1*4887Schin #include "FEATURE/uwin"
2*4887Schin
3*4887Schin #if !_UWIN || _lib_expm1
4*4887Schin
_STUB_expm1()5*4887Schin void _STUB_expm1(){}
6*4887Schin
7*4887Schin #else
8*4887Schin
9*4887Schin /*
10*4887Schin * Copyright (c) 1985, 1993
11*4887Schin * The Regents of the University of California. All rights reserved.
12*4887Schin *
13*4887Schin * Redistribution and use in source and binary forms, with or without
14*4887Schin * modification, are permitted provided that the following conditions
15*4887Schin * are met:
16*4887Schin * 1. Redistributions of source code must retain the above copyright
17*4887Schin * notice, this list of conditions and the following disclaimer.
18*4887Schin * 2. Redistributions in binary form must reproduce the above copyright
19*4887Schin * notice, this list of conditions and the following disclaimer in the
20*4887Schin * documentation and/or other materials provided with the distribution.
21*4887Schin * 3. Neither the name of the University nor the names of its contributors
22*4887Schin * may be used to endorse or promote products derived from this software
23*4887Schin * without specific prior written permission.
24*4887Schin *
25*4887Schin * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26*4887Schin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27*4887Schin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28*4887Schin * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29*4887Schin * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30*4887Schin * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31*4887Schin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32*4887Schin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33*4887Schin * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34*4887Schin * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35*4887Schin * SUCH DAMAGE.
36*4887Schin */
37*4887Schin
38*4887Schin #ifndef lint
39*4887Schin static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";
40*4887Schin #endif /* not lint */
41*4887Schin
42*4887Schin /* EXPM1(X)
43*4887Schin * RETURN THE EXPONENTIAL OF X MINUS ONE
44*4887Schin * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
45*4887Schin * CODED IN C BY K.C. NG, 1/19/85;
46*4887Schin * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
47*4887Schin *
48*4887Schin * Required system supported functions:
49*4887Schin * scalb(x,n)
50*4887Schin * copysign(x,y)
51*4887Schin * finite(x)
52*4887Schin *
53*4887Schin * Kernel function:
54*4887Schin * exp__E(x,c)
55*4887Schin *
56*4887Schin * Method:
57*4887Schin * 1. Argument Reduction: given the input x, find r and integer k such
58*4887Schin * that
59*4887Schin * x = k*ln2 + r, |r| <= 0.5*ln2 .
60*4887Schin * r will be represented as r := z+c for better accuracy.
61*4887Schin *
62*4887Schin * 2. Compute EXPM1(r)=exp(r)-1 by
63*4887Schin *
64*4887Schin * EXPM1(r=z+c) := z + exp__E(z,c)
65*4887Schin *
66*4887Schin * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
67*4887Schin *
68*4887Schin * Remarks:
69*4887Schin * 1. When k=1 and z < -0.25, we use the following formula for
70*4887Schin * better accuracy:
71*4887Schin * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
72*4887Schin * 2. To avoid rounding error in 1-2^-k where k is large, we use
73*4887Schin * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
74*4887Schin * when k>56.
75*4887Schin *
76*4887Schin * Special cases:
77*4887Schin * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
78*4887Schin * EXPM1(-INF)= -1;
79*4887Schin * for finite argument, only EXPM1(0)=0 is exact.
80*4887Schin *
81*4887Schin * Accuracy:
82*4887Schin * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
83*4887Schin * 1,166,000 random arguments on a VAX, the maximum observed error was
84*4887Schin * .872 ulps (units of the last place).
85*4887Schin *
86*4887Schin * Constants:
87*4887Schin * The hexadecimal values are the intended ones for the following constants.
88*4887Schin * The decimal values may be used, provided that the compiler will convert
89*4887Schin * from decimal to binary accurately enough to produce the hexadecimal values
90*4887Schin * shown.
91*4887Schin */
92*4887Schin
93*4887Schin #include "mathimpl.h"
94*4887Schin
95*4887Schin vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
96*4887Schin vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
97*4887Schin vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
98*4887Schin vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
99*4887Schin
100*4887Schin ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
101*4887Schin ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
102*4887Schin ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
103*4887Schin ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
104*4887Schin
105*4887Schin #ifdef vccast
106*4887Schin #define ln2hi vccast(ln2hi)
107*4887Schin #define ln2lo vccast(ln2lo)
108*4887Schin #define lnhuge vccast(lnhuge)
109*4887Schin #define invln2 vccast(invln2)
110*4887Schin #endif
111*4887Schin
112*4887Schin extern double expm1(x)
113*4887Schin double x;
114*4887Schin {
115*4887Schin const static double one=1.0, half=1.0/2.0;
116*4887Schin double z,hi,lo,c;
117*4887Schin int k;
118*4887Schin #if defined(vax)||defined(tahoe)
119*4887Schin static prec=56;
120*4887Schin #else /* defined(vax)||defined(tahoe) */
121*4887Schin static prec=53;
122*4887Schin #endif /* defined(vax)||defined(tahoe) */
123*4887Schin
124*4887Schin #if !defined(vax)&&!defined(tahoe)
125*4887Schin if(x!=x) return(x); /* x is NaN */
126*4887Schin #endif /* !defined(vax)&&!defined(tahoe) */
127*4887Schin
128*4887Schin if( x <= lnhuge ) {
129*4887Schin if( x >= -40.0 ) {
130*4887Schin
131*4887Schin /* argument reduction : x - k*ln2 */
132*4887Schin k= (int)(invln2*x)+copysign(0.5,x); /* k=NINT(x/ln2) */
133*4887Schin hi=x-k*ln2hi ;
134*4887Schin z=hi-(lo=k*ln2lo);
135*4887Schin c=(hi-z)-lo;
136*4887Schin
137*4887Schin if(k==0) return(z+__exp__E(z,c));
138*4887Schin if(k==1)
139*4887Schin if(z< -0.25)
140*4887Schin {x=z+half;x +=__exp__E(z,c); return(x+x);}
141*4887Schin else
142*4887Schin {z+=__exp__E(z,c); x=half+z; return(x+x);}
143*4887Schin /* end of k=1 */
144*4887Schin
145*4887Schin else {
146*4887Schin if(k<=prec)
147*4887Schin { x=one-scalb(one,-k); z += __exp__E(z,c);}
148*4887Schin else if(k<100)
149*4887Schin { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
150*4887Schin else
151*4887Schin { x = __exp__E(z,c)+z; z=one;}
152*4887Schin
153*4887Schin return (scalb(x+z,k));
154*4887Schin }
155*4887Schin }
156*4887Schin /* end of x > lnunfl */
157*4887Schin
158*4887Schin else
159*4887Schin /* expm1(-big#) rounded to -1 (inexact) */
160*4887Schin if(finite(x))
161*4887Schin { ln2hi+ln2lo; return(-one);}
162*4887Schin
163*4887Schin /* expm1(-INF) is -1 */
164*4887Schin else return(-one);
165*4887Schin }
166*4887Schin /* end of x < lnhuge */
167*4887Schin
168*4887Schin else
169*4887Schin /* expm1(INF) is INF, expm1(+big#) overflows to INF */
170*4887Schin return( finite(x) ? scalb(one,5000) : x);
171*4887Schin }
172*4887Schin
173*4887Schin #endif
174