1 /* $NetBSD: nfs_socket.c,v 1.165 2007/12/04 17:42:31 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1991, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 35 */ 36 37 /* 38 * Socket operations for use by nfs 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.165 2007/12/04 17:42:31 yamt Exp $"); 43 44 #include "fs_nfs.h" 45 #include "opt_nfs.h" 46 #include "opt_nfsserver.h" 47 #include "opt_mbuftrace.h" 48 #include "opt_inet.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/evcnt.h> 53 #include <sys/callout.h> 54 #include <sys/proc.h> 55 #include <sys/mount.h> 56 #include <sys/kernel.h> 57 #include <sys/mbuf.h> 58 #include <sys/vnode.h> 59 #include <sys/domain.h> 60 #include <sys/protosw.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/syslog.h> 64 #include <sys/tprintf.h> 65 #include <sys/namei.h> 66 #include <sys/signal.h> 67 #include <sys/signalvar.h> 68 #include <sys/kauth.h> 69 70 #include <netinet/in.h> 71 #include <netinet/tcp.h> 72 73 #include <nfs/rpcv2.h> 74 #include <nfs/nfsproto.h> 75 #include <nfs/nfs.h> 76 #include <nfs/xdr_subs.h> 77 #include <nfs/nfsm_subs.h> 78 #include <nfs/nfsmount.h> 79 #include <nfs/nfsnode.h> 80 #include <nfs/nfsrtt.h> 81 #include <nfs/nfs_var.h> 82 83 MALLOC_DEFINE(M_NFSREQ, "NFS req", "NFS request header"); 84 #ifdef MBUFTRACE 85 struct mowner nfs_mowner = MOWNER_INIT("nfs",""); 86 #endif 87 88 /* 89 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 90 * Use the mean and mean deviation of rtt for the appropriate type of rpc 91 * for the frequent rpcs and a default for the others. 92 * The justification for doing "other" this way is that these rpcs 93 * happen so infrequently that timer est. would probably be stale. 94 * Also, since many of these rpcs are 95 * non-idempotent, a conservative timeout is desired. 96 * getattr, lookup - A+2D 97 * read, write - A+4D 98 * other - nm_timeo 99 */ 100 #define NFS_RTO(n, t) \ 101 ((t) == 0 ? (n)->nm_timeo : \ 102 ((t) < 3 ? \ 103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 107 /* 108 * External data, mostly RPC constants in XDR form 109 */ 110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 112 rpc_auth_kerb; 113 extern u_int32_t nfs_prog; 114 extern const int nfsv3_procid[NFS_NPROCS]; 115 extern int nfs_ticks; 116 117 /* 118 * Defines which timer to use for the procnum. 119 * 0 - default 120 * 1 - getattr 121 * 2 - lookup 122 * 3 - read 123 * 4 - write 124 */ 125 static const int proct[NFS_NPROCS] = { 126 [NFSPROC_NULL] = 0, 127 [NFSPROC_GETATTR] = 1, 128 [NFSPROC_SETATTR] = 0, 129 [NFSPROC_LOOKUP] = 2, 130 [NFSPROC_ACCESS] = 1, 131 [NFSPROC_READLINK] = 3, 132 [NFSPROC_READ] = 3, 133 [NFSPROC_WRITE] = 4, 134 [NFSPROC_CREATE] = 0, 135 [NFSPROC_MKDIR] = 0, 136 [NFSPROC_SYMLINK] = 0, 137 [NFSPROC_MKNOD] = 0, 138 [NFSPROC_REMOVE] = 0, 139 [NFSPROC_RMDIR] = 0, 140 [NFSPROC_RENAME] = 0, 141 [NFSPROC_LINK] = 0, 142 [NFSPROC_READDIR] = 3, 143 [NFSPROC_READDIRPLUS] = 3, 144 [NFSPROC_FSSTAT] = 0, 145 [NFSPROC_FSINFO] = 0, 146 [NFSPROC_PATHCONF] = 0, 147 [NFSPROC_COMMIT] = 0, 148 [NFSPROC_NOOP] = 0, 149 }; 150 151 /* 152 * There is a congestion window for outstanding rpcs maintained per mount 153 * point. The cwnd size is adjusted in roughly the way that: 154 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 155 * SIGCOMM '88". ACM, August 1988. 156 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 157 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 158 * of rpcs is in progress. 159 * (The sent count and cwnd are scaled for integer arith.) 160 * Variants of "slow start" were tried and were found to be too much of a 161 * performance hit (ave. rtt 3 times larger), 162 * I suspect due to the large rtt that nfs rpcs have. 163 */ 164 #define NFS_CWNDSCALE 256 165 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 166 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 167 int nfsrtton = 0; 168 struct nfsrtt nfsrtt; 169 struct nfsreqhead nfs_reqq; 170 static callout_t nfs_timer_ch; 171 static struct evcnt nfs_timer_ev; 172 static struct evcnt nfs_timer_start_ev; 173 static struct evcnt nfs_timer_stop_ev; 174 175 static int nfs_sndlock(struct nfsmount *, struct nfsreq *); 176 static void nfs_sndunlock(struct nfsmount *); 177 static int nfs_rcvlock(struct nfsmount *, struct nfsreq *); 178 static void nfs_rcvunlock(struct nfsmount *); 179 180 #if defined(NFSSERVER) 181 static void nfsrv_wakenfsd_locked(struct nfssvc_sock *); 182 #endif /* defined(NFSSERVER) */ 183 184 /* 185 * Initialize sockets and congestion for a new NFS connection. 186 * We do not free the sockaddr if error. 187 */ 188 int 189 nfs_connect(nmp, rep, l) 190 struct nfsmount *nmp; 191 struct nfsreq *rep; 192 struct lwp *l; 193 { 194 struct socket *so; 195 int s, error, rcvreserve, sndreserve; 196 struct sockaddr *saddr; 197 struct sockaddr_in *sin; 198 #ifdef INET6 199 struct sockaddr_in6 *sin6; 200 #endif 201 struct mbuf *m; 202 203 nmp->nm_so = (struct socket *)0; 204 saddr = mtod(nmp->nm_nam, struct sockaddr *); 205 error = socreate(saddr->sa_family, &nmp->nm_so, 206 nmp->nm_sotype, nmp->nm_soproto, l); 207 if (error) 208 goto bad; 209 so = nmp->nm_so; 210 #ifdef MBUFTRACE 211 so->so_mowner = &nfs_mowner; 212 so->so_rcv.sb_mowner = &nfs_mowner; 213 so->so_snd.sb_mowner = &nfs_mowner; 214 #endif 215 nmp->nm_soflags = so->so_proto->pr_flags; 216 217 /* 218 * Some servers require that the client port be a reserved port number. 219 */ 220 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 221 m = m_get(M_WAIT, MT_SOOPTS); 222 MCLAIM(m, so->so_mowner); 223 *mtod(m, int32_t *) = IP_PORTRANGE_LOW; 224 m->m_len = sizeof(int32_t); 225 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m))) 226 goto bad; 227 m = m_get(M_WAIT, MT_SONAME); 228 MCLAIM(m, so->so_mowner); 229 sin = mtod(m, struct sockaddr_in *); 230 sin->sin_len = m->m_len = sizeof (struct sockaddr_in); 231 sin->sin_family = AF_INET; 232 sin->sin_addr.s_addr = INADDR_ANY; 233 sin->sin_port = 0; 234 error = sobind(so, m, &lwp0); 235 m_freem(m); 236 if (error) 237 goto bad; 238 } 239 #ifdef INET6 240 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) { 241 m = m_get(M_WAIT, MT_SOOPTS); 242 MCLAIM(m, so->so_mowner); 243 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW; 244 m->m_len = sizeof(int32_t); 245 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m))) 246 goto bad; 247 m = m_get(M_WAIT, MT_SONAME); 248 MCLAIM(m, so->so_mowner); 249 sin6 = mtod(m, struct sockaddr_in6 *); 250 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6); 251 sin6->sin6_family = AF_INET6; 252 sin6->sin6_addr = in6addr_any; 253 sin6->sin6_port = 0; 254 error = sobind(so, m, &lwp0); 255 m_freem(m); 256 if (error) 257 goto bad; 258 } 259 #endif 260 261 /* 262 * Protocols that do not require connections may be optionally left 263 * unconnected for servers that reply from a port other than NFS_PORT. 264 */ 265 if (nmp->nm_flag & NFSMNT_NOCONN) { 266 if (nmp->nm_soflags & PR_CONNREQUIRED) { 267 error = ENOTCONN; 268 goto bad; 269 } 270 } else { 271 error = soconnect(so, nmp->nm_nam, l); 272 if (error) 273 goto bad; 274 275 /* 276 * Wait for the connection to complete. Cribbed from the 277 * connect system call but with the wait timing out so 278 * that interruptible mounts don't hang here for a long time. 279 */ 280 s = splsoftnet(); 281 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 282 (void) tsleep((void *)&so->so_timeo, PSOCK, 283 "nfscn1", 2 * hz); 284 if ((so->so_state & SS_ISCONNECTING) && 285 so->so_error == 0 && rep && 286 (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){ 287 so->so_state &= ~SS_ISCONNECTING; 288 splx(s); 289 goto bad; 290 } 291 } 292 if (so->so_error) { 293 error = so->so_error; 294 so->so_error = 0; 295 splx(s); 296 goto bad; 297 } 298 splx(s); 299 } 300 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) { 301 so->so_rcv.sb_timeo = (5 * hz); 302 so->so_snd.sb_timeo = (5 * hz); 303 } else { 304 /* 305 * enable receive timeout to detect server crash and reconnect. 306 * otherwise, we can be stuck in soreceive forever. 307 */ 308 so->so_rcv.sb_timeo = (5 * hz); 309 so->so_snd.sb_timeo = 0; 310 } 311 if (nmp->nm_sotype == SOCK_DGRAM) { 312 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 313 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 314 NFS_MAXPKTHDR) * 2; 315 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 316 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 317 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 318 NFS_MAXPKTHDR) * 2; 319 } else { 320 if (nmp->nm_sotype != SOCK_STREAM) 321 panic("nfscon sotype"); 322 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 323 m = m_get(M_WAIT, MT_SOOPTS); 324 MCLAIM(m, so->so_mowner); 325 *mtod(m, int32_t *) = 1; 326 m->m_len = sizeof(int32_t); 327 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m); 328 } 329 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 330 m = m_get(M_WAIT, MT_SOOPTS); 331 MCLAIM(m, so->so_mowner); 332 *mtod(m, int32_t *) = 1; 333 m->m_len = sizeof(int32_t); 334 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m); 335 } 336 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 337 sizeof (u_int32_t)) * 2; 338 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 339 sizeof (u_int32_t)) * 2; 340 } 341 error = soreserve(so, sndreserve, rcvreserve); 342 if (error) 343 goto bad; 344 so->so_rcv.sb_flags |= SB_NOINTR; 345 so->so_snd.sb_flags |= SB_NOINTR; 346 347 /* Initialize other non-zero congestion variables */ 348 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] = 349 NFS_TIMEO << 3; 350 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 351 nmp->nm_sdrtt[3] = 0; 352 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 353 nmp->nm_sent = 0; 354 nmp->nm_timeouts = 0; 355 return (0); 356 357 bad: 358 nfs_disconnect(nmp); 359 return (error); 360 } 361 362 /* 363 * Reconnect routine: 364 * Called when a connection is broken on a reliable protocol. 365 * - clean up the old socket 366 * - nfs_connect() again 367 * - set R_MUSTRESEND for all outstanding requests on mount point 368 * If this fails the mount point is DEAD! 369 * nb: Must be called with the nfs_sndlock() set on the mount point. 370 */ 371 int 372 nfs_reconnect(struct nfsreq *rep) 373 { 374 struct nfsreq *rp; 375 struct nfsmount *nmp = rep->r_nmp; 376 int error; 377 378 nfs_disconnect(nmp); 379 while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) { 380 if (error == EINTR || error == ERESTART) 381 return (EINTR); 382 kpause("nfscn2", false, hz, NULL); 383 } 384 385 /* 386 * Loop through outstanding request list and fix up all requests 387 * on old socket. 388 */ 389 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { 390 if (rp->r_nmp == nmp) { 391 if ((rp->r_flags & R_MUSTRESEND) == 0) 392 rp->r_flags |= R_MUSTRESEND | R_REXMITTED; 393 rp->r_rexmit = 0; 394 } 395 } 396 return (0); 397 } 398 399 /* 400 * NFS disconnect. Clean up and unlink. 401 */ 402 void 403 nfs_disconnect(nmp) 404 struct nfsmount *nmp; 405 { 406 struct socket *so; 407 int drain = 0; 408 409 if (nmp->nm_so) { 410 so = nmp->nm_so; 411 nmp->nm_so = (struct socket *)0; 412 soshutdown(so, SHUT_RDWR); 413 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0; 414 if (drain) { 415 /* 416 * soshutdown() above should wake up the current 417 * listener. 418 * Now wake up those waiting for the receive lock, and 419 * wait for them to go away unhappy, to prevent *nmp 420 * from evaporating while they're sleeping. 421 */ 422 mutex_enter(&nmp->nm_lock); 423 while (nmp->nm_waiters > 0) { 424 cv_broadcast(&nmp->nm_rcvcv); 425 cv_broadcast(&nmp->nm_sndcv); 426 cv_wait(&nmp->nm_disconcv, &nmp->nm_lock); 427 } 428 mutex_exit(&nmp->nm_lock); 429 } 430 soclose(so); 431 } 432 #ifdef DIAGNOSTIC 433 if (drain && (nmp->nm_waiters > 0)) 434 panic("nfs_disconnect: waiters left after drain?"); 435 #endif 436 } 437 438 void 439 nfs_safedisconnect(nmp) 440 struct nfsmount *nmp; 441 { 442 struct nfsreq dummyreq; 443 444 memset(&dummyreq, 0, sizeof(dummyreq)); 445 dummyreq.r_nmp = nmp; 446 nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */ 447 nfs_disconnect(nmp); 448 nfs_rcvunlock(nmp); 449 } 450 451 /* 452 * This is the nfs send routine. For connection based socket types, it 453 * must be called with an nfs_sndlock() on the socket. 454 * "rep == NULL" indicates that it has been called from a server. 455 * For the client side: 456 * - return EINTR if the RPC is terminated, 0 otherwise 457 * - set R_MUSTRESEND if the send fails for any reason 458 * - do any cleanup required by recoverable socket errors (? ? ?) 459 * For the server side: 460 * - return EINTR or ERESTART if interrupted by a signal 461 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 462 * - do any cleanup required by recoverable socket errors (? ? ?) 463 */ 464 int 465 nfs_send(so, nam, top, rep, l) 466 struct socket *so; 467 struct mbuf *nam; 468 struct mbuf *top; 469 struct nfsreq *rep; 470 struct lwp *l; 471 { 472 struct mbuf *sendnam; 473 int error, soflags, flags; 474 475 /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */ 476 if (l == NULL && rep->r_lwp == NULL) 477 l = curlwp; 478 479 if (rep) { 480 if (rep->r_flags & R_SOFTTERM) { 481 m_freem(top); 482 return (EINTR); 483 } 484 if ((so = rep->r_nmp->nm_so) == NULL) { 485 rep->r_flags |= R_MUSTRESEND; 486 m_freem(top); 487 return (0); 488 } 489 rep->r_flags &= ~R_MUSTRESEND; 490 soflags = rep->r_nmp->nm_soflags; 491 } else 492 soflags = so->so_proto->pr_flags; 493 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 494 sendnam = (struct mbuf *)0; 495 else 496 sendnam = nam; 497 if (so->so_type == SOCK_SEQPACKET) 498 flags = MSG_EOR; 499 else 500 flags = 0; 501 502 KERNEL_LOCK(1, curlwp); 503 error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l); 504 KERNEL_UNLOCK_ONE(curlwp); 505 if (error) { 506 if (rep) { 507 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 508 /* 509 * We're too fast for the network/driver, 510 * and UDP isn't flowcontrolled. 511 * We need to resend. This is not fatal, 512 * just try again. 513 * 514 * Could be smarter here by doing some sort 515 * of a backoff, but this is rare. 516 */ 517 rep->r_flags |= R_MUSTRESEND; 518 } else { 519 if (error != EPIPE) 520 log(LOG_INFO, 521 "nfs send error %d for %s\n", 522 error, 523 rep->r_nmp->nm_mountp-> 524 mnt_stat.f_mntfromname); 525 /* 526 * Deal with errors for the client side. 527 */ 528 if (rep->r_flags & R_SOFTTERM) 529 error = EINTR; 530 else 531 rep->r_flags |= R_MUSTRESEND; 532 } 533 } else { 534 /* 535 * See above. This error can happen under normal 536 * circumstances and the log is too noisy. 537 * The error will still show up in nfsstat. 538 */ 539 if (error != ENOBUFS || so->so_type != SOCK_DGRAM) 540 log(LOG_INFO, "nfsd send error %d\n", error); 541 } 542 543 /* 544 * Handle any recoverable (soft) socket errors here. (? ? ?) 545 */ 546 if (error != EINTR && error != ERESTART && 547 error != EWOULDBLOCK && error != EPIPE) 548 error = 0; 549 } 550 return (error); 551 } 552 553 #ifdef NFS 554 /* 555 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 556 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 557 * Mark and consolidate the data into a new mbuf list. 558 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 559 * small mbufs. 560 * For SOCK_STREAM we must be very careful to read an entire record once 561 * we have read any of it, even if the system call has been interrupted. 562 */ 563 int 564 nfs_receive(rep, aname, mp, l) 565 struct nfsreq *rep; 566 struct mbuf **aname; 567 struct mbuf **mp; 568 struct lwp *l; 569 { 570 struct socket *so; 571 struct uio auio; 572 struct iovec aio; 573 struct mbuf *m; 574 struct mbuf *control; 575 u_int32_t len; 576 struct mbuf **getnam; 577 int error, sotype, rcvflg; 578 579 /* 580 * Set up arguments for soreceive() 581 */ 582 *mp = (struct mbuf *)0; 583 *aname = (struct mbuf *)0; 584 sotype = rep->r_nmp->nm_sotype; 585 586 /* 587 * For reliable protocols, lock against other senders/receivers 588 * in case a reconnect is necessary. 589 * For SOCK_STREAM, first get the Record Mark to find out how much 590 * more there is to get. 591 * We must lock the socket against other receivers 592 * until we have an entire rpc request/reply. 593 */ 594 if (sotype != SOCK_DGRAM) { 595 error = nfs_sndlock(rep->r_nmp, rep); 596 if (error) 597 return (error); 598 tryagain: 599 /* 600 * Check for fatal errors and resending request. 601 */ 602 /* 603 * Ugh: If a reconnect attempt just happened, nm_so 604 * would have changed. NULL indicates a failed 605 * attempt that has essentially shut down this 606 * mount point. 607 */ 608 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 609 nfs_sndunlock(rep->r_nmp); 610 return (EINTR); 611 } 612 so = rep->r_nmp->nm_so; 613 if (!so) { 614 error = nfs_reconnect(rep); 615 if (error) { 616 nfs_sndunlock(rep->r_nmp); 617 return (error); 618 } 619 goto tryagain; 620 } 621 while (rep->r_flags & R_MUSTRESEND) { 622 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 623 nfsstats.rpcretries++; 624 rep->r_rtt = 0; 625 rep->r_flags &= ~R_TIMING; 626 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l); 627 if (error) { 628 if (error == EINTR || error == ERESTART || 629 (error = nfs_reconnect(rep)) != 0) { 630 nfs_sndunlock(rep->r_nmp); 631 return (error); 632 } 633 goto tryagain; 634 } 635 } 636 nfs_sndunlock(rep->r_nmp); 637 if (sotype == SOCK_STREAM) { 638 aio.iov_base = (void *) &len; 639 aio.iov_len = sizeof(u_int32_t); 640 auio.uio_iov = &aio; 641 auio.uio_iovcnt = 1; 642 auio.uio_rw = UIO_READ; 643 auio.uio_offset = 0; 644 auio.uio_resid = sizeof(u_int32_t); 645 UIO_SETUP_SYSSPACE(&auio); 646 do { 647 rcvflg = MSG_WAITALL; 648 error = (*so->so_receive)(so, (struct mbuf **)0, &auio, 649 (struct mbuf **)0, (struct mbuf **)0, &rcvflg); 650 if (error == EWOULDBLOCK && rep) { 651 if (rep->r_flags & R_SOFTTERM) 652 return (EINTR); 653 /* 654 * if it seems that the server died after it 655 * received our request, set EPIPE so that 656 * we'll reconnect and retransmit requests. 657 */ 658 if (rep->r_rexmit >= rep->r_nmp->nm_retry) { 659 nfsstats.rpctimeouts++; 660 error = EPIPE; 661 } 662 } 663 } while (error == EWOULDBLOCK); 664 if (!error && auio.uio_resid > 0) { 665 /* 666 * Don't log a 0 byte receive; it means 667 * that the socket has been closed, and 668 * can happen during normal operation 669 * (forcible unmount or Solaris server). 670 */ 671 if (auio.uio_resid != sizeof (u_int32_t)) 672 log(LOG_INFO, 673 "short receive (%lu/%lu) from nfs server %s\n", 674 (u_long)sizeof(u_int32_t) - auio.uio_resid, 675 (u_long)sizeof(u_int32_t), 676 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 677 error = EPIPE; 678 } 679 if (error) 680 goto errout; 681 len = ntohl(len) & ~0x80000000; 682 /* 683 * This is SERIOUS! We are out of sync with the sender 684 * and forcing a disconnect/reconnect is all I can do. 685 */ 686 if (len > NFS_MAXPACKET) { 687 log(LOG_ERR, "%s (%d) from nfs server %s\n", 688 "impossible packet length", 689 len, 690 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 691 error = EFBIG; 692 goto errout; 693 } 694 auio.uio_resid = len; 695 do { 696 rcvflg = MSG_WAITALL; 697 error = (*so->so_receive)(so, (struct mbuf **)0, 698 &auio, mp, (struct mbuf **)0, &rcvflg); 699 } while (error == EWOULDBLOCK || error == EINTR || 700 error == ERESTART); 701 if (!error && auio.uio_resid > 0) { 702 if (len != auio.uio_resid) 703 log(LOG_INFO, 704 "short receive (%lu/%d) from nfs server %s\n", 705 (u_long)len - auio.uio_resid, len, 706 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 707 error = EPIPE; 708 } 709 } else { 710 /* 711 * NB: Since uio_resid is big, MSG_WAITALL is ignored 712 * and soreceive() will return when it has either a 713 * control msg or a data msg. 714 * We have no use for control msg., but must grab them 715 * and then throw them away so we know what is going 716 * on. 717 */ 718 auio.uio_resid = len = 100000000; /* Anything Big */ 719 /* not need to setup uio_vmspace */ 720 do { 721 rcvflg = 0; 722 error = (*so->so_receive)(so, (struct mbuf **)0, 723 &auio, mp, &control, &rcvflg); 724 if (control) 725 m_freem(control); 726 if (error == EWOULDBLOCK && rep) { 727 if (rep->r_flags & R_SOFTTERM) 728 return (EINTR); 729 } 730 } while (error == EWOULDBLOCK || 731 (!error && *mp == NULL && control)); 732 if ((rcvflg & MSG_EOR) == 0) 733 printf("Egad!!\n"); 734 if (!error && *mp == NULL) 735 error = EPIPE; 736 len -= auio.uio_resid; 737 } 738 errout: 739 if (error && error != EINTR && error != ERESTART) { 740 m_freem(*mp); 741 *mp = (struct mbuf *)0; 742 if (error != EPIPE) 743 log(LOG_INFO, 744 "receive error %d from nfs server %s\n", 745 error, 746 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 747 error = nfs_sndlock(rep->r_nmp, rep); 748 if (!error) 749 error = nfs_reconnect(rep); 750 if (!error) 751 goto tryagain; 752 else 753 nfs_sndunlock(rep->r_nmp); 754 } 755 } else { 756 if ((so = rep->r_nmp->nm_so) == NULL) 757 return (EACCES); 758 if (so->so_state & SS_ISCONNECTED) 759 getnam = (struct mbuf **)0; 760 else 761 getnam = aname; 762 auio.uio_resid = len = 1000000; 763 /* not need to setup uio_vmspace */ 764 do { 765 rcvflg = 0; 766 error = (*so->so_receive)(so, getnam, &auio, mp, 767 (struct mbuf **)0, &rcvflg); 768 if (error == EWOULDBLOCK && 769 (rep->r_flags & R_SOFTTERM)) 770 return (EINTR); 771 } while (error == EWOULDBLOCK); 772 len -= auio.uio_resid; 773 if (!error && *mp == NULL) 774 error = EPIPE; 775 } 776 if (error) { 777 m_freem(*mp); 778 *mp = (struct mbuf *)0; 779 } 780 return (error); 781 } 782 783 /* 784 * Implement receipt of reply on a socket. 785 * We must search through the list of received datagrams matching them 786 * with outstanding requests using the xid, until ours is found. 787 */ 788 /* ARGSUSED */ 789 int 790 nfs_reply(myrep, lwp) 791 struct nfsreq *myrep; 792 struct lwp *lwp; 793 { 794 struct nfsreq *rep; 795 struct nfsmount *nmp = myrep->r_nmp; 796 int32_t t1; 797 struct mbuf *mrep, *nam, *md; 798 u_int32_t rxid, *tl; 799 char *dpos, *cp2; 800 int error; 801 802 /* 803 * Loop around until we get our own reply 804 */ 805 for (;;) { 806 /* 807 * Lock against other receivers so that I don't get stuck in 808 * sbwait() after someone else has received my reply for me. 809 * Also necessary for connection based protocols to avoid 810 * race conditions during a reconnect. 811 */ 812 error = nfs_rcvlock(nmp, myrep); 813 if (error == EALREADY) 814 return (0); 815 if (error) 816 return (error); 817 /* 818 * Get the next Rpc reply off the socket 819 */ 820 821 mutex_enter(&nmp->nm_lock); 822 nmp->nm_waiters++; 823 mutex_exit(&nmp->nm_lock); 824 825 error = nfs_receive(myrep, &nam, &mrep, lwp); 826 827 mutex_enter(&nmp->nm_lock); 828 nmp->nm_waiters--; 829 cv_signal(&nmp->nm_disconcv); 830 mutex_exit(&nmp->nm_lock); 831 832 if (error) { 833 nfs_rcvunlock(nmp); 834 835 if (nmp->nm_iflag & NFSMNT_DISMNT) { 836 /* 837 * Oops, we're going away now.. 838 */ 839 return error; 840 } 841 /* 842 * Ignore routing errors on connectionless protocols? ? 843 */ 844 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 845 nmp->nm_so->so_error = 0; 846 #ifdef DEBUG 847 printf("nfs_reply: ignoring error %d\n", error); 848 #endif 849 continue; 850 } 851 return (error); 852 } 853 if (nam) 854 m_freem(nam); 855 856 /* 857 * Get the xid and check that it is an rpc reply 858 */ 859 md = mrep; 860 dpos = mtod(md, void *); 861 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 862 rxid = *tl++; 863 if (*tl != rpc_reply) { 864 nfsstats.rpcinvalid++; 865 m_freem(mrep); 866 nfsmout: 867 nfs_rcvunlock(nmp); 868 continue; 869 } 870 871 /* 872 * Loop through the request list to match up the reply 873 * Iff no match, just drop the datagram 874 */ 875 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 876 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 877 /* Found it.. */ 878 rep->r_mrep = mrep; 879 rep->r_md = md; 880 rep->r_dpos = dpos; 881 if (nfsrtton) { 882 struct rttl *rt; 883 884 rt = &nfsrtt.rttl[nfsrtt.pos]; 885 rt->proc = rep->r_procnum; 886 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 887 rt->sent = nmp->nm_sent; 888 rt->cwnd = nmp->nm_cwnd; 889 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 890 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 891 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx; 892 getmicrotime(&rt->tstamp); 893 if (rep->r_flags & R_TIMING) 894 rt->rtt = rep->r_rtt; 895 else 896 rt->rtt = 1000000; 897 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 898 } 899 /* 900 * Update congestion window. 901 * Do the additive increase of 902 * one rpc/rtt. 903 */ 904 if (nmp->nm_cwnd <= nmp->nm_sent) { 905 nmp->nm_cwnd += 906 (NFS_CWNDSCALE * NFS_CWNDSCALE + 907 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 908 if (nmp->nm_cwnd > NFS_MAXCWND) 909 nmp->nm_cwnd = NFS_MAXCWND; 910 } 911 rep->r_flags &= ~R_SENT; 912 nmp->nm_sent -= NFS_CWNDSCALE; 913 /* 914 * Update rtt using a gain of 0.125 on the mean 915 * and a gain of 0.25 on the deviation. 916 */ 917 if (rep->r_flags & R_TIMING) { 918 /* 919 * Since the timer resolution of 920 * NFS_HZ is so course, it can often 921 * result in r_rtt == 0. Since 922 * r_rtt == N means that the actual 923 * rtt is between N+dt and N+2-dt ticks, 924 * add 1. 925 */ 926 t1 = rep->r_rtt + 1; 927 t1 -= (NFS_SRTT(rep) >> 3); 928 NFS_SRTT(rep) += t1; 929 if (t1 < 0) 930 t1 = -t1; 931 t1 -= (NFS_SDRTT(rep) >> 2); 932 NFS_SDRTT(rep) += t1; 933 } 934 nmp->nm_timeouts = 0; 935 break; 936 } 937 } 938 nfs_rcvunlock(nmp); 939 /* 940 * If not matched to a request, drop it. 941 * If it's mine, get out. 942 */ 943 if (rep == 0) { 944 nfsstats.rpcunexpected++; 945 m_freem(mrep); 946 } else if (rep == myrep) { 947 if (rep->r_mrep == NULL) 948 panic("nfsreply nil"); 949 return (0); 950 } 951 } 952 } 953 954 /* 955 * nfs_request - goes something like this 956 * - fill in request struct 957 * - links it into list 958 * - calls nfs_send() for first transmit 959 * - calls nfs_receive() to get reply 960 * - break down rpc header and return with nfs reply pointed to 961 * by mrep or error 962 * nb: always frees up mreq mbuf list 963 */ 964 int 965 nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp) 966 struct nfsnode *np; 967 struct mbuf *mrest; 968 int procnum; 969 struct lwp *lwp; 970 kauth_cred_t cred; 971 struct mbuf **mrp; 972 struct mbuf **mdp; 973 char **dposp; 974 int *rexmitp; 975 { 976 struct mbuf *m, *mrep; 977 struct nfsreq *rep; 978 u_int32_t *tl; 979 int i; 980 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount); 981 struct mbuf *md, *mheadend; 982 char nickv[RPCX_NICKVERF]; 983 time_t waituntil; 984 char *dpos, *cp2; 985 int t1, s, error = 0, mrest_len, auth_len, auth_type; 986 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0; 987 int verf_len, verf_type; 988 u_int32_t xid; 989 char *auth_str, *verf_str; 990 NFSKERBKEY_T key; /* save session key */ 991 kauth_cred_t acred; 992 struct mbuf *mrest_backup = NULL; 993 kauth_cred_t origcred = NULL; /* XXX: gcc */ 994 bool retry_cred = true; 995 bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0; 996 997 if (rexmitp != NULL) 998 *rexmitp = 0; 999 1000 acred = kauth_cred_alloc(); 1001 1002 tryagain_cred: 1003 KASSERT(cred != NULL); 1004 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 1005 rep->r_nmp = nmp; 1006 KASSERT(lwp == NULL || lwp == curlwp); 1007 rep->r_lwp = lwp; 1008 rep->r_procnum = procnum; 1009 i = 0; 1010 m = mrest; 1011 while (m) { 1012 i += m->m_len; 1013 m = m->m_next; 1014 } 1015 mrest_len = i; 1016 1017 /* 1018 * Get the RPC header with authorization. 1019 */ 1020 kerbauth: 1021 verf_str = auth_str = (char *)0; 1022 if (nmp->nm_flag & NFSMNT_KERB) { 1023 verf_str = nickv; 1024 verf_len = sizeof (nickv); 1025 auth_type = RPCAUTH_KERB4; 1026 memset((void *)key, 0, sizeof (key)); 1027 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 1028 &auth_len, verf_str, verf_len)) { 1029 error = nfs_getauth(nmp, rep, cred, &auth_str, 1030 &auth_len, verf_str, &verf_len, key); 1031 if (error) { 1032 free((void *)rep, M_NFSREQ); 1033 m_freem(mrest); 1034 KASSERT(kauth_cred_getrefcnt(acred) == 1); 1035 kauth_cred_free(acred); 1036 return (error); 1037 } 1038 } 1039 retry_cred = false; 1040 } else { 1041 /* AUTH_UNIX */ 1042 uid_t uid; 1043 gid_t gid; 1044 1045 /* 1046 * on the most unix filesystems, permission checks are 1047 * done when the file is open(2)'ed. 1048 * ie. once a file is successfully open'ed, 1049 * following i/o operations never fail with EACCES. 1050 * we try to follow the semantics as far as possible. 1051 * 1052 * note that we expect that the nfs server always grant 1053 * accesses by the file's owner. 1054 */ 1055 origcred = cred; 1056 switch (procnum) { 1057 case NFSPROC_READ: 1058 case NFSPROC_WRITE: 1059 case NFSPROC_COMMIT: 1060 uid = np->n_vattr->va_uid; 1061 gid = np->n_vattr->va_gid; 1062 if (kauth_cred_geteuid(cred) == uid && 1063 kauth_cred_getegid(cred) == gid) { 1064 retry_cred = false; 1065 break; 1066 } 1067 if (use_opencred) 1068 break; 1069 kauth_cred_setuid(acred, uid); 1070 kauth_cred_seteuid(acred, uid); 1071 kauth_cred_setsvuid(acred, uid); 1072 kauth_cred_setgid(acred, gid); 1073 kauth_cred_setegid(acred, gid); 1074 kauth_cred_setsvgid(acred, gid); 1075 cred = acred; 1076 break; 1077 default: 1078 retry_cred = false; 1079 break; 1080 } 1081 /* 1082 * backup mbuf chain if we can need it later to retry. 1083 * 1084 * XXX maybe we can keep a direct reference to 1085 * mrest without doing m_copym, but it's ...ugly. 1086 */ 1087 if (retry_cred) 1088 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT); 1089 auth_type = RPCAUTH_UNIX; 1090 /* XXX elad - ngroups */ 1091 auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ? 1092 nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) + 1093 5 * NFSX_UNSIGNED; 1094 } 1095 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 1096 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 1097 if (auth_str) 1098 free(auth_str, M_TEMP); 1099 1100 /* 1101 * For stream protocols, insert a Sun RPC Record Mark. 1102 */ 1103 if (nmp->nm_sotype == SOCK_STREAM) { 1104 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 1105 *mtod(m, u_int32_t *) = htonl(0x80000000 | 1106 (m->m_pkthdr.len - NFSX_UNSIGNED)); 1107 } 1108 rep->r_mreq = m; 1109 rep->r_xid = xid; 1110 tryagain: 1111 if (nmp->nm_flag & NFSMNT_SOFT) 1112 rep->r_retry = nmp->nm_retry; 1113 else 1114 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 1115 rep->r_rtt = rep->r_rexmit = 0; 1116 if (proct[procnum] > 0) 1117 rep->r_flags = R_TIMING; 1118 else 1119 rep->r_flags = 0; 1120 rep->r_mrep = NULL; 1121 1122 /* 1123 * Do the client side RPC. 1124 */ 1125 nfsstats.rpcrequests++; 1126 /* 1127 * Chain request into list of outstanding requests. Be sure 1128 * to put it LAST so timer finds oldest requests first. 1129 */ 1130 s = splsoftnet(); 1131 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1132 nfs_timer_start(); 1133 1134 /* 1135 * If backing off another request or avoiding congestion, don't 1136 * send this one now but let timer do it. If not timing a request, 1137 * do it now. 1138 */ 1139 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1140 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1141 nmp->nm_sent < nmp->nm_cwnd)) { 1142 splx(s); 1143 if (nmp->nm_soflags & PR_CONNREQUIRED) 1144 error = nfs_sndlock(nmp, rep); 1145 if (!error) { 1146 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 1147 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp); 1148 if (nmp->nm_soflags & PR_CONNREQUIRED) 1149 nfs_sndunlock(nmp); 1150 } 1151 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 1152 nmp->nm_sent += NFS_CWNDSCALE; 1153 rep->r_flags |= R_SENT; 1154 } 1155 } else { 1156 splx(s); 1157 rep->r_rtt = -1; 1158 } 1159 1160 /* 1161 * Wait for the reply from our send or the timer's. 1162 */ 1163 if (!error || error == EPIPE) 1164 error = nfs_reply(rep, lwp); 1165 1166 /* 1167 * RPC done, unlink the request. 1168 */ 1169 s = splsoftnet(); 1170 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1171 splx(s); 1172 1173 /* 1174 * Decrement the outstanding request count. 1175 */ 1176 if (rep->r_flags & R_SENT) { 1177 rep->r_flags &= ~R_SENT; /* paranoia */ 1178 nmp->nm_sent -= NFS_CWNDSCALE; 1179 } 1180 1181 if (rexmitp != NULL) { 1182 int rexmit; 1183 1184 if (nmp->nm_sotype != SOCK_DGRAM) 1185 rexmit = (rep->r_flags & R_REXMITTED) != 0; 1186 else 1187 rexmit = rep->r_rexmit; 1188 *rexmitp = rexmit; 1189 } 1190 1191 /* 1192 * If there was a successful reply and a tprintf msg. 1193 * tprintf a response. 1194 */ 1195 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1196 nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname, 1197 "is alive again"); 1198 mrep = rep->r_mrep; 1199 md = rep->r_md; 1200 dpos = rep->r_dpos; 1201 if (error) 1202 goto nfsmout; 1203 1204 /* 1205 * break down the rpc header and check if ok 1206 */ 1207 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1208 if (*tl++ == rpc_msgdenied) { 1209 if (*tl == rpc_mismatch) 1210 error = EOPNOTSUPP; 1211 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1212 if (!failed_auth) { 1213 failed_auth++; 1214 mheadend->m_next = (struct mbuf *)0; 1215 m_freem(mrep); 1216 m_freem(rep->r_mreq); 1217 goto kerbauth; 1218 } else 1219 error = EAUTH; 1220 } else 1221 error = EACCES; 1222 m_freem(mrep); 1223 goto nfsmout; 1224 } 1225 1226 /* 1227 * Grab any Kerberos verifier, otherwise just throw it away. 1228 */ 1229 verf_type = fxdr_unsigned(int, *tl++); 1230 i = fxdr_unsigned(int32_t, *tl); 1231 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1232 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1233 if (error) 1234 goto nfsmout; 1235 } else if (i > 0) 1236 nfsm_adv(nfsm_rndup(i)); 1237 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1238 /* 0 == ok */ 1239 if (*tl == 0) { 1240 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1241 if (*tl != 0) { 1242 error = fxdr_unsigned(int, *tl); 1243 switch (error) { 1244 case NFSERR_PERM: 1245 error = EPERM; 1246 break; 1247 1248 case NFSERR_NOENT: 1249 error = ENOENT; 1250 break; 1251 1252 case NFSERR_IO: 1253 error = EIO; 1254 break; 1255 1256 case NFSERR_NXIO: 1257 error = ENXIO; 1258 break; 1259 1260 case NFSERR_ACCES: 1261 error = EACCES; 1262 if (!retry_cred) 1263 break; 1264 m_freem(mrep); 1265 m_freem(rep->r_mreq); 1266 FREE(rep, M_NFSREQ); 1267 use_opencred = !use_opencred; 1268 if (mrest_backup == NULL) { 1269 /* m_copym failure */ 1270 KASSERT( 1271 kauth_cred_getrefcnt(acred) == 1); 1272 kauth_cred_free(acred); 1273 return ENOMEM; 1274 } 1275 mrest = mrest_backup; 1276 mrest_backup = NULL; 1277 cred = origcred; 1278 error = 0; 1279 retry_cred = false; 1280 goto tryagain_cred; 1281 1282 case NFSERR_EXIST: 1283 error = EEXIST; 1284 break; 1285 1286 case NFSERR_XDEV: 1287 error = EXDEV; 1288 break; 1289 1290 case NFSERR_NODEV: 1291 error = ENODEV; 1292 break; 1293 1294 case NFSERR_NOTDIR: 1295 error = ENOTDIR; 1296 break; 1297 1298 case NFSERR_ISDIR: 1299 error = EISDIR; 1300 break; 1301 1302 case NFSERR_INVAL: 1303 error = EINVAL; 1304 break; 1305 1306 case NFSERR_FBIG: 1307 error = EFBIG; 1308 break; 1309 1310 case NFSERR_NOSPC: 1311 error = ENOSPC; 1312 break; 1313 1314 case NFSERR_ROFS: 1315 error = EROFS; 1316 break; 1317 1318 case NFSERR_MLINK: 1319 error = EMLINK; 1320 break; 1321 1322 case NFSERR_TIMEDOUT: 1323 error = ETIMEDOUT; 1324 break; 1325 1326 case NFSERR_NAMETOL: 1327 error = ENAMETOOLONG; 1328 break; 1329 1330 case NFSERR_NOTEMPTY: 1331 error = ENOTEMPTY; 1332 break; 1333 1334 case NFSERR_DQUOT: 1335 error = EDQUOT; 1336 break; 1337 1338 case NFSERR_STALE: 1339 /* 1340 * If the File Handle was stale, invalidate the 1341 * lookup cache, just in case. 1342 */ 1343 error = ESTALE; 1344 cache_purge(NFSTOV(np)); 1345 break; 1346 1347 case NFSERR_REMOTE: 1348 error = EREMOTE; 1349 break; 1350 1351 case NFSERR_WFLUSH: 1352 case NFSERR_BADHANDLE: 1353 case NFSERR_NOT_SYNC: 1354 case NFSERR_BAD_COOKIE: 1355 error = EINVAL; 1356 break; 1357 1358 case NFSERR_NOTSUPP: 1359 error = ENOTSUP; 1360 break; 1361 1362 case NFSERR_TOOSMALL: 1363 case NFSERR_SERVERFAULT: 1364 case NFSERR_BADTYPE: 1365 error = EINVAL; 1366 break; 1367 1368 case NFSERR_TRYLATER: 1369 if ((nmp->nm_flag & NFSMNT_NFSV3) == 0) 1370 break; 1371 m_freem(mrep); 1372 error = 0; 1373 waituntil = time_second + trylater_delay; 1374 while (time_second < waituntil) { 1375 kpause("nfstrylater", false, hz, NULL); 1376 } 1377 trylater_delay *= NFS_TRYLATERDELMUL; 1378 if (trylater_delay > NFS_TRYLATERDELMAX) 1379 trylater_delay = NFS_TRYLATERDELMAX; 1380 /* 1381 * RFC1813: 1382 * The client should wait and then try 1383 * the request with a new RPC transaction ID. 1384 */ 1385 nfs_renewxid(rep); 1386 goto tryagain; 1387 1388 default: 1389 #ifdef DIAGNOSTIC 1390 printf("Invalid rpc error code %d\n", error); 1391 #endif 1392 error = EINVAL; 1393 break; 1394 } 1395 1396 if (nmp->nm_flag & NFSMNT_NFSV3) { 1397 *mrp = mrep; 1398 *mdp = md; 1399 *dposp = dpos; 1400 error |= NFSERR_RETERR; 1401 } else 1402 m_freem(mrep); 1403 goto nfsmout; 1404 } 1405 1406 /* 1407 * note which credential worked to minimize number of retries. 1408 */ 1409 if (use_opencred) 1410 np->n_flag |= NUSEOPENCRED; 1411 else 1412 np->n_flag &= ~NUSEOPENCRED; 1413 1414 *mrp = mrep; 1415 *mdp = md; 1416 *dposp = dpos; 1417 1418 KASSERT(error == 0); 1419 goto nfsmout; 1420 } 1421 m_freem(mrep); 1422 error = EPROTONOSUPPORT; 1423 nfsmout: 1424 KASSERT(kauth_cred_getrefcnt(acred) == 1); 1425 kauth_cred_free(acred); 1426 m_freem(rep->r_mreq); 1427 free((void *)rep, M_NFSREQ); 1428 m_freem(mrest_backup); 1429 return (error); 1430 } 1431 #endif /* NFS */ 1432 1433 /* 1434 * Generate the rpc reply header 1435 * siz arg. is used to decide if adding a cluster is worthwhile 1436 */ 1437 int 1438 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) 1439 int siz; 1440 struct nfsrv_descript *nd; 1441 struct nfssvc_sock *slp; 1442 int err; 1443 int cache; 1444 u_quad_t *frev; 1445 struct mbuf **mrq; 1446 struct mbuf **mbp; 1447 char **bposp; 1448 { 1449 u_int32_t *tl; 1450 struct mbuf *mreq; 1451 char *bpos; 1452 struct mbuf *mb; 1453 1454 mreq = m_gethdr(M_WAIT, MT_DATA); 1455 MCLAIM(mreq, &nfs_mowner); 1456 mb = mreq; 1457 /* 1458 * If this is a big reply, use a cluster else 1459 * try and leave leading space for the lower level headers. 1460 */ 1461 siz += RPC_REPLYSIZ; 1462 if (siz >= max_datalen) { 1463 m_clget(mreq, M_WAIT); 1464 } else 1465 mreq->m_data += max_hdr; 1466 tl = mtod(mreq, u_int32_t *); 1467 mreq->m_len = 6 * NFSX_UNSIGNED; 1468 bpos = ((char *)tl) + mreq->m_len; 1469 *tl++ = txdr_unsigned(nd->nd_retxid); 1470 *tl++ = rpc_reply; 1471 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1472 *tl++ = rpc_msgdenied; 1473 if (err & NFSERR_AUTHERR) { 1474 *tl++ = rpc_autherr; 1475 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1476 mreq->m_len -= NFSX_UNSIGNED; 1477 bpos -= NFSX_UNSIGNED; 1478 } else { 1479 *tl++ = rpc_mismatch; 1480 *tl++ = txdr_unsigned(RPC_VER2); 1481 *tl = txdr_unsigned(RPC_VER2); 1482 } 1483 } else { 1484 *tl++ = rpc_msgaccepted; 1485 1486 /* 1487 * For Kerberos authentication, we must send the nickname 1488 * verifier back, otherwise just RPCAUTH_NULL. 1489 */ 1490 if (nd->nd_flag & ND_KERBFULL) { 1491 struct nfsuid *nuidp; 1492 struct timeval ktvin, ktvout; 1493 1494 memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */ 1495 1496 LIST_FOREACH(nuidp, 1497 NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)), 1498 nu_hash) { 1499 if (kauth_cred_geteuid(nuidp->nu_cr) == 1500 kauth_cred_geteuid(nd->nd_cr) && 1501 (!nd->nd_nam2 || netaddr_match( 1502 NU_NETFAM(nuidp), &nuidp->nu_haddr, 1503 nd->nd_nam2))) 1504 break; 1505 } 1506 if (nuidp) { 1507 ktvin.tv_sec = 1508 txdr_unsigned(nuidp->nu_timestamp.tv_sec 1509 - 1); 1510 ktvin.tv_usec = 1511 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1512 1513 /* 1514 * Encrypt the timestamp in ecb mode using the 1515 * session key. 1516 */ 1517 #ifdef NFSKERB 1518 XXX 1519 #endif 1520 1521 *tl++ = rpc_auth_kerb; 1522 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1523 *tl = ktvout.tv_sec; 1524 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1525 *tl++ = ktvout.tv_usec; 1526 *tl++ = txdr_unsigned( 1527 kauth_cred_geteuid(nuidp->nu_cr)); 1528 } else { 1529 *tl++ = 0; 1530 *tl++ = 0; 1531 } 1532 } else { 1533 *tl++ = 0; 1534 *tl++ = 0; 1535 } 1536 switch (err) { 1537 case EPROGUNAVAIL: 1538 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1539 break; 1540 case EPROGMISMATCH: 1541 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1542 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1543 *tl++ = txdr_unsigned(2); 1544 *tl = txdr_unsigned(3); 1545 break; 1546 case EPROCUNAVAIL: 1547 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1548 break; 1549 case EBADRPC: 1550 *tl = txdr_unsigned(RPC_GARBAGE); 1551 break; 1552 default: 1553 *tl = 0; 1554 if (err != NFSERR_RETVOID) { 1555 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1556 if (err) 1557 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1558 else 1559 *tl = 0; 1560 } 1561 break; 1562 }; 1563 } 1564 1565 if (mrq != NULL) 1566 *mrq = mreq; 1567 *mbp = mb; 1568 *bposp = bpos; 1569 if (err != 0 && err != NFSERR_RETVOID) 1570 nfsstats.srvrpc_errs++; 1571 return (0); 1572 } 1573 1574 static void 1575 nfs_timer_schedule(void) 1576 { 1577 1578 callout_schedule(&nfs_timer_ch, nfs_ticks); 1579 } 1580 1581 void 1582 nfs_timer_start(void) 1583 { 1584 1585 if (callout_pending(&nfs_timer_ch)) 1586 return; 1587 1588 nfs_timer_start_ev.ev_count++; 1589 nfs_timer_schedule(); 1590 } 1591 1592 void 1593 nfs_timer_init(void) 1594 { 1595 1596 callout_init(&nfs_timer_ch, 0); 1597 callout_setfunc(&nfs_timer_ch, nfs_timer, NULL); 1598 evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL, 1599 "nfs", "timer"); 1600 evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL, 1601 "nfs", "timer start"); 1602 evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL, 1603 "nfs", "timer stop"); 1604 } 1605 1606 /* 1607 * Nfs timer routine 1608 * Scan the nfsreq list and retranmit any requests that have timed out 1609 * To avoid retransmission attempts on STREAM sockets (in the future) make 1610 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1611 * A non-NULL argument means 'initialize'. 1612 */ 1613 void 1614 nfs_timer(void *arg) 1615 { 1616 struct nfsreq *rep; 1617 struct mbuf *m; 1618 struct socket *so; 1619 struct nfsmount *nmp; 1620 int timeo; 1621 int s, error; 1622 bool more = false; 1623 #ifdef NFSSERVER 1624 struct timeval tv; 1625 struct nfssvc_sock *slp; 1626 u_quad_t cur_usec; 1627 #endif 1628 1629 nfs_timer_ev.ev_count++; 1630 1631 s = splsoftnet(); 1632 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 1633 more = true; 1634 nmp = rep->r_nmp; 1635 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1636 continue; 1637 if (nfs_sigintr(nmp, rep, rep->r_lwp)) { 1638 rep->r_flags |= R_SOFTTERM; 1639 continue; 1640 } 1641 if (rep->r_rtt >= 0) { 1642 rep->r_rtt++; 1643 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1644 timeo = nmp->nm_timeo; 1645 else 1646 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1647 if (nmp->nm_timeouts > 0) 1648 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1649 if (rep->r_rtt <= timeo) 1650 continue; 1651 if (nmp->nm_timeouts < 1652 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0]))) 1653 nmp->nm_timeouts++; 1654 } 1655 /* 1656 * Check for server not responding 1657 */ 1658 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1659 rep->r_rexmit > nmp->nm_deadthresh) { 1660 nfs_msg(rep->r_lwp, 1661 nmp->nm_mountp->mnt_stat.f_mntfromname, 1662 "not responding"); 1663 rep->r_flags |= R_TPRINTFMSG; 1664 } 1665 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1666 nfsstats.rpctimeouts++; 1667 rep->r_flags |= R_SOFTTERM; 1668 continue; 1669 } 1670 if (nmp->nm_sotype != SOCK_DGRAM) { 1671 if (++rep->r_rexmit > NFS_MAXREXMIT) 1672 rep->r_rexmit = NFS_MAXREXMIT; 1673 continue; 1674 } 1675 if ((so = nmp->nm_so) == NULL) 1676 continue; 1677 1678 /* 1679 * If there is enough space and the window allows.. 1680 * Resend it 1681 * Set r_rtt to -1 in case we fail to send it now. 1682 */ 1683 rep->r_rtt = -1; 1684 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1685 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1686 (rep->r_flags & R_SENT) || 1687 nmp->nm_sent < nmp->nm_cwnd) && 1688 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1689 if (so->so_state & SS_ISCONNECTED) 1690 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1691 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0); 1692 else 1693 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1694 nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0); 1695 if (error) { 1696 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 1697 #ifdef DEBUG 1698 printf("nfs_timer: ignoring error %d\n", 1699 error); 1700 #endif 1701 so->so_error = 0; 1702 } 1703 } else { 1704 /* 1705 * Iff first send, start timing 1706 * else turn timing off, backoff timer 1707 * and divide congestion window by 2. 1708 */ 1709 if (rep->r_flags & R_SENT) { 1710 rep->r_flags &= ~R_TIMING; 1711 if (++rep->r_rexmit > NFS_MAXREXMIT) 1712 rep->r_rexmit = NFS_MAXREXMIT; 1713 nmp->nm_cwnd >>= 1; 1714 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1715 nmp->nm_cwnd = NFS_CWNDSCALE; 1716 nfsstats.rpcretries++; 1717 } else { 1718 rep->r_flags |= R_SENT; 1719 nmp->nm_sent += NFS_CWNDSCALE; 1720 } 1721 rep->r_rtt = 0; 1722 } 1723 } 1724 } 1725 splx(s); 1726 1727 #ifdef NFSSERVER 1728 /* 1729 * Scan the write gathering queues for writes that need to be 1730 * completed now. 1731 */ 1732 getmicrotime(&tv); 1733 cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec; 1734 mutex_enter(&nfsd_lock); 1735 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) { 1736 struct nfsrv_descript *nd; 1737 1738 nd = LIST_FIRST(&slp->ns_tq); 1739 if (nd != NULL) { 1740 if (nd->nd_time <= cur_usec) { 1741 nfsrv_wakenfsd_locked(slp); 1742 } 1743 more = true; 1744 } 1745 } 1746 mutex_exit(&nfsd_lock); 1747 #endif /* NFSSERVER */ 1748 if (more) { 1749 nfs_timer_schedule(); 1750 } else { 1751 nfs_timer_stop_ev.ev_count++; 1752 } 1753 } 1754 1755 /* 1756 * Test for a termination condition pending on the process. 1757 * This is used for NFSMNT_INT mounts. 1758 */ 1759 int 1760 nfs_sigintr(nmp, rep, l) 1761 struct nfsmount *nmp; 1762 struct nfsreq *rep; 1763 struct lwp *l; 1764 { 1765 sigset_t ss; 1766 1767 if (rep && (rep->r_flags & R_SOFTTERM)) 1768 return (EINTR); 1769 if (!(nmp->nm_flag & NFSMNT_INT)) 1770 return (0); 1771 if (l) { 1772 sigpending1(l, &ss); 1773 #if 0 1774 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss); 1775 #endif 1776 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) || 1777 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) || 1778 sigismember(&ss, SIGQUIT)) 1779 return (EINTR); 1780 } 1781 return (0); 1782 } 1783 1784 /* 1785 * Lock a socket against others. 1786 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1787 * and also to avoid race conditions between the processes with nfs requests 1788 * in progress when a reconnect is necessary. 1789 */ 1790 static int 1791 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep) 1792 { 1793 struct lwp *l; 1794 int timeo = 0; 1795 bool catch = false; 1796 int error = 0; 1797 1798 if (rep) { 1799 l = rep->r_lwp; 1800 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1801 catch = true; 1802 } else 1803 l = NULL; 1804 mutex_enter(&nmp->nm_lock); 1805 while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) { 1806 if (rep && nfs_sigintr(rep->r_nmp, rep, l)) { 1807 error = EINTR; 1808 goto quit; 1809 } 1810 if (catch) { 1811 cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo); 1812 } else { 1813 cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo); 1814 } 1815 if (catch) { 1816 catch = false; 1817 timeo = 2 * hz; 1818 } 1819 } 1820 nmp->nm_iflag |= NFSMNT_SNDLOCK; 1821 quit: 1822 mutex_exit(&nmp->nm_lock); 1823 return error; 1824 } 1825 1826 /* 1827 * Unlock the stream socket for others. 1828 */ 1829 static void 1830 nfs_sndunlock(struct nfsmount *nmp) 1831 { 1832 1833 mutex_enter(&nmp->nm_lock); 1834 if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0) 1835 panic("nfs sndunlock"); 1836 nmp->nm_iflag &= ~NFSMNT_SNDLOCK; 1837 cv_signal(&nmp->nm_sndcv); 1838 mutex_exit(&nmp->nm_lock); 1839 } 1840 1841 static int 1842 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep) 1843 { 1844 int *flagp = &nmp->nm_iflag; 1845 int slptimeo = 0; 1846 bool catch; 1847 int error = 0; 1848 1849 KASSERT(nmp == rep->r_nmp); 1850 1851 catch = (nmp->nm_flag & NFSMNT_INT) != 0; 1852 mutex_enter(&nmp->nm_lock); 1853 while (/* CONSTCOND */ true) { 1854 if (*flagp & NFSMNT_DISMNT) { 1855 cv_signal(&nmp->nm_disconcv); 1856 error = EIO; 1857 break; 1858 } 1859 /* If our reply was received while we were sleeping, 1860 * then just return without taking the lock to avoid a 1861 * situation where a single iod could 'capture' the 1862 * receive lock. 1863 */ 1864 if (rep->r_mrep != NULL) { 1865 error = EALREADY; 1866 break; 1867 } 1868 if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) { 1869 error = EINTR; 1870 break; 1871 } 1872 if ((*flagp & NFSMNT_RCVLOCK) == 0) { 1873 *flagp |= NFSMNT_RCVLOCK; 1874 break; 1875 } 1876 if (catch) { 1877 cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock, 1878 slptimeo); 1879 } else { 1880 cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock, 1881 slptimeo); 1882 } 1883 if (catch) { 1884 catch = false; 1885 slptimeo = 2 * hz; 1886 } 1887 } 1888 mutex_exit(&nmp->nm_lock); 1889 return error; 1890 } 1891 1892 /* 1893 * Unlock the stream socket for others. 1894 */ 1895 static void 1896 nfs_rcvunlock(struct nfsmount *nmp) 1897 { 1898 1899 mutex_enter(&nmp->nm_lock); 1900 if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0) 1901 panic("nfs rcvunlock"); 1902 nmp->nm_iflag &= ~NFSMNT_RCVLOCK; 1903 cv_broadcast(&nmp->nm_rcvcv); 1904 mutex_exit(&nmp->nm_lock); 1905 } 1906 1907 /* 1908 * Parse an RPC request 1909 * - verify it 1910 * - allocate and fill in the cred. 1911 */ 1912 int 1913 nfs_getreq(nd, nfsd, has_header) 1914 struct nfsrv_descript *nd; 1915 struct nfsd *nfsd; 1916 int has_header; 1917 { 1918 int len, i; 1919 u_int32_t *tl; 1920 int32_t t1; 1921 struct uio uio; 1922 struct iovec iov; 1923 char *dpos, *cp2, *cp; 1924 u_int32_t nfsvers, auth_type; 1925 uid_t nickuid; 1926 int error = 0, ticklen; 1927 struct mbuf *mrep, *md; 1928 struct nfsuid *nuidp; 1929 struct timeval tvin, tvout; 1930 1931 memset(&tvout, 0, sizeof tvout); /* XXX gcc */ 1932 1933 KASSERT(nd->nd_cr == NULL); 1934 mrep = nd->nd_mrep; 1935 md = nd->nd_md; 1936 dpos = nd->nd_dpos; 1937 if (has_header) { 1938 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1939 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1940 if (*tl++ != rpc_call) { 1941 m_freem(mrep); 1942 return (EBADRPC); 1943 } 1944 } else 1945 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1946 nd->nd_repstat = 0; 1947 nd->nd_flag = 0; 1948 if (*tl++ != rpc_vers) { 1949 nd->nd_repstat = ERPCMISMATCH; 1950 nd->nd_procnum = NFSPROC_NOOP; 1951 return (0); 1952 } 1953 if (*tl != nfs_prog) { 1954 nd->nd_repstat = EPROGUNAVAIL; 1955 nd->nd_procnum = NFSPROC_NOOP; 1956 return (0); 1957 } 1958 tl++; 1959 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1960 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) { 1961 nd->nd_repstat = EPROGMISMATCH; 1962 nd->nd_procnum = NFSPROC_NOOP; 1963 return (0); 1964 } 1965 if (nfsvers == NFS_VER3) 1966 nd->nd_flag = ND_NFSV3; 1967 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1968 if (nd->nd_procnum == NFSPROC_NULL) 1969 return (0); 1970 if (nd->nd_procnum > NFSPROC_COMMIT || 1971 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1972 nd->nd_repstat = EPROCUNAVAIL; 1973 nd->nd_procnum = NFSPROC_NOOP; 1974 return (0); 1975 } 1976 if ((nd->nd_flag & ND_NFSV3) == 0) 1977 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1978 auth_type = *tl++; 1979 len = fxdr_unsigned(int, *tl++); 1980 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1981 m_freem(mrep); 1982 return (EBADRPC); 1983 } 1984 1985 nd->nd_flag &= ~ND_KERBAUTH; 1986 /* 1987 * Handle auth_unix or auth_kerb. 1988 */ 1989 if (auth_type == rpc_auth_unix) { 1990 uid_t uid; 1991 gid_t gid, *grbuf; 1992 1993 nd->nd_cr = kauth_cred_alloc(); 1994 len = fxdr_unsigned(int, *++tl); 1995 if (len < 0 || len > NFS_MAXNAMLEN) { 1996 m_freem(mrep); 1997 error = EBADRPC; 1998 goto errout; 1999 } 2000 nfsm_adv(nfsm_rndup(len)); 2001 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 2002 2003 uid = fxdr_unsigned(uid_t, *tl++); 2004 gid = fxdr_unsigned(gid_t, *tl++); 2005 kauth_cred_setuid(nd->nd_cr, uid); 2006 kauth_cred_seteuid(nd->nd_cr, uid); 2007 kauth_cred_setsvuid(nd->nd_cr, uid); 2008 kauth_cred_setgid(nd->nd_cr, gid); 2009 kauth_cred_setegid(nd->nd_cr, gid); 2010 kauth_cred_setsvgid(nd->nd_cr, gid); 2011 2012 len = fxdr_unsigned(int, *tl); 2013 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 2014 m_freem(mrep); 2015 error = EBADRPC; 2016 goto errout; 2017 } 2018 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 2019 2020 grbuf = malloc(len * sizeof(gid_t), M_TEMP, M_WAITOK); 2021 for (i = 0; i < len; i++) { 2022 if (i < NGROUPS) /* XXX elad */ 2023 grbuf[i] = fxdr_unsigned(gid_t, *tl++); 2024 else 2025 tl++; 2026 } 2027 kauth_cred_setgroups(nd->nd_cr, grbuf, min(len, NGROUPS), -1, 2028 UIO_SYSSPACE); 2029 free(grbuf, M_TEMP); 2030 2031 len = fxdr_unsigned(int, *++tl); 2032 if (len < 0 || len > RPCAUTH_MAXSIZ) { 2033 m_freem(mrep); 2034 error = EBADRPC; 2035 goto errout; 2036 } 2037 if (len > 0) 2038 nfsm_adv(nfsm_rndup(len)); 2039 } else if (auth_type == rpc_auth_kerb) { 2040 switch (fxdr_unsigned(int, *tl++)) { 2041 case RPCAKN_FULLNAME: 2042 ticklen = fxdr_unsigned(int, *tl); 2043 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 2044 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 2045 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 2046 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 2047 m_freem(mrep); 2048 error = EBADRPC; 2049 goto errout; 2050 } 2051 uio.uio_offset = 0; 2052 uio.uio_iov = &iov; 2053 uio.uio_iovcnt = 1; 2054 UIO_SETUP_SYSSPACE(&uio); 2055 iov.iov_base = (void *)&nfsd->nfsd_authstr[4]; 2056 iov.iov_len = RPCAUTH_MAXSIZ - 4; 2057 nfsm_mtouio(&uio, uio.uio_resid); 2058 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 2059 if (*tl++ != rpc_auth_kerb || 2060 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 2061 printf("Bad kerb verifier\n"); 2062 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 2063 nd->nd_procnum = NFSPROC_NOOP; 2064 return (0); 2065 } 2066 nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED); 2067 tl = (u_int32_t *)cp; 2068 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 2069 printf("Not fullname kerb verifier\n"); 2070 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 2071 nd->nd_procnum = NFSPROC_NOOP; 2072 return (0); 2073 } 2074 cp += NFSX_UNSIGNED; 2075 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED); 2076 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 2077 nd->nd_flag |= ND_KERBFULL; 2078 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 2079 break; 2080 case RPCAKN_NICKNAME: 2081 if (len != 2 * NFSX_UNSIGNED) { 2082 printf("Kerb nickname short\n"); 2083 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 2084 nd->nd_procnum = NFSPROC_NOOP; 2085 return (0); 2086 } 2087 nickuid = fxdr_unsigned(uid_t, *tl); 2088 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 2089 if (*tl++ != rpc_auth_kerb || 2090 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 2091 printf("Kerb nick verifier bad\n"); 2092 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 2093 nd->nd_procnum = NFSPROC_NOOP; 2094 return (0); 2095 } 2096 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 2097 tvin.tv_sec = *tl++; 2098 tvin.tv_usec = *tl; 2099 2100 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid), 2101 nu_hash) { 2102 if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid && 2103 (!nd->nd_nam2 || 2104 netaddr_match(NU_NETFAM(nuidp), 2105 &nuidp->nu_haddr, nd->nd_nam2))) 2106 break; 2107 } 2108 if (!nuidp) { 2109 nd->nd_repstat = 2110 (NFSERR_AUTHERR|AUTH_REJECTCRED); 2111 nd->nd_procnum = NFSPROC_NOOP; 2112 return (0); 2113 } 2114 2115 /* 2116 * Now, decrypt the timestamp using the session key 2117 * and validate it. 2118 */ 2119 #ifdef NFSKERB 2120 XXX 2121 #endif 2122 2123 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 2124 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 2125 if (nuidp->nu_expire < time_second || 2126 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 2127 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 2128 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 2129 nuidp->nu_expire = 0; 2130 nd->nd_repstat = 2131 (NFSERR_AUTHERR|AUTH_REJECTVERF); 2132 nd->nd_procnum = NFSPROC_NOOP; 2133 return (0); 2134 } 2135 kauth_cred_hold(nuidp->nu_cr); 2136 nd->nd_cr = nuidp->nu_cr; 2137 nd->nd_flag |= ND_KERBNICK; 2138 } 2139 } else { 2140 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 2141 nd->nd_procnum = NFSPROC_NOOP; 2142 return (0); 2143 } 2144 2145 nd->nd_md = md; 2146 nd->nd_dpos = dpos; 2147 KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0) 2148 || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0)); 2149 return (0); 2150 nfsmout: 2151 errout: 2152 KASSERT(error != 0); 2153 if (nd->nd_cr != NULL) { 2154 kauth_cred_free(nd->nd_cr); 2155 nd->nd_cr = NULL; 2156 } 2157 return (error); 2158 } 2159 2160 int 2161 nfs_msg(l, server, msg) 2162 struct lwp *l; 2163 const char *server, *msg; 2164 { 2165 tpr_t tpr; 2166 2167 if (l) 2168 tpr = tprintf_open(l->l_proc); 2169 else 2170 tpr = NULL; 2171 tprintf(tpr, "nfs server %s: %s\n", server, msg); 2172 tprintf_close(tpr); 2173 return (0); 2174 } 2175 2176 #ifdef NFSSERVER 2177 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *, 2178 struct nfssvc_sock *, struct lwp *, 2179 struct mbuf **)) = { 2180 nfsrv_null, 2181 nfsrv_getattr, 2182 nfsrv_setattr, 2183 nfsrv_lookup, 2184 nfsrv3_access, 2185 nfsrv_readlink, 2186 nfsrv_read, 2187 nfsrv_write, 2188 nfsrv_create, 2189 nfsrv_mkdir, 2190 nfsrv_symlink, 2191 nfsrv_mknod, 2192 nfsrv_remove, 2193 nfsrv_rmdir, 2194 nfsrv_rename, 2195 nfsrv_link, 2196 nfsrv_readdir, 2197 nfsrv_readdirplus, 2198 nfsrv_statfs, 2199 nfsrv_fsinfo, 2200 nfsrv_pathconf, 2201 nfsrv_commit, 2202 nfsrv_noop 2203 }; 2204 2205 /* 2206 * Socket upcall routine for the nfsd sockets. 2207 * The void *arg is a pointer to the "struct nfssvc_sock". 2208 */ 2209 void 2210 nfsrv_soupcall(struct socket *so, void *arg, int waitflag) 2211 { 2212 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 2213 2214 nfsdsock_setbits(slp, SLP_A_NEEDQ); 2215 nfsrv_wakenfsd(slp); 2216 } 2217 2218 void 2219 nfsrv_rcv(struct nfssvc_sock *slp) 2220 { 2221 struct socket *so; 2222 struct mbuf *m; 2223 struct mbuf *mp, *nam; 2224 struct uio auio; 2225 int flags; 2226 int error; 2227 int setflags = 0; 2228 2229 error = nfsdsock_lock(slp, true); 2230 if (error) { 2231 setflags |= SLP_A_NEEDQ; 2232 goto dorecs_unlocked; 2233 } 2234 2235 nfsdsock_clearbits(slp, SLP_A_NEEDQ); 2236 2237 so = slp->ns_so; 2238 if (so->so_type == SOCK_STREAM) { 2239 /* 2240 * Do soreceive(). 2241 */ 2242 auio.uio_resid = 1000000000; 2243 /* not need to setup uio_vmspace */ 2244 flags = MSG_DONTWAIT; 2245 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags); 2246 if (error || mp == NULL) { 2247 if (error == EWOULDBLOCK) 2248 setflags |= SLP_A_NEEDQ; 2249 else 2250 setflags |= SLP_A_DISCONN; 2251 goto dorecs; 2252 } 2253 m = mp; 2254 m_claimm(m, &nfs_mowner); 2255 if (slp->ns_rawend) { 2256 slp->ns_rawend->m_next = m; 2257 slp->ns_cc += 1000000000 - auio.uio_resid; 2258 } else { 2259 slp->ns_raw = m; 2260 slp->ns_cc = 1000000000 - auio.uio_resid; 2261 } 2262 while (m->m_next) 2263 m = m->m_next; 2264 slp->ns_rawend = m; 2265 2266 /* 2267 * Now try and parse record(s) out of the raw stream data. 2268 */ 2269 error = nfsrv_getstream(slp, M_WAIT); 2270 if (error) { 2271 if (error == EPERM) 2272 setflags |= SLP_A_DISCONN; 2273 else 2274 setflags |= SLP_A_NEEDQ; 2275 } 2276 } else { 2277 do { 2278 auio.uio_resid = 1000000000; 2279 /* not need to setup uio_vmspace */ 2280 flags = MSG_DONTWAIT; 2281 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, 2282 &flags); 2283 if (mp) { 2284 if (nam) { 2285 m = nam; 2286 m->m_next = mp; 2287 } else 2288 m = mp; 2289 m_claimm(m, &nfs_mowner); 2290 if (slp->ns_recend) 2291 slp->ns_recend->m_nextpkt = m; 2292 else 2293 slp->ns_rec = m; 2294 slp->ns_recend = m; 2295 m->m_nextpkt = (struct mbuf *)0; 2296 } 2297 if (error) { 2298 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2299 && error != EWOULDBLOCK) { 2300 setflags |= SLP_A_DISCONN; 2301 goto dorecs; 2302 } 2303 } 2304 } while (mp); 2305 } 2306 dorecs: 2307 nfsdsock_unlock(slp); 2308 2309 dorecs_unlocked: 2310 if (setflags) { 2311 nfsdsock_setbits(slp, setflags); 2312 } 2313 } 2314 2315 int 2316 nfsdsock_lock(struct nfssvc_sock *slp, bool waitok) 2317 { 2318 2319 mutex_enter(&slp->ns_lock); 2320 while ((~slp->ns_flags & (SLP_BUSY|SLP_VALID)) == 0) { 2321 if (!waitok) { 2322 mutex_exit(&slp->ns_lock); 2323 return EWOULDBLOCK; 2324 } 2325 cv_wait(&slp->ns_cv, &slp->ns_lock); 2326 } 2327 if ((slp->ns_flags & SLP_VALID) == 0) { 2328 mutex_exit(&slp->ns_lock); 2329 return EINVAL; 2330 } 2331 KASSERT((slp->ns_flags & SLP_BUSY) == 0); 2332 slp->ns_flags |= SLP_BUSY; 2333 mutex_exit(&slp->ns_lock); 2334 2335 return 0; 2336 } 2337 2338 void 2339 nfsdsock_unlock(struct nfssvc_sock *slp) 2340 { 2341 2342 mutex_enter(&slp->ns_lock); 2343 KASSERT((slp->ns_flags & SLP_BUSY) != 0); 2344 cv_broadcast(&slp->ns_cv); 2345 slp->ns_flags &= ~SLP_BUSY; 2346 mutex_exit(&slp->ns_lock); 2347 } 2348 2349 int 2350 nfsdsock_drain(struct nfssvc_sock *slp) 2351 { 2352 int error = 0; 2353 2354 mutex_enter(&slp->ns_lock); 2355 if ((slp->ns_flags & SLP_VALID) == 0) { 2356 error = EINVAL; 2357 goto done; 2358 } 2359 slp->ns_flags &= ~SLP_VALID; 2360 while ((slp->ns_flags & SLP_BUSY) != 0) { 2361 cv_wait(&slp->ns_cv, &slp->ns_lock); 2362 } 2363 done: 2364 mutex_exit(&slp->ns_lock); 2365 2366 return error; 2367 } 2368 2369 /* 2370 * Try and extract an RPC request from the mbuf data list received on a 2371 * stream socket. The "waitflag" argument indicates whether or not it 2372 * can sleep. 2373 */ 2374 int 2375 nfsrv_getstream(slp, waitflag) 2376 struct nfssvc_sock *slp; 2377 int waitflag; 2378 { 2379 struct mbuf *m, **mpp; 2380 struct mbuf *recm; 2381 u_int32_t recmark; 2382 int error = 0; 2383 2384 KASSERT((slp->ns_flags & SLP_BUSY) != 0); 2385 for (;;) { 2386 if (slp->ns_reclen == 0) { 2387 if (slp->ns_cc < NFSX_UNSIGNED) { 2388 break; 2389 } 2390 m = slp->ns_raw; 2391 m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark); 2392 m_adj(m, NFSX_UNSIGNED); 2393 slp->ns_cc -= NFSX_UNSIGNED; 2394 recmark = ntohl(recmark); 2395 slp->ns_reclen = recmark & ~0x80000000; 2396 if (recmark & 0x80000000) 2397 slp->ns_sflags |= SLP_S_LASTFRAG; 2398 else 2399 slp->ns_sflags &= ~SLP_S_LASTFRAG; 2400 if (slp->ns_reclen > NFS_MAXPACKET) { 2401 error = EPERM; 2402 break; 2403 } 2404 } 2405 2406 /* 2407 * Now get the record part. 2408 * 2409 * Note that slp->ns_reclen may be 0. Linux sometimes 2410 * generates 0-length records. 2411 */ 2412 if (slp->ns_cc == slp->ns_reclen) { 2413 recm = slp->ns_raw; 2414 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2415 slp->ns_cc = slp->ns_reclen = 0; 2416 } else if (slp->ns_cc > slp->ns_reclen) { 2417 recm = slp->ns_raw; 2418 m = m_split(recm, slp->ns_reclen, waitflag); 2419 if (m == NULL) { 2420 error = EWOULDBLOCK; 2421 break; 2422 } 2423 m_claimm(recm, &nfs_mowner); 2424 slp->ns_raw = m; 2425 if (m->m_next == NULL) 2426 slp->ns_rawend = m; 2427 slp->ns_cc -= slp->ns_reclen; 2428 slp->ns_reclen = 0; 2429 } else { 2430 break; 2431 } 2432 2433 /* 2434 * Accumulate the fragments into a record. 2435 */ 2436 mpp = &slp->ns_frag; 2437 while (*mpp) 2438 mpp = &((*mpp)->m_next); 2439 *mpp = recm; 2440 if (slp->ns_sflags & SLP_S_LASTFRAG) { 2441 if (slp->ns_recend) 2442 slp->ns_recend->m_nextpkt = slp->ns_frag; 2443 else 2444 slp->ns_rec = slp->ns_frag; 2445 slp->ns_recend = slp->ns_frag; 2446 slp->ns_frag = NULL; 2447 } 2448 } 2449 2450 return error; 2451 } 2452 2453 /* 2454 * Parse an RPC header. 2455 */ 2456 int 2457 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd, 2458 struct nfsrv_descript **ndp, bool *more) 2459 { 2460 struct mbuf *m, *nam; 2461 struct nfsrv_descript *nd; 2462 int error; 2463 2464 *ndp = NULL; 2465 *more = false; 2466 2467 if (nfsdsock_lock(slp, true)) { 2468 return ENOBUFS; 2469 } 2470 m = slp->ns_rec; 2471 if (m == NULL) { 2472 nfsdsock_unlock(slp); 2473 return ENOBUFS; 2474 } 2475 slp->ns_rec = m->m_nextpkt; 2476 if (slp->ns_rec) { 2477 m->m_nextpkt = NULL; 2478 *more = true; 2479 } else { 2480 slp->ns_recend = NULL; 2481 } 2482 nfsdsock_unlock(slp); 2483 2484 if (m->m_type == MT_SONAME) { 2485 nam = m; 2486 m = m->m_next; 2487 nam->m_next = NULL; 2488 } else 2489 nam = NULL; 2490 nd = nfsdreq_alloc(); 2491 nd->nd_md = nd->nd_mrep = m; 2492 nd->nd_nam2 = nam; 2493 nd->nd_dpos = mtod(m, void *); 2494 error = nfs_getreq(nd, nfsd, true); 2495 if (error) { 2496 m_freem(nam); 2497 nfsdreq_free(nd); 2498 return (error); 2499 } 2500 *ndp = nd; 2501 nfsd->nfsd_nd = nd; 2502 return (0); 2503 } 2504 2505 /* 2506 * Search for a sleeping nfsd and wake it up. 2507 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2508 * running nfsds will go look for the work in the nfssvc_sock list. 2509 */ 2510 static void 2511 nfsrv_wakenfsd_locked(struct nfssvc_sock *slp) 2512 { 2513 struct nfsd *nd; 2514 2515 KASSERT(mutex_owned(&nfsd_lock)); 2516 2517 if ((slp->ns_flags & SLP_VALID) == 0) 2518 return; 2519 if (slp->ns_gflags & SLP_G_DOREC) 2520 return; 2521 nd = SLIST_FIRST(&nfsd_idle_head); 2522 if (nd) { 2523 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle); 2524 if (nd->nfsd_slp) 2525 panic("nfsd wakeup"); 2526 slp->ns_sref++; 2527 KASSERT(slp->ns_sref > 0); 2528 nd->nfsd_slp = slp; 2529 cv_signal(&nd->nfsd_cv); 2530 } else { 2531 slp->ns_gflags |= SLP_G_DOREC; 2532 nfsd_head_flag |= NFSD_CHECKSLP; 2533 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending); 2534 } 2535 } 2536 2537 void 2538 nfsrv_wakenfsd(struct nfssvc_sock *slp) 2539 { 2540 2541 mutex_enter(&nfsd_lock); 2542 nfsrv_wakenfsd_locked(slp); 2543 mutex_exit(&nfsd_lock); 2544 } 2545 2546 int 2547 nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd) 2548 { 2549 int error; 2550 2551 if (nd->nd_mrep != NULL) { 2552 m_freem(nd->nd_mrep); 2553 nd->nd_mrep = NULL; 2554 } 2555 2556 mutex_enter(&slp->ns_lock); 2557 if ((slp->ns_flags & SLP_SENDING) != 0) { 2558 SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq); 2559 mutex_exit(&slp->ns_lock); 2560 return 0; 2561 } 2562 KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq)); 2563 slp->ns_flags |= SLP_SENDING; 2564 mutex_exit(&slp->ns_lock); 2565 2566 again: 2567 error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp); 2568 if (nd->nd_nam2) { 2569 m_free(nd->nd_nam2); 2570 } 2571 nfsdreq_free(nd); 2572 2573 mutex_enter(&slp->ns_lock); 2574 KASSERT((slp->ns_flags & SLP_SENDING) != 0); 2575 nd = SIMPLEQ_FIRST(&slp->ns_sendq); 2576 if (nd != NULL) { 2577 SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq); 2578 mutex_exit(&slp->ns_lock); 2579 goto again; 2580 } 2581 slp->ns_flags &= ~SLP_SENDING; 2582 mutex_exit(&slp->ns_lock); 2583 2584 return error; 2585 } 2586 2587 void 2588 nfsdsock_setbits(struct nfssvc_sock *slp, int bits) 2589 { 2590 2591 mutex_enter(&slp->ns_alock); 2592 slp->ns_aflags |= bits; 2593 mutex_exit(&slp->ns_alock); 2594 } 2595 2596 void 2597 nfsdsock_clearbits(struct nfssvc_sock *slp, int bits) 2598 { 2599 2600 mutex_enter(&slp->ns_alock); 2601 slp->ns_aflags &= ~bits; 2602 mutex_exit(&slp->ns_alock); 2603 } 2604 2605 bool 2606 nfsdsock_testbits(struct nfssvc_sock *slp, int bits) 2607 { 2608 2609 return (slp->ns_aflags & bits); 2610 } 2611 #endif /* NFSSERVER */ 2612 2613 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) 2614 static struct pool nfs_srvdesc_pool; 2615 2616 void 2617 nfsdreq_init(void) 2618 { 2619 2620 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript), 2621 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE); 2622 } 2623 2624 struct nfsrv_descript * 2625 nfsdreq_alloc(void) 2626 { 2627 struct nfsrv_descript *nd; 2628 2629 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK); 2630 nd->nd_cr = NULL; 2631 return nd; 2632 } 2633 2634 void 2635 nfsdreq_free(struct nfsrv_descript *nd) 2636 { 2637 kauth_cred_t cr; 2638 2639 cr = nd->nd_cr; 2640 if (cr != NULL) { 2641 kauth_cred_free(cr); 2642 } 2643 pool_put(&nfs_srvdesc_pool, nd); 2644 } 2645 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */ 2646