_id; 662789Sahrens vdev_add_child(pvd, cvd); 6632082Seschrock /* 6642082Seschrock * If we created a new toplevel vdev, then we need to change the child's 6652082Seschrock * vdev GUID to match the old toplevel vdev. Otherwise, we could have 6662082Seschrock * detached an offline device, and when we go to import the pool we'll 6672082Seschrock * think we have two toplevel vdevs, instead of a different version of 6682082Seschrock * the same toplevel vdev. 6692082Seschrock */ 6702082Seschrock if (cvd->vdev_top == cvd) { 6712082Seschrock pvd->vdev_guid_sum -= cvd->vdev_guid; 6722082Seschrock cvd->vdev_guid_sum -= cvd->vdev_guid; 6732082Seschrock cvd->vdev_guid = mvd->vdev_guid; 6742082Seschrock cvd->vdev_guid_sum += mvd->vdev_guid; 6752082Seschrock pvd->vdev_guid_sum += cvd->vdev_guid; 6762082Seschrock } 677789Sahrens vdev_top_update(cvd->vdev_top, cvd->vdev_top); 678789Sahrens 679789Sahrens if (cvd == cvd->vdev_top) 680789Sahrens vdev_top_transfer(mvd, cvd); 681789Sahrens 682789Sahrens ASSERT(mvd->vdev_children == 0); 683789Sahrens vdev_free(mvd); 684789Sahrens } 685789Sahrens 6861544Seschrock int 687789Sahrens vdev_metaslab_init(vdev_t *vd, uint64_t txg) 688789Sahrens { 689789Sahrens spa_t *spa = vd->vdev_spa; 6901732Sbonwick objset_t *mos = spa->spa_meta_objset; 691789Sahrens metaslab_class_t *mc = spa_metaslab_class_select(spa); 6921732Sbonwick uint64_t m; 693789Sahrens uint64_t oldc = vd->vdev_ms_count; 694789Sahrens uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 6951732Sbonwick metaslab_t **mspp; 6961732Sbonwick int error; 697789Sahrens 6981585Sbonwick if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 6991585Sbonwick return (0); 7001585Sbonwick 701789Sahrens dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 702789Sahrens 703789Sahrens ASSERT(oldc <= newc); 704789Sahrens 7051732Sbonwick if (vd->vdev_mg == NULL) 7061732Sbonwick vd->vdev_mg = metaslab_group_create(mc, vd); 7071732Sbonwick 7081732Sbonwick mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 7091732Sbonwick 7101732Sbonwick if (oldc != 0) { 7111732Sbonwick bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 7121732Sbonwick kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 7131732Sbonwick } 7141732Sbonwick 7151732Sbonwick vd->vdev_ms = mspp; 716789Sahrens vd->vdev_ms_count = newc; 717789Sahrens 7181732Sbonwick for (m = oldc; m < newc; m++) { 7191732Sbonwick space_map_obj_t smo = { 0, 0, 0 }; 720789Sahrens if (txg == 0) { 7211732Sbonwick uint64_t object = 0; 7221732Sbonwick error = dmu_read(mos, vd->vdev_ms_array, 7231732Sbonwick m * sizeof (uint64_t), sizeof (uint64_t), &object); 7241732Sbonwick if (error) 7251732Sbonwick return (error); 7261732Sbonwick if (object != 0) { 7271732Sbonwick dmu_buf_t *db; 7281732Sbonwick error = dmu_bonus_hold(mos, object, FTAG, &db); 7291732Sbonwick if (error) 7301732Sbonwick return (error); 7311732Sbonwick ASSERT3U(db->db_size, ==, sizeof (smo)); 7321732Sbonwick bcopy(db->db_data, &smo, db->db_size); 7331732Sbonwick ASSERT3U(smo.smo_object, ==, object); 7341544Seschrock dmu_buf_rele(db, FTAG); 735789Sahrens } 736789Sahrens } 7371732Sbonwick vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 7381732Sbonwick m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 739789Sahrens } 740789Sahrens 7411544Seschrock return (0); 742789Sahrens } 743789Sahrens 744789Sahrens void 745789Sahrens vdev_metaslab_fini(vdev_t *vd) 746789Sahrens { 747789Sahrens uint64_t m; 748789Sahrens uint64_t count = vd->vdev_ms_count; 749789Sahrens 750789Sahrens if (vd->vdev_ms != NULL) { 751789Sahrens for (m = 0; m < count; m++) 7521732Sbonwick if (vd->vdev_ms[m] != NULL) 7531732Sbonwick metaslab_fini(vd->vdev_ms[m]); 754789Sahrens kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 755789Sahrens vd->vdev_ms = NULL; 756789Sahrens } 757789Sahrens } 758789Sahrens 759789Sahrens /* 760789Sahrens * Prepare a virtual device for access. 761789Sahrens */ 762789Sahrens int 763789Sahrens vdev_open(vdev_t *vd) 764789Sahrens { 765789Sahrens int error; 766789Sahrens vdev_knob_t *vk; 767789Sahrens int c; 768789Sahrens uint64_t osize = 0; 769789Sahrens uint64_t asize, psize; 7701732Sbonwick uint64_t ashift = 0; 771789Sahrens 772789Sahrens ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 773789Sahrens vd->vdev_state == VDEV_STATE_CANT_OPEN || 774789Sahrens vd->vdev_state == VDEV_STATE_OFFLINE); 775789Sahrens 776789Sahrens if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 777789Sahrens vd->vdev_fault_arg >>= 1; 778789Sahrens else 779789Sahrens vd->vdev_fault_mode = VDEV_FAULT_NONE; 780789Sahrens 781789Sahrens vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 782789Sahrens 783789Sahrens for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) { 784789Sahrens uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset); 785789Sahrens 786789Sahrens *valp = vk->vk_default; 787789Sahrens *valp = MAX(*valp, vk->vk_min); 788789Sahrens *valp = MIN(*valp, vk->vk_max); 789789Sahrens } 790789Sahrens 791789Sahrens if (vd->vdev_ops->vdev_op_leaf) { 792789Sahrens vdev_cache_init(vd); 793789Sahrens vdev_queue_init(vd); 794789Sahrens vd->vdev_cache_active = B_TRUE; 795789Sahrens } 796789Sahrens 797789Sahrens if (vd->vdev_offline) { 798789Sahrens ASSERT(vd->vdev_children == 0); 7991544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 800789Sahrens return (ENXIO); 801789Sahrens } 802789Sahrens 803789Sahrens error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 804789Sahrens 8051544Seschrock if (zio_injection_enabled && error == 0) 8061544Seschrock error = zio_handle_device_injection(vd, ENXIO); 8071544Seschrock 808789Sahrens dprintf("%s = %d, osize %llu, state = %d\n", 809789Sahrens vdev_description(vd), error, osize, vd->vdev_state); 810789Sahrens 811789Sahrens if (error) { 8121544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 813789Sahrens vd->vdev_stat.vs_aux); 814789Sahrens return (error); 815789Sahrens } 816789Sahrens 817789Sahrens vd->vdev_state = VDEV_STATE_HEALTHY; 818789Sahrens 819789Sahrens for (c = 0; c < vd->vdev_children; c++) 8201544Seschrock if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 8211544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 8221544Seschrock VDEV_AUX_NONE); 8231544Seschrock break; 8241544Seschrock } 825789Sahrens 826789Sahrens osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 827789Sahrens 828789Sahrens if (vd->vdev_children == 0) { 829789Sahrens if (osize < SPA_MINDEVSIZE) { 8301544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8311544Seschrock VDEV_AUX_TOO_SMALL); 832789Sahrens return (EOVERFLOW); 833789Sahrens } 834789Sahrens psize = osize; 835789Sahrens asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 836789Sahrens } else { 8371732Sbonwick if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 838789Sahrens (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 8391544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8401544Seschrock VDEV_AUX_TOO_SMALL); 841789Sahrens return (EOVERFLOW); 842789Sahrens } 843789Sahrens psize = 0; 844789Sahrens asize = osize; 845789Sahrens } 846789Sahrens 847789Sahrens vd->vdev_psize = psize; 848789Sahrens 849789Sahrens if (vd->vdev_asize == 0) { 850789Sahrens /* 851789Sahrens * This is the first-ever open, so use the computed values. 8521732Sbonwick * For testing purposes, a higher ashift can be requested. 853789Sahrens */ 854789Sahrens vd->vdev_asize = asize; 8551732Sbonwick vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 856789Sahrens } else { 857789Sahrens /* 858789Sahrens * Make sure the alignment requirement hasn't increased. 859789Sahrens */ 8601732Sbonwick if (ashift > vd->vdev_top->vdev_ashift) { 8611544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8621544Seschrock VDEV_AUX_BAD_LABEL); 863789Sahrens return (EINVAL); 864789Sahrens } 865789Sahrens 866789Sahrens /* 867789Sahrens * Make sure the device hasn't shrunk. 868789Sahrens */ 869789Sahrens if (asize < vd->vdev_asize) { 8701544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8711544Seschrock VDEV_AUX_BAD_LABEL); 872789Sahrens return (EINVAL); 873789Sahrens } 874789Sahrens 875789Sahrens /* 876789Sahrens * If all children are healthy and the asize has increased, 877789Sahrens * then we've experienced dynamic LUN growth. 878789Sahrens */ 879789Sahrens if (vd->vdev_state == VDEV_STATE_HEALTHY && 880789Sahrens asize > vd->vdev_asize) { 881789Sahrens vd->vdev_asize = asize; 882789Sahrens } 883789Sahrens } 884789Sahrens 8851544Seschrock /* 8862082Seschrock * If this is a top-level vdev, compute the raidz-deflation 8872082Seschrock * ratio. Note, we hard-code in 128k (1<<17) because it is the 8882082Seschrock * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 8892082Seschrock * changes, this algorithm must never change, or we will 8902082Seschrock * inconsistently account for existing bp's. 8912082Seschrock */ 8922082Seschrock if (vd->vdev_top == vd) { 8932082Seschrock vd->vdev_deflate_ratio = (1<<17) / 8942082Seschrock (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 8952082Seschrock } 8962082Seschrock 8972082Seschrock /* 8981544Seschrock * This allows the ZFS DE to close cases appropriately. If a device 8991544Seschrock * goes away and later returns, we want to close the associated case. 9001544Seschrock * But it's not enough to simply post this only when a device goes from 9011544Seschrock * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 9021544Seschrock * back, we also need to close the case (otherwise we will try to replay 9031544Seschrock * it). So we have to post this notifier every time. Since this only 9041544Seschrock * occurs during pool open or error recovery, this should not be an 9051544Seschrock * issue. 9061544Seschrock */ 9071544Seschrock zfs_post_ok(vd->vdev_spa, vd); 9081544Seschrock 909789Sahrens return (0); 910789Sahrens } 911789Sahrens 912789Sahrens /* 9131986Seschrock * Called once the vdevs are all opened, this routine validates the label 9141986Seschrock * contents. This needs to be done before vdev_load() so that we don't 9151986Seschrock * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen() 9161986Seschrock * won't succeed if the device has been changed underneath. 9171986Seschrock * 9181986Seschrock * This function will only return failure if one of the vdevs indicates that it 9191986Seschrock * has since been destroyed or exported. This is only possible if 9201986Seschrock * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 9211986Seschrock * will be updated but the function will return 0. 9221986Seschrock */ 9231986Seschrock int 9241986Seschrock vdev_validate(vdev_t *vd) 9251986Seschrock { 9261986Seschrock spa_t *spa = vd->vdev_spa; 9271986Seschrock int c; 9281986Seschrock nvlist_t *label; 9291986Seschrock uint64_t guid; 9301986Seschrock uint64_t state; 9311986Seschrock 9321986Seschrock for (c = 0; c < vd->vdev_children; c++) 9331986Seschrock if (vdev_validate(vd->vdev_child[c]) != 0) 9341986Seschrock return (-1); 9351986Seschrock 936*2174Seschrock /* 937*2174Seschrock * If the device has already failed, or was marked offline, don't do 938*2174Seschrock * any further validation. Otherwise, label I/O will fail and we will 939*2174Seschrock * overwrite the previous state. 940*2174Seschrock */ 941*2174Seschrock if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) { 9421986Seschrock 9431986Seschrock if ((label = vdev_label_read_config(vd)) == NULL) { 9441986Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 9451986Seschrock VDEV_AUX_BAD_LABEL); 9461986Seschrock return (0); 9471986Seschrock } 9481986Seschrock 9491986Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 9501986Seschrock &guid) != 0 || guid != spa_guid(spa)) { 9511986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 9521986Seschrock VDEV_AUX_CORRUPT_DATA); 9531986Seschrock nvlist_free(label); 9541986Seschrock return (0); 9551986Seschrock } 9561986Seschrock 9571986Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 9581986Seschrock &guid) != 0 || guid != vd->vdev_guid) { 9591986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 9601986Seschrock VDEV_AUX_CORRUPT_DATA); 9611986Seschrock nvlist_free(label); 9621986Seschrock return (0); 9631986Seschrock } 9641986Seschrock 9651986Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 9661986Seschrock &state) != 0) { 9671986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 9681986Seschrock VDEV_AUX_CORRUPT_DATA); 9691986Seschrock nvlist_free(label); 9701986Seschrock return (0); 9711986Seschrock } 9721986Seschrock 9731986Seschrock nvlist_free(label); 9741986Seschrock 9751986Seschrock if (spa->spa_load_state == SPA_LOAD_OPEN && 9761986Seschrock state != POOL_STATE_ACTIVE) 9771986Seschrock return (-1); 9781986Seschrock } 9791986Seschrock 9801986Seschrock /* 9811986Seschrock * If we were able to open and validate a vdev that was previously 9821986Seschrock * marked permanently unavailable, clear that state now. 9831986Seschrock */ 9841986Seschrock if (vd->vdev_not_present) 9851986Seschrock vd->vdev_not_present = 0; 9861986Seschrock 9871986Seschrock return (0); 9881986Seschrock } 9891986Seschrock 9901986Seschrock /* 991789Sahrens * Close a virtual device. 992789Sahrens */ 993789Sahrens void 994789Sahrens vdev_close(vdev_t *vd) 995789Sahrens { 996789Sahrens vd->vdev_ops->vdev_op_close(vd); 997789Sahrens 998789Sahrens if (vd->vdev_cache_active) { 999789Sahrens vdev_cache_fini(vd); 1000789Sahrens vdev_queue_fini(vd); 1001789Sahrens vd->vdev_cache_active = B_FALSE; 1002789Sahrens } 1003789Sahrens 10041986Seschrock /* 10051986Seschrock * We record the previous state before we close it, so that if we are 10061986Seschrock * doing a reopen(), we don't generate FMA ereports if we notice that 10071986Seschrock * it's still faulted. 10081986Seschrock */ 10091986Seschrock vd->vdev_prevstate = vd->vdev_state; 10101986Seschrock 1011789Sahrens if (vd->vdev_offline) 1012789Sahrens vd->vdev_state = VDEV_STATE_OFFLINE; 1013789Sahrens else 1014789Sahrens vd->vdev_state = VDEV_STATE_CLOSED; 10151544Seschrock vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1016789Sahrens } 1017789Sahrens 1018789Sahrens void 10191544Seschrock vdev_reopen(vdev_t *vd) 1020789Sahrens { 10211544Seschrock spa_t *spa = vd->vdev_spa; 1022789Sahrens 10231544Seschrock ASSERT(spa_config_held(spa, RW_WRITER)); 10241544Seschrock 1025789Sahrens vdev_close(vd); 1026789Sahrens (void) vdev_open(vd); 1027789Sahrens 1028789Sahrens /* 1029789Sahrens * Reassess root vdev's health. 1030789Sahrens */ 10311775Sbillm vdev_propagate_state(spa->spa_root_vdev); 1032789Sahrens } 1033789Sahrens 1034789Sahrens int 10352082Seschrock vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1036789Sahrens { 1037789Sahrens int error; 1038789Sahrens 1039789Sahrens /* 1040789Sahrens * Normally, partial opens (e.g. of a mirror) are allowed. 1041789Sahrens * For a create, however, we want to fail the request if 1042789Sahrens * there are any components we can't open. 1043789Sahrens */ 1044789Sahrens error = vdev_open(vd); 1045789Sahrens 1046789Sahrens if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1047789Sahrens vdev_close(vd); 1048789Sahrens return (error ? error : ENXIO); 1049789Sahrens } 1050789Sahrens 1051789Sahrens /* 1052789Sahrens * Recursively initialize all labels. 1053789Sahrens */ 10542082Seschrock if ((error = vdev_label_init(vd, txg, isreplacing)) != 0) { 1055789Sahrens vdev_close(vd); 1056789Sahrens return (error); 1057789Sahrens } 1058789Sahrens 1059789Sahrens return (0); 1060789Sahrens } 1061789Sahrens 1062789Sahrens /* 1063789Sahrens * The is the latter half of vdev_create(). It is distinct because it 1064789Sahrens * involves initiating transactions in order to do metaslab creation. 1065789Sahrens * For creation, we want to try to create all vdevs at once and then undo it 1066789Sahrens * if anything fails; this is much harder if we have pending transactions. 1067789Sahrens */ 10681585Sbonwick void 1069789Sahrens vdev_init(vdev_t *vd, uint64_t txg) 1070789Sahrens { 1071789Sahrens /* 1072789Sahrens * Aim for roughly 200 metaslabs per vdev. 1073789Sahrens */ 1074789Sahrens vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1075789Sahrens vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1076789Sahrens 1077789Sahrens /* 10781585Sbonwick * Initialize the vdev's metaslabs. This can't fail because 10791585Sbonwick * there's nothing to read when creating all new metaslabs. 1080789Sahrens */ 10811585Sbonwick VERIFY(vdev_metaslab_init(vd, txg) == 0); 1082789Sahrens } 1083789Sahrens 1084789Sahrens void 10851732Sbonwick vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1086789Sahrens { 10871732Sbonwick ASSERT(vd == vd->vdev_top); 10881732Sbonwick ASSERT(ISP2(flags)); 1089789Sahrens 10901732Sbonwick if (flags & VDD_METASLAB) 10911732Sbonwick (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 10921732Sbonwick 10931732Sbonwick if (flags & VDD_DTL) 10941732Sbonwick (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 10951732Sbonwick 10961732Sbonwick (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1097789Sahrens } 1098789Sahrens 1099789Sahrens void 1100789Sahrens vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1101789Sahrens { 1102789Sahrens mutex_enter(sm->sm_lock); 1103789Sahrens if (!space_map_contains(sm, txg, size)) 1104789Sahrens space_map_add(sm, txg, size); 1105789Sahrens mutex_exit(sm->sm_lock); 1106789Sahrens } 1107789Sahrens 1108789Sahrens int 1109789Sahrens vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1110789Sahrens { 1111789Sahrens int dirty; 1112789Sahrens 1113789Sahrens /* 1114789Sahrens * Quick test without the lock -- covers the common case that 1115789Sahrens * there are no dirty time segments. 1116789Sahrens */ 1117789Sahrens if (sm->sm_space == 0) 1118789Sahrens return (0); 1119789Sahrens 1120789Sahrens mutex_enter(sm->sm_lock); 1121789Sahrens dirty = space_map_contains(sm, txg, size); 1122789Sahrens mutex_exit(sm->sm_lock); 1123789Sahrens 1124789Sahrens return (dirty); 1125789Sahrens } 1126789Sahrens 1127789Sahrens /* 1128789Sahrens * Reassess DTLs after a config change or scrub completion. 1129789Sahrens */ 1130789Sahrens void 1131789Sahrens vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1132789Sahrens { 11331544Seschrock spa_t *spa = vd->vdev_spa; 1134789Sahrens int c; 1135789Sahrens 11361544Seschrock ASSERT(spa_config_held(spa, RW_WRITER)); 1137789Sahrens 1138789Sahrens if (vd->vdev_children == 0) { 1139789Sahrens mutex_enter(&vd->vdev_dtl_lock); 1140789Sahrens /* 1141789Sahrens * We're successfully scrubbed everything up to scrub_txg. 1142789Sahrens * Therefore, excise all old DTLs up to that point, then 1143789Sahrens * fold in the DTLs for everything we couldn't scrub. 1144789Sahrens */ 1145789Sahrens if (scrub_txg != 0) { 1146789Sahrens space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1147789Sahrens space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1148789Sahrens } 1149789Sahrens if (scrub_done) 1150789Sahrens space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1151789Sahrens mutex_exit(&vd->vdev_dtl_lock); 11521732Sbonwick if (txg != 0) 11531732Sbonwick vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1154789Sahrens return; 1155789Sahrens } 1156789Sahrens 11571544Seschrock /* 11581544Seschrock * Make sure the DTLs are always correct under the scrub lock. 11591544Seschrock */ 11601544Seschrock if (vd == spa->spa_root_vdev) 11611544Seschrock mutex_enter(&spa->spa_scrub_lock); 11621544Seschrock 1163789Sahrens mutex_enter(&vd->vdev_dtl_lock); 1164789Sahrens space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1165789Sahrens space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1166789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1167789Sahrens 1168789Sahrens for (c = 0; c < vd->vdev_children; c++) { 1169789Sahrens vdev_t *cvd = vd->vdev_child[c]; 1170789Sahrens vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1171789Sahrens mutex_enter(&vd->vdev_dtl_lock); 1172789Sahrens space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1173789Sahrens space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1174789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1175789Sahrens } 11761544Seschrock 11771544Seschrock if (vd == spa->spa_root_vdev) 11781544Seschrock mutex_exit(&spa->spa_scrub_lock); 1179789Sahrens } 1180789Sahrens 1181789Sahrens static int 1182789Sahrens vdev_dtl_load(vdev_t *vd) 1183789Sahrens { 1184789Sahrens spa_t *spa = vd->vdev_spa; 1185789Sahrens space_map_obj_t *smo = &vd->vdev_dtl; 11861732Sbonwick objset_t *mos = spa->spa_meta_objset; 1187789Sahrens dmu_buf_t *db; 1188789Sahrens int error; 1189789Sahrens 1190789Sahrens ASSERT(vd->vdev_children == 0); 1191789Sahrens 1192789Sahrens if (smo->smo_object == 0) 1193789Sahrens return (0); 1194789Sahrens 11951732Sbonwick if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 11961544Seschrock return (error); 11971732Sbonwick 1198789Sahrens ASSERT3U(db->db_size, ==, sizeof (*smo)); 1199789Sahrens bcopy(db->db_data, smo, db->db_size); 12001544Seschrock dmu_buf_rele(db, FTAG); 1201789Sahrens 1202789Sahrens mutex_enter(&vd->vdev_dtl_lock); 12031732Sbonwick error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1204789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1205789Sahrens 1206789Sahrens return (error); 1207789Sahrens } 1208789Sahrens 1209789Sahrens void 1210789Sahrens vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1211789Sahrens { 1212789Sahrens spa_t *spa = vd->vdev_spa; 1213789Sahrens space_map_obj_t *smo = &vd->vdev_dtl; 1214789Sahrens space_map_t *sm = &vd->vdev_dtl_map; 12151732Sbonwick objset_t *mos = spa->spa_meta_objset; 1216789Sahrens space_map_t smsync; 1217789Sahrens kmutex_t smlock; 1218789Sahrens dmu_buf_t *db; 1219789Sahrens dmu_tx_t *tx; 1220789Sahrens 1221789Sahrens dprintf("%s in txg %llu pass %d\n", 1222789Sahrens vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1223789Sahrens 1224789Sahrens tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1225789Sahrens 1226789Sahrens if (vd->vdev_detached) { 1227789Sahrens if (smo->smo_object != 0) { 12281732Sbonwick int err = dmu_object_free(mos, smo->smo_object, tx); 1229789Sahrens ASSERT3U(err, ==, 0); 1230789Sahrens smo->smo_object = 0; 1231789Sahrens } 1232789Sahrens dmu_tx_commit(tx); 12331732Sbonwick dprintf("detach %s committed in txg %llu\n", 12341732Sbonwick vdev_description(vd), txg); 1235789Sahrens return; 1236789Sahrens } 1237789Sahrens 1238789Sahrens if (smo->smo_object == 0) { 1239789Sahrens ASSERT(smo->smo_objsize == 0); 1240789Sahrens ASSERT(smo->smo_alloc == 0); 12411732Sbonwick smo->smo_object = dmu_object_alloc(mos, 1242789Sahrens DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1243789Sahrens DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1244789Sahrens ASSERT(smo->smo_object != 0); 1245789Sahrens vdev_config_dirty(vd->vdev_top); 1246789Sahrens } 1247789Sahrens 1248789Sahrens mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1249789Sahrens 1250789Sahrens space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1251789Sahrens &smlock); 1252789Sahrens 1253789Sahrens mutex_enter(&smlock); 1254789Sahrens 1255789Sahrens mutex_enter(&vd->vdev_dtl_lock); 12561732Sbonwick space_map_walk(sm, space_map_add, &smsync); 1257789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1258789Sahrens 12591732Sbonwick space_map_truncate(smo, mos, tx); 12601732Sbonwick space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1261789Sahrens 1262789Sahrens space_map_destroy(&smsync); 1263789Sahrens 1264789Sahrens mutex_exit(&smlock); 1265789Sahrens mutex_destroy(&smlock); 1266789Sahrens 12671732Sbonwick VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1268789Sahrens dmu_buf_will_dirty(db, tx); 1269789Sahrens ASSERT3U(db->db_size, ==, sizeof (*smo)); 1270789Sahrens bcopy(smo, db->db_data, db->db_size); 12711544Seschrock dmu_buf_rele(db, FTAG); 1272789Sahrens 1273789Sahrens dmu_tx_commit(tx); 1274789Sahrens } 1275789Sahrens 12761986Seschrock void 12771544Seschrock vdev_load(vdev_t *vd) 1278789Sahrens { 12791986Seschrock int c; 1280789Sahrens 1281789Sahrens /* 1282789Sahrens * Recursively load all children. 1283789Sahrens */ 1284789Sahrens for (c = 0; c < vd->vdev_children; c++) 12851986Seschrock vdev_load(vd->vdev_child[c]); 1286789Sahrens 1287789Sahrens /* 12881585Sbonwick * If this is a top-level vdev, initialize its metaslabs. 1289789Sahrens */ 12901986Seschrock if (vd == vd->vdev_top && 12911986Seschrock (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 12921986Seschrock vdev_metaslab_init(vd, 0) != 0)) 12931986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 12941986Seschrock VDEV_AUX_CORRUPT_DATA); 1295789Sahrens 1296789Sahrens /* 1297789Sahrens * If this is a leaf vdev, load its DTL. 1298789Sahrens */ 12991986Seschrock if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 13001986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 13011986Seschrock VDEV_AUX_CORRUPT_DATA); 1302789Sahrens } 1303789Sahrens 13042082Seschrock /* 13052082Seschrock * This special case of vdev_spare() is used for hot spares. It's sole purpose 13062082Seschrock * it to set the vdev state for the associated vdev. To do this, we make sure 13072082Seschrock * that we can open the underlying device, then try to read the label, and make 13082082Seschrock * sure that the label is sane and that it hasn't been repurposed to another 13092082Seschrock * pool. 13102082Seschrock */ 13112082Seschrock int 13122082Seschrock vdev_validate_spare(vdev_t *vd) 13132082Seschrock { 13142082Seschrock nvlist_t *label; 13152082Seschrock uint64_t guid, version; 13162082Seschrock uint64_t state; 13172082Seschrock 13182082Seschrock if ((label = vdev_label_read_config(vd)) == NULL) { 13192082Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 13202082Seschrock VDEV_AUX_CORRUPT_DATA); 13212082Seschrock return (-1); 13222082Seschrock } 13232082Seschrock 13242082Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 13252082Seschrock version > ZFS_VERSION || 13262082Seschrock nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 13272082Seschrock guid != vd->vdev_guid || 13282082Seschrock nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 13292082Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 13302082Seschrock VDEV_AUX_CORRUPT_DATA); 13312082Seschrock nvlist_free(label); 13322082Seschrock return (-1); 13332082Seschrock } 13342082Seschrock 13352082Seschrock /* 13362082Seschrock * We don't actually check the pool state here. If it's in fact in 13372082Seschrock * use by another pool, we update this fact on the fly when requested. 13382082Seschrock */ 13392082Seschrock nvlist_free(label); 13402082Seschrock return (0); 13412082Seschrock } 13422082Seschrock 1343789Sahrens void 1344789Sahrens vdev_sync_done(vdev_t *vd, uint64_t txg) 1345789Sahrens { 1346789Sahrens metaslab_t *msp; 1347789Sahrens 1348789Sahrens dprintf("%s txg %llu\n", vdev_description(vd), txg); 1349789Sahrens 1350789Sahrens while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1351789Sahrens metaslab_sync_done(msp, txg); 1352789Sahrens } 1353789Sahrens 1354789Sahrens void 1355789Sahrens vdev_sync(vdev_t *vd, uint64_t txg) 1356789Sahrens { 1357789Sahrens spa_t *spa = vd->vdev_spa; 1358789Sahrens vdev_t *lvd; 1359789Sahrens metaslab_t *msp; 13601732Sbonwick dmu_tx_t *tx; 1361789Sahrens 1362789Sahrens dprintf("%s txg %llu pass %d\n", 1363789Sahrens vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1364789Sahrens 13651732Sbonwick if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 13661732Sbonwick ASSERT(vd == vd->vdev_top); 13671732Sbonwick tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 13681732Sbonwick vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 13691732Sbonwick DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 13701732Sbonwick ASSERT(vd->vdev_ms_array != 0); 13711732Sbonwick vdev_config_dirty(vd); 13721732Sbonwick dmu_tx_commit(tx); 13731732Sbonwick } 1374789Sahrens 13751732Sbonwick while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1376789Sahrens metaslab_sync(msp, txg); 13771732Sbonwick (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 13781732Sbonwick } 1379789Sahrens 1380789Sahrens while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1381789Sahrens vdev_dtl_sync(lvd, txg); 1382789Sahrens 1383789Sahrens (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1384789Sahrens } 1385789Sahrens 1386789Sahrens uint64_t 1387789Sahrens vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1388789Sahrens { 1389789Sahrens return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1390789Sahrens } 1391789Sahrens 1392789Sahrens void 1393789Sahrens vdev_io_start(zio_t *zio) 1394789Sahrens { 1395789Sahrens zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1396789Sahrens } 1397789Sahrens 1398789Sahrens void 1399789Sahrens vdev_io_done(zio_t *zio) 1400789Sahrens { 1401789Sahrens zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1402789Sahrens } 1403789Sahrens 1404789Sahrens const char * 1405789Sahrens vdev_description(vdev_t *vd) 1406789Sahrens { 1407789Sahrens if (vd == NULL || vd->vdev_ops == NULL) 1408789Sahrens return ("<unknown>"); 1409789Sahrens 1410789Sahrens if (vd->vdev_path != NULL) 1411789Sahrens return (vd->vdev_path); 1412789Sahrens 1413789Sahrens if (vd->vdev_parent == NULL) 1414789Sahrens return (spa_name(vd->vdev_spa)); 1415789Sahrens 1416789Sahrens return (vd->vdev_ops->vdev_op_type); 1417789Sahrens } 1418789Sahrens 1419789Sahrens int 14201544Seschrock vdev_online(spa_t *spa, uint64_t guid) 1421789Sahrens { 14221485Slling vdev_t *rvd, *vd; 14231485Slling uint64_t txg; 1424789Sahrens 14251485Slling txg = spa_vdev_enter(spa); 14261485Slling 14271485Slling rvd = spa->spa_root_vdev; 14281585Sbonwick 14291544Seschrock if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 14301485Slling return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1431789Sahrens 14321585Sbonwick if (!vd->vdev_ops->vdev_op_leaf) 14331585Sbonwick return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 14341585Sbonwick 1435789Sahrens dprintf("ONLINE: %s\n", vdev_description(vd)); 1436789Sahrens 1437789Sahrens vd->vdev_offline = B_FALSE; 14381485Slling vd->vdev_tmpoffline = B_FALSE; 14391544Seschrock vdev_reopen(vd->vdev_top); 1440789Sahrens 14411485Slling vdev_config_dirty(vd->vdev_top); 14421485Slling 14431485Slling (void) spa_vdev_exit(spa, NULL, txg, 0); 1444789Sahrens 1445789Sahrens VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1446789Sahrens 1447789Sahrens return (0); 1448789Sahrens } 1449789Sahrens 1450789Sahrens int 14511544Seschrock vdev_offline(spa_t *spa, uint64_t guid, int istmp) 1452789Sahrens { 14531485Slling vdev_t *rvd, *vd; 14541485Slling uint64_t txg; 1455789Sahrens 14561485Slling txg = spa_vdev_enter(spa); 1457789Sahrens 14581485Slling rvd = spa->spa_root_vdev; 14591585Sbonwick 14601544Seschrock if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 14611485Slling return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1462789Sahrens 14631585Sbonwick if (!vd->vdev_ops->vdev_op_leaf) 14641585Sbonwick return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 14651585Sbonwick 1466789Sahrens dprintf("OFFLINE: %s\n", vdev_description(vd)); 1467789Sahrens 1468789Sahrens /* 14691732Sbonwick * If the device isn't already offline, try to offline it. 1470789Sahrens */ 14711732Sbonwick if (!vd->vdev_offline) { 14721732Sbonwick /* 14731732Sbonwick * If this device's top-level vdev has a non-empty DTL, 14741732Sbonwick * don't allow the device to be offlined. 14751732Sbonwick * 14761732Sbonwick * XXX -- make this more precise by allowing the offline 14771732Sbonwick * as long as the remaining devices don't have any DTL holes. 14781732Sbonwick */ 14791732Sbonwick if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 14801732Sbonwick return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1481789Sahrens 14821732Sbonwick /* 14831732Sbonwick * Offline this device and reopen its top-level vdev. 14841732Sbonwick * If this action results in the top-level vdev becoming 14851732Sbonwick * unusable, undo it and fail the request. 14861732Sbonwick */ 14871732Sbonwick vd->vdev_offline = B_TRUE; 14881544Seschrock vdev_reopen(vd->vdev_top); 14891732Sbonwick if (vdev_is_dead(vd->vdev_top)) { 14901732Sbonwick vd->vdev_offline = B_FALSE; 14911732Sbonwick vdev_reopen(vd->vdev_top); 14921732Sbonwick return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 14931732Sbonwick } 1494789Sahrens } 1495789Sahrens 14961485Slling vd->vdev_tmpoffline = istmp; 14971732Sbonwick 14981732Sbonwick vdev_config_dirty(vd->vdev_top); 14991485Slling 15001485Slling return (spa_vdev_exit(spa, NULL, txg, 0)); 1501789Sahrens } 1502789Sahrens 15031544Seschrock /* 15041544Seschrock * Clear the error counts associated with this vdev. Unlike vdev_online() and 15051544Seschrock * vdev_offline(), we assume the spa config is locked. We also clear all 15061544Seschrock * children. If 'vd' is NULL, then the user wants to clear all vdevs. 15071544Seschrock */ 15081544Seschrock void 15091544Seschrock vdev_clear(spa_t *spa, vdev_t *vd) 1510789Sahrens { 15111544Seschrock int c; 1512789Sahrens 15131544Seschrock if (vd == NULL) 15141544Seschrock vd = spa->spa_root_vdev; 1515789Sahrens 15161544Seschrock vd->vdev_stat.vs_read_errors = 0; 15171544Seschrock vd->vdev_stat.vs_write_errors = 0; 15181544Seschrock vd->vdev_stat.vs_checksum_errors = 0; 1519789Sahrens 15201544Seschrock for (c = 0; c < vd->vdev_children; c++) 15211544Seschrock vdev_clear(spa, vd->vdev_child[c]); 1522789Sahrens } 1523789Sahrens 1524789Sahrens int 1525789Sahrens vdev_is_dead(vdev_t *vd) 1526789Sahrens { 1527789Sahrens return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1528789Sahrens } 1529789Sahrens 1530789Sahrens int 1531789Sahrens vdev_error_inject(vdev_t *vd, zio_t *zio) 1532789Sahrens { 1533789Sahrens int error = 0; 1534789Sahrens 1535789Sahrens if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1536789Sahrens return (0); 1537789Sahrens 1538789Sahrens if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1539789Sahrens return (0); 1540789Sahrens 1541789Sahrens switch (vd->vdev_fault_mode) { 1542789Sahrens case VDEV_FAULT_RANDOM: 1543789Sahrens if (spa_get_random(vd->vdev_fault_arg) == 0) 1544789Sahrens error = EIO; 1545789Sahrens break; 1546789Sahrens 1547789Sahrens case VDEV_FAULT_COUNT: 1548789Sahrens if ((int64_t)--vd->vdev_fault_arg <= 0) 1549789Sahrens vd->vdev_fault_mode = VDEV_FAULT_NONE; 1550789Sahrens error = EIO; 1551789Sahrens break; 1552789Sahrens } 1553789Sahrens 1554789Sahrens if (error != 0) { 1555789Sahrens dprintf("returning %d for type %d on %s state %d offset %llx\n", 1556789Sahrens error, zio->io_type, vdev_description(vd), 1557789Sahrens vd->vdev_state, zio->io_offset); 1558789Sahrens } 1559789Sahrens 1560789Sahrens return (error); 1561789Sahrens } 1562789Sahrens 1563789Sahrens /* 1564789Sahrens * Get statistics for the given vdev. 1565789Sahrens */ 1566789Sahrens void 1567789Sahrens vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1568789Sahrens { 1569789Sahrens vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1570789Sahrens int c, t; 1571789Sahrens 1572789Sahrens mutex_enter(&vd->vdev_stat_lock); 1573789Sahrens bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1574789Sahrens vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1575789Sahrens vs->vs_state = vd->vdev_state; 15761175Slling vs->vs_rsize = vdev_get_rsize(vd); 1577789Sahrens mutex_exit(&vd->vdev_stat_lock); 1578789Sahrens 1579789Sahrens /* 1580789Sahrens * If we're getting stats on the root vdev, aggregate the I/O counts 1581789Sahrens * over all top-level vdevs (i.e. the direct children of the root). 1582789Sahrens */ 1583789Sahrens if (vd == rvd) { 1584789Sahrens for (c = 0; c < rvd->vdev_children; c++) { 1585789Sahrens vdev_t *cvd = rvd->vdev_child[c]; 1586789Sahrens vdev_stat_t *cvs = &cvd->vdev_stat; 1587789Sahrens 1588789Sahrens mutex_enter(&vd->vdev_stat_lock); 1589789Sahrens for (t = 0; t < ZIO_TYPES; t++) { 1590789Sahrens vs->vs_ops[t] += cvs->vs_ops[t]; 1591789Sahrens vs->vs_bytes[t] += cvs->vs_bytes[t]; 1592789Sahrens } 1593789Sahrens vs->vs_read_errors += cvs->vs_read_errors; 1594789Sahrens vs->vs_write_errors += cvs->vs_write_errors; 1595789Sahrens vs->vs_checksum_errors += cvs->vs_checksum_errors; 1596789Sahrens vs->vs_scrub_examined += cvs->vs_scrub_examined; 1597789Sahrens vs->vs_scrub_errors += cvs->vs_scrub_errors; 1598789Sahrens mutex_exit(&vd->vdev_stat_lock); 1599789Sahrens } 1600789Sahrens } 1601789Sahrens } 1602789Sahrens 1603789Sahrens void 1604789Sahrens vdev_stat_update(zio_t *zio) 1605789Sahrens { 1606789Sahrens vdev_t *vd = zio->io_vd; 1607789Sahrens vdev_t *pvd; 1608789Sahrens uint64_t txg = zio->io_txg; 1609789Sahrens vdev_stat_t *vs = &vd->vdev_stat; 1610789Sahrens zio_type_t type = zio->io_type; 1611789Sahrens int flags = zio->io_flags; 1612789Sahrens 1613789Sahrens if (zio->io_error == 0) { 1614789Sahrens if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1615789Sahrens mutex_enter(&vd->vdev_stat_lock); 1616789Sahrens vs->vs_ops[type]++; 1617789Sahrens vs->vs_bytes[type] += zio->io_size; 1618789Sahrens mutex_exit(&vd->vdev_stat_lock); 1619789Sahrens } 1620789Sahrens if ((flags & ZIO_FLAG_IO_REPAIR) && 1621789Sahrens zio->io_delegate_list == NULL) { 1622789Sahrens mutex_enter(&vd->vdev_stat_lock); 16231807Sbonwick if (flags & ZIO_FLAG_SCRUB_THREAD) 1624789Sahrens vs->vs_scrub_repaired += zio->io_size; 1625789Sahrens else 1626789Sahrens vs->vs_self_healed += zio->io_size; 1627789Sahrens mutex_exit(&vd->vdev_stat_lock); 1628789Sahrens } 1629789Sahrens return; 1630789Sahrens } 1631789Sahrens 1632789Sahrens if (flags & ZIO_FLAG_SPECULATIVE) 1633789Sahrens return; 1634789Sahrens 1635789Sahrens if (!vdev_is_dead(vd)) { 1636789Sahrens mutex_enter(&vd->vdev_stat_lock); 1637789Sahrens if (type == ZIO_TYPE_READ) { 1638789Sahrens if (zio->io_error == ECKSUM) 1639789Sahrens vs->vs_checksum_errors++; 1640789Sahrens else 1641789Sahrens vs->vs_read_errors++; 1642789Sahrens } 1643789Sahrens if (type == ZIO_TYPE_WRITE) 1644789Sahrens vs->vs_write_errors++; 1645789Sahrens mutex_exit(&vd->vdev_stat_lock); 1646789Sahrens } 1647789Sahrens 1648789Sahrens if (type == ZIO_TYPE_WRITE) { 1649789Sahrens if (txg == 0 || vd->vdev_children != 0) 1650789Sahrens return; 16511807Sbonwick if (flags & ZIO_FLAG_SCRUB_THREAD) { 1652789Sahrens ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1653789Sahrens for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1654789Sahrens vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1655789Sahrens } 1656789Sahrens if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1657789Sahrens if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1658789Sahrens return; 16591732Sbonwick vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1660789Sahrens for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1661789Sahrens vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1662789Sahrens } 1663789Sahrens } 1664789Sahrens } 1665789Sahrens 1666789Sahrens void 1667789Sahrens vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1668789Sahrens { 1669789Sahrens int c; 1670789Sahrens vdev_stat_t *vs = &vd->vdev_stat; 1671789Sahrens 1672789Sahrens for (c = 0; c < vd->vdev_children; c++) 1673789Sahrens vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1674789Sahrens 1675789Sahrens mutex_enter(&vd->vdev_stat_lock); 1676789Sahrens 1677789Sahrens if (type == POOL_SCRUB_NONE) { 1678789Sahrens /* 1679789Sahrens * Update completion and end time. Leave everything else alone 1680789Sahrens * so we can report what happened during the previous scrub. 1681789Sahrens */ 1682789Sahrens vs->vs_scrub_complete = complete; 1683789Sahrens vs->vs_scrub_end = gethrestime_sec(); 1684789Sahrens } else { 1685789Sahrens vs->vs_scrub_type = type; 1686789Sahrens vs->vs_scrub_complete = 0; 1687789Sahrens vs->vs_scrub_examined = 0; 1688789Sahrens vs->vs_scrub_repaired = 0; 1689789Sahrens vs->vs_scrub_errors = 0; 1690789Sahrens vs->vs_scrub_start = gethrestime_sec(); 1691789Sahrens vs->vs_scrub_end = 0; 1692789Sahrens } 1693789Sahrens 1694789Sahrens mutex_exit(&vd->vdev_stat_lock); 1695789Sahrens } 1696789Sahrens 1697789Sahrens /* 1698789Sahrens * Update the in-core space usage stats for this vdev and the root vdev. 1699789Sahrens */ 1700789Sahrens void 17012082Seschrock vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta) 1702789Sahrens { 1703789Sahrens ASSERT(vd == vd->vdev_top); 17042082Seschrock int64_t dspace_delta = space_delta; 1705789Sahrens 1706789Sahrens do { 17072082Seschrock if (vd->vdev_ms_count) { 17082082Seschrock /* 17092082Seschrock * If this is a top-level vdev, apply the 17102082Seschrock * inverse of its psize-to-asize (ie. RAID-Z) 17112082Seschrock * space-expansion factor. We must calculate 17122082Seschrock * this here and not at the root vdev because 17132082Seschrock * the root vdev's psize-to-asize is simply the 17142082Seschrock * max of its childrens', thus not accurate 17152082Seschrock * enough for us. 17162082Seschrock */ 17172082Seschrock ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 17182082Seschrock dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 17192082Seschrock vd->vdev_deflate_ratio; 17202082Seschrock } 17212082Seschrock 1722789Sahrens mutex_enter(&vd->vdev_stat_lock); 1723789Sahrens vd->vdev_stat.vs_space += space_delta; 1724789Sahrens vd->vdev_stat.vs_alloc += alloc_delta; 17252082Seschrock vd->vdev_stat.vs_dspace += dspace_delta; 1726789Sahrens mutex_exit(&vd->vdev_stat_lock); 1727789Sahrens } while ((vd = vd->vdev_parent) != NULL); 1728789Sahrens } 1729789Sahrens 1730789Sahrens /* 1731789Sahrens * Various knobs to tune a vdev. 1732789Sahrens */ 1733789Sahrens static vdev_knob_t vdev_knob[] = { 1734789Sahrens { 1735789Sahrens "cache_size", 1736789Sahrens "size of the read-ahead cache", 1737789Sahrens 0, 1738789Sahrens 1ULL << 30, 1739789Sahrens 10ULL << 20, 1740789Sahrens offsetof(struct vdev, vdev_cache.vc_size) 1741789Sahrens }, 1742789Sahrens { 1743789Sahrens "cache_bshift", 1744789Sahrens "log2 of cache blocksize", 1745789Sahrens SPA_MINBLOCKSHIFT, 1746789Sahrens SPA_MAXBLOCKSHIFT, 1747789Sahrens 16, 1748789Sahrens offsetof(struct vdev, vdev_cache.vc_bshift) 1749789Sahrens }, 1750789Sahrens { 1751789Sahrens "cache_max", 1752789Sahrens "largest block size to cache", 1753789Sahrens 0, 1754789Sahrens SPA_MAXBLOCKSIZE, 1755789Sahrens 1ULL << 14, 1756789Sahrens offsetof(struct vdev, vdev_cache.vc_max) 1757789Sahrens }, 1758789Sahrens { 1759789Sahrens "min_pending", 1760789Sahrens "minimum pending I/Os to the disk", 1761789Sahrens 1, 1762789Sahrens 10000, 1763789Sahrens 2, 1764789Sahrens offsetof(struct vdev, vdev_queue.vq_min_pending) 1765789Sahrens }, 1766789Sahrens { 1767789Sahrens "max_pending", 1768789Sahrens "maximum pending I/Os to the disk", 1769789Sahrens 1, 1770789Sahrens 10000, 1771789Sahrens 35, 1772789Sahrens offsetof(struct vdev, vdev_queue.vq_max_pending) 1773789Sahrens }, 1774789Sahrens { 17751544Seschrock "scrub_limit", 17761544Seschrock "maximum scrub/resilver I/O queue", 17771544Seschrock 0, 17781544Seschrock 10000, 17791544Seschrock 70, 17801544Seschrock offsetof(struct vdev, vdev_queue.vq_scrub_limit) 17811544Seschrock }, 17821544Seschrock { 1783789Sahrens "agg_limit", 1784789Sahrens "maximum size of aggregated I/Os", 1785789Sahrens 0, 1786789Sahrens SPA_MAXBLOCKSIZE, 1787789Sahrens SPA_MAXBLOCKSIZE, 1788789Sahrens offsetof(struct vdev, vdev_queue.vq_agg_limit) 1789789Sahrens }, 1790789Sahrens { 1791789Sahrens "time_shift", 1792789Sahrens "deadline = pri + (lbolt >> time_shift)", 1793789Sahrens 0, 1794789Sahrens 63, 1795789Sahrens 4, 1796789Sahrens offsetof(struct vdev, vdev_queue.vq_time_shift) 1797789Sahrens }, 1798789Sahrens { 1799789Sahrens "ramp_rate", 1800789Sahrens "exponential I/O issue ramp-up rate", 1801789Sahrens 1, 1802789Sahrens 10000, 1803789Sahrens 2, 1804789Sahrens offsetof(struct vdev, vdev_queue.vq_ramp_rate) 1805789Sahrens }, 1806789Sahrens }; 1807789Sahrens 1808789Sahrens vdev_knob_t * 1809789Sahrens vdev_knob_next(vdev_knob_t *vk) 1810789Sahrens { 1811789Sahrens if (vk == NULL) 1812789Sahrens return (vdev_knob); 1813789Sahrens 1814789Sahrens if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t)) 1815789Sahrens return (NULL); 1816789Sahrens 1817789Sahrens return (vk); 1818789Sahrens } 1819789Sahrens 1820789Sahrens /* 1821789Sahrens * Mark a top-level vdev's config as dirty, placing it on the dirty list 1822789Sahrens * so that it will be written out next time the vdev configuration is synced. 1823789Sahrens * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1824789Sahrens */ 1825789Sahrens void 1826789Sahrens vdev_config_dirty(vdev_t *vd) 1827789Sahrens { 1828789Sahrens spa_t *spa = vd->vdev_spa; 1829789Sahrens vdev_t *rvd = spa->spa_root_vdev; 1830789Sahrens int c; 1831789Sahrens 18321601Sbonwick /* 18331601Sbonwick * The dirty list is protected by the config lock. The caller must 18341601Sbonwick * either hold the config lock as writer, or must be the sync thread 18351601Sbonwick * (which holds the lock as reader). There's only one sync thread, 18361601Sbonwick * so this is sufficient to ensure mutual exclusion. 18371601Sbonwick */ 18381601Sbonwick ASSERT(spa_config_held(spa, RW_WRITER) || 18391601Sbonwick dsl_pool_sync_context(spa_get_dsl(spa))); 18401601Sbonwick 1841789Sahrens if (vd == rvd) { 1842789Sahrens for (c = 0; c < rvd->vdev_children; c++) 1843789Sahrens vdev_config_dirty(rvd->vdev_child[c]); 1844789Sahrens } else { 1845789Sahrens ASSERT(vd == vd->vdev_top); 1846789Sahrens 18471732Sbonwick if (!list_link_active(&vd->vdev_dirty_node)) 1848789Sahrens list_insert_head(&spa->spa_dirty_list, vd); 1849789Sahrens } 1850789Sahrens } 1851789Sahrens 1852789Sahrens void 1853789Sahrens vdev_config_clean(vdev_t *vd) 1854789Sahrens { 18551601Sbonwick spa_t *spa = vd->vdev_spa; 18561601Sbonwick 18571601Sbonwick ASSERT(spa_config_held(spa, RW_WRITER) || 18581601Sbonwick dsl_pool_sync_context(spa_get_dsl(spa))); 18591601Sbonwick 18601732Sbonwick ASSERT(list_link_active(&vd->vdev_dirty_node)); 18611601Sbonwick list_remove(&spa->spa_dirty_list, vd); 1862789Sahrens } 1863789Sahrens 18641775Sbillm void 18651775Sbillm vdev_propagate_state(vdev_t *vd) 18661775Sbillm { 18671775Sbillm vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 18681775Sbillm int degraded = 0, faulted = 0; 18691775Sbillm int corrupted = 0; 18701775Sbillm int c; 18711775Sbillm vdev_t *child; 18721775Sbillm 18731775Sbillm for (c = 0; c < vd->vdev_children; c++) { 18741775Sbillm child = vd->vdev_child[c]; 18751775Sbillm if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 18761775Sbillm faulted++; 18771775Sbillm else if (child->vdev_state == VDEV_STATE_DEGRADED) 18781775Sbillm degraded++; 18791775Sbillm 18801775Sbillm if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 18811775Sbillm corrupted++; 18821775Sbillm } 18831775Sbillm 18841775Sbillm vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 18851775Sbillm 18861775Sbillm /* 18871775Sbillm * Root special: if there is a toplevel vdev that cannot be 18881775Sbillm * opened due to corrupted metadata, then propagate the root 18891775Sbillm * vdev's aux state as 'corrupt' rather than 'insufficient 18901775Sbillm * replicas'. 18911775Sbillm */ 18921775Sbillm if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) 18931775Sbillm vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 18941775Sbillm VDEV_AUX_CORRUPT_DATA); 18951775Sbillm } 18961775Sbillm 1897789Sahrens /* 18981544Seschrock * Set a vdev's state. If this is during an open, we don't update the parent 18991544Seschrock * state, because we're in the process of opening children depth-first. 19001544Seschrock * Otherwise, we propagate the change to the parent. 19011544Seschrock * 19021544Seschrock * If this routine places a device in a faulted state, an appropriate ereport is 19031544Seschrock * generated. 1904789Sahrens */ 1905789Sahrens void 19061544Seschrock vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 1907789Sahrens { 19081986Seschrock uint64_t save_state; 19091544Seschrock 19101544Seschrock if (state == vd->vdev_state) { 19111544Seschrock vd->vdev_stat.vs_aux = aux; 1912789Sahrens return; 19131544Seschrock } 19141544Seschrock 19151986Seschrock save_state = vd->vdev_state; 1916789Sahrens 1917789Sahrens vd->vdev_state = state; 1918789Sahrens vd->vdev_stat.vs_aux = aux; 1919789Sahrens 19201544Seschrock if (state == VDEV_STATE_CANT_OPEN) { 19211544Seschrock /* 19221544Seschrock * If we fail to open a vdev during an import, we mark it as 19231544Seschrock * "not available", which signifies that it was never there to 19241544Seschrock * begin with. Failure to open such a device is not considered 19251544Seschrock * an error. 19261544Seschrock */ 19271986Seschrock if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 19281986Seschrock vd->vdev_ops->vdev_op_leaf) 19291986Seschrock vd->vdev_not_present = 1; 19301986Seschrock 19311986Seschrock /* 19321986Seschrock * Post the appropriate ereport. If the 'prevstate' field is 19331986Seschrock * set to something other than VDEV_STATE_UNKNOWN, it indicates 19341986Seschrock * that this is part of a vdev_reopen(). In this case, we don't 19351986Seschrock * want to post the ereport if the device was already in the 19361986Seschrock * CANT_OPEN state beforehand. 19371986Seschrock */ 19381986Seschrock if (vd->vdev_prevstate != state && !vd->vdev_not_present && 19391544Seschrock vd != vd->vdev_spa->spa_root_vdev) { 19401544Seschrock const char *class; 19411544Seschrock 19421544Seschrock switch (aux) { 19431544Seschrock case VDEV_AUX_OPEN_FAILED: 19441544Seschrock class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 19451544Seschrock break; 19461544Seschrock case VDEV_AUX_CORRUPT_DATA: 19471544Seschrock class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 19481544Seschrock break; 19491544Seschrock case VDEV_AUX_NO_REPLICAS: 19501544Seschrock class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 19511544Seschrock break; 19521544Seschrock case VDEV_AUX_BAD_GUID_SUM: 19531544Seschrock class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 19541544Seschrock break; 19551544Seschrock case VDEV_AUX_TOO_SMALL: 19561544Seschrock class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 19571544Seschrock break; 19581544Seschrock case VDEV_AUX_BAD_LABEL: 19591544Seschrock class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 19601544Seschrock break; 19611544Seschrock default: 19621544Seschrock class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 19631544Seschrock } 19641544Seschrock 19651544Seschrock zfs_ereport_post(class, vd->vdev_spa, 19661986Seschrock vd, NULL, save_state, 0); 19671544Seschrock } 19681544Seschrock } 19691544Seschrock 19701544Seschrock if (isopen) 19711544Seschrock return; 19721544Seschrock 19731775Sbillm if (vd->vdev_parent != NULL) 19741775Sbillm vdev_propagate_state(vd->vdev_parent); 1975789Sahrens } 1976