xref: /onnv-gate/usr/src/lib/libast/common/uwin/expm1.c (revision 4887:feebf9260c2e)
1*4887Schin #include "FEATURE/uwin"
2*4887Schin 
3*4887Schin #if !_UWIN || _lib_expm1
4*4887Schin 
_STUB_expm1()5*4887Schin void _STUB_expm1(){}
6*4887Schin 
7*4887Schin #else
8*4887Schin 
9*4887Schin /*
10*4887Schin  * Copyright (c) 1985, 1993
11*4887Schin  *	The Regents of the University of California.  All rights reserved.
12*4887Schin  *
13*4887Schin  * Redistribution and use in source and binary forms, with or without
14*4887Schin  * modification, are permitted provided that the following conditions
15*4887Schin  * are met:
16*4887Schin  * 1. Redistributions of source code must retain the above copyright
17*4887Schin  *    notice, this list of conditions and the following disclaimer.
18*4887Schin  * 2. Redistributions in binary form must reproduce the above copyright
19*4887Schin  *    notice, this list of conditions and the following disclaimer in the
20*4887Schin  *    documentation and/or other materials provided with the distribution.
21*4887Schin  * 3. Neither the name of the University nor the names of its contributors
22*4887Schin  *    may be used to endorse or promote products derived from this software
23*4887Schin  *    without specific prior written permission.
24*4887Schin  *
25*4887Schin  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26*4887Schin  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27*4887Schin  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28*4887Schin  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29*4887Schin  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30*4887Schin  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31*4887Schin  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32*4887Schin  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33*4887Schin  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34*4887Schin  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35*4887Schin  * SUCH DAMAGE.
36*4887Schin  */
37*4887Schin 
38*4887Schin #ifndef lint
39*4887Schin static char sccsid[] = "@(#)expm1.c	8.1 (Berkeley) 6/4/93";
40*4887Schin #endif /* not lint */
41*4887Schin 
42*4887Schin /* EXPM1(X)
43*4887Schin  * RETURN THE EXPONENTIAL OF X MINUS ONE
44*4887Schin  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
45*4887Schin  * CODED IN C BY K.C. NG, 1/19/85;
46*4887Schin  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
47*4887Schin  *
48*4887Schin  * Required system supported functions:
49*4887Schin  *	scalb(x,n)
50*4887Schin  *	copysign(x,y)
51*4887Schin  *	finite(x)
52*4887Schin  *
53*4887Schin  * Kernel function:
54*4887Schin  *	exp__E(x,c)
55*4887Schin  *
56*4887Schin  * Method:
57*4887Schin  *	1. Argument Reduction: given the input x, find r and integer k such
58*4887Schin  *	   that
59*4887Schin  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
60*4887Schin  *	   r will be represented as r := z+c for better accuracy.
61*4887Schin  *
62*4887Schin  *	2. Compute EXPM1(r)=exp(r)-1 by
63*4887Schin  *
64*4887Schin  *			EXPM1(r=z+c) := z + exp__E(z,c)
65*4887Schin  *
66*4887Schin  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
67*4887Schin  *
68*4887Schin  * 	Remarks:
69*4887Schin  *	   1. When k=1 and z < -0.25, we use the following formula for
70*4887Schin  *	      better accuracy:
71*4887Schin  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
72*4887Schin  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
73*4887Schin  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
74*4887Schin  *	      when k>56.
75*4887Schin  *
76*4887Schin  * Special cases:
77*4887Schin  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
78*4887Schin  *	EXPM1(-INF)= -1;
79*4887Schin  *	for finite argument, only EXPM1(0)=0 is exact.
80*4887Schin  *
81*4887Schin  * Accuracy:
82*4887Schin  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
83*4887Schin  *	1,166,000 random arguments on a VAX, the maximum observed error was
84*4887Schin  *	.872 ulps (units of the last place).
85*4887Schin  *
86*4887Schin  * Constants:
87*4887Schin  * The hexadecimal values are the intended ones for the following constants.
88*4887Schin  * The decimal values may be used, provided that the compiler will convert
89*4887Schin  * from decimal to binary accurately enough to produce the hexadecimal values
90*4887Schin  * shown.
91*4887Schin  */
92*4887Schin 
93*4887Schin #include "mathimpl.h"
94*4887Schin 
95*4887Schin vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
96*4887Schin vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
97*4887Schin vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
98*4887Schin vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
99*4887Schin 
100*4887Schin ic(ln2hi,  6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
101*4887Schin ic(ln2lo,  1.9082149292705877000E-10, -33, 1.A39EF35793C76)
102*4887Schin ic(lnhuge, 7.1602103751842355450E2,     9, 1.6602B15B7ECF2)
103*4887Schin ic(invln2, 1.4426950408889633870E0,     0, 1.71547652B82FE)
104*4887Schin 
105*4887Schin #ifdef vccast
106*4887Schin #define	ln2hi	vccast(ln2hi)
107*4887Schin #define	ln2lo	vccast(ln2lo)
108*4887Schin #define	lnhuge	vccast(lnhuge)
109*4887Schin #define	invln2	vccast(invln2)
110*4887Schin #endif
111*4887Schin 
112*4887Schin extern double expm1(x)
113*4887Schin double x;
114*4887Schin {
115*4887Schin 	const static double one=1.0, half=1.0/2.0;
116*4887Schin 	double  z,hi,lo,c;
117*4887Schin 	int k;
118*4887Schin #if defined(vax)||defined(tahoe)
119*4887Schin 	static prec=56;
120*4887Schin #else	/* defined(vax)||defined(tahoe) */
121*4887Schin 	static prec=53;
122*4887Schin #endif	/* defined(vax)||defined(tahoe) */
123*4887Schin 
124*4887Schin #if !defined(vax)&&!defined(tahoe)
125*4887Schin 	if(x!=x) return(x);	/* x is NaN */
126*4887Schin #endif	/* !defined(vax)&&!defined(tahoe) */
127*4887Schin 
128*4887Schin 	if( x <= lnhuge ) {
129*4887Schin 		if( x >= -40.0 ) {
130*4887Schin 
131*4887Schin 		    /* argument reduction : x - k*ln2 */
132*4887Schin 			k= (int)(invln2*x)+copysign(0.5,x);	/* k=NINT(x/ln2) */
133*4887Schin 			hi=x-k*ln2hi ;
134*4887Schin 			z=hi-(lo=k*ln2lo);
135*4887Schin 			c=(hi-z)-lo;
136*4887Schin 
137*4887Schin 			if(k==0) return(z+__exp__E(z,c));
138*4887Schin 			if(k==1)
139*4887Schin 			    if(z< -0.25)
140*4887Schin 				{x=z+half;x +=__exp__E(z,c); return(x+x);}
141*4887Schin 			    else
142*4887Schin 				{z+=__exp__E(z,c); x=half+z; return(x+x);}
143*4887Schin 		    /* end of k=1 */
144*4887Schin 
145*4887Schin 			else {
146*4887Schin 			    if(k<=prec)
147*4887Schin 			      { x=one-scalb(one,-k); z += __exp__E(z,c);}
148*4887Schin 			    else if(k<100)
149*4887Schin 			      { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
150*4887Schin 			    else
151*4887Schin 			      { x = __exp__E(z,c)+z; z=one;}
152*4887Schin 
153*4887Schin 			    return (scalb(x+z,k));
154*4887Schin 			}
155*4887Schin 		}
156*4887Schin 		/* end of x > lnunfl */
157*4887Schin 
158*4887Schin 		else
159*4887Schin 		     /* expm1(-big#) rounded to -1 (inexact) */
160*4887Schin 		     if(finite(x))
161*4887Schin 			 { ln2hi+ln2lo; return(-one);}
162*4887Schin 
163*4887Schin 		     /* expm1(-INF) is -1 */
164*4887Schin 		     else return(-one);
165*4887Schin 	}
166*4887Schin 	/* end of x < lnhuge */
167*4887Schin 
168*4887Schin 	else
169*4887Schin 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
170*4887Schin 	    return( finite(x) ?  scalb(one,5000) : x);
171*4887Schin }
172*4887Schin 
173*4887Schin #endif
174