1 /* $NetBSD: nfs_socket.c,v 1.78 2003/02/01 06:23:49 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1991, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 39 */ 40 41 /* 42 * Socket operations for use by nfs 43 */ 44 45 #include <sys/cdefs.h> 46 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.78 2003/02/01 06:23:49 thorpej Exp $"); 47 48 #include "fs_nfs.h" 49 #include "opt_nfs.h" 50 #include "opt_nfsserver.h" 51 #include "opt_inet.h" 52 53 #include <sys/param.h> 54 #include <sys/systm.h> 55 #include <sys/callout.h> 56 #include <sys/proc.h> 57 #include <sys/mount.h> 58 #include <sys/kernel.h> 59 #include <sys/mbuf.h> 60 #include <sys/vnode.h> 61 #include <sys/domain.h> 62 #include <sys/protosw.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/syslog.h> 66 #include <sys/tprintf.h> 67 #include <sys/namei.h> 68 #include <sys/signal.h> 69 #include <sys/signalvar.h> 70 71 #include <netinet/in.h> 72 #include <netinet/tcp.h> 73 74 #include <nfs/rpcv2.h> 75 #include <nfs/nfsproto.h> 76 #include <nfs/nfs.h> 77 #include <nfs/xdr_subs.h> 78 #include <nfs/nfsm_subs.h> 79 #include <nfs/nfsmount.h> 80 #include <nfs/nfsnode.h> 81 #include <nfs/nfsrtt.h> 82 #include <nfs/nqnfs.h> 83 #include <nfs/nfs_var.h> 84 85 MALLOC_DEFINE(M_NFSREQ, "NFS req", "NFS request header"); 86 87 #define TRUE 1 88 #define FALSE 0 89 90 /* 91 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 92 * Use the mean and mean deviation of rtt for the appropriate type of rpc 93 * for the frequent rpcs and a default for the others. 94 * The justification for doing "other" this way is that these rpcs 95 * happen so infrequently that timer est. would probably be stale. 96 * Also, since many of these rpcs are 97 * non-idempotent, a conservative timeout is desired. 98 * getattr, lookup - A+2D 99 * read, write - A+4D 100 * other - nm_timeo 101 */ 102 #define NFS_RTO(n, t) \ 103 ((t) == 0 ? (n)->nm_timeo : \ 104 ((t) < 3 ? \ 105 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 106 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 107 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 108 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 109 /* 110 * External data, mostly RPC constants in XDR form 111 */ 112 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 113 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 114 rpc_auth_kerb; 115 extern u_int32_t nfs_prog, nqnfs_prog; 116 extern time_t nqnfsstarttime; 117 extern const int nfsv3_procid[NFS_NPROCS]; 118 extern int nfs_ticks; 119 120 /* 121 * Defines which timer to use for the procnum. 122 * 0 - default 123 * 1 - getattr 124 * 2 - lookup 125 * 3 - read 126 * 4 - write 127 */ 128 static const int proct[NFS_NPROCS] = { 129 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 130 0, 0, 0, 131 }; 132 133 /* 134 * There is a congestion window for outstanding rpcs maintained per mount 135 * point. The cwnd size is adjusted in roughly the way that: 136 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 137 * SIGCOMM '88". ACM, August 1988. 138 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 139 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 140 * of rpcs is in progress. 141 * (The sent count and cwnd are scaled for integer arith.) 142 * Variants of "slow start" were tried and were found to be too much of a 143 * performance hit (ave. rtt 3 times larger), 144 * I suspect due to the large rtt that nfs rpcs have. 145 */ 146 #define NFS_CWNDSCALE 256 147 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 148 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 149 int nfsrtton = 0; 150 struct nfsrtt nfsrtt; 151 struct nfsreqhead nfs_reqq; 152 153 struct callout nfs_timer_ch = CALLOUT_INITIALIZER; 154 155 /* 156 * Initialize sockets and congestion for a new NFS connection. 157 * We do not free the sockaddr if error. 158 */ 159 int 160 nfs_connect(nmp, rep) 161 struct nfsmount *nmp; 162 struct nfsreq *rep; 163 { 164 struct socket *so; 165 int s, error, rcvreserve, sndreserve; 166 struct sockaddr *saddr; 167 struct sockaddr_in *sin; 168 #ifdef INET6 169 struct sockaddr_in6 *sin6; 170 #endif 171 struct mbuf *m; 172 173 nmp->nm_so = (struct socket *)0; 174 saddr = mtod(nmp->nm_nam, struct sockaddr *); 175 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 176 nmp->nm_soproto); 177 if (error) 178 goto bad; 179 so = nmp->nm_so; 180 nmp->nm_soflags = so->so_proto->pr_flags; 181 182 /* 183 * Some servers require that the client port be a reserved port number. 184 */ 185 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 186 MGET(m, M_WAIT, MT_SOOPTS); 187 *mtod(m, int32_t *) = IP_PORTRANGE_LOW; 188 m->m_len = sizeof(int32_t); 189 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m))) 190 goto bad; 191 MGET(m, M_WAIT, MT_SONAME); 192 sin = mtod(m, struct sockaddr_in *); 193 sin->sin_len = m->m_len = sizeof (struct sockaddr_in); 194 sin->sin_family = AF_INET; 195 sin->sin_addr.s_addr = INADDR_ANY; 196 sin->sin_port = 0; 197 error = sobind(so, m, &proc0); 198 m_freem(m); 199 if (error) 200 goto bad; 201 } 202 #ifdef INET6 203 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) { 204 MGET(m, M_WAIT, MT_SOOPTS); 205 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW; 206 m->m_len = sizeof(int32_t); 207 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m))) 208 goto bad; 209 MGET(m, M_WAIT, MT_SONAME); 210 sin6 = mtod(m, struct sockaddr_in6 *); 211 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6); 212 sin6->sin6_family = AF_INET6; 213 sin6->sin6_addr = in6addr_any; 214 sin6->sin6_port = 0; 215 error = sobind(so, m, &proc0); 216 m_freem(m); 217 if (error) 218 goto bad; 219 } 220 #endif 221 222 /* 223 * Protocols that do not require connections may be optionally left 224 * unconnected for servers that reply from a port other than NFS_PORT. 225 */ 226 if (nmp->nm_flag & NFSMNT_NOCONN) { 227 if (nmp->nm_soflags & PR_CONNREQUIRED) { 228 error = ENOTCONN; 229 goto bad; 230 } 231 } else { 232 error = soconnect(so, nmp->nm_nam); 233 if (error) 234 goto bad; 235 236 /* 237 * Wait for the connection to complete. Cribbed from the 238 * connect system call but with the wait timing out so 239 * that interruptible mounts don't hang here for a long time. 240 */ 241 s = splsoftnet(); 242 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 243 (void) tsleep((caddr_t)&so->so_timeo, PSOCK, 244 "nfscn1", 2 * hz); 245 if ((so->so_state & SS_ISCONNECTING) && 246 so->so_error == 0 && rep && 247 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){ 248 so->so_state &= ~SS_ISCONNECTING; 249 splx(s); 250 goto bad; 251 } 252 } 253 if (so->so_error) { 254 error = so->so_error; 255 so->so_error = 0; 256 splx(s); 257 goto bad; 258 } 259 splx(s); 260 } 261 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) { 262 so->so_rcv.sb_timeo = (5 * hz); 263 so->so_snd.sb_timeo = (5 * hz); 264 } else { 265 so->so_rcv.sb_timeo = 0; 266 so->so_snd.sb_timeo = 0; 267 } 268 if (nmp->nm_sotype == SOCK_DGRAM) { 269 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 270 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 271 NFS_MAXPKTHDR) * 2; 272 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 273 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 274 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 275 NFS_MAXPKTHDR) * 2; 276 } else { 277 if (nmp->nm_sotype != SOCK_STREAM) 278 panic("nfscon sotype"); 279 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 280 MGET(m, M_WAIT, MT_SOOPTS); 281 *mtod(m, int32_t *) = 1; 282 m->m_len = sizeof(int32_t); 283 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m); 284 } 285 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 286 MGET(m, M_WAIT, MT_SOOPTS); 287 *mtod(m, int32_t *) = 1; 288 m->m_len = sizeof(int32_t); 289 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m); 290 } 291 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 292 sizeof (u_int32_t)) * 2; 293 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 294 sizeof (u_int32_t)) * 2; 295 } 296 error = soreserve(so, sndreserve, rcvreserve); 297 if (error) 298 goto bad; 299 so->so_rcv.sb_flags |= SB_NOINTR; 300 so->so_snd.sb_flags |= SB_NOINTR; 301 302 /* Initialize other non-zero congestion variables */ 303 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] = 304 NFS_TIMEO << 3; 305 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 306 nmp->nm_sdrtt[3] = 0; 307 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 308 nmp->nm_sent = 0; 309 nmp->nm_timeouts = 0; 310 return (0); 311 312 bad: 313 nfs_disconnect(nmp); 314 return (error); 315 } 316 317 /* 318 * Reconnect routine: 319 * Called when a connection is broken on a reliable protocol. 320 * - clean up the old socket 321 * - nfs_connect() again 322 * - set R_MUSTRESEND for all outstanding requests on mount point 323 * If this fails the mount point is DEAD! 324 * nb: Must be called with the nfs_sndlock() set on the mount point. 325 */ 326 int 327 nfs_reconnect(rep) 328 struct nfsreq *rep; 329 { 330 struct nfsreq *rp; 331 struct nfsmount *nmp = rep->r_nmp; 332 int error; 333 334 nfs_disconnect(nmp); 335 while ((error = nfs_connect(nmp, rep)) != 0) { 336 if (error == EINTR || error == ERESTART) 337 return (EINTR); 338 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscn2", 0); 339 } 340 341 /* 342 * Loop through outstanding request list and fix up all requests 343 * on old socket. 344 */ 345 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { 346 if (rp->r_nmp == nmp) 347 rp->r_flags |= R_MUSTRESEND; 348 } 349 return (0); 350 } 351 352 /* 353 * NFS disconnect. Clean up and unlink. 354 */ 355 void 356 nfs_disconnect(nmp) 357 struct nfsmount *nmp; 358 { 359 struct socket *so; 360 int drain = 0; 361 362 if (nmp->nm_so) { 363 so = nmp->nm_so; 364 nmp->nm_so = (struct socket *)0; 365 soshutdown(so, 2); 366 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0; 367 if (drain) { 368 /* 369 * soshutdown() above should wake up the current 370 * listener. 371 * Now wake up those waiting for the receive lock, and 372 * wait for them to go away unhappy, to prevent *nmp 373 * from evaporating while they're sleeping. 374 */ 375 while (nmp->nm_waiters > 0) { 376 wakeup (&nmp->nm_iflag); 377 (void) tsleep(&nmp->nm_waiters, PVFS, 378 "nfsdis", 0); 379 } 380 } 381 soclose(so); 382 } 383 #ifdef DIAGNOSTIC 384 if (drain && (nmp->nm_waiters > 0)) 385 panic("nfs_disconnect: waiters left after drain?"); 386 #endif 387 } 388 389 void 390 nfs_safedisconnect(nmp) 391 struct nfsmount *nmp; 392 { 393 struct nfsreq dummyreq; 394 395 memset(&dummyreq, 0, sizeof(dummyreq)); 396 dummyreq.r_nmp = nmp; 397 nfs_rcvlock(&dummyreq); /* XXX ignored error return */ 398 nfs_disconnect(nmp); 399 nfs_rcvunlock(&nmp->nm_iflag); 400 } 401 402 /* 403 * This is the nfs send routine. For connection based socket types, it 404 * must be called with an nfs_sndlock() on the socket. 405 * "rep == NULL" indicates that it has been called from a server. 406 * For the client side: 407 * - return EINTR if the RPC is terminated, 0 otherwise 408 * - set R_MUSTRESEND if the send fails for any reason 409 * - do any cleanup required by recoverable socket errors (? ? ?) 410 * For the server side: 411 * - return EINTR or ERESTART if interrupted by a signal 412 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 413 * - do any cleanup required by recoverable socket errors (? ? ?) 414 */ 415 int 416 nfs_send(so, nam, top, rep) 417 struct socket *so; 418 struct mbuf *nam; 419 struct mbuf *top; 420 struct nfsreq *rep; 421 { 422 struct mbuf *sendnam; 423 int error, soflags, flags; 424 425 if (rep) { 426 if (rep->r_flags & R_SOFTTERM) { 427 m_freem(top); 428 return (EINTR); 429 } 430 if ((so = rep->r_nmp->nm_so) == NULL) { 431 rep->r_flags |= R_MUSTRESEND; 432 m_freem(top); 433 return (0); 434 } 435 rep->r_flags &= ~R_MUSTRESEND; 436 soflags = rep->r_nmp->nm_soflags; 437 } else 438 soflags = so->so_proto->pr_flags; 439 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 440 sendnam = (struct mbuf *)0; 441 else 442 sendnam = nam; 443 if (so->so_type == SOCK_SEQPACKET) 444 flags = MSG_EOR; 445 else 446 flags = 0; 447 448 error = (*so->so_send)(so, sendnam, (struct uio *)0, top, 449 (struct mbuf *)0, flags); 450 if (error) { 451 if (rep) { 452 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 453 /* 454 * We're too fast for the network/driver, 455 * and UDP isn't flowcontrolled. 456 * We need to resend. This is not fatal, 457 * just try again. 458 * 459 * Could be smarter here by doing some sort 460 * of a backoff, but this is rare. 461 */ 462 rep->r_flags |= R_MUSTRESEND; 463 } else { 464 log(LOG_INFO, "nfs send error %d for %s\n", 465 error, 466 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 467 /* 468 * Deal with errors for the client side. 469 */ 470 if (rep->r_flags & R_SOFTTERM) 471 error = EINTR; 472 else 473 rep->r_flags |= R_MUSTRESEND; 474 } 475 } else { 476 /* 477 * See above. This error can happen under normal 478 * circumstances and the log is too noisy. 479 * The error will still show up in nfsstat. 480 */ 481 if (error != ENOBUFS || so->so_type != SOCK_DGRAM) 482 log(LOG_INFO, "nfsd send error %d\n", error); 483 } 484 485 /* 486 * Handle any recoverable (soft) socket errors here. (? ? ?) 487 */ 488 if (error != EINTR && error != ERESTART && 489 error != EWOULDBLOCK && error != EPIPE) 490 error = 0; 491 } 492 return (error); 493 } 494 495 #ifdef NFS 496 /* 497 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 498 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 499 * Mark and consolidate the data into a new mbuf list. 500 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 501 * small mbufs. 502 * For SOCK_STREAM we must be very careful to read an entire record once 503 * we have read any of it, even if the system call has been interrupted. 504 */ 505 int 506 nfs_receive(rep, aname, mp) 507 struct nfsreq *rep; 508 struct mbuf **aname; 509 struct mbuf **mp; 510 { 511 struct socket *so; 512 struct uio auio; 513 struct iovec aio; 514 struct mbuf *m; 515 struct mbuf *control; 516 u_int32_t len; 517 struct mbuf **getnam; 518 int error, sotype, rcvflg; 519 struct proc *p = curproc; /* XXX */ 520 521 /* 522 * Set up arguments for soreceive() 523 */ 524 *mp = (struct mbuf *)0; 525 *aname = (struct mbuf *)0; 526 sotype = rep->r_nmp->nm_sotype; 527 528 /* 529 * For reliable protocols, lock against other senders/receivers 530 * in case a reconnect is necessary. 531 * For SOCK_STREAM, first get the Record Mark to find out how much 532 * more there is to get. 533 * We must lock the socket against other receivers 534 * until we have an entire rpc request/reply. 535 */ 536 if (sotype != SOCK_DGRAM) { 537 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep); 538 if (error) 539 return (error); 540 tryagain: 541 /* 542 * Check for fatal errors and resending request. 543 */ 544 /* 545 * Ugh: If a reconnect attempt just happened, nm_so 546 * would have changed. NULL indicates a failed 547 * attempt that has essentially shut down this 548 * mount point. 549 */ 550 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 551 nfs_sndunlock(&rep->r_nmp->nm_iflag); 552 return (EINTR); 553 } 554 so = rep->r_nmp->nm_so; 555 if (!so) { 556 error = nfs_reconnect(rep); 557 if (error) { 558 nfs_sndunlock(&rep->r_nmp->nm_iflag); 559 return (error); 560 } 561 goto tryagain; 562 } 563 while (rep->r_flags & R_MUSTRESEND) { 564 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 565 nfsstats.rpcretries++; 566 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 567 if (error) { 568 if (error == EINTR || error == ERESTART || 569 (error = nfs_reconnect(rep)) != 0) { 570 nfs_sndunlock(&rep->r_nmp->nm_iflag); 571 return (error); 572 } 573 goto tryagain; 574 } 575 } 576 nfs_sndunlock(&rep->r_nmp->nm_iflag); 577 if (sotype == SOCK_STREAM) { 578 aio.iov_base = (caddr_t) &len; 579 aio.iov_len = sizeof(u_int32_t); 580 auio.uio_iov = &aio; 581 auio.uio_iovcnt = 1; 582 auio.uio_segflg = UIO_SYSSPACE; 583 auio.uio_rw = UIO_READ; 584 auio.uio_offset = 0; 585 auio.uio_resid = sizeof(u_int32_t); 586 auio.uio_procp = p; 587 do { 588 rcvflg = MSG_WAITALL; 589 error = (*so->so_receive)(so, (struct mbuf **)0, &auio, 590 (struct mbuf **)0, (struct mbuf **)0, &rcvflg); 591 if (error == EWOULDBLOCK && rep) { 592 if (rep->r_flags & R_SOFTTERM) 593 return (EINTR); 594 } 595 } while (error == EWOULDBLOCK); 596 if (!error && auio.uio_resid > 0) { 597 /* 598 * Don't log a 0 byte receive; it means 599 * that the socket has been closed, and 600 * can happen during normal operation 601 * (forcible unmount or Solaris server). 602 */ 603 if (auio.uio_resid != sizeof (u_int32_t)) 604 log(LOG_INFO, 605 "short receive (%lu/%lu) from nfs server %s\n", 606 (u_long)sizeof(u_int32_t) - auio.uio_resid, 607 (u_long)sizeof(u_int32_t), 608 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 609 error = EPIPE; 610 } 611 if (error) 612 goto errout; 613 len = ntohl(len) & ~0x80000000; 614 /* 615 * This is SERIOUS! We are out of sync with the sender 616 * and forcing a disconnect/reconnect is all I can do. 617 */ 618 if (len > NFS_MAXPACKET) { 619 log(LOG_ERR, "%s (%d) from nfs server %s\n", 620 "impossible packet length", 621 len, 622 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 623 error = EFBIG; 624 goto errout; 625 } 626 auio.uio_resid = len; 627 do { 628 rcvflg = MSG_WAITALL; 629 error = (*so->so_receive)(so, (struct mbuf **)0, 630 &auio, mp, (struct mbuf **)0, &rcvflg); 631 } while (error == EWOULDBLOCK || error == EINTR || 632 error == ERESTART); 633 if (!error && auio.uio_resid > 0) { 634 if (len != auio.uio_resid) 635 log(LOG_INFO, 636 "short receive (%lu/%d) from nfs server %s\n", 637 (u_long)len - auio.uio_resid, len, 638 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 639 error = EPIPE; 640 } 641 } else { 642 /* 643 * NB: Since uio_resid is big, MSG_WAITALL is ignored 644 * and soreceive() will return when it has either a 645 * control msg or a data msg. 646 * We have no use for control msg., but must grab them 647 * and then throw them away so we know what is going 648 * on. 649 */ 650 auio.uio_resid = len = 100000000; /* Anything Big */ 651 auio.uio_procp = p; 652 do { 653 rcvflg = 0; 654 error = (*so->so_receive)(so, (struct mbuf **)0, 655 &auio, mp, &control, &rcvflg); 656 if (control) 657 m_freem(control); 658 if (error == EWOULDBLOCK && rep) { 659 if (rep->r_flags & R_SOFTTERM) 660 return (EINTR); 661 } 662 } while (error == EWOULDBLOCK || 663 (!error && *mp == NULL && control)); 664 if ((rcvflg & MSG_EOR) == 0) 665 printf("Egad!!\n"); 666 if (!error && *mp == NULL) 667 error = EPIPE; 668 len -= auio.uio_resid; 669 } 670 errout: 671 if (error && error != EINTR && error != ERESTART) { 672 m_freem(*mp); 673 *mp = (struct mbuf *)0; 674 if (error != EPIPE) 675 log(LOG_INFO, 676 "receive error %d from nfs server %s\n", 677 error, 678 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 679 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep); 680 if (!error) 681 error = nfs_reconnect(rep); 682 if (!error) 683 goto tryagain; 684 else 685 nfs_sndunlock(&rep->r_nmp->nm_iflag); 686 } 687 } else { 688 if ((so = rep->r_nmp->nm_so) == NULL) 689 return (EACCES); 690 if (so->so_state & SS_ISCONNECTED) 691 getnam = (struct mbuf **)0; 692 else 693 getnam = aname; 694 auio.uio_resid = len = 1000000; 695 auio.uio_procp = p; 696 do { 697 rcvflg = 0; 698 error = (*so->so_receive)(so, getnam, &auio, mp, 699 (struct mbuf **)0, &rcvflg); 700 if (error == EWOULDBLOCK && 701 (rep->r_flags & R_SOFTTERM)) 702 return (EINTR); 703 } while (error == EWOULDBLOCK); 704 len -= auio.uio_resid; 705 if (!error && *mp == NULL) 706 error = EPIPE; 707 } 708 if (error) { 709 m_freem(*mp); 710 *mp = (struct mbuf *)0; 711 } 712 return (error); 713 } 714 715 /* 716 * Implement receipt of reply on a socket. 717 * We must search through the list of received datagrams matching them 718 * with outstanding requests using the xid, until ours is found. 719 */ 720 /* ARGSUSED */ 721 int 722 nfs_reply(myrep) 723 struct nfsreq *myrep; 724 { 725 struct nfsreq *rep; 726 struct nfsmount *nmp = myrep->r_nmp; 727 int32_t t1; 728 struct mbuf *mrep, *nam, *md; 729 u_int32_t rxid, *tl; 730 caddr_t dpos, cp2; 731 int error; 732 733 /* 734 * Loop around until we get our own reply 735 */ 736 for (;;) { 737 /* 738 * Lock against other receivers so that I don't get stuck in 739 * sbwait() after someone else has received my reply for me. 740 * Also necessary for connection based protocols to avoid 741 * race conditions during a reconnect. 742 */ 743 error = nfs_rcvlock(myrep); 744 if (error == EALREADY) 745 return (0); 746 if (error) 747 return (error); 748 /* 749 * Get the next Rpc reply off the socket 750 */ 751 nmp->nm_waiters++; 752 error = nfs_receive(myrep, &nam, &mrep); 753 nfs_rcvunlock(&nmp->nm_iflag); 754 if (error) { 755 756 if (nmp->nm_iflag & NFSMNT_DISMNT) { 757 /* 758 * Oops, we're going away now.. 759 */ 760 nmp->nm_waiters--; 761 wakeup (&nmp->nm_waiters); 762 return error; 763 } 764 nmp->nm_waiters--; 765 /* 766 * Ignore routing errors on connectionless protocols? ? 767 */ 768 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 769 nmp->nm_so->so_error = 0; 770 #ifdef DEBUG 771 printf("nfs_reply: ignoring error %d\n", error); 772 #endif 773 if (myrep->r_flags & R_GETONEREP) 774 return (0); 775 continue; 776 } 777 return (error); 778 } 779 nmp->nm_waiters--; 780 if (nam) 781 m_freem(nam); 782 783 /* 784 * Get the xid and check that it is an rpc reply 785 */ 786 md = mrep; 787 dpos = mtod(md, caddr_t); 788 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 789 rxid = *tl++; 790 if (*tl != rpc_reply) { 791 #ifndef NFS_V2_ONLY 792 if (nmp->nm_flag & NFSMNT_NQNFS) { 793 if (nqnfs_callback(nmp, mrep, md, dpos)) 794 nfsstats.rpcinvalid++; 795 } else 796 #endif 797 { 798 nfsstats.rpcinvalid++; 799 m_freem(mrep); 800 } 801 nfsmout: 802 if (myrep->r_flags & R_GETONEREP) 803 return (0); 804 continue; 805 } 806 807 /* 808 * Loop through the request list to match up the reply 809 * Iff no match, just drop the datagram 810 */ 811 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 812 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 813 /* Found it.. */ 814 rep->r_mrep = mrep; 815 rep->r_md = md; 816 rep->r_dpos = dpos; 817 if (nfsrtton) { 818 struct rttl *rt; 819 820 rt = &nfsrtt.rttl[nfsrtt.pos]; 821 rt->proc = rep->r_procnum; 822 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 823 rt->sent = nmp->nm_sent; 824 rt->cwnd = nmp->nm_cwnd; 825 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 826 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 827 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid; 828 rt->tstamp = time; 829 if (rep->r_flags & R_TIMING) 830 rt->rtt = rep->r_rtt; 831 else 832 rt->rtt = 1000000; 833 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 834 } 835 /* 836 * Update congestion window. 837 * Do the additive increase of 838 * one rpc/rtt. 839 */ 840 if (nmp->nm_cwnd <= nmp->nm_sent) { 841 nmp->nm_cwnd += 842 (NFS_CWNDSCALE * NFS_CWNDSCALE + 843 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 844 if (nmp->nm_cwnd > NFS_MAXCWND) 845 nmp->nm_cwnd = NFS_MAXCWND; 846 } 847 rep->r_flags &= ~R_SENT; 848 nmp->nm_sent -= NFS_CWNDSCALE; 849 /* 850 * Update rtt using a gain of 0.125 on the mean 851 * and a gain of 0.25 on the deviation. 852 */ 853 if (rep->r_flags & R_TIMING) { 854 /* 855 * Since the timer resolution of 856 * NFS_HZ is so course, it can often 857 * result in r_rtt == 0. Since 858 * r_rtt == N means that the actual 859 * rtt is between N+dt and N+2-dt ticks, 860 * add 1. 861 */ 862 t1 = rep->r_rtt + 1; 863 t1 -= (NFS_SRTT(rep) >> 3); 864 NFS_SRTT(rep) += t1; 865 if (t1 < 0) 866 t1 = -t1; 867 t1 -= (NFS_SDRTT(rep) >> 2); 868 NFS_SDRTT(rep) += t1; 869 } 870 nmp->nm_timeouts = 0; 871 break; 872 } 873 } 874 /* 875 * If not matched to a request, drop it. 876 * If it's mine, get out. 877 */ 878 if (rep == 0) { 879 nfsstats.rpcunexpected++; 880 m_freem(mrep); 881 } else if (rep == myrep) { 882 if (rep->r_mrep == NULL) 883 panic("nfsreply nil"); 884 return (0); 885 } 886 if (myrep->r_flags & R_GETONEREP) 887 return (0); 888 } 889 } 890 891 /* 892 * nfs_request - goes something like this 893 * - fill in request struct 894 * - links it into list 895 * - calls nfs_send() for first transmit 896 * - calls nfs_receive() to get reply 897 * - break down rpc header and return with nfs reply pointed to 898 * by mrep or error 899 * nb: always frees up mreq mbuf list 900 */ 901 int 902 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp) 903 struct vnode *vp; 904 struct mbuf *mrest; 905 int procnum; 906 struct proc *procp; 907 struct ucred *cred; 908 struct mbuf **mrp; 909 struct mbuf **mdp; 910 caddr_t *dposp; 911 { 912 struct mbuf *m, *mrep; 913 struct nfsreq *rep; 914 u_int32_t *tl; 915 int i; 916 struct nfsmount *nmp; 917 struct mbuf *md, *mheadend; 918 char nickv[RPCX_NICKVERF]; 919 time_t reqtime, waituntil; 920 caddr_t dpos, cp2; 921 int t1, s, error = 0, mrest_len, auth_len, auth_type; 922 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0; 923 int verf_len, verf_type; 924 u_int32_t xid; 925 char *auth_str, *verf_str; 926 NFSKERBKEY_T key; /* save session key */ 927 #ifndef NFS_V2_ONLY 928 int nqlflag, cachable; 929 u_quad_t frev; 930 struct nfsnode *np; 931 #endif 932 933 KASSERT(cred != NULL); 934 nmp = VFSTONFS(vp->v_mount); 935 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 936 rep->r_nmp = nmp; 937 rep->r_vp = vp; 938 rep->r_procp = procp; 939 rep->r_procnum = procnum; 940 i = 0; 941 m = mrest; 942 while (m) { 943 i += m->m_len; 944 m = m->m_next; 945 } 946 mrest_len = i; 947 948 /* 949 * Get the RPC header with authorization. 950 */ 951 kerbauth: 952 verf_str = auth_str = (char *)0; 953 if (nmp->nm_flag & NFSMNT_KERB) { 954 verf_str = nickv; 955 verf_len = sizeof (nickv); 956 auth_type = RPCAUTH_KERB4; 957 memset((caddr_t)key, 0, sizeof (key)); 958 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 959 &auth_len, verf_str, verf_len)) { 960 error = nfs_getauth(nmp, rep, cred, &auth_str, 961 &auth_len, verf_str, &verf_len, key); 962 if (error) { 963 free((caddr_t)rep, M_NFSREQ); 964 m_freem(mrest); 965 return (error); 966 } 967 } 968 } else { 969 auth_type = RPCAUTH_UNIX; 970 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ? 971 nmp->nm_numgrps : cred->cr_ngroups) << 2) + 972 5 * NFSX_UNSIGNED; 973 } 974 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 975 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 976 if (auth_str) 977 free(auth_str, M_TEMP); 978 979 /* 980 * For stream protocols, insert a Sun RPC Record Mark. 981 */ 982 if (nmp->nm_sotype == SOCK_STREAM) { 983 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 984 *mtod(m, u_int32_t *) = htonl(0x80000000 | 985 (m->m_pkthdr.len - NFSX_UNSIGNED)); 986 } 987 rep->r_mreq = m; 988 rep->r_xid = xid; 989 tryagain: 990 if (nmp->nm_flag & NFSMNT_SOFT) 991 rep->r_retry = nmp->nm_retry; 992 else 993 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 994 rep->r_rtt = rep->r_rexmit = 0; 995 if (proct[procnum] > 0) 996 rep->r_flags = R_TIMING; 997 else 998 rep->r_flags = 0; 999 rep->r_mrep = NULL; 1000 1001 /* 1002 * Do the client side RPC. 1003 */ 1004 nfsstats.rpcrequests++; 1005 /* 1006 * Chain request into list of outstanding requests. Be sure 1007 * to put it LAST so timer finds oldest requests first. 1008 */ 1009 s = splsoftnet(); 1010 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1011 1012 /* Get send time for nqnfs */ 1013 reqtime = time.tv_sec; 1014 1015 /* 1016 * If backing off another request or avoiding congestion, don't 1017 * send this one now but let timer do it. If not timing a request, 1018 * do it now. 1019 */ 1020 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1021 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1022 nmp->nm_sent < nmp->nm_cwnd)) { 1023 splx(s); 1024 if (nmp->nm_soflags & PR_CONNREQUIRED) 1025 error = nfs_sndlock(&nmp->nm_iflag, rep); 1026 if (!error) { 1027 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 1028 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep); 1029 if (nmp->nm_soflags & PR_CONNREQUIRED) 1030 nfs_sndunlock(&nmp->nm_iflag); 1031 } 1032 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 1033 nmp->nm_sent += NFS_CWNDSCALE; 1034 rep->r_flags |= R_SENT; 1035 } 1036 } else { 1037 splx(s); 1038 rep->r_rtt = -1; 1039 } 1040 1041 /* 1042 * Wait for the reply from our send or the timer's. 1043 */ 1044 if (!error || error == EPIPE) 1045 error = nfs_reply(rep); 1046 1047 /* 1048 * RPC done, unlink the request. 1049 */ 1050 s = splsoftnet(); 1051 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1052 splx(s); 1053 1054 /* 1055 * Decrement the outstanding request count. 1056 */ 1057 if (rep->r_flags & R_SENT) { 1058 rep->r_flags &= ~R_SENT; /* paranoia */ 1059 nmp->nm_sent -= NFS_CWNDSCALE; 1060 } 1061 1062 /* 1063 * If there was a successful reply and a tprintf msg. 1064 * tprintf a response. 1065 */ 1066 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1067 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname, 1068 "is alive again"); 1069 mrep = rep->r_mrep; 1070 md = rep->r_md; 1071 dpos = rep->r_dpos; 1072 if (error) { 1073 m_freem(rep->r_mreq); 1074 free((caddr_t)rep, M_NFSREQ); 1075 return (error); 1076 } 1077 1078 /* 1079 * break down the rpc header and check if ok 1080 */ 1081 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1082 if (*tl++ == rpc_msgdenied) { 1083 if (*tl == rpc_mismatch) 1084 error = EOPNOTSUPP; 1085 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1086 if (!failed_auth) { 1087 failed_auth++; 1088 mheadend->m_next = (struct mbuf *)0; 1089 m_freem(mrep); 1090 m_freem(rep->r_mreq); 1091 goto kerbauth; 1092 } else 1093 error = EAUTH; 1094 } else 1095 error = EACCES; 1096 m_freem(mrep); 1097 m_freem(rep->r_mreq); 1098 free((caddr_t)rep, M_NFSREQ); 1099 return (error); 1100 } 1101 1102 /* 1103 * Grab any Kerberos verifier, otherwise just throw it away. 1104 */ 1105 verf_type = fxdr_unsigned(int, *tl++); 1106 i = fxdr_unsigned(int32_t, *tl); 1107 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1108 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1109 if (error) 1110 goto nfsmout; 1111 } else if (i > 0) 1112 nfsm_adv(nfsm_rndup(i)); 1113 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1114 /* 0 == ok */ 1115 if (*tl == 0) { 1116 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1117 if (*tl != 0) { 1118 error = fxdr_unsigned(int, *tl); 1119 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1120 error == NFSERR_TRYLATER) { 1121 m_freem(mrep); 1122 error = 0; 1123 waituntil = time.tv_sec + trylater_delay; 1124 while (time.tv_sec < waituntil) 1125 (void) tsleep((caddr_t)&lbolt, 1126 PSOCK, "nqnfstry", 0); 1127 trylater_delay *= nfs_backoff[trylater_cnt]; 1128 if (trylater_cnt < 7) 1129 trylater_cnt++; 1130 goto tryagain; 1131 } 1132 1133 /* 1134 * If the File Handle was stale, invalidate the 1135 * lookup cache, just in case. 1136 */ 1137 if (error == ESTALE) 1138 cache_purge(vp); 1139 if (nmp->nm_flag & NFSMNT_NFSV3) { 1140 *mrp = mrep; 1141 *mdp = md; 1142 *dposp = dpos; 1143 error |= NFSERR_RETERR; 1144 } else 1145 m_freem(mrep); 1146 m_freem(rep->r_mreq); 1147 free((caddr_t)rep, M_NFSREQ); 1148 return (error); 1149 } 1150 1151 #ifndef NFS_V2_ONLY 1152 /* 1153 * For nqnfs, get any lease in reply 1154 */ 1155 if (nmp->nm_flag & NFSMNT_NQNFS) { 1156 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1157 if (*tl) { 1158 np = VTONFS(vp); 1159 nqlflag = fxdr_unsigned(int, *tl); 1160 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED); 1161 cachable = fxdr_unsigned(int, *tl++); 1162 reqtime += fxdr_unsigned(int, *tl++); 1163 if (reqtime > time.tv_sec) { 1164 frev = fxdr_hyper(tl); 1165 nqnfs_clientlease(nmp, np, nqlflag, 1166 cachable, reqtime, frev); 1167 } 1168 } 1169 } 1170 #endif 1171 *mrp = mrep; 1172 *mdp = md; 1173 *dposp = dpos; 1174 m_freem(rep->r_mreq); 1175 FREE((caddr_t)rep, M_NFSREQ); 1176 return (0); 1177 } 1178 m_freem(mrep); 1179 error = EPROTONOSUPPORT; 1180 nfsmout: 1181 m_freem(rep->r_mreq); 1182 free((caddr_t)rep, M_NFSREQ); 1183 return (error); 1184 } 1185 #endif /* NFS */ 1186 1187 /* 1188 * Generate the rpc reply header 1189 * siz arg. is used to decide if adding a cluster is worthwhile 1190 */ 1191 int 1192 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) 1193 int siz; 1194 struct nfsrv_descript *nd; 1195 struct nfssvc_sock *slp; 1196 int err; 1197 int cache; 1198 u_quad_t *frev; 1199 struct mbuf **mrq; 1200 struct mbuf **mbp; 1201 caddr_t *bposp; 1202 { 1203 u_int32_t *tl; 1204 struct mbuf *mreq; 1205 caddr_t bpos; 1206 struct mbuf *mb, *mb2; 1207 1208 MGETHDR(mreq, M_WAIT, MT_DATA); 1209 mb = mreq; 1210 /* 1211 * If this is a big reply, use a cluster else 1212 * try and leave leading space for the lower level headers. 1213 */ 1214 siz += RPC_REPLYSIZ; 1215 if (siz >= max_datalen) { 1216 MCLGET(mreq, M_WAIT); 1217 } else 1218 mreq->m_data += max_hdr; 1219 tl = mtod(mreq, u_int32_t *); 1220 mreq->m_len = 6 * NFSX_UNSIGNED; 1221 bpos = ((caddr_t)tl) + mreq->m_len; 1222 *tl++ = txdr_unsigned(nd->nd_retxid); 1223 *tl++ = rpc_reply; 1224 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1225 *tl++ = rpc_msgdenied; 1226 if (err & NFSERR_AUTHERR) { 1227 *tl++ = rpc_autherr; 1228 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1229 mreq->m_len -= NFSX_UNSIGNED; 1230 bpos -= NFSX_UNSIGNED; 1231 } else { 1232 *tl++ = rpc_mismatch; 1233 *tl++ = txdr_unsigned(RPC_VER2); 1234 *tl = txdr_unsigned(RPC_VER2); 1235 } 1236 } else { 1237 *tl++ = rpc_msgaccepted; 1238 1239 /* 1240 * For Kerberos authentication, we must send the nickname 1241 * verifier back, otherwise just RPCAUTH_NULL. 1242 */ 1243 if (nd->nd_flag & ND_KERBFULL) { 1244 struct nfsuid *nuidp; 1245 struct timeval ktvin, ktvout; 1246 1247 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first; 1248 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1249 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1250 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), 1251 &nuidp->nu_haddr, nd->nd_nam2))) 1252 break; 1253 } 1254 if (nuidp) { 1255 ktvin.tv_sec = 1256 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); 1257 ktvin.tv_usec = 1258 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1259 1260 /* 1261 * Encrypt the timestamp in ecb mode using the 1262 * session key. 1263 */ 1264 #ifdef NFSKERB 1265 XXX 1266 #endif 1267 1268 *tl++ = rpc_auth_kerb; 1269 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1270 *tl = ktvout.tv_sec; 1271 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1272 *tl++ = ktvout.tv_usec; 1273 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1274 } else { 1275 *tl++ = 0; 1276 *tl++ = 0; 1277 } 1278 } else { 1279 *tl++ = 0; 1280 *tl++ = 0; 1281 } 1282 switch (err) { 1283 case EPROGUNAVAIL: 1284 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1285 break; 1286 case EPROGMISMATCH: 1287 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1288 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1289 if (nd->nd_flag & ND_NQNFS) { 1290 *tl++ = txdr_unsigned(3); 1291 *tl = txdr_unsigned(3); 1292 } else { 1293 *tl++ = txdr_unsigned(2); 1294 *tl = txdr_unsigned(3); 1295 } 1296 break; 1297 case EPROCUNAVAIL: 1298 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1299 break; 1300 case EBADRPC: 1301 *tl = txdr_unsigned(RPC_GARBAGE); 1302 break; 1303 default: 1304 *tl = 0; 1305 if (err != NFSERR_RETVOID) { 1306 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1307 if (err) 1308 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1309 else 1310 *tl = 0; 1311 } 1312 break; 1313 }; 1314 } 1315 1316 /* 1317 * For nqnfs, piggyback lease as requested. 1318 */ 1319 if ((nd->nd_flag & ND_NQNFS) && err == 0) { 1320 if (nd->nd_flag & ND_LEASE) { 1321 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1322 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE); 1323 *tl++ = txdr_unsigned(cache); 1324 *tl++ = txdr_unsigned(nd->nd_duration); 1325 txdr_hyper(*frev, tl); 1326 } else { 1327 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1328 *tl = 0; 1329 } 1330 } 1331 if (mrq != NULL) 1332 *mrq = mreq; 1333 *mbp = mb; 1334 *bposp = bpos; 1335 if (err != 0 && err != NFSERR_RETVOID) 1336 nfsstats.srvrpc_errs++; 1337 return (0); 1338 } 1339 1340 /* 1341 * Nfs timer routine 1342 * Scan the nfsreq list and retranmit any requests that have timed out 1343 * To avoid retransmission attempts on STREAM sockets (in the future) make 1344 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1345 */ 1346 void 1347 nfs_timer(arg) 1348 void *arg; /* never used */ 1349 { 1350 struct nfsreq *rep; 1351 struct mbuf *m; 1352 struct socket *so; 1353 struct nfsmount *nmp; 1354 int timeo; 1355 int s, error; 1356 #ifdef NFSSERVER 1357 struct nfssvc_sock *slp; 1358 static long lasttime = 0; 1359 u_quad_t cur_usec; 1360 #endif 1361 1362 s = splsoftnet(); 1363 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 1364 nmp = rep->r_nmp; 1365 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1366 continue; 1367 if (nfs_sigintr(nmp, rep, rep->r_procp)) { 1368 rep->r_flags |= R_SOFTTERM; 1369 continue; 1370 } 1371 if (rep->r_rtt >= 0) { 1372 rep->r_rtt++; 1373 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1374 timeo = nmp->nm_timeo; 1375 else 1376 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1377 if (nmp->nm_timeouts > 0) 1378 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1379 if (rep->r_rtt <= timeo) 1380 continue; 1381 if (nmp->nm_timeouts < 8) 1382 nmp->nm_timeouts++; 1383 } 1384 /* 1385 * Check for server not responding 1386 */ 1387 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1388 rep->r_rexmit > nmp->nm_deadthresh) { 1389 nfs_msg(rep->r_procp, 1390 nmp->nm_mountp->mnt_stat.f_mntfromname, 1391 "not responding"); 1392 rep->r_flags |= R_TPRINTFMSG; 1393 } 1394 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1395 nfsstats.rpctimeouts++; 1396 rep->r_flags |= R_SOFTTERM; 1397 continue; 1398 } 1399 if (nmp->nm_sotype != SOCK_DGRAM) { 1400 if (++rep->r_rexmit > NFS_MAXREXMIT) 1401 rep->r_rexmit = NFS_MAXREXMIT; 1402 continue; 1403 } 1404 if ((so = nmp->nm_so) == NULL) 1405 continue; 1406 1407 /* 1408 * If there is enough space and the window allows.. 1409 * Resend it 1410 * Set r_rtt to -1 in case we fail to send it now. 1411 */ 1412 rep->r_rtt = -1; 1413 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1414 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1415 (rep->r_flags & R_SENT) || 1416 nmp->nm_sent < nmp->nm_cwnd) && 1417 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1418 if (so->so_state & SS_ISCONNECTED) 1419 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1420 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0); 1421 else 1422 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1423 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0); 1424 if (error) { 1425 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 1426 #ifdef DEBUG 1427 printf("nfs_timer: ignoring error %d\n", 1428 error); 1429 #endif 1430 so->so_error = 0; 1431 } 1432 } else { 1433 /* 1434 * Iff first send, start timing 1435 * else turn timing off, backoff timer 1436 * and divide congestion window by 2. 1437 */ 1438 if (rep->r_flags & R_SENT) { 1439 rep->r_flags &= ~R_TIMING; 1440 if (++rep->r_rexmit > NFS_MAXREXMIT) 1441 rep->r_rexmit = NFS_MAXREXMIT; 1442 nmp->nm_cwnd >>= 1; 1443 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1444 nmp->nm_cwnd = NFS_CWNDSCALE; 1445 nfsstats.rpcretries++; 1446 } else { 1447 rep->r_flags |= R_SENT; 1448 nmp->nm_sent += NFS_CWNDSCALE; 1449 } 1450 rep->r_rtt = 0; 1451 } 1452 } 1453 } 1454 1455 #ifdef NFSSERVER 1456 /* 1457 * Call the nqnfs server timer once a second to handle leases. 1458 */ 1459 if (lasttime != time.tv_sec) { 1460 lasttime = time.tv_sec; 1461 nqnfs_serverd(); 1462 } 1463 1464 /* 1465 * Scan the write gathering queues for writes that need to be 1466 * completed now. 1467 */ 1468 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec; 1469 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) { 1470 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec) 1471 nfsrv_wakenfsd(slp); 1472 } 1473 #endif /* NFSSERVER */ 1474 splx(s); 1475 callout_reset(&nfs_timer_ch, nfs_ticks, nfs_timer, NULL); 1476 } 1477 1478 /*ARGSUSED*/ 1479 void 1480 nfs_exit(p, v) 1481 struct proc *p; 1482 void *v; 1483 { 1484 struct nfsreq *rp; 1485 int s = splsoftnet(); 1486 1487 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { 1488 if (rp->r_procp == p) 1489 TAILQ_REMOVE(&nfs_reqq, rp, r_chain); 1490 } 1491 splx(s); 1492 } 1493 1494 /* 1495 * Test for a termination condition pending on the process. 1496 * This is used for NFSMNT_INT mounts. 1497 */ 1498 int 1499 nfs_sigintr(nmp, rep, p) 1500 struct nfsmount *nmp; 1501 struct nfsreq *rep; 1502 struct proc *p; 1503 { 1504 sigset_t ss; 1505 1506 if (rep && (rep->r_flags & R_SOFTTERM)) 1507 return (EINTR); 1508 if (!(nmp->nm_flag & NFSMNT_INT)) 1509 return (0); 1510 if (p) { 1511 sigpending1(p, &ss); 1512 #if 0 1513 sigminusset(&p->p_sigctx.ps_sigignore, &ss); 1514 #endif 1515 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) || 1516 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) || 1517 sigismember(&ss, SIGQUIT)) 1518 return (EINTR); 1519 } 1520 return (0); 1521 } 1522 1523 /* 1524 * Lock a socket against others. 1525 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1526 * and also to avoid race conditions between the processes with nfs requests 1527 * in progress when a reconnect is necessary. 1528 */ 1529 int 1530 nfs_sndlock(flagp, rep) 1531 int *flagp; 1532 struct nfsreq *rep; 1533 { 1534 struct proc *p; 1535 int slpflag = 0, slptimeo = 0; 1536 1537 if (rep) { 1538 p = rep->r_procp; 1539 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1540 slpflag = PCATCH; 1541 } else 1542 p = (struct proc *)0; 1543 while (*flagp & NFSMNT_SNDLOCK) { 1544 if (nfs_sigintr(rep->r_nmp, rep, p)) 1545 return (EINTR); 1546 *flagp |= NFSMNT_WANTSND; 1547 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck", 1548 slptimeo); 1549 if (slpflag == PCATCH) { 1550 slpflag = 0; 1551 slptimeo = 2 * hz; 1552 } 1553 } 1554 *flagp |= NFSMNT_SNDLOCK; 1555 return (0); 1556 } 1557 1558 /* 1559 * Unlock the stream socket for others. 1560 */ 1561 void 1562 nfs_sndunlock(flagp) 1563 int *flagp; 1564 { 1565 1566 if ((*flagp & NFSMNT_SNDLOCK) == 0) 1567 panic("nfs sndunlock"); 1568 *flagp &= ~NFSMNT_SNDLOCK; 1569 if (*flagp & NFSMNT_WANTSND) { 1570 *flagp &= ~NFSMNT_WANTSND; 1571 wakeup((caddr_t)flagp); 1572 } 1573 } 1574 1575 int 1576 nfs_rcvlock(rep) 1577 struct nfsreq *rep; 1578 { 1579 struct nfsmount *nmp = rep->r_nmp; 1580 int *flagp = &nmp->nm_iflag; 1581 int slpflag, slptimeo = 0; 1582 1583 if (*flagp & NFSMNT_DISMNT) 1584 return EIO; 1585 1586 if (*flagp & NFSMNT_INT) 1587 slpflag = PCATCH; 1588 else 1589 slpflag = 0; 1590 while (*flagp & NFSMNT_RCVLOCK) { 1591 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp)) 1592 return (EINTR); 1593 *flagp |= NFSMNT_WANTRCV; 1594 nmp->nm_waiters++; 1595 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk", 1596 slptimeo); 1597 nmp->nm_waiters--; 1598 if (*flagp & NFSMNT_DISMNT) { 1599 wakeup(&nmp->nm_waiters); 1600 return EIO; 1601 } 1602 /* If our reply was received while we were sleeping, 1603 * then just return without taking the lock to avoid a 1604 * situation where a single iod could 'capture' the 1605 * receive lock. 1606 */ 1607 if (rep->r_mrep != NULL) 1608 return (EALREADY); 1609 if (slpflag == PCATCH) { 1610 slpflag = 0; 1611 slptimeo = 2 * hz; 1612 } 1613 } 1614 *flagp |= NFSMNT_RCVLOCK; 1615 return (0); 1616 } 1617 1618 /* 1619 * Unlock the stream socket for others. 1620 */ 1621 void 1622 nfs_rcvunlock(flagp) 1623 int *flagp; 1624 { 1625 1626 if ((*flagp & NFSMNT_RCVLOCK) == 0) 1627 panic("nfs rcvunlock"); 1628 *flagp &= ~NFSMNT_RCVLOCK; 1629 if (*flagp & NFSMNT_WANTRCV) { 1630 *flagp &= ~NFSMNT_WANTRCV; 1631 wakeup((caddr_t)flagp); 1632 } 1633 } 1634 1635 /* 1636 * Parse an RPC request 1637 * - verify it 1638 * - fill in the cred struct. 1639 */ 1640 int 1641 nfs_getreq(nd, nfsd, has_header) 1642 struct nfsrv_descript *nd; 1643 struct nfsd *nfsd; 1644 int has_header; 1645 { 1646 int len, i; 1647 u_int32_t *tl; 1648 int32_t t1; 1649 struct uio uio; 1650 struct iovec iov; 1651 caddr_t dpos, cp2, cp; 1652 u_int32_t nfsvers, auth_type; 1653 uid_t nickuid; 1654 int error = 0, nqnfs = 0, ticklen; 1655 struct mbuf *mrep, *md; 1656 struct nfsuid *nuidp; 1657 struct timeval tvin, tvout; 1658 1659 mrep = nd->nd_mrep; 1660 md = nd->nd_md; 1661 dpos = nd->nd_dpos; 1662 if (has_header) { 1663 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1664 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1665 if (*tl++ != rpc_call) { 1666 m_freem(mrep); 1667 return (EBADRPC); 1668 } 1669 } else 1670 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1671 nd->nd_repstat = 0; 1672 nd->nd_flag = 0; 1673 if (*tl++ != rpc_vers) { 1674 nd->nd_repstat = ERPCMISMATCH; 1675 nd->nd_procnum = NFSPROC_NOOP; 1676 return (0); 1677 } 1678 if (*tl != nfs_prog) { 1679 if (*tl == nqnfs_prog) 1680 nqnfs++; 1681 else { 1682 nd->nd_repstat = EPROGUNAVAIL; 1683 nd->nd_procnum = NFSPROC_NOOP; 1684 return (0); 1685 } 1686 } 1687 tl++; 1688 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1689 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) || 1690 (nfsvers != NQNFS_VER3 && nqnfs)) { 1691 nd->nd_repstat = EPROGMISMATCH; 1692 nd->nd_procnum = NFSPROC_NOOP; 1693 return (0); 1694 } 1695 if (nqnfs) 1696 nd->nd_flag = (ND_NFSV3 | ND_NQNFS); 1697 else if (nfsvers == NFS_VER3) 1698 nd->nd_flag = ND_NFSV3; 1699 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1700 if (nd->nd_procnum == NFSPROC_NULL) 1701 return (0); 1702 if (nd->nd_procnum >= NFS_NPROCS || 1703 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1704 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1705 nd->nd_repstat = EPROCUNAVAIL; 1706 nd->nd_procnum = NFSPROC_NOOP; 1707 return (0); 1708 } 1709 if ((nd->nd_flag & ND_NFSV3) == 0) 1710 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1711 auth_type = *tl++; 1712 len = fxdr_unsigned(int, *tl++); 1713 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1714 m_freem(mrep); 1715 return (EBADRPC); 1716 } 1717 1718 nd->nd_flag &= ~ND_KERBAUTH; 1719 /* 1720 * Handle auth_unix or auth_kerb. 1721 */ 1722 if (auth_type == rpc_auth_unix) { 1723 len = fxdr_unsigned(int, *++tl); 1724 if (len < 0 || len > NFS_MAXNAMLEN) { 1725 m_freem(mrep); 1726 return (EBADRPC); 1727 } 1728 nfsm_adv(nfsm_rndup(len)); 1729 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1730 memset((caddr_t)&nd->nd_cr, 0, sizeof (struct ucred)); 1731 nd->nd_cr.cr_ref = 1; 1732 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1733 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1734 len = fxdr_unsigned(int, *tl); 1735 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1736 m_freem(mrep); 1737 return (EBADRPC); 1738 } 1739 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1740 for (i = 0; i < len; i++) 1741 if (i < NGROUPS) 1742 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1743 else 1744 tl++; 1745 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len; 1746 if (nd->nd_cr.cr_ngroups > 1) 1747 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1748 len = fxdr_unsigned(int, *++tl); 1749 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1750 m_freem(mrep); 1751 return (EBADRPC); 1752 } 1753 if (len > 0) 1754 nfsm_adv(nfsm_rndup(len)); 1755 } else if (auth_type == rpc_auth_kerb) { 1756 switch (fxdr_unsigned(int, *tl++)) { 1757 case RPCAKN_FULLNAME: 1758 ticklen = fxdr_unsigned(int, *tl); 1759 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1760 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1761 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1762 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1763 m_freem(mrep); 1764 return (EBADRPC); 1765 } 1766 uio.uio_offset = 0; 1767 uio.uio_iov = &iov; 1768 uio.uio_iovcnt = 1; 1769 uio.uio_segflg = UIO_SYSSPACE; 1770 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1771 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1772 nfsm_mtouio(&uio, uio.uio_resid); 1773 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1774 if (*tl++ != rpc_auth_kerb || 1775 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1776 printf("Bad kerb verifier\n"); 1777 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1778 nd->nd_procnum = NFSPROC_NOOP; 1779 return (0); 1780 } 1781 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1782 tl = (u_int32_t *)cp; 1783 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1784 printf("Not fullname kerb verifier\n"); 1785 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1786 nd->nd_procnum = NFSPROC_NOOP; 1787 return (0); 1788 } 1789 cp += NFSX_UNSIGNED; 1790 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED); 1791 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1792 nd->nd_flag |= ND_KERBFULL; 1793 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1794 break; 1795 case RPCAKN_NICKNAME: 1796 if (len != 2 * NFSX_UNSIGNED) { 1797 printf("Kerb nickname short\n"); 1798 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1799 nd->nd_procnum = NFSPROC_NOOP; 1800 return (0); 1801 } 1802 nickuid = fxdr_unsigned(uid_t, *tl); 1803 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1804 if (*tl++ != rpc_auth_kerb || 1805 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1806 printf("Kerb nick verifier bad\n"); 1807 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1808 nd->nd_procnum = NFSPROC_NOOP; 1809 return (0); 1810 } 1811 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1812 tvin.tv_sec = *tl++; 1813 tvin.tv_usec = *tl; 1814 1815 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first; 1816 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1817 if (nuidp->nu_cr.cr_uid == nickuid && 1818 (!nd->nd_nam2 || 1819 netaddr_match(NU_NETFAM(nuidp), 1820 &nuidp->nu_haddr, nd->nd_nam2))) 1821 break; 1822 } 1823 if (!nuidp) { 1824 nd->nd_repstat = 1825 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1826 nd->nd_procnum = NFSPROC_NOOP; 1827 return (0); 1828 } 1829 1830 /* 1831 * Now, decrypt the timestamp using the session key 1832 * and validate it. 1833 */ 1834 #ifdef NFSKERB 1835 XXX 1836 #endif 1837 1838 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1839 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1840 if (nuidp->nu_expire < time.tv_sec || 1841 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1842 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1843 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1844 nuidp->nu_expire = 0; 1845 nd->nd_repstat = 1846 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1847 nd->nd_procnum = NFSPROC_NOOP; 1848 return (0); 1849 } 1850 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1851 nd->nd_flag |= ND_KERBNICK; 1852 }; 1853 } else { 1854 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1855 nd->nd_procnum = NFSPROC_NOOP; 1856 return (0); 1857 } 1858 1859 /* 1860 * For nqnfs, get piggybacked lease request. 1861 */ 1862 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) { 1863 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1864 nd->nd_flag |= fxdr_unsigned(int, *tl); 1865 if (nd->nd_flag & ND_LEASE) { 1866 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1867 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl); 1868 } else 1869 nd->nd_duration = NQ_MINLEASE; 1870 } else 1871 nd->nd_duration = NQ_MINLEASE; 1872 nd->nd_md = md; 1873 nd->nd_dpos = dpos; 1874 return (0); 1875 nfsmout: 1876 return (error); 1877 } 1878 1879 int 1880 nfs_msg(p, server, msg) 1881 struct proc *p; 1882 char *server, *msg; 1883 { 1884 tpr_t tpr; 1885 1886 if (p) 1887 tpr = tprintf_open(p); 1888 else 1889 tpr = NULL; 1890 tprintf(tpr, "nfs server %s: %s\n", server, msg); 1891 tprintf_close(tpr); 1892 return (0); 1893 } 1894 1895 #ifdef NFSSERVER 1896 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *, 1897 struct nfssvc_sock *, struct proc *, 1898 struct mbuf **)) = { 1899 nfsrv_null, 1900 nfsrv_getattr, 1901 nfsrv_setattr, 1902 nfsrv_lookup, 1903 nfsrv3_access, 1904 nfsrv_readlink, 1905 nfsrv_read, 1906 nfsrv_write, 1907 nfsrv_create, 1908 nfsrv_mkdir, 1909 nfsrv_symlink, 1910 nfsrv_mknod, 1911 nfsrv_remove, 1912 nfsrv_rmdir, 1913 nfsrv_rename, 1914 nfsrv_link, 1915 nfsrv_readdir, 1916 nfsrv_readdirplus, 1917 nfsrv_statfs, 1918 nfsrv_fsinfo, 1919 nfsrv_pathconf, 1920 nfsrv_commit, 1921 nqnfsrv_getlease, 1922 nqnfsrv_vacated, 1923 nfsrv_noop, 1924 nfsrv_noop 1925 }; 1926 1927 /* 1928 * Socket upcall routine for the nfsd sockets. 1929 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 1930 * Essentially do as much as possible non-blocking, else punt and it will 1931 * be called with M_WAIT from an nfsd. 1932 */ 1933 void 1934 nfsrv_rcv(so, arg, waitflag) 1935 struct socket *so; 1936 caddr_t arg; 1937 int waitflag; 1938 { 1939 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 1940 struct mbuf *m; 1941 struct mbuf *mp, *nam; 1942 struct uio auio; 1943 int flags, error; 1944 1945 if ((slp->ns_flag & SLP_VALID) == 0) 1946 return; 1947 #ifdef notdef 1948 /* 1949 * Define this to test for nfsds handling this under heavy load. 1950 */ 1951 if (waitflag == M_DONTWAIT) { 1952 slp->ns_flag |= SLP_NEEDQ; goto dorecs; 1953 } 1954 #endif 1955 auio.uio_procp = NULL; 1956 if (so->so_type == SOCK_STREAM) { 1957 /* 1958 * If there are already records on the queue, defer soreceive() 1959 * to an nfsd so that there is feedback to the TCP layer that 1960 * the nfs servers are heavily loaded. 1961 */ 1962 if (slp->ns_rec && waitflag == M_DONTWAIT) { 1963 slp->ns_flag |= SLP_NEEDQ; 1964 goto dorecs; 1965 } 1966 1967 /* 1968 * Do soreceive(). 1969 */ 1970 auio.uio_resid = 1000000000; 1971 flags = MSG_DONTWAIT; 1972 error = (*so->so_receive)(so, &nam, &auio, &mp, (struct mbuf **)0, &flags); 1973 if (error || mp == (struct mbuf *)0) { 1974 if (error == EWOULDBLOCK) 1975 slp->ns_flag |= SLP_NEEDQ; 1976 else 1977 slp->ns_flag |= SLP_DISCONN; 1978 goto dorecs; 1979 } 1980 m = mp; 1981 if (slp->ns_rawend) { 1982 slp->ns_rawend->m_next = m; 1983 slp->ns_cc += 1000000000 - auio.uio_resid; 1984 } else { 1985 slp->ns_raw = m; 1986 slp->ns_cc = 1000000000 - auio.uio_resid; 1987 } 1988 while (m->m_next) 1989 m = m->m_next; 1990 slp->ns_rawend = m; 1991 1992 /* 1993 * Now try and parse record(s) out of the raw stream data. 1994 */ 1995 error = nfsrv_getstream(slp, waitflag); 1996 if (error) { 1997 if (error == EPERM) 1998 slp->ns_flag |= SLP_DISCONN; 1999 else 2000 slp->ns_flag |= SLP_NEEDQ; 2001 } 2002 } else { 2003 do { 2004 auio.uio_resid = 1000000000; 2005 flags = MSG_DONTWAIT; 2006 error = (*so->so_receive)(so, &nam, &auio, &mp, 2007 (struct mbuf **)0, &flags); 2008 if (mp) { 2009 if (nam) { 2010 m = nam; 2011 m->m_next = mp; 2012 } else 2013 m = mp; 2014 if (slp->ns_recend) 2015 slp->ns_recend->m_nextpkt = m; 2016 else 2017 slp->ns_rec = m; 2018 slp->ns_recend = m; 2019 m->m_nextpkt = (struct mbuf *)0; 2020 } 2021 if (error) { 2022 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2023 && error != EWOULDBLOCK) { 2024 slp->ns_flag |= SLP_DISCONN; 2025 goto dorecs; 2026 } 2027 } 2028 } while (mp); 2029 } 2030 2031 /* 2032 * Now try and process the request records, non-blocking. 2033 */ 2034 dorecs: 2035 if (waitflag == M_DONTWAIT && 2036 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) 2037 nfsrv_wakenfsd(slp); 2038 } 2039 2040 /* 2041 * Try and extract an RPC request from the mbuf data list received on a 2042 * stream socket. The "waitflag" argument indicates whether or not it 2043 * can sleep. 2044 */ 2045 int 2046 nfsrv_getstream(slp, waitflag) 2047 struct nfssvc_sock *slp; 2048 int waitflag; 2049 { 2050 struct mbuf *m, **mpp; 2051 char *cp1, *cp2; 2052 int len; 2053 struct mbuf *om, *m2, *recm; 2054 u_int32_t recmark; 2055 2056 if (slp->ns_flag & SLP_GETSTREAM) 2057 panic("nfs getstream"); 2058 slp->ns_flag |= SLP_GETSTREAM; 2059 for (;;) { 2060 if (slp->ns_reclen == 0) { 2061 if (slp->ns_cc < NFSX_UNSIGNED) { 2062 slp->ns_flag &= ~SLP_GETSTREAM; 2063 return (0); 2064 } 2065 m = slp->ns_raw; 2066 if (m->m_len >= NFSX_UNSIGNED) { 2067 memcpy((caddr_t)&recmark, mtod(m, caddr_t), NFSX_UNSIGNED); 2068 m->m_data += NFSX_UNSIGNED; 2069 m->m_len -= NFSX_UNSIGNED; 2070 } else { 2071 cp1 = (caddr_t)&recmark; 2072 cp2 = mtod(m, caddr_t); 2073 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 2074 while (m->m_len == 0) { 2075 m = m->m_next; 2076 cp2 = mtod(m, caddr_t); 2077 } 2078 *cp1++ = *cp2++; 2079 m->m_data++; 2080 m->m_len--; 2081 } 2082 } 2083 slp->ns_cc -= NFSX_UNSIGNED; 2084 recmark = ntohl(recmark); 2085 slp->ns_reclen = recmark & ~0x80000000; 2086 if (recmark & 0x80000000) 2087 slp->ns_flag |= SLP_LASTFRAG; 2088 else 2089 slp->ns_flag &= ~SLP_LASTFRAG; 2090 if (slp->ns_reclen > NFS_MAXPACKET) { 2091 slp->ns_flag &= ~SLP_GETSTREAM; 2092 return (EPERM); 2093 } 2094 } 2095 2096 /* 2097 * Now get the record part. 2098 * 2099 * Note that slp->ns_reclen may be 0. Linux sometimes 2100 * generates 0-length records. 2101 */ 2102 if (slp->ns_cc == slp->ns_reclen) { 2103 recm = slp->ns_raw; 2104 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2105 slp->ns_cc = slp->ns_reclen = 0; 2106 } else if (slp->ns_cc > slp->ns_reclen) { 2107 len = 0; 2108 m = slp->ns_raw; 2109 recm = om = NULL; 2110 2111 while (len < slp->ns_reclen) { 2112 if ((len + m->m_len) > slp->ns_reclen) { 2113 size_t left = slp->ns_reclen - len; 2114 2115 MGETHDR(m2, waitflag, m->m_type); 2116 if (m2 == NULL) { 2117 slp->ns_flag &= ~SLP_GETSTREAM; 2118 return (EWOULDBLOCK); 2119 } 2120 if (left > MHLEN) { 2121 MCLGET(m2, waitflag); 2122 if (!(m2->m_flags & M_EXT)) { 2123 m_freem(m2); 2124 slp->ns_flag &= ~SLP_GETSTREAM; 2125 return (EWOULDBLOCK); 2126 } 2127 } 2128 memcpy(mtod(m2, caddr_t), mtod(m, caddr_t), 2129 left); 2130 m2->m_len = left; 2131 m->m_data += left; 2132 m->m_len -= left; 2133 if (om) { 2134 om->m_next = m2; 2135 recm = slp->ns_raw; 2136 } else 2137 recm = m2; 2138 len = slp->ns_reclen; 2139 } else if ((len + m->m_len) == slp->ns_reclen) { 2140 om = m; 2141 len += m->m_len; 2142 m = m->m_next; 2143 recm = slp->ns_raw; 2144 om->m_next = (struct mbuf *)0; 2145 } else { 2146 om = m; 2147 len += m->m_len; 2148 m = m->m_next; 2149 } 2150 } 2151 slp->ns_raw = m; 2152 slp->ns_cc -= len; 2153 slp->ns_reclen = 0; 2154 } else { 2155 slp->ns_flag &= ~SLP_GETSTREAM; 2156 return (0); 2157 } 2158 2159 /* 2160 * Accumulate the fragments into a record. 2161 */ 2162 mpp = &slp->ns_frag; 2163 while (*mpp) 2164 mpp = &((*mpp)->m_next); 2165 *mpp = recm; 2166 if (slp->ns_flag & SLP_LASTFRAG) { 2167 if (slp->ns_recend) 2168 slp->ns_recend->m_nextpkt = slp->ns_frag; 2169 else 2170 slp->ns_rec = slp->ns_frag; 2171 slp->ns_recend = slp->ns_frag; 2172 slp->ns_frag = (struct mbuf *)0; 2173 } 2174 } 2175 } 2176 2177 /* 2178 * Parse an RPC header. 2179 */ 2180 int 2181 nfsrv_dorec(slp, nfsd, ndp) 2182 struct nfssvc_sock *slp; 2183 struct nfsd *nfsd; 2184 struct nfsrv_descript **ndp; 2185 { 2186 struct mbuf *m, *nam; 2187 struct nfsrv_descript *nd; 2188 int error; 2189 2190 *ndp = NULL; 2191 if ((slp->ns_flag & SLP_VALID) == 0 || 2192 (m = slp->ns_rec) == (struct mbuf *)0) 2193 return (ENOBUFS); 2194 slp->ns_rec = m->m_nextpkt; 2195 if (slp->ns_rec) 2196 m->m_nextpkt = (struct mbuf *)0; 2197 else 2198 slp->ns_recend = (struct mbuf *)0; 2199 if (m->m_type == MT_SONAME) { 2200 nam = m; 2201 m = m->m_next; 2202 nam->m_next = NULL; 2203 } else 2204 nam = NULL; 2205 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript), 2206 M_NFSRVDESC, M_WAITOK); 2207 nd->nd_md = nd->nd_mrep = m; 2208 nd->nd_nam2 = nam; 2209 nd->nd_dpos = mtod(m, caddr_t); 2210 error = nfs_getreq(nd, nfsd, TRUE); 2211 if (error) { 2212 m_freem(nam); 2213 free((caddr_t)nd, M_NFSRVDESC); 2214 return (error); 2215 } 2216 *ndp = nd; 2217 nfsd->nfsd_nd = nd; 2218 return (0); 2219 } 2220 2221 2222 /* 2223 * Search for a sleeping nfsd and wake it up. 2224 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2225 * running nfsds will go look for the work in the nfssvc_sock list. 2226 */ 2227 void 2228 nfsrv_wakenfsd(slp) 2229 struct nfssvc_sock *slp; 2230 { 2231 struct nfsd *nd; 2232 2233 if ((slp->ns_flag & SLP_VALID) == 0) 2234 return; 2235 TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) { 2236 if (nd->nfsd_flag & NFSD_WAITING) { 2237 nd->nfsd_flag &= ~NFSD_WAITING; 2238 if (nd->nfsd_slp) 2239 panic("nfsd wakeup"); 2240 slp->ns_sref++; 2241 nd->nfsd_slp = slp; 2242 wakeup((caddr_t)nd); 2243 return; 2244 } 2245 } 2246 slp->ns_flag |= SLP_DOREC; 2247 nfsd_head_flag |= NFSD_CHECKSLP; 2248 } 2249 #endif /* NFSSERVER */ 2250