xref: /onnv-gate/usr/src/lib/libast/common/uwin/log1p.c (revision 4887:feebf9260c2e)
1*4887Schin #include "FEATURE/uwin"
2*4887Schin 
3*4887Schin #if !_UWIN || _lib_log1p
4*4887Schin 
_STUB_log1p()5*4887Schin void _STUB_log1p(){}
6*4887Schin 
7*4887Schin #else
8*4887Schin 
9*4887Schin /*
10*4887Schin  * Copyright (c) 1985, 1993
11*4887Schin  *	The Regents of the University of California.  All rights reserved.
12*4887Schin  *
13*4887Schin  * Redistribution and use in source and binary forms, with or without
14*4887Schin  * modification, are permitted provided that the following conditions
15*4887Schin  * are met:
16*4887Schin  * 1. Redistributions of source code must retain the above copyright
17*4887Schin  *    notice, this list of conditions and the following disclaimer.
18*4887Schin  * 2. Redistributions in binary form must reproduce the above copyright
19*4887Schin  *    notice, this list of conditions and the following disclaimer in the
20*4887Schin  *    documentation and/or other materials provided with the distribution.
21*4887Schin  * 3. Neither the name of the University nor the names of its contributors
22*4887Schin  *    may be used to endorse or promote products derived from this software
23*4887Schin  *    without specific prior written permission.
24*4887Schin  *
25*4887Schin  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26*4887Schin  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27*4887Schin  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28*4887Schin  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29*4887Schin  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30*4887Schin  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31*4887Schin  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32*4887Schin  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33*4887Schin  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34*4887Schin  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35*4887Schin  * SUCH DAMAGE.
36*4887Schin  */
37*4887Schin 
38*4887Schin #ifndef lint
39*4887Schin static char sccsid[] = "@(#)log1p.c	8.1 (Berkeley) 6/4/93";
40*4887Schin #endif /* not lint */
41*4887Schin 
42*4887Schin /* LOG1P(x)
43*4887Schin  * RETURN THE LOGARITHM OF 1+x
44*4887Schin  * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
45*4887Schin  * CODED IN C BY K.C. NG, 1/19/85;
46*4887Schin  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
47*4887Schin  *
48*4887Schin  * Required system supported functions:
49*4887Schin  *	scalb(x,n)
50*4887Schin  *	copysign(x,y)
51*4887Schin  *	logb(x)
52*4887Schin  *	finite(x)
53*4887Schin  *
54*4887Schin  * Required kernel function:
55*4887Schin  *	log__L(z)
56*4887Schin  *
57*4887Schin  * Method :
58*4887Schin  *	1. Argument Reduction: find k and f such that
59*4887Schin  *			1+x  = 2^k * (1+f),
60*4887Schin  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
61*4887Schin  *
62*4887Schin  *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
63*4887Schin  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
64*4887Schin  *	   log(1+f) is computed by
65*4887Schin  *
66*4887Schin  *	     		log(1+f) = 2s + s*log__L(s*s)
67*4887Schin  *	   where
68*4887Schin  *		log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
69*4887Schin  *
70*4887Schin  *	   See log__L() for the values of the coefficients.
71*4887Schin  *
72*4887Schin  *	3. Finally,  log(1+x) = k*ln2 + log(1+f).
73*4887Schin  *
74*4887Schin  *	Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
75*4887Schin  *		   n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
76*4887Schin  *		   20 bits (for VAX D format), or the last 21 bits ( for IEEE
77*4887Schin  *		   double) is 0. This ensures n*ln2hi is exactly representable.
78*4887Schin  *		2. In step 1, f may not be representable. A correction term c
79*4887Schin  *	 	   for f is computed. It follows that the correction term for
80*4887Schin  *		   f - t (the leading term of log(1+f) in step 2) is c-c*x. We
81*4887Schin  *		   add this correction term to n*ln2lo to attenuate the error.
82*4887Schin  *
83*4887Schin  *
84*4887Schin  * Special cases:
85*4887Schin  *	log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
86*4887Schin  *	log1p(INF) is +INF; log1p(-1) is -INF with signal;
87*4887Schin  *	only log1p(0)=0 is exact for finite argument.
88*4887Schin  *
89*4887Schin  * Accuracy:
90*4887Schin  *	log1p(x) returns the exact log(1+x) nearly rounded. In a test run
91*4887Schin  *	with 1,536,000 random arguments on a VAX, the maximum observed
92*4887Schin  *	error was .846 ulps (units in the last place).
93*4887Schin  *
94*4887Schin  * Constants:
95*4887Schin  * The hexadecimal values are the intended ones for the following constants.
96*4887Schin  * The decimal values may be used, provided that the compiler will convert
97*4887Schin  * from decimal to binary accurately enough to produce the hexadecimal values
98*4887Schin  * shown.
99*4887Schin  */
100*4887Schin 
101*4887Schin #include <errno.h>
102*4887Schin #include "mathimpl.h"
103*4887Schin 
104*4887Schin vc(ln2hi, 6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
105*4887Schin vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
106*4887Schin vc(sqrt2, 1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)
107*4887Schin 
108*4887Schin ic(ln2hi, 6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
109*4887Schin ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
110*4887Schin ic(sqrt2, 1.4142135623730951455E0,     0, 1.6A09E667F3BCD)
111*4887Schin 
112*4887Schin #ifdef vccast
113*4887Schin #define	ln2hi	vccast(ln2hi)
114*4887Schin #define	ln2lo	vccast(ln2lo)
115*4887Schin #define	sqrt2	vccast(sqrt2)
116*4887Schin #endif
117*4887Schin 
118*4887Schin extern double log1p(x)
119*4887Schin double x;
120*4887Schin {
121*4887Schin 	const static double zero=0.0, negone= -1.0, one=1.0,
122*4887Schin 		      half=1.0/2.0, small=1.0E-20;   /* 1+small == 1 */
123*4887Schin 	double z,s,t,c;
124*4887Schin 	int k;
125*4887Schin 
126*4887Schin #if !defined(vax)&&!defined(tahoe)
127*4887Schin 	if(x!=x) return(x);	/* x is NaN */
128*4887Schin #endif	/* !defined(vax)&&!defined(tahoe) */
129*4887Schin 
130*4887Schin 	if(finite(x)) {
131*4887Schin 	   if( x > negone ) {
132*4887Schin 
133*4887Schin 	   /* argument reduction */
134*4887Schin 	      if(copysign(x,one)<small) return(x);
135*4887Schin 	      k=(int)logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
136*4887Schin 	      if(z+t >= sqrt2 )
137*4887Schin 		  { k += 1 ; z *= half; t *= half; }
138*4887Schin 	      t += negone; x = z + t;
139*4887Schin 	      c = (t-x)+z ;		/* correction term for x */
140*4887Schin 
141*4887Schin  	   /* compute log(1+x)  */
142*4887Schin               s = x/(2+x); t = x*x*half;
143*4887Schin 	      c += (k*ln2lo-c*x);
144*4887Schin 	      z = c+s*(t+__log__L(s*s));
145*4887Schin 	      x += (z - t) ;
146*4887Schin 
147*4887Schin 	      return(k*ln2hi+x);
148*4887Schin 	   }
149*4887Schin 	/* end of if (x > negone) */
150*4887Schin 
151*4887Schin 	    else {
152*4887Schin #if defined(vax)||defined(tahoe)
153*4887Schin 		if ( x == negone )
154*4887Schin 		    return (infnan(-ERANGE));	/* -INF */
155*4887Schin 		else
156*4887Schin 		    return (infnan(EDOM));	/* NaN */
157*4887Schin #else	/* defined(vax)||defined(tahoe) */
158*4887Schin 		/* x = -1, return -INF with signal */
159*4887Schin 		if ( x == negone ) return( negone/zero );
160*4887Schin 
161*4887Schin 		/* negative argument for log, return NaN with signal */
162*4887Schin 	        else return ( zero / zero );
163*4887Schin #endif	/* defined(vax)||defined(tahoe) */
164*4887Schin 	    }
165*4887Schin 	}
166*4887Schin     /* end of if (finite(x)) */
167*4887Schin 
168*4887Schin     /* log(-INF) is NaN */
169*4887Schin 	else if(x<0)
170*4887Schin 	     return(zero/zero);
171*4887Schin 
172*4887Schin     /* log(+INF) is INF */
173*4887Schin 	else return(x);
174*4887Schin }
175*4887Schin 
176*4887Schin #endif
177