xref: /netbsd-src/sys/uvm/uvm_pdaemon.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: uvm_pdaemon.c,v 1.109 2017/10/28 00:37:13 pgoyette Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38  *
39  *
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Permission to use, copy, modify and distribute this software and
44  * its documentation is hereby granted, provided that both the copyright
45  * notice and this permission notice appear in all copies of the
46  * software, derivative works or modified versions, and any portions
47  * thereof, and that both notices appear in supporting documentation.
48  *
49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52  *
53  * Carnegie Mellon requests users of this software to return to
54  *
55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56  *  School of Computer Science
57  *  Carnegie Mellon University
58  *  Pittsburgh PA 15213-3890
59  *
60  * any improvements or extensions that they make and grant Carnegie the
61  * rights to redistribute these changes.
62  */
63 
64 /*
65  * uvm_pdaemon.c: the page daemon
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.109 2017/10/28 00:37:13 pgoyette Exp $");
70 
71 #include "opt_uvmhist.h"
72 #include "opt_readahead.h"
73 
74 #include <sys/param.h>
75 #include <sys/proc.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 #include <sys/buf.h>
80 #include <sys/module.h>
81 #include <sys/atomic.h>
82 
83 #include <uvm/uvm.h>
84 #include <uvm/uvm_pdpolicy.h>
85 
86 #ifdef UVMHIST
87 UVMHIST_DEFINE(pdhist);
88 #endif
89 
90 /*
91  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
92  * in a pass thru the inactive list when swap is full.  the value should be
93  * "small"... if it's too large we'll cycle the active pages thru the inactive
94  * queue too quickly to for them to be referenced and avoid being freed.
95  */
96 
97 #define	UVMPD_NUMDIRTYREACTS	16
98 
99 #define	UVMPD_NUMTRYLOCKOWNER	16
100 
101 /*
102  * local prototypes
103  */
104 
105 static void	uvmpd_scan(void);
106 static void	uvmpd_scan_queue(void);
107 static void	uvmpd_tune(void);
108 
109 static unsigned int uvm_pagedaemon_waiters;
110 
111 /*
112  * XXX hack to avoid hangs when large processes fork.
113  */
114 u_int uvm_extrapages;
115 
116 /*
117  * uvm_wait: wait (sleep) for the page daemon to free some pages
118  *
119  * => should be called with all locks released
120  * => should _not_ be called by the page daemon (to avoid deadlock)
121  */
122 
123 void
124 uvm_wait(const char *wmsg)
125 {
126 	int timo = 0;
127 
128 	mutex_spin_enter(&uvm_fpageqlock);
129 
130 	/*
131 	 * check for page daemon going to sleep (waiting for itself)
132 	 */
133 
134 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
135 		/*
136 		 * now we have a problem: the pagedaemon wants to go to
137 		 * sleep until it frees more memory.   but how can it
138 		 * free more memory if it is asleep?  that is a deadlock.
139 		 * we have two options:
140 		 *  [1] panic now
141 		 *  [2] put a timeout on the sleep, thus causing the
142 		 *      pagedaemon to only pause (rather than sleep forever)
143 		 *
144 		 * note that option [2] will only help us if we get lucky
145 		 * and some other process on the system breaks the deadlock
146 		 * by exiting or freeing memory (thus allowing the pagedaemon
147 		 * to continue).  for now we panic if DEBUG is defined,
148 		 * otherwise we hope for the best with option [2] (better
149 		 * yet, this should never happen in the first place!).
150 		 */
151 
152 		printf("pagedaemon: deadlock detected!\n");
153 		timo = hz >> 3;		/* set timeout */
154 #if defined(DEBUG)
155 		/* DEBUG: panic so we can debug it */
156 		panic("pagedaemon deadlock");
157 #endif
158 	}
159 
160 	uvm_pagedaemon_waiters++;
161 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
162 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
163 }
164 
165 /*
166  * uvm_kick_pdaemon: perform checks to determine if we need to
167  * give the pagedaemon a nudge, and do so if necessary.
168  *
169  * => called with uvm_fpageqlock held.
170  */
171 
172 void
173 uvm_kick_pdaemon(void)
174 {
175 
176 	KASSERT(mutex_owned(&uvm_fpageqlock));
177 
178 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
179 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
180 	     uvmpdpol_needsscan_p()) ||
181 	     uvm_km_va_starved_p()) {
182 		wakeup(&uvm.pagedaemon);
183 	}
184 }
185 
186 /*
187  * uvmpd_tune: tune paging parameters
188  *
189  * => called when ever memory is added (or removed?) to the system
190  * => caller must call with page queues locked
191  */
192 
193 static void
194 uvmpd_tune(void)
195 {
196 	int val;
197 
198 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
199 
200 	/*
201 	 * try to keep 0.5% of available RAM free, but limit to between
202 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
203 	 */
204 	val = uvmexp.npages / 200;
205 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
206 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
207 	val *= ncpu;
208 
209 	/* Make sure there's always a user page free. */
210 	if (val < uvmexp.reserve_kernel + 1)
211 		val = uvmexp.reserve_kernel + 1;
212 	uvmexp.freemin = val;
213 
214 	/* Calculate free target. */
215 	val = (uvmexp.freemin * 4) / 3;
216 	if (val <= uvmexp.freemin)
217 		val = uvmexp.freemin + 1;
218 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
219 
220 	uvmexp.wiredmax = uvmexp.npages / 3;
221 	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
222 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
223 }
224 
225 /*
226  * uvm_pageout: the main loop for the pagedaemon
227  */
228 
229 void
230 uvm_pageout(void *arg)
231 {
232 	int bufcnt, npages = 0;
233 	int extrapages = 0;
234 	struct pool *pp;
235 
236 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
237 
238 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
239 
240 	/*
241 	 * ensure correct priority and set paging parameters...
242 	 */
243 
244 	uvm.pagedaemon_lwp = curlwp;
245 	mutex_enter(&uvm_pageqlock);
246 	npages = uvmexp.npages;
247 	uvmpd_tune();
248 	mutex_exit(&uvm_pageqlock);
249 
250 	/*
251 	 * main loop
252 	 */
253 
254 	for (;;) {
255 		bool needsscan, needsfree, kmem_va_starved;
256 
257 		kmem_va_starved = uvm_km_va_starved_p();
258 
259 		mutex_spin_enter(&uvm_fpageqlock);
260 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
261 		    !kmem_va_starved) {
262 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
263 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
264 			    &uvm_fpageqlock, false, "pgdaemon", 0);
265 			uvmexp.pdwoke++;
266 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
267 		} else {
268 			mutex_spin_exit(&uvm_fpageqlock);
269 		}
270 
271 		/*
272 		 * now lock page queues and recompute inactive count
273 		 */
274 
275 		mutex_enter(&uvm_pageqlock);
276 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
277 			npages = uvmexp.npages;
278 			extrapages = uvm_extrapages;
279 			mutex_spin_enter(&uvm_fpageqlock);
280 			uvmpd_tune();
281 			mutex_spin_exit(&uvm_fpageqlock);
282 		}
283 
284 		uvmpdpol_tune();
285 
286 		/*
287 		 * Estimate a hint.  Note that bufmem are returned to
288 		 * system only when entire pool page is empty.
289 		 */
290 		mutex_spin_enter(&uvm_fpageqlock);
291 		bufcnt = uvmexp.freetarg - uvmexp.free;
292 		if (bufcnt < 0)
293 			bufcnt = 0;
294 
295 		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
296 		    uvmexp.free, uvmexp.freetarg, 0,0);
297 
298 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
299 		needsscan = needsfree || uvmpdpol_needsscan_p();
300 
301 		/*
302 		 * scan if needed
303 		 */
304 		if (needsscan) {
305 			mutex_spin_exit(&uvm_fpageqlock);
306 			uvmpd_scan();
307 			mutex_spin_enter(&uvm_fpageqlock);
308 		}
309 
310 		/*
311 		 * if there's any free memory to be had,
312 		 * wake up any waiters.
313 		 */
314 		if (uvmexp.free > uvmexp.reserve_kernel ||
315 		    uvmexp.paging == 0) {
316 			wakeup(&uvmexp.free);
317 			uvm_pagedaemon_waiters = 0;
318 		}
319 		mutex_spin_exit(&uvm_fpageqlock);
320 
321 		/*
322 		 * scan done.  unlock page queues (the only lock we are holding)
323 		 */
324 		mutex_exit(&uvm_pageqlock);
325 
326 		/*
327 		 * if we don't need free memory, we're done.
328 		 */
329 
330 		if (!needsfree && !kmem_va_starved)
331 			continue;
332 
333 		/*
334 		 * kill unused metadata buffers.
335 		 */
336 		mutex_enter(&bufcache_lock);
337 		buf_drain(bufcnt << PAGE_SHIFT);
338 		mutex_exit(&bufcache_lock);
339 
340 		/*
341 		 * drain the pools.
342 		 */
343 		pool_drain(&pp);
344 	}
345 	/*NOTREACHED*/
346 }
347 
348 
349 /*
350  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
351  */
352 
353 void
354 uvm_aiodone_worker(struct work *wk, void *dummy)
355 {
356 	struct buf *bp = (void *)wk;
357 
358 	KASSERT(&bp->b_work == wk);
359 
360 	/*
361 	 * process an i/o that's done.
362 	 */
363 
364 	(*bp->b_iodone)(bp);
365 }
366 
367 void
368 uvm_pageout_start(int npages)
369 {
370 
371 	mutex_spin_enter(&uvm_fpageqlock);
372 	uvmexp.paging += npages;
373 	mutex_spin_exit(&uvm_fpageqlock);
374 }
375 
376 void
377 uvm_pageout_done(int npages)
378 {
379 
380 	mutex_spin_enter(&uvm_fpageqlock);
381 	KASSERT(uvmexp.paging >= npages);
382 	uvmexp.paging -= npages;
383 
384 	/*
385 	 * wake up either of pagedaemon or LWPs waiting for it.
386 	 */
387 
388 	if (uvmexp.free <= uvmexp.reserve_kernel) {
389 		wakeup(&uvm.pagedaemon);
390 	} else {
391 		wakeup(&uvmexp.free);
392 		uvm_pagedaemon_waiters = 0;
393 	}
394 	mutex_spin_exit(&uvm_fpageqlock);
395 }
396 
397 /*
398  * uvmpd_trylockowner: trylock the page's owner.
399  *
400  * => called with pageq locked.
401  * => resolve orphaned O->A loaned page.
402  * => return the locked mutex on success.  otherwise, return NULL.
403  */
404 
405 kmutex_t *
406 uvmpd_trylockowner(struct vm_page *pg)
407 {
408 	struct uvm_object *uobj = pg->uobject;
409 	kmutex_t *slock;
410 
411 	KASSERT(mutex_owned(&uvm_pageqlock));
412 
413 	if (uobj != NULL) {
414 		slock = uobj->vmobjlock;
415 	} else {
416 		struct vm_anon *anon = pg->uanon;
417 
418 		KASSERT(anon != NULL);
419 		slock = anon->an_lock;
420 	}
421 
422 	if (!mutex_tryenter(slock)) {
423 		return NULL;
424 	}
425 
426 	if (uobj == NULL) {
427 
428 		/*
429 		 * set PQ_ANON if it isn't set already.
430 		 */
431 
432 		if ((pg->pqflags & PQ_ANON) == 0) {
433 			KASSERT(pg->loan_count > 0);
434 			pg->loan_count--;
435 			pg->pqflags |= PQ_ANON;
436 			/* anon now owns it */
437 		}
438 	}
439 
440 	return slock;
441 }
442 
443 #if defined(VMSWAP)
444 struct swapcluster {
445 	int swc_slot;
446 	int swc_nallocated;
447 	int swc_nused;
448 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
449 };
450 
451 static void
452 swapcluster_init(struct swapcluster *swc)
453 {
454 
455 	swc->swc_slot = 0;
456 	swc->swc_nused = 0;
457 }
458 
459 static int
460 swapcluster_allocslots(struct swapcluster *swc)
461 {
462 	int slot;
463 	int npages;
464 
465 	if (swc->swc_slot != 0) {
466 		return 0;
467 	}
468 
469 	/* Even with strange MAXPHYS, the shift
470 	   implicitly rounds down to a page. */
471 	npages = MAXPHYS >> PAGE_SHIFT;
472 	slot = uvm_swap_alloc(&npages, true);
473 	if (slot == 0) {
474 		return ENOMEM;
475 	}
476 	swc->swc_slot = slot;
477 	swc->swc_nallocated = npages;
478 	swc->swc_nused = 0;
479 
480 	return 0;
481 }
482 
483 static int
484 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
485 {
486 	int slot;
487 	struct uvm_object *uobj;
488 
489 	KASSERT(swc->swc_slot != 0);
490 	KASSERT(swc->swc_nused < swc->swc_nallocated);
491 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
492 
493 	slot = swc->swc_slot + swc->swc_nused;
494 	uobj = pg->uobject;
495 	if (uobj == NULL) {
496 		KASSERT(mutex_owned(pg->uanon->an_lock));
497 		pg->uanon->an_swslot = slot;
498 	} else {
499 		int result;
500 
501 		KASSERT(mutex_owned(uobj->vmobjlock));
502 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
503 		if (result == -1) {
504 			return ENOMEM;
505 		}
506 	}
507 	swc->swc_pages[swc->swc_nused] = pg;
508 	swc->swc_nused++;
509 
510 	return 0;
511 }
512 
513 static void
514 swapcluster_flush(struct swapcluster *swc, bool now)
515 {
516 	int slot;
517 	int nused;
518 	int nallocated;
519 	int error __diagused;
520 
521 	if (swc->swc_slot == 0) {
522 		return;
523 	}
524 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
525 
526 	slot = swc->swc_slot;
527 	nused = swc->swc_nused;
528 	nallocated = swc->swc_nallocated;
529 
530 	/*
531 	 * if this is the final pageout we could have a few
532 	 * unused swap blocks.  if so, free them now.
533 	 */
534 
535 	if (nused < nallocated) {
536 		if (!now) {
537 			return;
538 		}
539 		uvm_swap_free(slot + nused, nallocated - nused);
540 	}
541 
542 	/*
543 	 * now start the pageout.
544 	 */
545 
546 	if (nused > 0) {
547 		uvmexp.pdpageouts++;
548 		uvm_pageout_start(nused);
549 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
550 		KASSERT(error == 0 || error == ENOMEM);
551 	}
552 
553 	/*
554 	 * zero swslot to indicate that we are
555 	 * no longer building a swap-backed cluster.
556 	 */
557 
558 	swc->swc_slot = 0;
559 	swc->swc_nused = 0;
560 }
561 
562 static int
563 swapcluster_nused(struct swapcluster *swc)
564 {
565 
566 	return swc->swc_nused;
567 }
568 
569 /*
570  * uvmpd_dropswap: free any swap allocated to this page.
571  *
572  * => called with owner locked.
573  * => return true if a page had an associated slot.
574  */
575 
576 static bool
577 uvmpd_dropswap(struct vm_page *pg)
578 {
579 	bool result = false;
580 	struct vm_anon *anon = pg->uanon;
581 
582 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
583 		uvm_swap_free(anon->an_swslot, 1);
584 		anon->an_swslot = 0;
585 		pg->flags &= ~PG_CLEAN;
586 		result = true;
587 	} else if (pg->pqflags & PQ_AOBJ) {
588 		int slot = uao_set_swslot(pg->uobject,
589 		    pg->offset >> PAGE_SHIFT, 0);
590 		if (slot) {
591 			uvm_swap_free(slot, 1);
592 			pg->flags &= ~PG_CLEAN;
593 			result = true;
594 		}
595 	}
596 
597 	return result;
598 }
599 
600 /*
601  * uvmpd_trydropswap: try to free any swap allocated to this page.
602  *
603  * => return true if a slot is successfully freed.
604  */
605 
606 bool
607 uvmpd_trydropswap(struct vm_page *pg)
608 {
609 	kmutex_t *slock;
610 	bool result;
611 
612 	if ((pg->flags & PG_BUSY) != 0) {
613 		return false;
614 	}
615 
616 	/*
617 	 * lock the page's owner.
618 	 */
619 
620 	slock = uvmpd_trylockowner(pg);
621 	if (slock == NULL) {
622 		return false;
623 	}
624 
625 	/*
626 	 * skip this page if it's busy.
627 	 */
628 
629 	if ((pg->flags & PG_BUSY) != 0) {
630 		mutex_exit(slock);
631 		return false;
632 	}
633 
634 	result = uvmpd_dropswap(pg);
635 
636 	mutex_exit(slock);
637 
638 	return result;
639 }
640 
641 #endif /* defined(VMSWAP) */
642 
643 /*
644  * uvmpd_scan_queue: scan an replace candidate list for pages
645  * to clean or free.
646  *
647  * => called with page queues locked
648  * => we work on meeting our free target by converting inactive pages
649  *    into free pages.
650  * => we handle the building of swap-backed clusters
651  */
652 
653 static void
654 uvmpd_scan_queue(void)
655 {
656 	struct vm_page *p;
657 	struct uvm_object *uobj;
658 	struct vm_anon *anon;
659 #if defined(VMSWAP)
660 	struct swapcluster swc;
661 #endif /* defined(VMSWAP) */
662 	int dirtyreacts;
663 	int lockownerfail;
664 	kmutex_t *slock;
665 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
666 
667 	/*
668 	 * swslot is non-zero if we are building a swap cluster.  we want
669 	 * to stay in the loop while we have a page to scan or we have
670 	 * a swap-cluster to build.
671 	 */
672 
673 #if defined(VMSWAP)
674 	swapcluster_init(&swc);
675 #endif /* defined(VMSWAP) */
676 
677 	dirtyreacts = 0;
678 	lockownerfail = 0;
679 	uvmpdpol_scaninit();
680 
681 	while (/* CONSTCOND */ 1) {
682 
683 		/*
684 		 * see if we've met the free target.
685 		 */
686 
687 		if (uvmexp.free + uvmexp.paging
688 #if defined(VMSWAP)
689 		    + swapcluster_nused(&swc)
690 #endif /* defined(VMSWAP) */
691 		    >= uvmexp.freetarg << 2 ||
692 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
693 			UVMHIST_LOG(pdhist,"  met free target: "
694 				    "exit loop", 0, 0, 0, 0);
695 			break;
696 		}
697 
698 		p = uvmpdpol_selectvictim();
699 		if (p == NULL) {
700 			break;
701 		}
702 		KASSERT(uvmpdpol_pageisqueued_p(p));
703 		KASSERT(p->wire_count == 0);
704 
705 		/*
706 		 * we are below target and have a new page to consider.
707 		 */
708 
709 		anon = p->uanon;
710 		uobj = p->uobject;
711 
712 		/*
713 		 * first we attempt to lock the object that this page
714 		 * belongs to.  if our attempt fails we skip on to
715 		 * the next page (no harm done).  it is important to
716 		 * "try" locking the object as we are locking in the
717 		 * wrong order (pageq -> object) and we don't want to
718 		 * deadlock.
719 		 *
720 		 * the only time we expect to see an ownerless page
721 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
722 		 * anon has loaned a page from a uvm_object and the
723 		 * uvm_object has dropped the ownership.  in that
724 		 * case, the anon can "take over" the loaned page
725 		 * and make it its own.
726 		 */
727 
728 		slock = uvmpd_trylockowner(p);
729 		if (slock == NULL) {
730 			/*
731 			 * yield cpu to make a chance for an LWP holding
732 			 * the lock run.  otherwise we can busy-loop too long
733 			 * if the page queue is filled with a lot of pages
734 			 * from few objects.
735 			 */
736 			lockownerfail++;
737 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
738 				mutex_exit(&uvm_pageqlock);
739 				/* XXX Better than yielding but inadequate. */
740 				kpause("livelock", false, 1, NULL);
741 				mutex_enter(&uvm_pageqlock);
742 				lockownerfail = 0;
743 			}
744 			continue;
745 		}
746 		if (p->flags & PG_BUSY) {
747 			mutex_exit(slock);
748 			uvmexp.pdbusy++;
749 			continue;
750 		}
751 
752 		/* does the page belong to an object? */
753 		if (uobj != NULL) {
754 			uvmexp.pdobscan++;
755 		} else {
756 #if defined(VMSWAP)
757 			KASSERT(anon != NULL);
758 			uvmexp.pdanscan++;
759 #else /* defined(VMSWAP) */
760 			panic("%s: anon", __func__);
761 #endif /* defined(VMSWAP) */
762 		}
763 
764 
765 		/*
766 		 * we now have the object and the page queues locked.
767 		 * if the page is not swap-backed, call the object's
768 		 * pager to flush and free the page.
769 		 */
770 
771 #if defined(READAHEAD_STATS)
772 		if ((p->pqflags & PQ_READAHEAD) != 0) {
773 			p->pqflags &= ~PQ_READAHEAD;
774 			uvm_ra_miss.ev_count++;
775 		}
776 #endif /* defined(READAHEAD_STATS) */
777 
778 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
779 			KASSERT(uobj != NULL);
780 			mutex_exit(&uvm_pageqlock);
781 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
782 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
783 			mutex_enter(&uvm_pageqlock);
784 			continue;
785 		}
786 
787 		/*
788 		 * the page is swap-backed.  remove all the permissions
789 		 * from the page so we can sync the modified info
790 		 * without any race conditions.  if the page is clean
791 		 * we can free it now and continue.
792 		 */
793 
794 		pmap_page_protect(p, VM_PROT_NONE);
795 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
796 			p->flags &= ~(PG_CLEAN);
797 		}
798 		if (p->flags & PG_CLEAN) {
799 			int slot;
800 			int pageidx;
801 
802 			pageidx = p->offset >> PAGE_SHIFT;
803 			uvm_pagefree(p);
804 			uvmexp.pdfreed++;
805 
806 			/*
807 			 * for anons, we need to remove the page
808 			 * from the anon ourselves.  for aobjs,
809 			 * pagefree did that for us.
810 			 */
811 
812 			if (anon) {
813 				KASSERT(anon->an_swslot != 0);
814 				anon->an_page = NULL;
815 				slot = anon->an_swslot;
816 			} else {
817 				slot = uao_find_swslot(uobj, pageidx);
818 			}
819 			mutex_exit(slock);
820 
821 			if (slot > 0) {
822 				/* this page is now only in swap. */
823 				mutex_enter(&uvm_swap_data_lock);
824 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
825 				uvmexp.swpgonly++;
826 				mutex_exit(&uvm_swap_data_lock);
827 			}
828 			continue;
829 		}
830 
831 #if defined(VMSWAP)
832 		/*
833 		 * this page is dirty, skip it if we'll have met our
834 		 * free target when all the current pageouts complete.
835 		 */
836 
837 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
838 			mutex_exit(slock);
839 			continue;
840 		}
841 
842 		/*
843 		 * free any swap space allocated to the page since
844 		 * we'll have to write it again with its new data.
845 		 */
846 
847 		uvmpd_dropswap(p);
848 
849 		/*
850 		 * start new swap pageout cluster (if necessary).
851 		 *
852 		 * if swap is full reactivate this page so that
853 		 * we eventually cycle all pages through the
854 		 * inactive queue.
855 		 */
856 
857 		if (swapcluster_allocslots(&swc)) {
858 			dirtyreacts++;
859 			uvm_pageactivate(p);
860 			mutex_exit(slock);
861 			continue;
862 		}
863 
864 		/*
865 		 * at this point, we're definitely going reuse this
866 		 * page.  mark the page busy and delayed-free.
867 		 * we should remove the page from the page queues
868 		 * so we don't ever look at it again.
869 		 * adjust counters and such.
870 		 */
871 
872 		p->flags |= PG_BUSY;
873 		UVM_PAGE_OWN(p, "scan_queue");
874 
875 		p->flags |= PG_PAGEOUT;
876 		uvm_pagedequeue(p);
877 
878 		uvmexp.pgswapout++;
879 		mutex_exit(&uvm_pageqlock);
880 
881 		/*
882 		 * add the new page to the cluster.
883 		 */
884 
885 		if (swapcluster_add(&swc, p)) {
886 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
887 			UVM_PAGE_OWN(p, NULL);
888 			mutex_enter(&uvm_pageqlock);
889 			dirtyreacts++;
890 			uvm_pageactivate(p);
891 			mutex_exit(slock);
892 			continue;
893 		}
894 		mutex_exit(slock);
895 
896 		swapcluster_flush(&swc, false);
897 		mutex_enter(&uvm_pageqlock);
898 
899 		/*
900 		 * the pageout is in progress.  bump counters and set up
901 		 * for the next loop.
902 		 */
903 
904 		uvmexp.pdpending++;
905 
906 #else /* defined(VMSWAP) */
907 		uvm_pageactivate(p);
908 		mutex_exit(slock);
909 #endif /* defined(VMSWAP) */
910 	}
911 
912 #if defined(VMSWAP)
913 	mutex_exit(&uvm_pageqlock);
914 	swapcluster_flush(&swc, true);
915 	mutex_enter(&uvm_pageqlock);
916 #endif /* defined(VMSWAP) */
917 }
918 
919 /*
920  * uvmpd_scan: scan the page queues and attempt to meet our targets.
921  *
922  * => called with pageq's locked
923  */
924 
925 static void
926 uvmpd_scan(void)
927 {
928 	int swap_shortage, pages_freed;
929 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
930 
931 	uvmexp.pdrevs++;
932 
933 	/*
934 	 * work on meeting our targets.   first we work on our free target
935 	 * by converting inactive pages into free pages.  then we work on
936 	 * meeting our inactive target by converting active pages to
937 	 * inactive ones.
938 	 */
939 
940 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
941 
942 	pages_freed = uvmexp.pdfreed;
943 	uvmpd_scan_queue();
944 	pages_freed = uvmexp.pdfreed - pages_freed;
945 
946 	/*
947 	 * detect if we're not going to be able to page anything out
948 	 * until we free some swap resources from active pages.
949 	 */
950 
951 	swap_shortage = 0;
952 	if (uvmexp.free < uvmexp.freetarg &&
953 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
954 	    !uvm_swapisfull() &&
955 	    pages_freed == 0) {
956 		swap_shortage = uvmexp.freetarg - uvmexp.free;
957 	}
958 
959 	uvmpdpol_balancequeue(swap_shortage);
960 
961 	/*
962 	 * if still below the minimum target, try unloading kernel
963 	 * modules.
964 	 */
965 
966 	if (uvmexp.free < uvmexp.freemin) {
967 		module_thread_kick();
968 	}
969 }
970 
971 /*
972  * uvm_reclaimable: decide whether to wait for pagedaemon.
973  *
974  * => return true if it seems to be worth to do uvm_wait.
975  *
976  * XXX should be tunable.
977  * XXX should consider pools, etc?
978  */
979 
980 bool
981 uvm_reclaimable(void)
982 {
983 	int filepages;
984 	int active, inactive;
985 
986 	/*
987 	 * if swap is not full, no problem.
988 	 */
989 
990 	if (!uvm_swapisfull()) {
991 		return true;
992 	}
993 
994 	/*
995 	 * file-backed pages can be reclaimed even when swap is full.
996 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
997 	 *
998 	 * XXX assume the worst case, ie. all wired pages are file-backed.
999 	 *
1000 	 * XXX should consider about other reclaimable memory.
1001 	 * XXX ie. pools, traditional buffer cache.
1002 	 */
1003 
1004 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1005 	uvm_estimatepageable(&active, &inactive);
1006 	if (filepages >= MIN((active + inactive) >> 4,
1007 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
1008 		return true;
1009 	}
1010 
1011 	/*
1012 	 * kill the process, fail allocation, etc..
1013 	 */
1014 
1015 	return false;
1016 }
1017 
1018 void
1019 uvm_estimatepageable(int *active, int *inactive)
1020 {
1021 
1022 	uvmpdpol_estimatepageable(active, inactive);
1023 }
1024 
1025