1*4887Schin #include "FEATURE/uwin"
2*4887Schin
3*4887Schin #if !_UWIN || _lib_log1p
4*4887Schin
_STUB_log1p()5*4887Schin void _STUB_log1p(){}
6*4887Schin
7*4887Schin #else
8*4887Schin
9*4887Schin /*
10*4887Schin * Copyright (c) 1985, 1993
11*4887Schin * The Regents of the University of California. All rights reserved.
12*4887Schin *
13*4887Schin * Redistribution and use in source and binary forms, with or without
14*4887Schin * modification, are permitted provided that the following conditions
15*4887Schin * are met:
16*4887Schin * 1. Redistributions of source code must retain the above copyright
17*4887Schin * notice, this list of conditions and the following disclaimer.
18*4887Schin * 2. Redistributions in binary form must reproduce the above copyright
19*4887Schin * notice, this list of conditions and the following disclaimer in the
20*4887Schin * documentation and/or other materials provided with the distribution.
21*4887Schin * 3. Neither the name of the University nor the names of its contributors
22*4887Schin * may be used to endorse or promote products derived from this software
23*4887Schin * without specific prior written permission.
24*4887Schin *
25*4887Schin * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26*4887Schin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27*4887Schin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28*4887Schin * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29*4887Schin * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30*4887Schin * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31*4887Schin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32*4887Schin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33*4887Schin * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34*4887Schin * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35*4887Schin * SUCH DAMAGE.
36*4887Schin */
37*4887Schin
38*4887Schin #ifndef lint
39*4887Schin static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93";
40*4887Schin #endif /* not lint */
41*4887Schin
42*4887Schin /* LOG1P(x)
43*4887Schin * RETURN THE LOGARITHM OF 1+x
44*4887Schin * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
45*4887Schin * CODED IN C BY K.C. NG, 1/19/85;
46*4887Schin * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
47*4887Schin *
48*4887Schin * Required system supported functions:
49*4887Schin * scalb(x,n)
50*4887Schin * copysign(x,y)
51*4887Schin * logb(x)
52*4887Schin * finite(x)
53*4887Schin *
54*4887Schin * Required kernel function:
55*4887Schin * log__L(z)
56*4887Schin *
57*4887Schin * Method :
58*4887Schin * 1. Argument Reduction: find k and f such that
59*4887Schin * 1+x = 2^k * (1+f),
60*4887Schin * where sqrt(2)/2 < 1+f < sqrt(2) .
61*4887Schin *
62*4887Schin * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
63*4887Schin * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
64*4887Schin * log(1+f) is computed by
65*4887Schin *
66*4887Schin * log(1+f) = 2s + s*log__L(s*s)
67*4887Schin * where
68*4887Schin * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
69*4887Schin *
70*4887Schin * See log__L() for the values of the coefficients.
71*4887Schin *
72*4887Schin * 3. Finally, log(1+x) = k*ln2 + log(1+f).
73*4887Schin *
74*4887Schin * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
75*4887Schin * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
76*4887Schin * 20 bits (for VAX D format), or the last 21 bits ( for IEEE
77*4887Schin * double) is 0. This ensures n*ln2hi is exactly representable.
78*4887Schin * 2. In step 1, f may not be representable. A correction term c
79*4887Schin * for f is computed. It follows that the correction term for
80*4887Schin * f - t (the leading term of log(1+f) in step 2) is c-c*x. We
81*4887Schin * add this correction term to n*ln2lo to attenuate the error.
82*4887Schin *
83*4887Schin *
84*4887Schin * Special cases:
85*4887Schin * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
86*4887Schin * log1p(INF) is +INF; log1p(-1) is -INF with signal;
87*4887Schin * only log1p(0)=0 is exact for finite argument.
88*4887Schin *
89*4887Schin * Accuracy:
90*4887Schin * log1p(x) returns the exact log(1+x) nearly rounded. In a test run
91*4887Schin * with 1,536,000 random arguments on a VAX, the maximum observed
92*4887Schin * error was .846 ulps (units in the last place).
93*4887Schin *
94*4887Schin * Constants:
95*4887Schin * The hexadecimal values are the intended ones for the following constants.
96*4887Schin * The decimal values may be used, provided that the compiler will convert
97*4887Schin * from decimal to binary accurately enough to produce the hexadecimal values
98*4887Schin * shown.
99*4887Schin */
100*4887Schin
101*4887Schin #include <errno.h>
102*4887Schin #include "mathimpl.h"
103*4887Schin
104*4887Schin vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
105*4887Schin vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
106*4887Schin vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
107*4887Schin
108*4887Schin ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
109*4887Schin ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
110*4887Schin ic(sqrt2, 1.4142135623730951455E0, 0, 1.6A09E667F3BCD)
111*4887Schin
112*4887Schin #ifdef vccast
113*4887Schin #define ln2hi vccast(ln2hi)
114*4887Schin #define ln2lo vccast(ln2lo)
115*4887Schin #define sqrt2 vccast(sqrt2)
116*4887Schin #endif
117*4887Schin
118*4887Schin extern double log1p(x)
119*4887Schin double x;
120*4887Schin {
121*4887Schin const static double zero=0.0, negone= -1.0, one=1.0,
122*4887Schin half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
123*4887Schin double z,s,t,c;
124*4887Schin int k;
125*4887Schin
126*4887Schin #if !defined(vax)&&!defined(tahoe)
127*4887Schin if(x!=x) return(x); /* x is NaN */
128*4887Schin #endif /* !defined(vax)&&!defined(tahoe) */
129*4887Schin
130*4887Schin if(finite(x)) {
131*4887Schin if( x > negone ) {
132*4887Schin
133*4887Schin /* argument reduction */
134*4887Schin if(copysign(x,one)<small) return(x);
135*4887Schin k=(int)logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
136*4887Schin if(z+t >= sqrt2 )
137*4887Schin { k += 1 ; z *= half; t *= half; }
138*4887Schin t += negone; x = z + t;
139*4887Schin c = (t-x)+z ; /* correction term for x */
140*4887Schin
141*4887Schin /* compute log(1+x) */
142*4887Schin s = x/(2+x); t = x*x*half;
143*4887Schin c += (k*ln2lo-c*x);
144*4887Schin z = c+s*(t+__log__L(s*s));
145*4887Schin x += (z - t) ;
146*4887Schin
147*4887Schin return(k*ln2hi+x);
148*4887Schin }
149*4887Schin /* end of if (x > negone) */
150*4887Schin
151*4887Schin else {
152*4887Schin #if defined(vax)||defined(tahoe)
153*4887Schin if ( x == negone )
154*4887Schin return (infnan(-ERANGE)); /* -INF */
155*4887Schin else
156*4887Schin return (infnan(EDOM)); /* NaN */
157*4887Schin #else /* defined(vax)||defined(tahoe) */
158*4887Schin /* x = -1, return -INF with signal */
159*4887Schin if ( x == negone ) return( negone/zero );
160*4887Schin
161*4887Schin /* negative argument for log, return NaN with signal */
162*4887Schin else return ( zero / zero );
163*4887Schin #endif /* defined(vax)||defined(tahoe) */
164*4887Schin }
165*4887Schin }
166*4887Schin /* end of if (finite(x)) */
167*4887Schin
168*4887Schin /* log(-INF) is NaN */
169*4887Schin else if(x<0)
170*4887Schin return(zero/zero);
171*4887Schin
172*4887Schin /* log(+INF) is INF */
173*4887Schin else return(x);
174*4887Schin }
175*4887Schin
176*4887Schin #endif
177