1789Sahrens /* 2789Sahrens * CDDL HEADER START 3789Sahrens * 4789Sahrens * The contents of this file are subject to the terms of the 51485Slling * Common Development and Distribution License (the "License"). 61485Slling * You may not use this file except in compliance with the License. 7789Sahrens * 8789Sahrens * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9789Sahrens * or http://www.opensolaris.org/os/licensing. 10789Sahrens * See the License for the specific language governing permissions 11789Sahrens * and limitations under the License. 12789Sahrens * 13789Sahrens * When distributing Covered Code, include this CDDL HEADER in each 14789Sahrens * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15789Sahrens * If applicable, add the following below this CDDL HEADER, with the 16789Sahrens * fields enclosed by brackets "[]" replaced with your own identifying 17789Sahrens * information: Portions Copyright [yyyy] [name of copyright owner] 18789Sahrens * 19789Sahrens * CDDL HEADER END 20789Sahrens */ 21*2082Seschrock 22789Sahrens /* 231199Seschrock * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24789Sahrens * Use is subject to license terms. 25789Sahrens */ 26789Sahrens 27789Sahrens #pragma ident "%Z%%M% %I% %E% SMI" 28789Sahrens 29789Sahrens #include <sys/zfs_context.h> 301544Seschrock #include <sys/fm/fs/zfs.h> 31789Sahrens #include <sys/spa.h> 32789Sahrens #include <sys/spa_impl.h> 33789Sahrens #include <sys/dmu.h> 34789Sahrens #include <sys/dmu_tx.h> 35789Sahrens #include <sys/vdev_impl.h> 36789Sahrens #include <sys/uberblock_impl.h> 37789Sahrens #include <sys/metaslab.h> 38789Sahrens #include <sys/metaslab_impl.h> 39789Sahrens #include <sys/space_map.h> 40789Sahrens #include <sys/zio.h> 41789Sahrens #include <sys/zap.h> 42789Sahrens #include <sys/fs/zfs.h> 43789Sahrens 44789Sahrens /* 45789Sahrens * Virtual device management. 46789Sahrens */ 47789Sahrens 48789Sahrens static vdev_ops_t *vdev_ops_table[] = { 49789Sahrens &vdev_root_ops, 50789Sahrens &vdev_raidz_ops, 51789Sahrens &vdev_mirror_ops, 52789Sahrens &vdev_replacing_ops, 53*2082Seschrock &vdev_spare_ops, 54789Sahrens &vdev_disk_ops, 55789Sahrens &vdev_file_ops, 56789Sahrens &vdev_missing_ops, 57789Sahrens NULL 58789Sahrens }; 59789Sahrens 60789Sahrens /* 61789Sahrens * Given a vdev type, return the appropriate ops vector. 62789Sahrens */ 63789Sahrens static vdev_ops_t * 64789Sahrens vdev_getops(const char *type) 65789Sahrens { 66789Sahrens vdev_ops_t *ops, **opspp; 67789Sahrens 68789Sahrens for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 69789Sahrens if (strcmp(ops->vdev_op_type, type) == 0) 70789Sahrens break; 71789Sahrens 72789Sahrens return (ops); 73789Sahrens } 74789Sahrens 75789Sahrens /* 76789Sahrens * Default asize function: return the MAX of psize with the asize of 77789Sahrens * all children. This is what's used by anything other than RAID-Z. 78789Sahrens */ 79789Sahrens uint64_t 80789Sahrens vdev_default_asize(vdev_t *vd, uint64_t psize) 81789Sahrens { 821732Sbonwick uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 83789Sahrens uint64_t csize; 84789Sahrens uint64_t c; 85789Sahrens 86789Sahrens for (c = 0; c < vd->vdev_children; c++) { 87789Sahrens csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 88789Sahrens asize = MAX(asize, csize); 89789Sahrens } 90789Sahrens 91789Sahrens return (asize); 92789Sahrens } 93789Sahrens 941175Slling /* 951175Slling * Get the replaceable or attachable device size. 961175Slling * If the parent is a mirror or raidz, the replaceable size is the minimum 971175Slling * psize of all its children. For the rest, just return our own psize. 981175Slling * 991175Slling * e.g. 1001175Slling * psize rsize 1011175Slling * root - - 1021175Slling * mirror/raidz - - 1031175Slling * disk1 20g 20g 1041175Slling * disk2 40g 20g 1051175Slling * disk3 80g 80g 1061175Slling */ 1071175Slling uint64_t 1081175Slling vdev_get_rsize(vdev_t *vd) 1091175Slling { 1101175Slling vdev_t *pvd, *cvd; 1111175Slling uint64_t c, rsize; 1121175Slling 1131175Slling pvd = vd->vdev_parent; 1141175Slling 1151175Slling /* 1161175Slling * If our parent is NULL or the root, just return our own psize. 1171175Slling */ 1181175Slling if (pvd == NULL || pvd->vdev_parent == NULL) 1191175Slling return (vd->vdev_psize); 1201175Slling 1211175Slling rsize = 0; 1221175Slling 1231175Slling for (c = 0; c < pvd->vdev_children; c++) { 1241175Slling cvd = pvd->vdev_child[c]; 1251175Slling rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 1261175Slling } 1271175Slling 1281175Slling return (rsize); 1291175Slling } 1301175Slling 131789Sahrens vdev_t * 132789Sahrens vdev_lookup_top(spa_t *spa, uint64_t vdev) 133789Sahrens { 134789Sahrens vdev_t *rvd = spa->spa_root_vdev; 135789Sahrens 136789Sahrens if (vdev < rvd->vdev_children) 137789Sahrens return (rvd->vdev_child[vdev]); 138789Sahrens 139789Sahrens return (NULL); 140789Sahrens } 141789Sahrens 142789Sahrens vdev_t * 143789Sahrens vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 144789Sahrens { 145789Sahrens int c; 146789Sahrens vdev_t *mvd; 147789Sahrens 1481585Sbonwick if (vd->vdev_guid == guid) 149789Sahrens return (vd); 150789Sahrens 151789Sahrens for (c = 0; c < vd->vdev_children; c++) 152789Sahrens if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 153789Sahrens NULL) 154789Sahrens return (mvd); 155789Sahrens 156789Sahrens return (NULL); 157789Sahrens } 158789Sahrens 159789Sahrens void 160789Sahrens vdev_add_child(vdev_t *pvd, vdev_t *cvd) 161789Sahrens { 162789Sahrens size_t oldsize, newsize; 163789Sahrens uint64_t id = cvd->vdev_id; 164789Sahrens vdev_t **newchild; 165789Sahrens 166789Sahrens ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 167789Sahrens ASSERT(cvd->vdev_parent == NULL); 168789Sahrens 169789Sahrens cvd->vdev_parent = pvd; 170789Sahrens 171789Sahrens if (pvd == NULL) 172789Sahrens return; 173789Sahrens 174789Sahrens ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 175789Sahrens 176789Sahrens oldsize = pvd->vdev_children * sizeof (vdev_t *); 177789Sahrens pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 178789Sahrens newsize = pvd->vdev_children * sizeof (vdev_t *); 179789Sahrens 180789Sahrens newchild = kmem_zalloc(newsize, KM_SLEEP); 181789Sahrens if (pvd->vdev_child != NULL) { 182789Sahrens bcopy(pvd->vdev_child, newchild, oldsize); 183789Sahrens kmem_free(pvd->vdev_child, oldsize); 184789Sahrens } 185789Sahrens 186789Sahrens pvd->vdev_child = newchild; 187789Sahrens pvd->vdev_child[id] = cvd; 188789Sahrens 189789Sahrens cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 190789Sahrens ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 191789Sahrens 192789Sahrens /* 193789Sahrens * Walk up all ancestors to update guid sum. 194789Sahrens */ 195789Sahrens for (; pvd != NULL; pvd = pvd->vdev_parent) 196789Sahrens pvd->vdev_guid_sum += cvd->vdev_guid_sum; 197789Sahrens } 198789Sahrens 199789Sahrens void 200789Sahrens vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 201789Sahrens { 202789Sahrens int c; 203789Sahrens uint_t id = cvd->vdev_id; 204789Sahrens 205789Sahrens ASSERT(cvd->vdev_parent == pvd); 206789Sahrens 207789Sahrens if (pvd == NULL) 208789Sahrens return; 209789Sahrens 210789Sahrens ASSERT(id < pvd->vdev_children); 211789Sahrens ASSERT(pvd->vdev_child[id] == cvd); 212789Sahrens 213789Sahrens pvd->vdev_child[id] = NULL; 214789Sahrens cvd->vdev_parent = NULL; 215789Sahrens 216789Sahrens for (c = 0; c < pvd->vdev_children; c++) 217789Sahrens if (pvd->vdev_child[c]) 218789Sahrens break; 219789Sahrens 220789Sahrens if (c == pvd->vdev_children) { 221789Sahrens kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 222789Sahrens pvd->vdev_child = NULL; 223789Sahrens pvd->vdev_children = 0; 224789Sahrens } 225789Sahrens 226789Sahrens /* 227789Sahrens * Walk up all ancestors to update guid sum. 228789Sahrens */ 229789Sahrens for (; pvd != NULL; pvd = pvd->vdev_parent) 230789Sahrens pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 231789Sahrens } 232789Sahrens 233789Sahrens /* 234789Sahrens * Remove any holes in the child array. 235789Sahrens */ 236789Sahrens void 237789Sahrens vdev_compact_children(vdev_t *pvd) 238789Sahrens { 239789Sahrens vdev_t **newchild, *cvd; 240789Sahrens int oldc = pvd->vdev_children; 241789Sahrens int newc, c; 242789Sahrens 243789Sahrens ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 244789Sahrens 245789Sahrens for (c = newc = 0; c < oldc; c++) 246789Sahrens if (pvd->vdev_child[c]) 247789Sahrens newc++; 248789Sahrens 249789Sahrens newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 250789Sahrens 251789Sahrens for (c = newc = 0; c < oldc; c++) { 252789Sahrens if ((cvd = pvd->vdev_child[c]) != NULL) { 253789Sahrens newchild[newc] = cvd; 254789Sahrens cvd->vdev_id = newc++; 255789Sahrens } 256789Sahrens } 257789Sahrens 258789Sahrens kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 259789Sahrens pvd->vdev_child = newchild; 260789Sahrens pvd->vdev_children = newc; 261789Sahrens } 262789Sahrens 263789Sahrens /* 264789Sahrens * Allocate and minimally initialize a vdev_t. 265789Sahrens */ 266789Sahrens static vdev_t * 267789Sahrens vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 268789Sahrens { 269789Sahrens vdev_t *vd; 270789Sahrens 2711585Sbonwick vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 2721585Sbonwick 2731585Sbonwick if (spa->spa_root_vdev == NULL) { 2741585Sbonwick ASSERT(ops == &vdev_root_ops); 2751585Sbonwick spa->spa_root_vdev = vd; 2761585Sbonwick } 277789Sahrens 2781585Sbonwick if (guid == 0) { 2791585Sbonwick if (spa->spa_root_vdev == vd) { 2801585Sbonwick /* 2811585Sbonwick * The root vdev's guid will also be the pool guid, 2821585Sbonwick * which must be unique among all pools. 2831585Sbonwick */ 2841585Sbonwick while (guid == 0 || spa_guid_exists(guid, 0)) 2851585Sbonwick guid = spa_get_random(-1ULL); 2861585Sbonwick } else { 2871585Sbonwick /* 2881585Sbonwick * Any other vdev's guid must be unique within the pool. 2891585Sbonwick */ 2901585Sbonwick while (guid == 0 || 2911585Sbonwick spa_guid_exists(spa_guid(spa), guid)) 2921585Sbonwick guid = spa_get_random(-1ULL); 2931585Sbonwick } 2941585Sbonwick ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 2951585Sbonwick } 296789Sahrens 297789Sahrens vd->vdev_spa = spa; 298789Sahrens vd->vdev_id = id; 299789Sahrens vd->vdev_guid = guid; 300789Sahrens vd->vdev_guid_sum = guid; 301789Sahrens vd->vdev_ops = ops; 302789Sahrens vd->vdev_state = VDEV_STATE_CLOSED; 303789Sahrens 304789Sahrens mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 305789Sahrens space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 306789Sahrens space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 307789Sahrens txg_list_create(&vd->vdev_ms_list, 308789Sahrens offsetof(struct metaslab, ms_txg_node)); 309789Sahrens txg_list_create(&vd->vdev_dtl_list, 310789Sahrens offsetof(struct vdev, vdev_dtl_node)); 311789Sahrens vd->vdev_stat.vs_timestamp = gethrtime(); 312789Sahrens 313789Sahrens return (vd); 314789Sahrens } 315789Sahrens 316789Sahrens /* 317789Sahrens * Free a vdev_t that has been removed from service. 318789Sahrens */ 319789Sahrens static void 320789Sahrens vdev_free_common(vdev_t *vd) 321789Sahrens { 3221585Sbonwick spa_t *spa = vd->vdev_spa; 3231585Sbonwick 324789Sahrens if (vd->vdev_path) 325789Sahrens spa_strfree(vd->vdev_path); 326789Sahrens if (vd->vdev_devid) 327789Sahrens spa_strfree(vd->vdev_devid); 328789Sahrens 329*2082Seschrock if (vd->vdev_isspare) 330*2082Seschrock spa_spare_remove(vd->vdev_guid); 331*2082Seschrock 332789Sahrens txg_list_destroy(&vd->vdev_ms_list); 333789Sahrens txg_list_destroy(&vd->vdev_dtl_list); 334789Sahrens mutex_enter(&vd->vdev_dtl_lock); 3351732Sbonwick space_map_unload(&vd->vdev_dtl_map); 336789Sahrens space_map_destroy(&vd->vdev_dtl_map); 337789Sahrens space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 338789Sahrens space_map_destroy(&vd->vdev_dtl_scrub); 339789Sahrens mutex_exit(&vd->vdev_dtl_lock); 340789Sahrens mutex_destroy(&vd->vdev_dtl_lock); 341789Sahrens 3421585Sbonwick if (vd == spa->spa_root_vdev) 3431585Sbonwick spa->spa_root_vdev = NULL; 3441585Sbonwick 345789Sahrens kmem_free(vd, sizeof (vdev_t)); 346789Sahrens } 347789Sahrens 348789Sahrens /* 349789Sahrens * Allocate a new vdev. The 'alloctype' is used to control whether we are 350789Sahrens * creating a new vdev or loading an existing one - the behavior is slightly 351789Sahrens * different for each case. 352789Sahrens */ 353*2082Seschrock int 354*2082Seschrock vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 355*2082Seschrock int alloctype) 356789Sahrens { 357789Sahrens vdev_ops_t *ops; 358789Sahrens char *type; 3591732Sbonwick uint64_t guid = 0; 360789Sahrens vdev_t *vd; 361789Sahrens 362789Sahrens ASSERT(spa_config_held(spa, RW_WRITER)); 363789Sahrens 364789Sahrens if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 365*2082Seschrock return (EINVAL); 366789Sahrens 367789Sahrens if ((ops = vdev_getops(type)) == NULL) 368*2082Seschrock return (EINVAL); 369789Sahrens 370789Sahrens /* 371789Sahrens * If this is a load, get the vdev guid from the nvlist. 372789Sahrens * Otherwise, vdev_alloc_common() will generate one for us. 373789Sahrens */ 374789Sahrens if (alloctype == VDEV_ALLOC_LOAD) { 375789Sahrens uint64_t label_id; 376789Sahrens 377789Sahrens if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 378789Sahrens label_id != id) 379*2082Seschrock return (EINVAL); 380789Sahrens 381789Sahrens if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 382*2082Seschrock return (EINVAL); 383*2082Seschrock } else if (alloctype == VDEV_ALLOC_SPARE) { 384*2082Seschrock if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 385*2082Seschrock return (EINVAL); 386789Sahrens } 387789Sahrens 388*2082Seschrock /* 389*2082Seschrock * The first allocated vdev must be of type 'root'. 390*2082Seschrock */ 391*2082Seschrock if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 392*2082Seschrock return (EINVAL); 393*2082Seschrock 394789Sahrens vd = vdev_alloc_common(spa, id, guid, ops); 395789Sahrens 396789Sahrens if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 397789Sahrens vd->vdev_path = spa_strdup(vd->vdev_path); 398789Sahrens if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 399789Sahrens vd->vdev_devid = spa_strdup(vd->vdev_devid); 400789Sahrens 401789Sahrens /* 402*2082Seschrock * Set the nparity propery for RAID-Z vdevs. 403*2082Seschrock */ 404*2082Seschrock if (ops == &vdev_raidz_ops) { 405*2082Seschrock if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 406*2082Seschrock &vd->vdev_nparity) == 0) { 407*2082Seschrock /* 408*2082Seschrock * Currently, we can only support 2 parity devices. 409*2082Seschrock */ 410*2082Seschrock if (vd->vdev_nparity > 2) 411*2082Seschrock return (EINVAL); 412*2082Seschrock /* 413*2082Seschrock * Older versions can only support 1 parity device. 414*2082Seschrock */ 415*2082Seschrock if (vd->vdev_nparity == 2 && 416*2082Seschrock spa_version(spa) < ZFS_VERSION_RAID6) 417*2082Seschrock return (ENOTSUP); 418*2082Seschrock 419*2082Seschrock } else { 420*2082Seschrock /* 421*2082Seschrock * We require the parity to be specified for SPAs that 422*2082Seschrock * support multiple parity levels. 423*2082Seschrock */ 424*2082Seschrock if (spa_version(spa) >= ZFS_VERSION_RAID6) 425*2082Seschrock return (EINVAL); 426*2082Seschrock 427*2082Seschrock /* 428*2082Seschrock * Otherwise, we default to 1 parity device for RAID-Z. 429*2082Seschrock */ 430*2082Seschrock vd->vdev_nparity = 1; 431*2082Seschrock } 432*2082Seschrock } else { 433*2082Seschrock vd->vdev_nparity = 0; 434*2082Seschrock } 435*2082Seschrock 436*2082Seschrock /* 4371171Seschrock * Set the whole_disk property. If it's not specified, leave the value 4381171Seschrock * as -1. 4391171Seschrock */ 4401171Seschrock if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 4411171Seschrock &vd->vdev_wholedisk) != 0) 4421171Seschrock vd->vdev_wholedisk = -1ULL; 4431171Seschrock 4441171Seschrock /* 4451544Seschrock * Look for the 'not present' flag. This will only be set if the device 4461544Seschrock * was not present at the time of import. 4471544Seschrock */ 4481544Seschrock (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 4491544Seschrock &vd->vdev_not_present); 4501544Seschrock 4511544Seschrock /* 4521732Sbonwick * Get the alignment requirement. 4531732Sbonwick */ 4541732Sbonwick (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 4551732Sbonwick 4561732Sbonwick /* 457*2082Seschrock * Look for the 'is_spare' flag. If this is the case, then we are a 458*2082Seschrock * repurposed hot spare. 459*2082Seschrock */ 460*2082Seschrock (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 461*2082Seschrock &vd->vdev_isspare); 462*2082Seschrock if (vd->vdev_isspare) 463*2082Seschrock spa_spare_add(vd->vdev_guid); 464*2082Seschrock 465*2082Seschrock /* 466789Sahrens * If we're a top-level vdev, try to load the allocation parameters. 467789Sahrens */ 468789Sahrens if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 469789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 470789Sahrens &vd->vdev_ms_array); 471789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 472789Sahrens &vd->vdev_ms_shift); 473789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 474789Sahrens &vd->vdev_asize); 475789Sahrens } 476789Sahrens 477789Sahrens /* 4781732Sbonwick * If we're a leaf vdev, try to load the DTL object and offline state. 479789Sahrens */ 480789Sahrens if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 481789Sahrens (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 482789Sahrens &vd->vdev_dtl.smo_object); 4831732Sbonwick (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 4841732Sbonwick &vd->vdev_offline); 485789Sahrens } 486789Sahrens 487789Sahrens /* 488789Sahrens * Add ourselves to the parent's list of children. 489789Sahrens */ 490789Sahrens vdev_add_child(parent, vd); 491789Sahrens 492*2082Seschrock *vdp = vd; 493*2082Seschrock 494*2082Seschrock return (0); 495789Sahrens } 496789Sahrens 497789Sahrens void 498789Sahrens vdev_free(vdev_t *vd) 499789Sahrens { 500789Sahrens int c; 501789Sahrens 502789Sahrens /* 503789Sahrens * vdev_free() implies closing the vdev first. This is simpler than 504789Sahrens * trying to ensure complicated semantics for all callers. 505789Sahrens */ 506789Sahrens vdev_close(vd); 507789Sahrens 5081732Sbonwick ASSERT(!list_link_active(&vd->vdev_dirty_node)); 509789Sahrens 510789Sahrens /* 511789Sahrens * Free all children. 512789Sahrens */ 513789Sahrens for (c = 0; c < vd->vdev_children; c++) 514789Sahrens vdev_free(vd->vdev_child[c]); 515789Sahrens 516789Sahrens ASSERT(vd->vdev_child == NULL); 517789Sahrens ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 518789Sahrens 519789Sahrens /* 520789Sahrens * Discard allocation state. 521789Sahrens */ 522789Sahrens if (vd == vd->vdev_top) 523789Sahrens vdev_metaslab_fini(vd); 524789Sahrens 525789Sahrens ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 526*2082Seschrock ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 527789Sahrens ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 528789Sahrens 529789Sahrens /* 530789Sahrens * Remove this vdev from its parent's child list. 531789Sahrens */ 532789Sahrens vdev_remove_child(vd->vdev_parent, vd); 533789Sahrens 534789Sahrens ASSERT(vd->vdev_parent == NULL); 535789Sahrens 536789Sahrens vdev_free_common(vd); 537789Sahrens } 538789Sahrens 539789Sahrens /* 540789Sahrens * Transfer top-level vdev state from svd to tvd. 541789Sahrens */ 542789Sahrens static void 543789Sahrens vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 544789Sahrens { 545789Sahrens spa_t *spa = svd->vdev_spa; 546789Sahrens metaslab_t *msp; 547789Sahrens vdev_t *vd; 548789Sahrens int t; 549789Sahrens 550789Sahrens ASSERT(tvd == tvd->vdev_top); 551789Sahrens 552789Sahrens tvd->vdev_ms_array = svd->vdev_ms_array; 553789Sahrens tvd->vdev_ms_shift = svd->vdev_ms_shift; 554789Sahrens tvd->vdev_ms_count = svd->vdev_ms_count; 555789Sahrens 556789Sahrens svd->vdev_ms_array = 0; 557789Sahrens svd->vdev_ms_shift = 0; 558789Sahrens svd->vdev_ms_count = 0; 559789Sahrens 560789Sahrens tvd->vdev_mg = svd->vdev_mg; 561789Sahrens tvd->vdev_ms = svd->vdev_ms; 562789Sahrens 563789Sahrens svd->vdev_mg = NULL; 564789Sahrens svd->vdev_ms = NULL; 5651732Sbonwick 5661732Sbonwick if (tvd->vdev_mg != NULL) 5671732Sbonwick tvd->vdev_mg->mg_vd = tvd; 568789Sahrens 569789Sahrens tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 570789Sahrens tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 571*2082Seschrock tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 572789Sahrens 573789Sahrens svd->vdev_stat.vs_alloc = 0; 574789Sahrens svd->vdev_stat.vs_space = 0; 575*2082Seschrock svd->vdev_stat.vs_dspace = 0; 576789Sahrens 577789Sahrens for (t = 0; t < TXG_SIZE; t++) { 578789Sahrens while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 579789Sahrens (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 580789Sahrens while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 581789Sahrens (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 582789Sahrens if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 583789Sahrens (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 584789Sahrens } 585789Sahrens 5861732Sbonwick if (list_link_active(&svd->vdev_dirty_node)) { 587789Sahrens vdev_config_clean(svd); 588789Sahrens vdev_config_dirty(tvd); 589789Sahrens } 590789Sahrens 5911544Seschrock tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted; 5921544Seschrock svd->vdev_reopen_wanted = 0; 593*2082Seschrock 594*2082Seschrock tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 595*2082Seschrock svd->vdev_deflate_ratio = 0; 596789Sahrens } 597789Sahrens 598789Sahrens static void 599789Sahrens vdev_top_update(vdev_t *tvd, vdev_t *vd) 600789Sahrens { 601789Sahrens int c; 602789Sahrens 603789Sahrens if (vd == NULL) 604789Sahrens return; 605789Sahrens 606789Sahrens vd->vdev_top = tvd; 607789Sahrens 608789Sahrens for (c = 0; c < vd->vdev_children; c++) 609789Sahrens vdev_top_update(tvd, vd->vdev_child[c]); 610789Sahrens } 611789Sahrens 612789Sahrens /* 613789Sahrens * Add a mirror/replacing vdev above an existing vdev. 614789Sahrens */ 615789Sahrens vdev_t * 616789Sahrens vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 617789Sahrens { 618789Sahrens spa_t *spa = cvd->vdev_spa; 619789Sahrens vdev_t *pvd = cvd->vdev_parent; 620789Sahrens vdev_t *mvd; 621789Sahrens 622789Sahrens ASSERT(spa_config_held(spa, RW_WRITER)); 623789Sahrens 624789Sahrens mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 6251732Sbonwick 6261732Sbonwick mvd->vdev_asize = cvd->vdev_asize; 6271732Sbonwick mvd->vdev_ashift = cvd->vdev_ashift; 6281732Sbonwick mvd->vdev_state = cvd->vdev_state; 6291732Sbonwick 630789Sahrens vdev_remove_child(pvd, cvd); 631789Sahrens vdev_add_child(pvd, mvd); 632789Sahrens cvd->vdev_id = mvd->vdev_children; 633789Sahrens vdev_add_child(mvd, cvd); 634789Sahrens vdev_top_update(cvd->vdev_top, cvd->vdev_top); 635789Sahrens 636789Sahrens if (mvd == mvd->vdev_top) 637789Sahrens vdev_top_transfer(cvd, mvd); 638789Sahrens 639789Sahrens return (mvd); 640789Sahrens } 641789Sahrens 642789Sahrens /* 643789Sahrens * Remove a 1-way mirror/replacing vdev from the tree. 644789Sahrens */ 645789Sahrens void 646789Sahrens vdev_remove_parent(vdev_t *cvd) 647789Sahrens { 648789Sahrens vdev_t *mvd = cvd->vdev_parent; 649789Sahrens vdev_t *pvd = mvd->vdev_parent; 650789Sahrens 651789Sahrens ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 652789Sahrens 653789Sahrens ASSERT(mvd->vdev_children == 1); 654789Sahrens ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 655*2082Seschrock mvd->vdev_ops == &vdev_replacing_ops || 656*2082Seschrock mvd->vdev_ops == &vdev_spare_ops); 6571732Sbonwick cvd->vdev_ashift = mvd->vdev_ashift; 658789Sahrens 659789Sahrens vdev_remove_child(mvd, cvd); 660789Sahrens vdev_remove_child(pvd, mvd); 661789Sahrens cvd->vdev_id = mvd->vdev_id; 662789Sahrens vdev_add_child(pvd, cvd); 663*2082Seschrock /* 664*2082Seschrock * If we created a new toplevel vdev, then we need to change the child's 665*2082Seschrock * vdev GUID to match the old toplevel vdev. Otherwise, we could have 666*2082Seschrock * detached an offline device, and when we go to import the pool we'll 667*2082Seschrock * think we have two toplevel vdevs, instead of a different version of 668*2082Seschrock * the same toplevel vdev. 669*2082Seschrock */ 670*2082Seschrock if (cvd->vdev_top == cvd) { 671*2082Seschrock pvd->vdev_guid_sum -= cvd->vdev_guid; 672*2082Seschrock cvd->vdev_guid_sum -= cvd->vdev_guid; 673*2082Seschrock cvd->vdev_guid = mvd->vdev_guid; 674*2082Seschrock cvd->vdev_guid_sum += mvd->vdev_guid; 675*2082Seschrock pvd->vdev_guid_sum += cvd->vdev_guid; 676*2082Seschrock } 677789Sahrens vdev_top_update(cvd->vdev_top, cvd->vdev_top); 678789Sahrens 679789Sahrens if (cvd == cvd->vdev_top) 680789Sahrens vdev_top_transfer(mvd, cvd); 681789Sahrens 682789Sahrens ASSERT(mvd->vdev_children == 0); 683789Sahrens vdev_free(mvd); 684789Sahrens } 685789Sahrens 6861544Seschrock int 687789Sahrens vdev_metaslab_init(vdev_t *vd, uint64_t txg) 688789Sahrens { 689789Sahrens spa_t *spa = vd->vdev_spa; 6901732Sbonwick objset_t *mos = spa->spa_meta_objset; 691789Sahrens metaslab_class_t *mc = spa_metaslab_class_select(spa); 6921732Sbonwick uint64_t m; 693789Sahrens uint64_t oldc = vd->vdev_ms_count; 694789Sahrens uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 6951732Sbonwick metaslab_t **mspp; 6961732Sbonwick int error; 697789Sahrens 6981585Sbonwick if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 6991585Sbonwick return (0); 7001585Sbonwick 701789Sahrens dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 702789Sahrens 703789Sahrens ASSERT(oldc <= newc); 704789Sahrens 7051732Sbonwick if (vd->vdev_mg == NULL) 7061732Sbonwick vd->vdev_mg = metaslab_group_create(mc, vd); 7071732Sbonwick 7081732Sbonwick mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 7091732Sbonwick 7101732Sbonwick if (oldc != 0) { 7111732Sbonwick bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 7121732Sbonwick kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 7131732Sbonwick } 7141732Sbonwick 7151732Sbonwick vd->vdev_ms = mspp; 716789Sahrens vd->vdev_ms_count = newc; 717789Sahrens 7181732Sbonwick for (m = oldc; m < newc; m++) { 7191732Sbonwick space_map_obj_t smo = { 0, 0, 0 }; 720789Sahrens if (txg == 0) { 7211732Sbonwick uint64_t object = 0; 7221732Sbonwick error = dmu_read(mos, vd->vdev_ms_array, 7231732Sbonwick m * sizeof (uint64_t), sizeof (uint64_t), &object); 7241732Sbonwick if (error) 7251732Sbonwick return (error); 7261732Sbonwick if (object != 0) { 7271732Sbonwick dmu_buf_t *db; 7281732Sbonwick error = dmu_bonus_hold(mos, object, FTAG, &db); 7291732Sbonwick if (error) 7301732Sbonwick return (error); 7311732Sbonwick ASSERT3U(db->db_size, ==, sizeof (smo)); 7321732Sbonwick bcopy(db->db_data, &smo, db->db_size); 7331732Sbonwick ASSERT3U(smo.smo_object, ==, object); 7341544Seschrock dmu_buf_rele(db, FTAG); 735789Sahrens } 736789Sahrens } 7371732Sbonwick vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 7381732Sbonwick m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 739789Sahrens } 740789Sahrens 7411544Seschrock return (0); 742789Sahrens } 743789Sahrens 744789Sahrens void 745789Sahrens vdev_metaslab_fini(vdev_t *vd) 746789Sahrens { 747789Sahrens uint64_t m; 748789Sahrens uint64_t count = vd->vdev_ms_count; 749789Sahrens 750789Sahrens if (vd->vdev_ms != NULL) { 751789Sahrens for (m = 0; m < count; m++) 7521732Sbonwick if (vd->vdev_ms[m] != NULL) 7531732Sbonwick metaslab_fini(vd->vdev_ms[m]); 754789Sahrens kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 755789Sahrens vd->vdev_ms = NULL; 756789Sahrens } 757789Sahrens } 758789Sahrens 759789Sahrens /* 760789Sahrens * Prepare a virtual device for access. 761789Sahrens */ 762789Sahrens int 763789Sahrens vdev_open(vdev_t *vd) 764789Sahrens { 765789Sahrens int error; 766789Sahrens vdev_knob_t *vk; 767789Sahrens int c; 768789Sahrens uint64_t osize = 0; 769789Sahrens uint64_t asize, psize; 7701732Sbonwick uint64_t ashift = 0; 771789Sahrens 772789Sahrens ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 773789Sahrens vd->vdev_state == VDEV_STATE_CANT_OPEN || 774789Sahrens vd->vdev_state == VDEV_STATE_OFFLINE); 775789Sahrens 776789Sahrens if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 777789Sahrens vd->vdev_fault_arg >>= 1; 778789Sahrens else 779789Sahrens vd->vdev_fault_mode = VDEV_FAULT_NONE; 780789Sahrens 781789Sahrens vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 782789Sahrens 783789Sahrens for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) { 784789Sahrens uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset); 785789Sahrens 786789Sahrens *valp = vk->vk_default; 787789Sahrens *valp = MAX(*valp, vk->vk_min); 788789Sahrens *valp = MIN(*valp, vk->vk_max); 789789Sahrens } 790789Sahrens 791789Sahrens if (vd->vdev_ops->vdev_op_leaf) { 792789Sahrens vdev_cache_init(vd); 793789Sahrens vdev_queue_init(vd); 794789Sahrens vd->vdev_cache_active = B_TRUE; 795789Sahrens } 796789Sahrens 797789Sahrens if (vd->vdev_offline) { 798789Sahrens ASSERT(vd->vdev_children == 0); 7991544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 800789Sahrens return (ENXIO); 801789Sahrens } 802789Sahrens 803789Sahrens error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 804789Sahrens 8051544Seschrock if (zio_injection_enabled && error == 0) 8061544Seschrock error = zio_handle_device_injection(vd, ENXIO); 8071544Seschrock 808789Sahrens dprintf("%s = %d, osize %llu, state = %d\n", 809789Sahrens vdev_description(vd), error, osize, vd->vdev_state); 810789Sahrens 811789Sahrens if (error) { 8121544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 813789Sahrens vd->vdev_stat.vs_aux); 814789Sahrens return (error); 815789Sahrens } 816789Sahrens 817789Sahrens vd->vdev_state = VDEV_STATE_HEALTHY; 818789Sahrens 819789Sahrens for (c = 0; c < vd->vdev_children; c++) 8201544Seschrock if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 8211544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 8221544Seschrock VDEV_AUX_NONE); 8231544Seschrock break; 8241544Seschrock } 825789Sahrens 826789Sahrens osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 827789Sahrens 828789Sahrens if (vd->vdev_children == 0) { 829789Sahrens if (osize < SPA_MINDEVSIZE) { 8301544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8311544Seschrock VDEV_AUX_TOO_SMALL); 832789Sahrens return (EOVERFLOW); 833789Sahrens } 834789Sahrens psize = osize; 835789Sahrens asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 836789Sahrens } else { 8371732Sbonwick if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 838789Sahrens (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 8391544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8401544Seschrock VDEV_AUX_TOO_SMALL); 841789Sahrens return (EOVERFLOW); 842789Sahrens } 843789Sahrens psize = 0; 844789Sahrens asize = osize; 845789Sahrens } 846789Sahrens 847789Sahrens vd->vdev_psize = psize; 848789Sahrens 849789Sahrens if (vd->vdev_asize == 0) { 850789Sahrens /* 851789Sahrens * This is the first-ever open, so use the computed values. 8521732Sbonwick * For testing purposes, a higher ashift can be requested. 853789Sahrens */ 854789Sahrens vd->vdev_asize = asize; 8551732Sbonwick vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 856789Sahrens } else { 857789Sahrens /* 858789Sahrens * Make sure the alignment requirement hasn't increased. 859789Sahrens */ 8601732Sbonwick if (ashift > vd->vdev_top->vdev_ashift) { 8611544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8621544Seschrock VDEV_AUX_BAD_LABEL); 863789Sahrens return (EINVAL); 864789Sahrens } 865789Sahrens 866789Sahrens /* 867789Sahrens * Make sure the device hasn't shrunk. 868789Sahrens */ 869789Sahrens if (asize < vd->vdev_asize) { 8701544Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 8711544Seschrock VDEV_AUX_BAD_LABEL); 872789Sahrens return (EINVAL); 873789Sahrens } 874789Sahrens 875789Sahrens /* 876789Sahrens * If all children are healthy and the asize has increased, 877789Sahrens * then we've experienced dynamic LUN growth. 878789Sahrens */ 879789Sahrens if (vd->vdev_state == VDEV_STATE_HEALTHY && 880789Sahrens asize > vd->vdev_asize) { 881789Sahrens vd->vdev_asize = asize; 882789Sahrens } 883789Sahrens } 884789Sahrens 8851544Seschrock /* 886*2082Seschrock * If this is a top-level vdev, compute the raidz-deflation 887*2082Seschrock * ratio. Note, we hard-code in 128k (1<<17) because it is the 888*2082Seschrock * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 889*2082Seschrock * changes, this algorithm must never change, or we will 890*2082Seschrock * inconsistently account for existing bp's. 891*2082Seschrock */ 892*2082Seschrock if (vd->vdev_top == vd) { 893*2082Seschrock vd->vdev_deflate_ratio = (1<<17) / 894*2082Seschrock (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 895*2082Seschrock } 896*2082Seschrock 897*2082Seschrock /* 8981544Seschrock * This allows the ZFS DE to close cases appropriately. If a device 8991544Seschrock * goes away and later returns, we want to close the associated case. 9001544Seschrock * But it's not enough to simply post this only when a device goes from 9011544Seschrock * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 9021544Seschrock * back, we also need to close the case (otherwise we will try to replay 9031544Seschrock * it). So we have to post this notifier every time. Since this only 9041544Seschrock * occurs during pool open or error recovery, this should not be an 9051544Seschrock * issue. 9061544Seschrock */ 9071544Seschrock zfs_post_ok(vd->vdev_spa, vd); 9081544Seschrock 909789Sahrens return (0); 910789Sahrens } 911789Sahrens 912789Sahrens /* 9131986Seschrock * Called once the vdevs are all opened, this routine validates the label 9141986Seschrock * contents. This needs to be done before vdev_load() so that we don't 9151986Seschrock * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen() 9161986Seschrock * won't succeed if the device has been changed underneath. 9171986Seschrock * 9181986Seschrock * This function will only return failure if one of the vdevs indicates that it 9191986Seschrock * has since been destroyed or exported. This is only possible if 9201986Seschrock * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 9211986Seschrock * will be updated but the function will return 0. 9221986Seschrock */ 9231986Seschrock int 9241986Seschrock vdev_validate(vdev_t *vd) 9251986Seschrock { 9261986Seschrock spa_t *spa = vd->vdev_spa; 9271986Seschrock int c; 9281986Seschrock nvlist_t *label; 9291986Seschrock uint64_t guid; 9301986Seschrock uint64_t state; 9311986Seschrock 9321986Seschrock for (c = 0; c < vd->vdev_children; c++) 9331986Seschrock if (vdev_validate(vd->vdev_child[c]) != 0) 9341986Seschrock return (-1); 9351986Seschrock 9361986Seschrock if (vd->vdev_ops->vdev_op_leaf) { 9371986Seschrock 9381986Seschrock if ((label = vdev_label_read_config(vd)) == NULL) { 9391986Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 9401986Seschrock VDEV_AUX_BAD_LABEL); 9411986Seschrock return (0); 9421986Seschrock } 9431986Seschrock 9441986Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 9451986Seschrock &guid) != 0 || guid != spa_guid(spa)) { 9461986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 9471986Seschrock VDEV_AUX_CORRUPT_DATA); 9481986Seschrock nvlist_free(label); 9491986Seschrock return (0); 9501986Seschrock } 9511986Seschrock 9521986Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 9531986Seschrock &guid) != 0 || guid != vd->vdev_guid) { 9541986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 9551986Seschrock VDEV_AUX_CORRUPT_DATA); 9561986Seschrock nvlist_free(label); 9571986Seschrock return (0); 9581986Seschrock } 9591986Seschrock 9601986Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 9611986Seschrock &state) != 0) { 9621986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 9631986Seschrock VDEV_AUX_CORRUPT_DATA); 9641986Seschrock nvlist_free(label); 9651986Seschrock return (0); 9661986Seschrock } 9671986Seschrock 9681986Seschrock nvlist_free(label); 9691986Seschrock 9701986Seschrock if (spa->spa_load_state == SPA_LOAD_OPEN && 9711986Seschrock state != POOL_STATE_ACTIVE) 9721986Seschrock return (-1); 9731986Seschrock } 9741986Seschrock 9751986Seschrock /* 9761986Seschrock * If we were able to open and validate a vdev that was previously 9771986Seschrock * marked permanently unavailable, clear that state now. 9781986Seschrock */ 9791986Seschrock if (vd->vdev_not_present) 9801986Seschrock vd->vdev_not_present = 0; 9811986Seschrock 9821986Seschrock return (0); 9831986Seschrock } 9841986Seschrock 9851986Seschrock /* 986789Sahrens * Close a virtual device. 987789Sahrens */ 988789Sahrens void 989789Sahrens vdev_close(vdev_t *vd) 990789Sahrens { 991789Sahrens vd->vdev_ops->vdev_op_close(vd); 992789Sahrens 993789Sahrens if (vd->vdev_cache_active) { 994789Sahrens vdev_cache_fini(vd); 995789Sahrens vdev_queue_fini(vd); 996789Sahrens vd->vdev_cache_active = B_FALSE; 997789Sahrens } 998789Sahrens 9991986Seschrock /* 10001986Seschrock * We record the previous state before we close it, so that if we are 10011986Seschrock * doing a reopen(), we don't generate FMA ereports if we notice that 10021986Seschrock * it's still faulted. 10031986Seschrock */ 10041986Seschrock vd->vdev_prevstate = vd->vdev_state; 10051986Seschrock 1006789Sahrens if (vd->vdev_offline) 1007789Sahrens vd->vdev_state = VDEV_STATE_OFFLINE; 1008789Sahrens else 1009789Sahrens vd->vdev_state = VDEV_STATE_CLOSED; 10101544Seschrock vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1011789Sahrens } 1012789Sahrens 1013789Sahrens void 10141544Seschrock vdev_reopen(vdev_t *vd) 1015789Sahrens { 10161544Seschrock spa_t *spa = vd->vdev_spa; 1017789Sahrens 10181544Seschrock ASSERT(spa_config_held(spa, RW_WRITER)); 10191544Seschrock 1020789Sahrens vdev_close(vd); 1021789Sahrens (void) vdev_open(vd); 1022789Sahrens 1023789Sahrens /* 1024789Sahrens * Reassess root vdev's health. 1025789Sahrens */ 10261775Sbillm vdev_propagate_state(spa->spa_root_vdev); 1027789Sahrens } 1028789Sahrens 1029789Sahrens int 1030*2082Seschrock vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1031789Sahrens { 1032789Sahrens int error; 1033789Sahrens 1034789Sahrens /* 1035789Sahrens * Normally, partial opens (e.g. of a mirror) are allowed. 1036789Sahrens * For a create, however, we want to fail the request if 1037789Sahrens * there are any components we can't open. 1038789Sahrens */ 1039789Sahrens error = vdev_open(vd); 1040789Sahrens 1041789Sahrens if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1042789Sahrens vdev_close(vd); 1043789Sahrens return (error ? error : ENXIO); 1044789Sahrens } 1045789Sahrens 1046789Sahrens /* 1047789Sahrens * Recursively initialize all labels. 1048789Sahrens */ 1049*2082Seschrock if ((error = vdev_label_init(vd, txg, isreplacing)) != 0) { 1050789Sahrens vdev_close(vd); 1051789Sahrens return (error); 1052789Sahrens } 1053789Sahrens 1054789Sahrens return (0); 1055789Sahrens } 1056789Sahrens 1057789Sahrens /* 1058789Sahrens * The is the latter half of vdev_create(). It is distinct because it 1059789Sahrens * involves initiating transactions in order to do metaslab creation. 1060789Sahrens * For creation, we want to try to create all vdevs at once and then undo it 1061789Sahrens * if anything fails; this is much harder if we have pending transactions. 1062789Sahrens */ 10631585Sbonwick void 1064789Sahrens vdev_init(vdev_t *vd, uint64_t txg) 1065789Sahrens { 1066789Sahrens /* 1067789Sahrens * Aim for roughly 200 metaslabs per vdev. 1068789Sahrens */ 1069789Sahrens vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1070789Sahrens vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1071789Sahrens 1072789Sahrens /* 10731585Sbonwick * Initialize the vdev's metaslabs. This can't fail because 10741585Sbonwick * there's nothing to read when creating all new metaslabs. 1075789Sahrens */ 10761585Sbonwick VERIFY(vdev_metaslab_init(vd, txg) == 0); 1077789Sahrens } 1078789Sahrens 1079789Sahrens void 10801732Sbonwick vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1081789Sahrens { 10821732Sbonwick ASSERT(vd == vd->vdev_top); 10831732Sbonwick ASSERT(ISP2(flags)); 1084789Sahrens 10851732Sbonwick if (flags & VDD_METASLAB) 10861732Sbonwick (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 10871732Sbonwick 10881732Sbonwick if (flags & VDD_DTL) 10891732Sbonwick (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 10901732Sbonwick 10911732Sbonwick (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1092789Sahrens } 1093789Sahrens 1094789Sahrens void 1095789Sahrens vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1096789Sahrens { 1097789Sahrens mutex_enter(sm->sm_lock); 1098789Sahrens if (!space_map_contains(sm, txg, size)) 1099789Sahrens space_map_add(sm, txg, size); 1100789Sahrens mutex_exit(sm->sm_lock); 1101789Sahrens } 1102789Sahrens 1103789Sahrens int 1104789Sahrens vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1105789Sahrens { 1106789Sahrens int dirty; 1107789Sahrens 1108789Sahrens /* 1109789Sahrens * Quick test without the lock -- covers the common case that 1110789Sahrens * there are no dirty time segments. 1111789Sahrens */ 1112789Sahrens if (sm->sm_space == 0) 1113789Sahrens return (0); 1114789Sahrens 1115789Sahrens mutex_enter(sm->sm_lock); 1116789Sahrens dirty = space_map_contains(sm, txg, size); 1117789Sahrens mutex_exit(sm->sm_lock); 1118789Sahrens 1119789Sahrens return (dirty); 1120789Sahrens } 1121789Sahrens 1122789Sahrens /* 1123789Sahrens * Reassess DTLs after a config change or scrub completion. 1124789Sahrens */ 1125789Sahrens void 1126789Sahrens vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1127789Sahrens { 11281544Seschrock spa_t *spa = vd->vdev_spa; 1129789Sahrens int c; 1130789Sahrens 11311544Seschrock ASSERT(spa_config_held(spa, RW_WRITER)); 1132789Sahrens 1133789Sahrens if (vd->vdev_children == 0) { 1134789Sahrens mutex_enter(&vd->vdev_dtl_lock); 1135789Sahrens /* 1136789Sahrens * We're successfully scrubbed everything up to scrub_txg. 1137789Sahrens * Therefore, excise all old DTLs up to that point, then 1138789Sahrens * fold in the DTLs for everything we couldn't scrub. 1139789Sahrens */ 1140789Sahrens if (scrub_txg != 0) { 1141789Sahrens space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1142789Sahrens space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1143789Sahrens } 1144789Sahrens if (scrub_done) 1145789Sahrens space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1146789Sahrens mutex_exit(&vd->vdev_dtl_lock); 11471732Sbonwick if (txg != 0) 11481732Sbonwick vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1149789Sahrens return; 1150789Sahrens } 1151789Sahrens 11521544Seschrock /* 11531544Seschrock * Make sure the DTLs are always correct under the scrub lock. 11541544Seschrock */ 11551544Seschrock if (vd == spa->spa_root_vdev) 11561544Seschrock mutex_enter(&spa->spa_scrub_lock); 11571544Seschrock 1158789Sahrens mutex_enter(&vd->vdev_dtl_lock); 1159789Sahrens space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1160789Sahrens space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1161789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1162789Sahrens 1163789Sahrens for (c = 0; c < vd->vdev_children; c++) { 1164789Sahrens vdev_t *cvd = vd->vdev_child[c]; 1165789Sahrens vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1166789Sahrens mutex_enter(&vd->vdev_dtl_lock); 1167789Sahrens space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1168789Sahrens space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1169789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1170789Sahrens } 11711544Seschrock 11721544Seschrock if (vd == spa->spa_root_vdev) 11731544Seschrock mutex_exit(&spa->spa_scrub_lock); 1174789Sahrens } 1175789Sahrens 1176789Sahrens static int 1177789Sahrens vdev_dtl_load(vdev_t *vd) 1178789Sahrens { 1179789Sahrens spa_t *spa = vd->vdev_spa; 1180789Sahrens space_map_obj_t *smo = &vd->vdev_dtl; 11811732Sbonwick objset_t *mos = spa->spa_meta_objset; 1182789Sahrens dmu_buf_t *db; 1183789Sahrens int error; 1184789Sahrens 1185789Sahrens ASSERT(vd->vdev_children == 0); 1186789Sahrens 1187789Sahrens if (smo->smo_object == 0) 1188789Sahrens return (0); 1189789Sahrens 11901732Sbonwick if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 11911544Seschrock return (error); 11921732Sbonwick 1193789Sahrens ASSERT3U(db->db_size, ==, sizeof (*smo)); 1194789Sahrens bcopy(db->db_data, smo, db->db_size); 11951544Seschrock dmu_buf_rele(db, FTAG); 1196789Sahrens 1197789Sahrens mutex_enter(&vd->vdev_dtl_lock); 11981732Sbonwick error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1199789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1200789Sahrens 1201789Sahrens return (error); 1202789Sahrens } 1203789Sahrens 1204789Sahrens void 1205789Sahrens vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1206789Sahrens { 1207789Sahrens spa_t *spa = vd->vdev_spa; 1208789Sahrens space_map_obj_t *smo = &vd->vdev_dtl; 1209789Sahrens space_map_t *sm = &vd->vdev_dtl_map; 12101732Sbonwick objset_t *mos = spa->spa_meta_objset; 1211789Sahrens space_map_t smsync; 1212789Sahrens kmutex_t smlock; 1213789Sahrens dmu_buf_t *db; 1214789Sahrens dmu_tx_t *tx; 1215789Sahrens 1216789Sahrens dprintf("%s in txg %llu pass %d\n", 1217789Sahrens vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1218789Sahrens 1219789Sahrens tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1220789Sahrens 1221789Sahrens if (vd->vdev_detached) { 1222789Sahrens if (smo->smo_object != 0) { 12231732Sbonwick int err = dmu_object_free(mos, smo->smo_object, tx); 1224789Sahrens ASSERT3U(err, ==, 0); 1225789Sahrens smo->smo_object = 0; 1226789Sahrens } 1227789Sahrens dmu_tx_commit(tx); 12281732Sbonwick dprintf("detach %s committed in txg %llu\n", 12291732Sbonwick vdev_description(vd), txg); 1230789Sahrens return; 1231789Sahrens } 1232789Sahrens 1233789Sahrens if (smo->smo_object == 0) { 1234789Sahrens ASSERT(smo->smo_objsize == 0); 1235789Sahrens ASSERT(smo->smo_alloc == 0); 12361732Sbonwick smo->smo_object = dmu_object_alloc(mos, 1237789Sahrens DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1238789Sahrens DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1239789Sahrens ASSERT(smo->smo_object != 0); 1240789Sahrens vdev_config_dirty(vd->vdev_top); 1241789Sahrens } 1242789Sahrens 1243789Sahrens mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1244789Sahrens 1245789Sahrens space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1246789Sahrens &smlock); 1247789Sahrens 1248789Sahrens mutex_enter(&smlock); 1249789Sahrens 1250789Sahrens mutex_enter(&vd->vdev_dtl_lock); 12511732Sbonwick space_map_walk(sm, space_map_add, &smsync); 1252789Sahrens mutex_exit(&vd->vdev_dtl_lock); 1253789Sahrens 12541732Sbonwick space_map_truncate(smo, mos, tx); 12551732Sbonwick space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1256789Sahrens 1257789Sahrens space_map_destroy(&smsync); 1258789Sahrens 1259789Sahrens mutex_exit(&smlock); 1260789Sahrens mutex_destroy(&smlock); 1261789Sahrens 12621732Sbonwick VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1263789Sahrens dmu_buf_will_dirty(db, tx); 1264789Sahrens ASSERT3U(db->db_size, ==, sizeof (*smo)); 1265789Sahrens bcopy(smo, db->db_data, db->db_size); 12661544Seschrock dmu_buf_rele(db, FTAG); 1267789Sahrens 1268789Sahrens dmu_tx_commit(tx); 1269789Sahrens } 1270789Sahrens 12711986Seschrock void 12721544Seschrock vdev_load(vdev_t *vd) 1273789Sahrens { 12741986Seschrock int c; 1275789Sahrens 1276789Sahrens /* 1277789Sahrens * Recursively load all children. 1278789Sahrens */ 1279789Sahrens for (c = 0; c < vd->vdev_children; c++) 12801986Seschrock vdev_load(vd->vdev_child[c]); 1281789Sahrens 1282789Sahrens /* 12831585Sbonwick * If this is a top-level vdev, initialize its metaslabs. 1284789Sahrens */ 12851986Seschrock if (vd == vd->vdev_top && 12861986Seschrock (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 12871986Seschrock vdev_metaslab_init(vd, 0) != 0)) 12881986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 12891986Seschrock VDEV_AUX_CORRUPT_DATA); 1290789Sahrens 1291789Sahrens /* 1292789Sahrens * If this is a leaf vdev, load its DTL. 1293789Sahrens */ 12941986Seschrock if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 12951986Seschrock vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 12961986Seschrock VDEV_AUX_CORRUPT_DATA); 1297789Sahrens } 1298789Sahrens 1299*2082Seschrock /* 1300*2082Seschrock * This special case of vdev_spare() is used for hot spares. It's sole purpose 1301*2082Seschrock * it to set the vdev state for the associated vdev. To do this, we make sure 1302*2082Seschrock * that we can open the underlying device, then try to read the label, and make 1303*2082Seschrock * sure that the label is sane and that it hasn't been repurposed to another 1304*2082Seschrock * pool. 1305*2082Seschrock */ 1306*2082Seschrock int 1307*2082Seschrock vdev_validate_spare(vdev_t *vd) 1308*2082Seschrock { 1309*2082Seschrock nvlist_t *label; 1310*2082Seschrock uint64_t guid, version; 1311*2082Seschrock uint64_t state; 1312*2082Seschrock 1313*2082Seschrock if ((label = vdev_label_read_config(vd)) == NULL) { 1314*2082Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1315*2082Seschrock VDEV_AUX_CORRUPT_DATA); 1316*2082Seschrock return (-1); 1317*2082Seschrock } 1318*2082Seschrock 1319*2082Seschrock if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1320*2082Seschrock version > ZFS_VERSION || 1321*2082Seschrock nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1322*2082Seschrock guid != vd->vdev_guid || 1323*2082Seschrock nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1324*2082Seschrock vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1325*2082Seschrock VDEV_AUX_CORRUPT_DATA); 1326*2082Seschrock nvlist_free(label); 1327*2082Seschrock return (-1); 1328*2082Seschrock } 1329*2082Seschrock 1330*2082Seschrock /* 1331*2082Seschrock * We don't actually check the pool state here. If it's in fact in 1332*2082Seschrock * use by another pool, we update this fact on the fly when requested. 1333*2082Seschrock */ 1334*2082Seschrock nvlist_free(label); 1335*2082Seschrock return (0); 1336*2082Seschrock } 1337*2082Seschrock 1338789Sahrens void 1339789Sahrens vdev_sync_done(vdev_t *vd, uint64_t txg) 1340789Sahrens { 1341789Sahrens metaslab_t *msp; 1342789Sahrens 1343789Sahrens dprintf("%s txg %llu\n", vdev_description(vd), txg); 1344789Sahrens 1345789Sahrens while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1346789Sahrens metaslab_sync_done(msp, txg); 1347789Sahrens } 1348789Sahrens 1349789Sahrens void 1350789Sahrens vdev_sync(vdev_t *vd, uint64_t txg) 1351789Sahrens { 1352789Sahrens spa_t *spa = vd->vdev_spa; 1353789Sahrens vdev_t *lvd; 1354789Sahrens metaslab_t *msp; 13551732Sbonwick dmu_tx_t *tx; 1356789Sahrens 1357789Sahrens dprintf("%s txg %llu pass %d\n", 1358789Sahrens vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1359789Sahrens 13601732Sbonwick if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 13611732Sbonwick ASSERT(vd == vd->vdev_top); 13621732Sbonwick tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 13631732Sbonwick vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 13641732Sbonwick DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 13651732Sbonwick ASSERT(vd->vdev_ms_array != 0); 13661732Sbonwick vdev_config_dirty(vd); 13671732Sbonwick dmu_tx_commit(tx); 13681732Sbonwick } 1369789Sahrens 13701732Sbonwick while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1371789Sahrens metaslab_sync(msp, txg); 13721732Sbonwick (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 13731732Sbonwick } 1374789Sahrens 1375789Sahrens while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1376789Sahrens vdev_dtl_sync(lvd, txg); 1377789Sahrens 1378789Sahrens (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1379789Sahrens } 1380789Sahrens 1381789Sahrens uint64_t 1382789Sahrens vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1383789Sahrens { 1384789Sahrens return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1385789Sahrens } 1386789Sahrens 1387789Sahrens void 1388789Sahrens vdev_io_start(zio_t *zio) 1389789Sahrens { 1390789Sahrens zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1391789Sahrens } 1392789Sahrens 1393789Sahrens void 1394789Sahrens vdev_io_done(zio_t *zio) 1395789Sahrens { 1396789Sahrens zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1397789Sahrens } 1398789Sahrens 1399789Sahrens const char * 1400789Sahrens vdev_description(vdev_t *vd) 1401789Sahrens { 1402789Sahrens if (vd == NULL || vd->vdev_ops == NULL) 1403789Sahrens return ("<unknown>"); 1404789Sahrens 1405789Sahrens if (vd->vdev_path != NULL) 1406789Sahrens return (vd->vdev_path); 1407789Sahrens 1408789Sahrens if (vd->vdev_parent == NULL) 1409789Sahrens return (spa_name(vd->vdev_spa)); 1410789Sahrens 1411789Sahrens return (vd->vdev_ops->vdev_op_type); 1412789Sahrens } 1413789Sahrens 1414789Sahrens int 14151544Seschrock vdev_online(spa_t *spa, uint64_t guid) 1416789Sahrens { 14171485Slling vdev_t *rvd, *vd; 14181485Slling uint64_t txg; 1419789Sahrens 14201485Slling txg = spa_vdev_enter(spa); 14211485Slling 14221485Slling rvd = spa->spa_root_vdev; 14231585Sbonwick 14241544Seschrock if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 14251485Slling return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1426789Sahrens 14271585Sbonwick if (!vd->vdev_ops->vdev_op_leaf) 14281585Sbonwick return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 14291585Sbonwick 1430789Sahrens dprintf("ONLINE: %s\n", vdev_description(vd)); 1431789Sahrens 1432789Sahrens vd->vdev_offline = B_FALSE; 14331485Slling vd->vdev_tmpoffline = B_FALSE; 14341544Seschrock vdev_reopen(vd->vdev_top); 1435789Sahrens 14361485Slling vdev_config_dirty(vd->vdev_top); 14371485Slling 14381485Slling (void) spa_vdev_exit(spa, NULL, txg, 0); 1439789Sahrens 1440789Sahrens VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1441789Sahrens 1442789Sahrens return (0); 1443789Sahrens } 1444789Sahrens 1445789Sahrens int 14461544Seschrock vdev_offline(spa_t *spa, uint64_t guid, int istmp) 1447789Sahrens { 14481485Slling vdev_t *rvd, *vd; 14491485Slling uint64_t txg; 1450789Sahrens 14511485Slling txg = spa_vdev_enter(spa); 1452789Sahrens 14531485Slling rvd = spa->spa_root_vdev; 14541585Sbonwick 14551544Seschrock if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 14561485Slling return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1457789Sahrens 14581585Sbonwick if (!vd->vdev_ops->vdev_op_leaf) 14591585Sbonwick return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 14601585Sbonwick 1461789Sahrens dprintf("OFFLINE: %s\n", vdev_description(vd)); 1462789Sahrens 1463789Sahrens /* 14641732Sbonwick * If the device isn't already offline, try to offline it. 1465789Sahrens */ 14661732Sbonwick if (!vd->vdev_offline) { 14671732Sbonwick /* 14681732Sbonwick * If this device's top-level vdev has a non-empty DTL, 14691732Sbonwick * don't allow the device to be offlined. 14701732Sbonwick * 14711732Sbonwick * XXX -- make this more precise by allowing the offline 14721732Sbonwick * as long as the remaining devices don't have any DTL holes. 14731732Sbonwick */ 14741732Sbonwick if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 14751732Sbonwick return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1476789Sahrens 14771732Sbonwick /* 14781732Sbonwick * Offline this device and reopen its top-level vdev. 14791732Sbonwick * If this action results in the top-level vdev becoming 14801732Sbonwick * unusable, undo it and fail the request. 14811732Sbonwick */ 14821732Sbonwick vd->vdev_offline = B_TRUE; 14831544Seschrock vdev_reopen(vd->vdev_top); 14841732Sbonwick if (vdev_is_dead(vd->vdev_top)) { 14851732Sbonwick vd->vdev_offline = B_FALSE; 14861732Sbonwick vdev_reopen(vd->vdev_top); 14871732Sbonwick return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 14881732Sbonwick } 1489789Sahrens } 1490789Sahrens 14911485Slling vd->vdev_tmpoffline = istmp; 14921732Sbonwick 14931732Sbonwick vdev_config_dirty(vd->vdev_top); 14941485Slling 14951485Slling return (spa_vdev_exit(spa, NULL, txg, 0)); 1496789Sahrens } 1497789Sahrens 14981544Seschrock /* 14991544Seschrock * Clear the error counts associated with this vdev. Unlike vdev_online() and 15001544Seschrock * vdev_offline(), we assume the spa config is locked. We also clear all 15011544Seschrock * children. If 'vd' is NULL, then the user wants to clear all vdevs. 15021544Seschrock */ 15031544Seschrock void 15041544Seschrock vdev_clear(spa_t *spa, vdev_t *vd) 1505789Sahrens { 15061544Seschrock int c; 1507789Sahrens 15081544Seschrock if (vd == NULL) 15091544Seschrock vd = spa->spa_root_vdev; 1510789Sahrens 15111544Seschrock vd->vdev_stat.vs_read_errors = 0; 15121544Seschrock vd->vdev_stat.vs_write_errors = 0; 15131544Seschrock vd->vdev_stat.vs_checksum_errors = 0; 1514789Sahrens 15151544Seschrock for (c = 0; c < vd->vdev_children; c++) 15161544Seschrock vdev_clear(spa, vd->vdev_child[c]); 1517789Sahrens } 1518789Sahrens 1519789Sahrens int 1520789Sahrens vdev_is_dead(vdev_t *vd) 1521789Sahrens { 1522789Sahrens return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1523789Sahrens } 1524789Sahrens 1525789Sahrens int 1526789Sahrens vdev_error_inject(vdev_t *vd, zio_t *zio) 1527789Sahrens { 1528789Sahrens int error = 0; 1529789Sahrens 1530789Sahrens if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1531789Sahrens return (0); 1532789Sahrens 1533789Sahrens if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1534789Sahrens return (0); 1535789Sahrens 1536789Sahrens switch (vd->vdev_fault_mode) { 1537789Sahrens case VDEV_FAULT_RANDOM: 1538789Sahrens if (spa_get_random(vd->vdev_fault_arg) == 0) 1539789Sahrens error = EIO; 1540789Sahrens break; 1541789Sahrens 1542789Sahrens case VDEV_FAULT_COUNT: 1543789Sahrens if ((int64_t)--vd->vdev_fault_arg <= 0) 1544789Sahrens vd->vdev_fault_mode = VDEV_FAULT_NONE; 1545789Sahrens error = EIO; 1546789Sahrens break; 1547789Sahrens } 1548789Sahrens 1549789Sahrens if (error != 0) { 1550789Sahrens dprintf("returning %d for type %d on %s state %d offset %llx\n", 1551789Sahrens error, zio->io_type, vdev_description(vd), 1552789Sahrens vd->vdev_state, zio->io_offset); 1553789Sahrens } 1554789Sahrens 1555789Sahrens return (error); 1556789Sahrens } 1557789Sahrens 1558789Sahrens /* 1559789Sahrens * Get statistics for the given vdev. 1560789Sahrens */ 1561789Sahrens void 1562789Sahrens vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1563789Sahrens { 1564789Sahrens vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1565789Sahrens int c, t; 1566789Sahrens 1567789Sahrens mutex_enter(&vd->vdev_stat_lock); 1568789Sahrens bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1569789Sahrens vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1570789Sahrens vs->vs_state = vd->vdev_state; 15711175Slling vs->vs_rsize = vdev_get_rsize(vd); 1572789Sahrens mutex_exit(&vd->vdev_stat_lock); 1573789Sahrens 1574789Sahrens /* 1575789Sahrens * If we're getting stats on the root vdev, aggregate the I/O counts 1576789Sahrens * over all top-level vdevs (i.e. the direct children of the root). 1577789Sahrens */ 1578789Sahrens if (vd == rvd) { 1579789Sahrens for (c = 0; c < rvd->vdev_children; c++) { 1580789Sahrens vdev_t *cvd = rvd->vdev_child[c]; 1581789Sahrens vdev_stat_t *cvs = &cvd->vdev_stat; 1582789Sahrens 1583789Sahrens mutex_enter(&vd->vdev_stat_lock); 1584789Sahrens for (t = 0; t < ZIO_TYPES; t++) { 1585789Sahrens vs->vs_ops[t] += cvs->vs_ops[t]; 1586789Sahrens vs->vs_bytes[t] += cvs->vs_bytes[t]; 1587789Sahrens } 1588789Sahrens vs->vs_read_errors += cvs->vs_read_errors; 1589789Sahrens vs->vs_write_errors += cvs->vs_write_errors; 1590789Sahrens vs->vs_checksum_errors += cvs->vs_checksum_errors; 1591789Sahrens vs->vs_scrub_examined += cvs->vs_scrub_examined; 1592789Sahrens vs->vs_scrub_errors += cvs->vs_scrub_errors; 1593789Sahrens mutex_exit(&vd->vdev_stat_lock); 1594789Sahrens } 1595789Sahrens } 1596789Sahrens } 1597789Sahrens 1598789Sahrens void 1599789Sahrens vdev_stat_update(zio_t *zio) 1600789Sahrens { 1601789Sahrens vdev_t *vd = zio->io_vd; 1602789Sahrens vdev_t *pvd; 1603789Sahrens uint64_t txg = zio->io_txg; 1604789Sahrens vdev_stat_t *vs = &vd->vdev_stat; 1605789Sahrens zio_type_t type = zio->io_type; 1606789Sahrens int flags = zio->io_flags; 1607789Sahrens 1608789Sahrens if (zio->io_error == 0) { 1609789Sahrens if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1610789Sahrens mutex_enter(&vd->vdev_stat_lock); 1611789Sahrens vs->vs_ops[type]++; 1612789Sahrens vs->vs_bytes[type] += zio->io_size; 1613789Sahrens mutex_exit(&vd->vdev_stat_lock); 1614789Sahrens } 1615789Sahrens if ((flags & ZIO_FLAG_IO_REPAIR) && 1616789Sahrens zio->io_delegate_list == NULL) { 1617789Sahrens mutex_enter(&vd->vdev_stat_lock); 16181807Sbonwick if (flags & ZIO_FLAG_SCRUB_THREAD) 1619789Sahrens vs->vs_scrub_repaired += zio->io_size; 1620789Sahrens else 1621789Sahrens vs->vs_self_healed += zio->io_size; 1622789Sahrens mutex_exit(&vd->vdev_stat_lock); 1623789Sahrens } 1624789Sahrens return; 1625789Sahrens } 1626789Sahrens 1627789Sahrens if (flags & ZIO_FLAG_SPECULATIVE) 1628789Sahrens return; 1629789Sahrens 1630789Sahrens if (!vdev_is_dead(vd)) { 1631789Sahrens mutex_enter(&vd->vdev_stat_lock); 1632789Sahrens if (type == ZIO_TYPE_READ) { 1633789Sahrens if (zio->io_error == ECKSUM) 1634789Sahrens vs->vs_checksum_errors++; 1635789Sahrens else 1636789Sahrens vs->vs_read_errors++; 1637789Sahrens } 1638789Sahrens if (type == ZIO_TYPE_WRITE) 1639789Sahrens vs->vs_write_errors++; 1640789Sahrens mutex_exit(&vd->vdev_stat_lock); 1641789Sahrens } 1642789Sahrens 1643789Sahrens if (type == ZIO_TYPE_WRITE) { 1644789Sahrens if (txg == 0 || vd->vdev_children != 0) 1645789Sahrens return; 16461807Sbonwick if (flags & ZIO_FLAG_SCRUB_THREAD) { 1647789Sahrens ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1648789Sahrens for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1649789Sahrens vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1650789Sahrens } 1651789Sahrens if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1652789Sahrens if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1653789Sahrens return; 16541732Sbonwick vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1655789Sahrens for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1656789Sahrens vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1657789Sahrens } 1658789Sahrens } 1659789Sahrens } 1660789Sahrens 1661789Sahrens void 1662789Sahrens vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1663789Sahrens { 1664789Sahrens int c; 1665789Sahrens vdev_stat_t *vs = &vd->vdev_stat; 1666789Sahrens 1667789Sahrens for (c = 0; c < vd->vdev_children; c++) 1668789Sahrens vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1669789Sahrens 1670789Sahrens mutex_enter(&vd->vdev_stat_lock); 1671789Sahrens 1672789Sahrens if (type == POOL_SCRUB_NONE) { 1673789Sahrens /* 1674789Sahrens * Update completion and end time. Leave everything else alone 1675789Sahrens * so we can report what happened during the previous scrub. 1676789Sahrens */ 1677789Sahrens vs->vs_scrub_complete = complete; 1678789Sahrens vs->vs_scrub_end = gethrestime_sec(); 1679789Sahrens } else { 1680789Sahrens vs->vs_scrub_type = type; 1681789Sahrens vs->vs_scrub_complete = 0; 1682789Sahrens vs->vs_scrub_examined = 0; 1683789Sahrens vs->vs_scrub_repaired = 0; 1684789Sahrens vs->vs_scrub_errors = 0; 1685789Sahrens vs->vs_scrub_start = gethrestime_sec(); 1686789Sahrens vs->vs_scrub_end = 0; 1687789Sahrens } 1688789Sahrens 1689789Sahrens mutex_exit(&vd->vdev_stat_lock); 1690789Sahrens } 1691789Sahrens 1692789Sahrens /* 1693789Sahrens * Update the in-core space usage stats for this vdev and the root vdev. 1694789Sahrens */ 1695789Sahrens void 1696*2082Seschrock vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta) 1697789Sahrens { 1698789Sahrens ASSERT(vd == vd->vdev_top); 1699*2082Seschrock int64_t dspace_delta = space_delta; 1700789Sahrens 1701789Sahrens do { 1702*2082Seschrock if (vd->vdev_ms_count) { 1703*2082Seschrock /* 1704*2082Seschrock * If this is a top-level vdev, apply the 1705*2082Seschrock * inverse of its psize-to-asize (ie. RAID-Z) 1706*2082Seschrock * space-expansion factor. We must calculate 1707*2082Seschrock * this here and not at the root vdev because 1708*2082Seschrock * the root vdev's psize-to-asize is simply the 1709*2082Seschrock * max of its childrens', thus not accurate 1710*2082Seschrock * enough for us. 1711*2082Seschrock */ 1712*2082Seschrock ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 1713*2082Seschrock dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 1714*2082Seschrock vd->vdev_deflate_ratio; 1715*2082Seschrock } 1716*2082Seschrock 1717789Sahrens mutex_enter(&vd->vdev_stat_lock); 1718789Sahrens vd->vdev_stat.vs_space += space_delta; 1719789Sahrens vd->vdev_stat.vs_alloc += alloc_delta; 1720*2082Seschrock vd->vdev_stat.vs_dspace += dspace_delta; 1721789Sahrens mutex_exit(&vd->vdev_stat_lock); 1722789Sahrens } while ((vd = vd->vdev_parent) != NULL); 1723789Sahrens } 1724789Sahrens 1725789Sahrens /* 1726789Sahrens * Various knobs to tune a vdev. 1727789Sahrens */ 1728789Sahrens static vdev_knob_t vdev_knob[] = { 1729789Sahrens { 1730789Sahrens "cache_size", 1731789Sahrens "size of the read-ahead cache", 1732789Sahrens 0, 1733789Sahrens 1ULL << 30, 1734789Sahrens 10ULL << 20, 1735789Sahrens offsetof(struct vdev, vdev_cache.vc_size) 1736789Sahrens }, 1737789Sahrens { 1738789Sahrens "cache_bshift", 1739789Sahrens "log2 of cache blocksize", 1740789Sahrens SPA_MINBLOCKSHIFT, 1741789Sahrens SPA_MAXBLOCKSHIFT, 1742789Sahrens 16, 1743789Sahrens offsetof(struct vdev, vdev_cache.vc_bshift) 1744789Sahrens }, 1745789Sahrens { 1746789Sahrens "cache_max", 1747789Sahrens "largest block size to cache", 1748789Sahrens 0, 1749789Sahrens SPA_MAXBLOCKSIZE, 1750789Sahrens 1ULL << 14, 1751789Sahrens offsetof(struct vdev, vdev_cache.vc_max) 1752789Sahrens }, 1753789Sahrens { 1754789Sahrens "min_pending", 1755789Sahrens "minimum pending I/Os to the disk", 1756789Sahrens 1, 1757789Sahrens 10000, 1758789Sahrens 2, 1759789Sahrens offsetof(struct vdev, vdev_queue.vq_min_pending) 1760789Sahrens }, 1761789Sahrens { 1762789Sahrens "max_pending", 1763789Sahrens "maximum pending I/Os to the disk", 1764789Sahrens 1, 1765789Sahrens 10000, 1766789Sahrens 35, 1767789Sahrens offsetof(struct vdev, vdev_queue.vq_max_pending) 1768789Sahrens }, 1769789Sahrens { 17701544Seschrock "scrub_limit", 17711544Seschrock "maximum scrub/resilver I/O queue", 17721544Seschrock 0, 17731544Seschrock 10000, 17741544Seschrock 70, 17751544Seschrock offsetof(struct vdev, vdev_queue.vq_scrub_limit) 17761544Seschrock }, 17771544Seschrock { 1778789Sahrens "agg_limit", 1779789Sahrens "maximum size of aggregated I/Os", 1780789Sahrens 0, 1781789Sahrens SPA_MAXBLOCKSIZE, 1782789Sahrens SPA_MAXBLOCKSIZE, 1783789Sahrens offsetof(struct vdev, vdev_queue.vq_agg_limit) 1784789Sahrens }, 1785789Sahrens { 1786789Sahrens "time_shift", 1787789Sahrens "deadline = pri + (lbolt >> time_shift)", 1788789Sahrens 0, 1789789Sahrens 63, 1790789Sahrens 4, 1791789Sahrens offsetof(struct vdev, vdev_queue.vq_time_shift) 1792789Sahrens }, 1793789Sahrens { 1794789Sahrens "ramp_rate", 1795789Sahrens "exponential I/O issue ramp-up rate", 1796789Sahrens 1, 1797789Sahrens 10000, 1798789Sahrens 2, 1799789Sahrens offsetof(struct vdev, vdev_queue.vq_ramp_rate) 1800789Sahrens }, 1801789Sahrens }; 1802789Sahrens 1803789Sahrens vdev_knob_t * 1804789Sahrens vdev_knob_next(vdev_knob_t *vk) 1805789Sahrens { 1806789Sahrens if (vk == NULL) 1807789Sahrens return (vdev_knob); 1808789Sahrens 1809789Sahrens if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t)) 1810789Sahrens return (NULL); 1811789Sahrens 1812789Sahrens return (vk); 1813789Sahrens } 1814789Sahrens 1815789Sahrens /* 1816789Sahrens * Mark a top-level vdev's config as dirty, placing it on the dirty list 1817789Sahrens * so that it will be written out next time the vdev configuration is synced. 1818789Sahrens * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1819789Sahrens */ 1820789Sahrens void 1821789Sahrens vdev_config_dirty(vdev_t *vd) 1822789Sahrens { 1823789Sahrens spa_t *spa = vd->vdev_spa; 1824789Sahrens vdev_t *rvd = spa->spa_root_vdev; 1825789Sahrens int c; 1826789Sahrens 18271601Sbonwick /* 18281601Sbonwick * The dirty list is protected by the config lock. The caller must 18291601Sbonwick * either hold the config lock as writer, or must be the sync thread 18301601Sbonwick * (which holds the lock as reader). There's only one sync thread, 18311601Sbonwick * so this is sufficient to ensure mutual exclusion. 18321601Sbonwick */ 18331601Sbonwick ASSERT(spa_config_held(spa, RW_WRITER) || 18341601Sbonwick dsl_pool_sync_context(spa_get_dsl(spa))); 18351601Sbonwick 1836789Sahrens if (vd == rvd) { 1837789Sahrens for (c = 0; c < rvd->vdev_children; c++) 1838789Sahrens vdev_config_dirty(rvd->vdev_child[c]); 1839789Sahrens } else { 1840789Sahrens ASSERT(vd == vd->vdev_top); 1841789Sahrens 18421732Sbonwick if (!list_link_active(&vd->vdev_dirty_node)) 1843789Sahrens list_insert_head(&spa->spa_dirty_list, vd); 1844789Sahrens } 1845789Sahrens } 1846789Sahrens 1847789Sahrens void 1848789Sahrens vdev_config_clean(vdev_t *vd) 1849789Sahrens { 18501601Sbonwick spa_t *spa = vd->vdev_spa; 18511601Sbonwick 18521601Sbonwick ASSERT(spa_config_held(spa, RW_WRITER) || 18531601Sbonwick dsl_pool_sync_context(spa_get_dsl(spa))); 18541601Sbonwick 18551732Sbonwick ASSERT(list_link_active(&vd->vdev_dirty_node)); 18561601Sbonwick list_remove(&spa->spa_dirty_list, vd); 1857789Sahrens } 1858789Sahrens 18591775Sbillm void 18601775Sbillm vdev_propagate_state(vdev_t *vd) 18611775Sbillm { 18621775Sbillm vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 18631775Sbillm int degraded = 0, faulted = 0; 18641775Sbillm int corrupted = 0; 18651775Sbillm int c; 18661775Sbillm vdev_t *child; 18671775Sbillm 18681775Sbillm for (c = 0; c < vd->vdev_children; c++) { 18691775Sbillm child = vd->vdev_child[c]; 18701775Sbillm if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 18711775Sbillm faulted++; 18721775Sbillm else if (child->vdev_state == VDEV_STATE_DEGRADED) 18731775Sbillm degraded++; 18741775Sbillm 18751775Sbillm if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 18761775Sbillm corrupted++; 18771775Sbillm } 18781775Sbillm 18791775Sbillm vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 18801775Sbillm 18811775Sbillm /* 18821775Sbillm * Root special: if there is a toplevel vdev that cannot be 18831775Sbillm * opened due to corrupted metadata, then propagate the root 18841775Sbillm * vdev's aux state as 'corrupt' rather than 'insufficient 18851775Sbillm * replicas'. 18861775Sbillm */ 18871775Sbillm if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) 18881775Sbillm vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 18891775Sbillm VDEV_AUX_CORRUPT_DATA); 18901775Sbillm } 18911775Sbillm 1892789Sahrens /* 18931544Seschrock * Set a vdev's state. If this is during an open, we don't update the parent 18941544Seschrock * state, because we're in the process of opening children depth-first. 18951544Seschrock * Otherwise, we propagate the change to the parent. 18961544Seschrock * 18971544Seschrock * If this routine places a device in a faulted state, an appropriate ereport is 18981544Seschrock * generated. 1899789Sahrens */ 1900789Sahrens void 19011544Seschrock vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 1902789Sahrens { 19031986Seschrock uint64_t save_state; 19041544Seschrock 19051544Seschrock if (state == vd->vdev_state) { 19061544Seschrock vd->vdev_stat.vs_aux = aux; 1907789Sahrens return; 19081544Seschrock } 19091544Seschrock 19101986Seschrock save_state = vd->vdev_state; 1911789Sahrens 1912789Sahrens vd->vdev_state = state; 1913789Sahrens vd->vdev_stat.vs_aux = aux; 1914789Sahrens 19151544Seschrock if (state == VDEV_STATE_CANT_OPEN) { 19161544Seschrock /* 19171544Seschrock * If we fail to open a vdev during an import, we mark it as 19181544Seschrock * "not available", which signifies that it was never there to 19191544Seschrock * begin with. Failure to open such a device is not considered 19201544Seschrock * an error. 19211544Seschrock */ 19221986Seschrock if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 19231986Seschrock vd->vdev_ops->vdev_op_leaf) 19241986Seschrock vd->vdev_not_present = 1; 19251986Seschrock 19261986Seschrock /* 19271986Seschrock * Post the appropriate ereport. If the 'prevstate' field is 19281986Seschrock * set to something other than VDEV_STATE_UNKNOWN, it indicates 19291986Seschrock * that this is part of a vdev_reopen(). In this case, we don't 19301986Seschrock * want to post the ereport if the device was already in the 19311986Seschrock * CANT_OPEN state beforehand. 19321986Seschrock */ 19331986Seschrock if (vd->vdev_prevstate != state && !vd->vdev_not_present && 19341544Seschrock vd != vd->vdev_spa->spa_root_vdev) { 19351544Seschrock const char *class; 19361544Seschrock 19371544Seschrock switch (aux) { 19381544Seschrock case VDEV_AUX_OPEN_FAILED: 19391544Seschrock class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 19401544Seschrock break; 19411544Seschrock case VDEV_AUX_CORRUPT_DATA: 19421544Seschrock class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 19431544Seschrock break; 19441544Seschrock case VDEV_AUX_NO_REPLICAS: 19451544Seschrock class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 19461544Seschrock break; 19471544Seschrock case VDEV_AUX_BAD_GUID_SUM: 19481544Seschrock class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 19491544Seschrock break; 19501544Seschrock case VDEV_AUX_TOO_SMALL: 19511544Seschrock class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 19521544Seschrock break; 19531544Seschrock case VDEV_AUX_BAD_LABEL: 19541544Seschrock class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 19551544Seschrock break; 19561544Seschrock default: 19571544Seschrock class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 19581544Seschrock } 19591544Seschrock 19601544Seschrock zfs_ereport_post(class, vd->vdev_spa, 19611986Seschrock vd, NULL, save_state, 0); 19621544Seschrock } 19631544Seschrock } 19641544Seschrock 19651544Seschrock if (isopen) 19661544Seschrock return; 19671544Seschrock 19681775Sbillm if (vd->vdev_parent != NULL) 19691775Sbillm vdev_propagate_state(vd->vdev_parent); 1970789Sahrens } 1971