1 /* $NetBSD: nfs_socket.c,v 1.163 2007/08/05 09:40:39 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1991, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 35 */ 36 37 /* 38 * Socket operations for use by nfs 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.163 2007/08/05 09:40:39 yamt Exp $"); 43 44 #include "fs_nfs.h" 45 #include "opt_nfs.h" 46 #include "opt_nfsserver.h" 47 #include "opt_mbuftrace.h" 48 #include "opt_inet.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/evcnt.h> 53 #include <sys/callout.h> 54 #include <sys/proc.h> 55 #include <sys/mount.h> 56 #include <sys/kernel.h> 57 #include <sys/mbuf.h> 58 #include <sys/vnode.h> 59 #include <sys/domain.h> 60 #include <sys/protosw.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/syslog.h> 64 #include <sys/tprintf.h> 65 #include <sys/namei.h> 66 #include <sys/signal.h> 67 #include <sys/signalvar.h> 68 #include <sys/kauth.h> 69 70 #include <netinet/in.h> 71 #include <netinet/tcp.h> 72 73 #include <nfs/rpcv2.h> 74 #include <nfs/nfsproto.h> 75 #include <nfs/nfs.h> 76 #include <nfs/xdr_subs.h> 77 #include <nfs/nfsm_subs.h> 78 #include <nfs/nfsmount.h> 79 #include <nfs/nfsnode.h> 80 #include <nfs/nfsrtt.h> 81 #include <nfs/nfs_var.h> 82 83 MALLOC_DEFINE(M_NFSREQ, "NFS req", "NFS request header"); 84 #ifdef MBUFTRACE 85 struct mowner nfs_mowner = MOWNER_INIT("nfs",""); 86 #endif 87 88 /* 89 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 90 * Use the mean and mean deviation of rtt for the appropriate type of rpc 91 * for the frequent rpcs and a default for the others. 92 * The justification for doing "other" this way is that these rpcs 93 * happen so infrequently that timer est. would probably be stale. 94 * Also, since many of these rpcs are 95 * non-idempotent, a conservative timeout is desired. 96 * getattr, lookup - A+2D 97 * read, write - A+4D 98 * other - nm_timeo 99 */ 100 #define NFS_RTO(n, t) \ 101 ((t) == 0 ? (n)->nm_timeo : \ 102 ((t) < 3 ? \ 103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 107 /* 108 * External data, mostly RPC constants in XDR form 109 */ 110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 112 rpc_auth_kerb; 113 extern u_int32_t nfs_prog; 114 extern const int nfsv3_procid[NFS_NPROCS]; 115 extern int nfs_ticks; 116 117 /* 118 * Defines which timer to use for the procnum. 119 * 0 - default 120 * 1 - getattr 121 * 2 - lookup 122 * 3 - read 123 * 4 - write 124 */ 125 static const int proct[NFS_NPROCS] = { 126 [NFSPROC_NULL] = 0, 127 [NFSPROC_GETATTR] = 1, 128 [NFSPROC_SETATTR] = 0, 129 [NFSPROC_LOOKUP] = 2, 130 [NFSPROC_ACCESS] = 1, 131 [NFSPROC_READLINK] = 3, 132 [NFSPROC_READ] = 3, 133 [NFSPROC_WRITE] = 4, 134 [NFSPROC_CREATE] = 0, 135 [NFSPROC_MKDIR] = 0, 136 [NFSPROC_SYMLINK] = 0, 137 [NFSPROC_MKNOD] = 0, 138 [NFSPROC_REMOVE] = 0, 139 [NFSPROC_RMDIR] = 0, 140 [NFSPROC_RENAME] = 0, 141 [NFSPROC_LINK] = 0, 142 [NFSPROC_READDIR] = 3, 143 [NFSPROC_READDIRPLUS] = 3, 144 [NFSPROC_FSSTAT] = 0, 145 [NFSPROC_FSINFO] = 0, 146 [NFSPROC_PATHCONF] = 0, 147 [NFSPROC_COMMIT] = 0, 148 [NFSPROC_NOOP] = 0, 149 }; 150 151 /* 152 * There is a congestion window for outstanding rpcs maintained per mount 153 * point. The cwnd size is adjusted in roughly the way that: 154 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 155 * SIGCOMM '88". ACM, August 1988. 156 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 157 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 158 * of rpcs is in progress. 159 * (The sent count and cwnd are scaled for integer arith.) 160 * Variants of "slow start" were tried and were found to be too much of a 161 * performance hit (ave. rtt 3 times larger), 162 * I suspect due to the large rtt that nfs rpcs have. 163 */ 164 #define NFS_CWNDSCALE 256 165 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 166 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 167 int nfsrtton = 0; 168 struct nfsrtt nfsrtt; 169 struct nfsreqhead nfs_reqq; 170 static callout_t nfs_timer_ch; 171 static struct evcnt nfs_timer_ev; 172 static struct evcnt nfs_timer_start_ev; 173 static struct evcnt nfs_timer_stop_ev; 174 175 static int nfs_sndlock(struct nfsmount *, struct nfsreq *); 176 static void nfs_sndunlock(struct nfsmount *); 177 static int nfs_rcvlock(struct nfsmount *, struct nfsreq *); 178 static void nfs_rcvunlock(struct nfsmount *); 179 180 /* 181 * Initialize sockets and congestion for a new NFS connection. 182 * We do not free the sockaddr if error. 183 */ 184 int 185 nfs_connect(nmp, rep, l) 186 struct nfsmount *nmp; 187 struct nfsreq *rep; 188 struct lwp *l; 189 { 190 struct socket *so; 191 int s, error, rcvreserve, sndreserve; 192 struct sockaddr *saddr; 193 struct sockaddr_in *sin; 194 #ifdef INET6 195 struct sockaddr_in6 *sin6; 196 #endif 197 struct mbuf *m; 198 199 nmp->nm_so = (struct socket *)0; 200 saddr = mtod(nmp->nm_nam, struct sockaddr *); 201 error = socreate(saddr->sa_family, &nmp->nm_so, 202 nmp->nm_sotype, nmp->nm_soproto, l); 203 if (error) 204 goto bad; 205 so = nmp->nm_so; 206 #ifdef MBUFTRACE 207 so->so_mowner = &nfs_mowner; 208 so->so_rcv.sb_mowner = &nfs_mowner; 209 so->so_snd.sb_mowner = &nfs_mowner; 210 #endif 211 nmp->nm_soflags = so->so_proto->pr_flags; 212 213 /* 214 * Some servers require that the client port be a reserved port number. 215 */ 216 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 217 m = m_get(M_WAIT, MT_SOOPTS); 218 MCLAIM(m, so->so_mowner); 219 *mtod(m, int32_t *) = IP_PORTRANGE_LOW; 220 m->m_len = sizeof(int32_t); 221 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m))) 222 goto bad; 223 m = m_get(M_WAIT, MT_SONAME); 224 MCLAIM(m, so->so_mowner); 225 sin = mtod(m, struct sockaddr_in *); 226 sin->sin_len = m->m_len = sizeof (struct sockaddr_in); 227 sin->sin_family = AF_INET; 228 sin->sin_addr.s_addr = INADDR_ANY; 229 sin->sin_port = 0; 230 error = sobind(so, m, &lwp0); 231 m_freem(m); 232 if (error) 233 goto bad; 234 } 235 #ifdef INET6 236 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) { 237 m = m_get(M_WAIT, MT_SOOPTS); 238 MCLAIM(m, so->so_mowner); 239 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW; 240 m->m_len = sizeof(int32_t); 241 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m))) 242 goto bad; 243 m = m_get(M_WAIT, MT_SONAME); 244 MCLAIM(m, so->so_mowner); 245 sin6 = mtod(m, struct sockaddr_in6 *); 246 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6); 247 sin6->sin6_family = AF_INET6; 248 sin6->sin6_addr = in6addr_any; 249 sin6->sin6_port = 0; 250 error = sobind(so, m, &lwp0); 251 m_freem(m); 252 if (error) 253 goto bad; 254 } 255 #endif 256 257 /* 258 * Protocols that do not require connections may be optionally left 259 * unconnected for servers that reply from a port other than NFS_PORT. 260 */ 261 if (nmp->nm_flag & NFSMNT_NOCONN) { 262 if (nmp->nm_soflags & PR_CONNREQUIRED) { 263 error = ENOTCONN; 264 goto bad; 265 } 266 } else { 267 error = soconnect(so, nmp->nm_nam, l); 268 if (error) 269 goto bad; 270 271 /* 272 * Wait for the connection to complete. Cribbed from the 273 * connect system call but with the wait timing out so 274 * that interruptible mounts don't hang here for a long time. 275 */ 276 s = splsoftnet(); 277 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 278 (void) tsleep((void *)&so->so_timeo, PSOCK, 279 "nfscn1", 2 * hz); 280 if ((so->so_state & SS_ISCONNECTING) && 281 so->so_error == 0 && rep && 282 (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){ 283 so->so_state &= ~SS_ISCONNECTING; 284 splx(s); 285 goto bad; 286 } 287 } 288 if (so->so_error) { 289 error = so->so_error; 290 so->so_error = 0; 291 splx(s); 292 goto bad; 293 } 294 splx(s); 295 } 296 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) { 297 so->so_rcv.sb_timeo = (5 * hz); 298 so->so_snd.sb_timeo = (5 * hz); 299 } else { 300 /* 301 * enable receive timeout to detect server crash and reconnect. 302 * otherwise, we can be stuck in soreceive forever. 303 */ 304 so->so_rcv.sb_timeo = (5 * hz); 305 so->so_snd.sb_timeo = 0; 306 } 307 if (nmp->nm_sotype == SOCK_DGRAM) { 308 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 309 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 310 NFS_MAXPKTHDR) * 2; 311 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 312 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 313 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 314 NFS_MAXPKTHDR) * 2; 315 } else { 316 if (nmp->nm_sotype != SOCK_STREAM) 317 panic("nfscon sotype"); 318 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 319 m = m_get(M_WAIT, MT_SOOPTS); 320 MCLAIM(m, so->so_mowner); 321 *mtod(m, int32_t *) = 1; 322 m->m_len = sizeof(int32_t); 323 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m); 324 } 325 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 326 m = m_get(M_WAIT, MT_SOOPTS); 327 MCLAIM(m, so->so_mowner); 328 *mtod(m, int32_t *) = 1; 329 m->m_len = sizeof(int32_t); 330 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m); 331 } 332 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 333 sizeof (u_int32_t)) * 2; 334 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 335 sizeof (u_int32_t)) * 2; 336 } 337 error = soreserve(so, sndreserve, rcvreserve); 338 if (error) 339 goto bad; 340 so->so_rcv.sb_flags |= SB_NOINTR; 341 so->so_snd.sb_flags |= SB_NOINTR; 342 343 /* Initialize other non-zero congestion variables */ 344 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] = 345 NFS_TIMEO << 3; 346 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 347 nmp->nm_sdrtt[3] = 0; 348 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 349 nmp->nm_sent = 0; 350 nmp->nm_timeouts = 0; 351 return (0); 352 353 bad: 354 nfs_disconnect(nmp); 355 return (error); 356 } 357 358 /* 359 * Reconnect routine: 360 * Called when a connection is broken on a reliable protocol. 361 * - clean up the old socket 362 * - nfs_connect() again 363 * - set R_MUSTRESEND for all outstanding requests on mount point 364 * If this fails the mount point is DEAD! 365 * nb: Must be called with the nfs_sndlock() set on the mount point. 366 */ 367 int 368 nfs_reconnect(rep, l) 369 struct nfsreq *rep; 370 struct lwp *l; 371 { 372 struct nfsreq *rp; 373 struct nfsmount *nmp = rep->r_nmp; 374 int error; 375 376 nfs_disconnect(nmp); 377 while ((error = nfs_connect(nmp, rep, l)) != 0) { 378 if (error == EINTR || error == ERESTART) 379 return (EINTR); 380 kpause("nfscn2", false, hz, NULL); 381 } 382 383 /* 384 * Loop through outstanding request list and fix up all requests 385 * on old socket. 386 */ 387 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { 388 if (rp->r_nmp == nmp) { 389 if ((rp->r_flags & R_MUSTRESEND) == 0) 390 rp->r_flags |= R_MUSTRESEND | R_REXMITTED; 391 rp->r_rexmit = 0; 392 } 393 } 394 return (0); 395 } 396 397 /* 398 * NFS disconnect. Clean up and unlink. 399 */ 400 void 401 nfs_disconnect(nmp) 402 struct nfsmount *nmp; 403 { 404 struct socket *so; 405 int drain = 0; 406 407 if (nmp->nm_so) { 408 so = nmp->nm_so; 409 nmp->nm_so = (struct socket *)0; 410 soshutdown(so, SHUT_RDWR); 411 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0; 412 if (drain) { 413 /* 414 * soshutdown() above should wake up the current 415 * listener. 416 * Now wake up those waiting for the receive lock, and 417 * wait for them to go away unhappy, to prevent *nmp 418 * from evaporating while they're sleeping. 419 */ 420 mutex_enter(&nmp->nm_lock); 421 while (nmp->nm_waiters > 0) { 422 cv_broadcast(&nmp->nm_rcvcv); 423 cv_broadcast(&nmp->nm_sndcv); 424 cv_wait(&nmp->nm_disconcv, &nmp->nm_lock); 425 } 426 mutex_exit(&nmp->nm_lock); 427 } 428 soclose(so); 429 } 430 #ifdef DIAGNOSTIC 431 if (drain && (nmp->nm_waiters > 0)) 432 panic("nfs_disconnect: waiters left after drain?"); 433 #endif 434 } 435 436 void 437 nfs_safedisconnect(nmp) 438 struct nfsmount *nmp; 439 { 440 struct nfsreq dummyreq; 441 442 memset(&dummyreq, 0, sizeof(dummyreq)); 443 dummyreq.r_nmp = nmp; 444 nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */ 445 nfs_disconnect(nmp); 446 nfs_rcvunlock(nmp); 447 } 448 449 /* 450 * This is the nfs send routine. For connection based socket types, it 451 * must be called with an nfs_sndlock() on the socket. 452 * "rep == NULL" indicates that it has been called from a server. 453 * For the client side: 454 * - return EINTR if the RPC is terminated, 0 otherwise 455 * - set R_MUSTRESEND if the send fails for any reason 456 * - do any cleanup required by recoverable socket errors (? ? ?) 457 * For the server side: 458 * - return EINTR or ERESTART if interrupted by a signal 459 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 460 * - do any cleanup required by recoverable socket errors (? ? ?) 461 */ 462 int 463 nfs_send(so, nam, top, rep, l) 464 struct socket *so; 465 struct mbuf *nam; 466 struct mbuf *top; 467 struct nfsreq *rep; 468 struct lwp *l; 469 { 470 struct mbuf *sendnam; 471 int error, soflags, flags; 472 473 /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */ 474 if (l == NULL && rep->r_lwp == NULL) 475 l = curlwp; 476 477 if (rep) { 478 if (rep->r_flags & R_SOFTTERM) { 479 m_freem(top); 480 return (EINTR); 481 } 482 if ((so = rep->r_nmp->nm_so) == NULL) { 483 rep->r_flags |= R_MUSTRESEND; 484 m_freem(top); 485 return (0); 486 } 487 rep->r_flags &= ~R_MUSTRESEND; 488 soflags = rep->r_nmp->nm_soflags; 489 } else 490 soflags = so->so_proto->pr_flags; 491 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 492 sendnam = (struct mbuf *)0; 493 else 494 sendnam = nam; 495 if (so->so_type == SOCK_SEQPACKET) 496 flags = MSG_EOR; 497 else 498 flags = 0; 499 500 error = (*so->so_send)(so, sendnam, (struct uio *)0, top, 501 (struct mbuf *)0, flags, l); 502 if (error) { 503 if (rep) { 504 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 505 /* 506 * We're too fast for the network/driver, 507 * and UDP isn't flowcontrolled. 508 * We need to resend. This is not fatal, 509 * just try again. 510 * 511 * Could be smarter here by doing some sort 512 * of a backoff, but this is rare. 513 */ 514 rep->r_flags |= R_MUSTRESEND; 515 } else { 516 if (error != EPIPE) 517 log(LOG_INFO, 518 "nfs send error %d for %s\n", 519 error, 520 rep->r_nmp->nm_mountp-> 521 mnt_stat.f_mntfromname); 522 /* 523 * Deal with errors for the client side. 524 */ 525 if (rep->r_flags & R_SOFTTERM) 526 error = EINTR; 527 else 528 rep->r_flags |= R_MUSTRESEND; 529 } 530 } else { 531 /* 532 * See above. This error can happen under normal 533 * circumstances and the log is too noisy. 534 * The error will still show up in nfsstat. 535 */ 536 if (error != ENOBUFS || so->so_type != SOCK_DGRAM) 537 log(LOG_INFO, "nfsd send error %d\n", error); 538 } 539 540 /* 541 * Handle any recoverable (soft) socket errors here. (? ? ?) 542 */ 543 if (error != EINTR && error != ERESTART && 544 error != EWOULDBLOCK && error != EPIPE) 545 error = 0; 546 } 547 return (error); 548 } 549 550 #ifdef NFS 551 /* 552 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 553 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 554 * Mark and consolidate the data into a new mbuf list. 555 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 556 * small mbufs. 557 * For SOCK_STREAM we must be very careful to read an entire record once 558 * we have read any of it, even if the system call has been interrupted. 559 */ 560 int 561 nfs_receive(rep, aname, mp, l) 562 struct nfsreq *rep; 563 struct mbuf **aname; 564 struct mbuf **mp; 565 struct lwp *l; 566 { 567 struct socket *so; 568 struct uio auio; 569 struct iovec aio; 570 struct mbuf *m; 571 struct mbuf *control; 572 u_int32_t len; 573 struct mbuf **getnam; 574 int error, sotype, rcvflg; 575 576 /* 577 * Set up arguments for soreceive() 578 */ 579 *mp = (struct mbuf *)0; 580 *aname = (struct mbuf *)0; 581 sotype = rep->r_nmp->nm_sotype; 582 583 /* 584 * For reliable protocols, lock against other senders/receivers 585 * in case a reconnect is necessary. 586 * For SOCK_STREAM, first get the Record Mark to find out how much 587 * more there is to get. 588 * We must lock the socket against other receivers 589 * until we have an entire rpc request/reply. 590 */ 591 if (sotype != SOCK_DGRAM) { 592 error = nfs_sndlock(rep->r_nmp, rep); 593 if (error) 594 return (error); 595 tryagain: 596 /* 597 * Check for fatal errors and resending request. 598 */ 599 /* 600 * Ugh: If a reconnect attempt just happened, nm_so 601 * would have changed. NULL indicates a failed 602 * attempt that has essentially shut down this 603 * mount point. 604 */ 605 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 606 nfs_sndunlock(rep->r_nmp); 607 return (EINTR); 608 } 609 so = rep->r_nmp->nm_so; 610 if (!so) { 611 error = nfs_reconnect(rep, l); 612 if (error) { 613 nfs_sndunlock(rep->r_nmp); 614 return (error); 615 } 616 goto tryagain; 617 } 618 while (rep->r_flags & R_MUSTRESEND) { 619 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 620 nfsstats.rpcretries++; 621 rep->r_rtt = 0; 622 rep->r_flags &= ~R_TIMING; 623 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l); 624 if (error) { 625 if (error == EINTR || error == ERESTART || 626 (error = nfs_reconnect(rep, l)) != 0) { 627 nfs_sndunlock(rep->r_nmp); 628 return (error); 629 } 630 goto tryagain; 631 } 632 } 633 nfs_sndunlock(rep->r_nmp); 634 if (sotype == SOCK_STREAM) { 635 aio.iov_base = (void *) &len; 636 aio.iov_len = sizeof(u_int32_t); 637 auio.uio_iov = &aio; 638 auio.uio_iovcnt = 1; 639 auio.uio_rw = UIO_READ; 640 auio.uio_offset = 0; 641 auio.uio_resid = sizeof(u_int32_t); 642 UIO_SETUP_SYSSPACE(&auio); 643 do { 644 rcvflg = MSG_WAITALL; 645 error = (*so->so_receive)(so, (struct mbuf **)0, &auio, 646 (struct mbuf **)0, (struct mbuf **)0, &rcvflg); 647 if (error == EWOULDBLOCK && rep) { 648 if (rep->r_flags & R_SOFTTERM) 649 return (EINTR); 650 /* 651 * if it seems that the server died after it 652 * received our request, set EPIPE so that 653 * we'll reconnect and retransmit requests. 654 */ 655 if (rep->r_rexmit >= rep->r_nmp->nm_retry) { 656 nfsstats.rpctimeouts++; 657 error = EPIPE; 658 } 659 } 660 } while (error == EWOULDBLOCK); 661 if (!error && auio.uio_resid > 0) { 662 /* 663 * Don't log a 0 byte receive; it means 664 * that the socket has been closed, and 665 * can happen during normal operation 666 * (forcible unmount or Solaris server). 667 */ 668 if (auio.uio_resid != sizeof (u_int32_t)) 669 log(LOG_INFO, 670 "short receive (%lu/%lu) from nfs server %s\n", 671 (u_long)sizeof(u_int32_t) - auio.uio_resid, 672 (u_long)sizeof(u_int32_t), 673 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 674 error = EPIPE; 675 } 676 if (error) 677 goto errout; 678 len = ntohl(len) & ~0x80000000; 679 /* 680 * This is SERIOUS! We are out of sync with the sender 681 * and forcing a disconnect/reconnect is all I can do. 682 */ 683 if (len > NFS_MAXPACKET) { 684 log(LOG_ERR, "%s (%d) from nfs server %s\n", 685 "impossible packet length", 686 len, 687 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 688 error = EFBIG; 689 goto errout; 690 } 691 auio.uio_resid = len; 692 do { 693 rcvflg = MSG_WAITALL; 694 error = (*so->so_receive)(so, (struct mbuf **)0, 695 &auio, mp, (struct mbuf **)0, &rcvflg); 696 } while (error == EWOULDBLOCK || error == EINTR || 697 error == ERESTART); 698 if (!error && auio.uio_resid > 0) { 699 if (len != auio.uio_resid) 700 log(LOG_INFO, 701 "short receive (%lu/%d) from nfs server %s\n", 702 (u_long)len - auio.uio_resid, len, 703 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 704 error = EPIPE; 705 } 706 } else { 707 /* 708 * NB: Since uio_resid is big, MSG_WAITALL is ignored 709 * and soreceive() will return when it has either a 710 * control msg or a data msg. 711 * We have no use for control msg., but must grab them 712 * and then throw them away so we know what is going 713 * on. 714 */ 715 auio.uio_resid = len = 100000000; /* Anything Big */ 716 /* not need to setup uio_vmspace */ 717 do { 718 rcvflg = 0; 719 error = (*so->so_receive)(so, (struct mbuf **)0, 720 &auio, mp, &control, &rcvflg); 721 if (control) 722 m_freem(control); 723 if (error == EWOULDBLOCK && rep) { 724 if (rep->r_flags & R_SOFTTERM) 725 return (EINTR); 726 } 727 } while (error == EWOULDBLOCK || 728 (!error && *mp == NULL && control)); 729 if ((rcvflg & MSG_EOR) == 0) 730 printf("Egad!!\n"); 731 if (!error && *mp == NULL) 732 error = EPIPE; 733 len -= auio.uio_resid; 734 } 735 errout: 736 if (error && error != EINTR && error != ERESTART) { 737 m_freem(*mp); 738 *mp = (struct mbuf *)0; 739 if (error != EPIPE) 740 log(LOG_INFO, 741 "receive error %d from nfs server %s\n", 742 error, 743 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 744 error = nfs_sndlock(rep->r_nmp, rep); 745 if (!error) 746 error = nfs_reconnect(rep, l); 747 if (!error) 748 goto tryagain; 749 else 750 nfs_sndunlock(rep->r_nmp); 751 } 752 } else { 753 if ((so = rep->r_nmp->nm_so) == NULL) 754 return (EACCES); 755 if (so->so_state & SS_ISCONNECTED) 756 getnam = (struct mbuf **)0; 757 else 758 getnam = aname; 759 auio.uio_resid = len = 1000000; 760 /* not need to setup uio_vmspace */ 761 do { 762 rcvflg = 0; 763 error = (*so->so_receive)(so, getnam, &auio, mp, 764 (struct mbuf **)0, &rcvflg); 765 if (error == EWOULDBLOCK && 766 (rep->r_flags & R_SOFTTERM)) 767 return (EINTR); 768 } while (error == EWOULDBLOCK); 769 len -= auio.uio_resid; 770 if (!error && *mp == NULL) 771 error = EPIPE; 772 } 773 if (error) { 774 m_freem(*mp); 775 *mp = (struct mbuf *)0; 776 } 777 return (error); 778 } 779 780 /* 781 * Implement receipt of reply on a socket. 782 * We must search through the list of received datagrams matching them 783 * with outstanding requests using the xid, until ours is found. 784 */ 785 /* ARGSUSED */ 786 int 787 nfs_reply(myrep, lwp) 788 struct nfsreq *myrep; 789 struct lwp *lwp; 790 { 791 struct nfsreq *rep; 792 struct nfsmount *nmp = myrep->r_nmp; 793 int32_t t1; 794 struct mbuf *mrep, *nam, *md; 795 u_int32_t rxid, *tl; 796 char *dpos, *cp2; 797 int error; 798 799 /* 800 * Loop around until we get our own reply 801 */ 802 for (;;) { 803 /* 804 * Lock against other receivers so that I don't get stuck in 805 * sbwait() after someone else has received my reply for me. 806 * Also necessary for connection based protocols to avoid 807 * race conditions during a reconnect. 808 */ 809 error = nfs_rcvlock(nmp, myrep); 810 if (error == EALREADY) 811 return (0); 812 if (error) 813 return (error); 814 /* 815 * Get the next Rpc reply off the socket 816 */ 817 818 mutex_enter(&nmp->nm_lock); 819 nmp->nm_waiters++; 820 mutex_exit(&nmp->nm_lock); 821 822 error = nfs_receive(myrep, &nam, &mrep, lwp); 823 824 mutex_enter(&nmp->nm_lock); 825 nmp->nm_waiters--; 826 cv_signal(&nmp->nm_disconcv); 827 mutex_exit(&nmp->nm_lock); 828 829 if (error) { 830 nfs_rcvunlock(nmp); 831 832 if (nmp->nm_iflag & NFSMNT_DISMNT) { 833 /* 834 * Oops, we're going away now.. 835 */ 836 return error; 837 } 838 /* 839 * Ignore routing errors on connectionless protocols? ? 840 */ 841 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 842 nmp->nm_so->so_error = 0; 843 #ifdef DEBUG 844 printf("nfs_reply: ignoring error %d\n", error); 845 #endif 846 continue; 847 } 848 return (error); 849 } 850 if (nam) 851 m_freem(nam); 852 853 /* 854 * Get the xid and check that it is an rpc reply 855 */ 856 md = mrep; 857 dpos = mtod(md, void *); 858 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 859 rxid = *tl++; 860 if (*tl != rpc_reply) { 861 nfsstats.rpcinvalid++; 862 m_freem(mrep); 863 nfsmout: 864 nfs_rcvunlock(nmp); 865 continue; 866 } 867 868 /* 869 * Loop through the request list to match up the reply 870 * Iff no match, just drop the datagram 871 */ 872 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 873 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 874 /* Found it.. */ 875 rep->r_mrep = mrep; 876 rep->r_md = md; 877 rep->r_dpos = dpos; 878 if (nfsrtton) { 879 struct rttl *rt; 880 881 rt = &nfsrtt.rttl[nfsrtt.pos]; 882 rt->proc = rep->r_procnum; 883 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 884 rt->sent = nmp->nm_sent; 885 rt->cwnd = nmp->nm_cwnd; 886 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 887 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 888 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx; 889 getmicrotime(&rt->tstamp); 890 if (rep->r_flags & R_TIMING) 891 rt->rtt = rep->r_rtt; 892 else 893 rt->rtt = 1000000; 894 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 895 } 896 /* 897 * Update congestion window. 898 * Do the additive increase of 899 * one rpc/rtt. 900 */ 901 if (nmp->nm_cwnd <= nmp->nm_sent) { 902 nmp->nm_cwnd += 903 (NFS_CWNDSCALE * NFS_CWNDSCALE + 904 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 905 if (nmp->nm_cwnd > NFS_MAXCWND) 906 nmp->nm_cwnd = NFS_MAXCWND; 907 } 908 rep->r_flags &= ~R_SENT; 909 nmp->nm_sent -= NFS_CWNDSCALE; 910 /* 911 * Update rtt using a gain of 0.125 on the mean 912 * and a gain of 0.25 on the deviation. 913 */ 914 if (rep->r_flags & R_TIMING) { 915 /* 916 * Since the timer resolution of 917 * NFS_HZ is so course, it can often 918 * result in r_rtt == 0. Since 919 * r_rtt == N means that the actual 920 * rtt is between N+dt and N+2-dt ticks, 921 * add 1. 922 */ 923 t1 = rep->r_rtt + 1; 924 t1 -= (NFS_SRTT(rep) >> 3); 925 NFS_SRTT(rep) += t1; 926 if (t1 < 0) 927 t1 = -t1; 928 t1 -= (NFS_SDRTT(rep) >> 2); 929 NFS_SDRTT(rep) += t1; 930 } 931 nmp->nm_timeouts = 0; 932 break; 933 } 934 } 935 nfs_rcvunlock(nmp); 936 /* 937 * If not matched to a request, drop it. 938 * If it's mine, get out. 939 */ 940 if (rep == 0) { 941 nfsstats.rpcunexpected++; 942 m_freem(mrep); 943 } else if (rep == myrep) { 944 if (rep->r_mrep == NULL) 945 panic("nfsreply nil"); 946 return (0); 947 } 948 } 949 } 950 951 /* 952 * nfs_request - goes something like this 953 * - fill in request struct 954 * - links it into list 955 * - calls nfs_send() for first transmit 956 * - calls nfs_receive() to get reply 957 * - break down rpc header and return with nfs reply pointed to 958 * by mrep or error 959 * nb: always frees up mreq mbuf list 960 */ 961 int 962 nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp) 963 struct nfsnode *np; 964 struct mbuf *mrest; 965 int procnum; 966 struct lwp *lwp; 967 kauth_cred_t cred; 968 struct mbuf **mrp; 969 struct mbuf **mdp; 970 char **dposp; 971 int *rexmitp; 972 { 973 struct mbuf *m, *mrep; 974 struct nfsreq *rep; 975 u_int32_t *tl; 976 int i; 977 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount); 978 struct mbuf *md, *mheadend; 979 char nickv[RPCX_NICKVERF]; 980 time_t waituntil; 981 char *dpos, *cp2; 982 int t1, s, error = 0, mrest_len, auth_len, auth_type; 983 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0; 984 int verf_len, verf_type; 985 u_int32_t xid; 986 char *auth_str, *verf_str; 987 NFSKERBKEY_T key; /* save session key */ 988 kauth_cred_t acred; 989 struct mbuf *mrest_backup = NULL; 990 kauth_cred_t origcred = NULL; /* XXX: gcc */ 991 bool retry_cred = true; 992 bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0; 993 994 if (rexmitp != NULL) 995 *rexmitp = 0; 996 997 acred = kauth_cred_alloc(); 998 999 tryagain_cred: 1000 KASSERT(cred != NULL); 1001 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 1002 rep->r_nmp = nmp; 1003 KASSERT(lwp == NULL || lwp == curlwp); 1004 rep->r_lwp = lwp; 1005 rep->r_procnum = procnum; 1006 i = 0; 1007 m = mrest; 1008 while (m) { 1009 i += m->m_len; 1010 m = m->m_next; 1011 } 1012 mrest_len = i; 1013 1014 /* 1015 * Get the RPC header with authorization. 1016 */ 1017 kerbauth: 1018 verf_str = auth_str = (char *)0; 1019 if (nmp->nm_flag & NFSMNT_KERB) { 1020 verf_str = nickv; 1021 verf_len = sizeof (nickv); 1022 auth_type = RPCAUTH_KERB4; 1023 memset((void *)key, 0, sizeof (key)); 1024 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 1025 &auth_len, verf_str, verf_len)) { 1026 error = nfs_getauth(nmp, rep, cred, &auth_str, 1027 &auth_len, verf_str, &verf_len, key); 1028 if (error) { 1029 free((void *)rep, M_NFSREQ); 1030 m_freem(mrest); 1031 KASSERT(kauth_cred_getrefcnt(acred) == 1); 1032 kauth_cred_free(acred); 1033 return (error); 1034 } 1035 } 1036 retry_cred = false; 1037 } else { 1038 /* AUTH_UNIX */ 1039 uid_t uid; 1040 gid_t gid; 1041 1042 /* 1043 * on the most unix filesystems, permission checks are 1044 * done when the file is open(2)'ed. 1045 * ie. once a file is successfully open'ed, 1046 * following i/o operations never fail with EACCES. 1047 * we try to follow the semantics as far as possible. 1048 * 1049 * note that we expect that the nfs server always grant 1050 * accesses by the file's owner. 1051 */ 1052 origcred = cred; 1053 switch (procnum) { 1054 case NFSPROC_READ: 1055 case NFSPROC_WRITE: 1056 case NFSPROC_COMMIT: 1057 uid = np->n_vattr->va_uid; 1058 gid = np->n_vattr->va_gid; 1059 if (kauth_cred_geteuid(cred) == uid && 1060 kauth_cred_getegid(cred) == gid) { 1061 retry_cred = false; 1062 break; 1063 } 1064 if (use_opencred) 1065 break; 1066 kauth_cred_setuid(acred, uid); 1067 kauth_cred_seteuid(acred, uid); 1068 kauth_cred_setsvuid(acred, uid); 1069 kauth_cred_setgid(acred, gid); 1070 kauth_cred_setegid(acred, gid); 1071 kauth_cred_setsvgid(acred, gid); 1072 cred = acred; 1073 break; 1074 default: 1075 retry_cred = false; 1076 break; 1077 } 1078 /* 1079 * backup mbuf chain if we can need it later to retry. 1080 * 1081 * XXX maybe we can keep a direct reference to 1082 * mrest without doing m_copym, but it's ...ugly. 1083 */ 1084 if (retry_cred) 1085 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT); 1086 auth_type = RPCAUTH_UNIX; 1087 /* XXX elad - ngroups */ 1088 auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ? 1089 nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) + 1090 5 * NFSX_UNSIGNED; 1091 } 1092 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 1093 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 1094 if (auth_str) 1095 free(auth_str, M_TEMP); 1096 1097 /* 1098 * For stream protocols, insert a Sun RPC Record Mark. 1099 */ 1100 if (nmp->nm_sotype == SOCK_STREAM) { 1101 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 1102 *mtod(m, u_int32_t *) = htonl(0x80000000 | 1103 (m->m_pkthdr.len - NFSX_UNSIGNED)); 1104 } 1105 rep->r_mreq = m; 1106 rep->r_xid = xid; 1107 tryagain: 1108 if (nmp->nm_flag & NFSMNT_SOFT) 1109 rep->r_retry = nmp->nm_retry; 1110 else 1111 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 1112 rep->r_rtt = rep->r_rexmit = 0; 1113 if (proct[procnum] > 0) 1114 rep->r_flags = R_TIMING; 1115 else 1116 rep->r_flags = 0; 1117 rep->r_mrep = NULL; 1118 1119 /* 1120 * Do the client side RPC. 1121 */ 1122 nfsstats.rpcrequests++; 1123 /* 1124 * Chain request into list of outstanding requests. Be sure 1125 * to put it LAST so timer finds oldest requests first. 1126 */ 1127 s = splsoftnet(); 1128 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1129 nfs_timer_start(); 1130 1131 /* 1132 * If backing off another request or avoiding congestion, don't 1133 * send this one now but let timer do it. If not timing a request, 1134 * do it now. 1135 */ 1136 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1137 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1138 nmp->nm_sent < nmp->nm_cwnd)) { 1139 splx(s); 1140 if (nmp->nm_soflags & PR_CONNREQUIRED) 1141 error = nfs_sndlock(nmp, rep); 1142 if (!error) { 1143 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 1144 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp); 1145 if (nmp->nm_soflags & PR_CONNREQUIRED) 1146 nfs_sndunlock(nmp); 1147 } 1148 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 1149 nmp->nm_sent += NFS_CWNDSCALE; 1150 rep->r_flags |= R_SENT; 1151 } 1152 } else { 1153 splx(s); 1154 rep->r_rtt = -1; 1155 } 1156 1157 /* 1158 * Wait for the reply from our send or the timer's. 1159 */ 1160 if (!error || error == EPIPE) 1161 error = nfs_reply(rep, lwp); 1162 1163 /* 1164 * RPC done, unlink the request. 1165 */ 1166 s = splsoftnet(); 1167 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1168 splx(s); 1169 1170 /* 1171 * Decrement the outstanding request count. 1172 */ 1173 if (rep->r_flags & R_SENT) { 1174 rep->r_flags &= ~R_SENT; /* paranoia */ 1175 nmp->nm_sent -= NFS_CWNDSCALE; 1176 } 1177 1178 if (rexmitp != NULL) { 1179 int rexmit; 1180 1181 if (nmp->nm_sotype != SOCK_DGRAM) 1182 rexmit = (rep->r_flags & R_REXMITTED) != 0; 1183 else 1184 rexmit = rep->r_rexmit; 1185 *rexmitp = rexmit; 1186 } 1187 1188 /* 1189 * If there was a successful reply and a tprintf msg. 1190 * tprintf a response. 1191 */ 1192 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1193 nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname, 1194 "is alive again"); 1195 mrep = rep->r_mrep; 1196 md = rep->r_md; 1197 dpos = rep->r_dpos; 1198 if (error) 1199 goto nfsmout; 1200 1201 /* 1202 * break down the rpc header and check if ok 1203 */ 1204 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1205 if (*tl++ == rpc_msgdenied) { 1206 if (*tl == rpc_mismatch) 1207 error = EOPNOTSUPP; 1208 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1209 if (!failed_auth) { 1210 failed_auth++; 1211 mheadend->m_next = (struct mbuf *)0; 1212 m_freem(mrep); 1213 m_freem(rep->r_mreq); 1214 goto kerbauth; 1215 } else 1216 error = EAUTH; 1217 } else 1218 error = EACCES; 1219 m_freem(mrep); 1220 goto nfsmout; 1221 } 1222 1223 /* 1224 * Grab any Kerberos verifier, otherwise just throw it away. 1225 */ 1226 verf_type = fxdr_unsigned(int, *tl++); 1227 i = fxdr_unsigned(int32_t, *tl); 1228 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1229 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1230 if (error) 1231 goto nfsmout; 1232 } else if (i > 0) 1233 nfsm_adv(nfsm_rndup(i)); 1234 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1235 /* 0 == ok */ 1236 if (*tl == 0) { 1237 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1238 if (*tl != 0) { 1239 error = fxdr_unsigned(int, *tl); 1240 switch (error) { 1241 case NFSERR_PERM: 1242 error = EPERM; 1243 break; 1244 1245 case NFSERR_NOENT: 1246 error = ENOENT; 1247 break; 1248 1249 case NFSERR_IO: 1250 error = EIO; 1251 break; 1252 1253 case NFSERR_NXIO: 1254 error = ENXIO; 1255 break; 1256 1257 case NFSERR_ACCES: 1258 error = EACCES; 1259 if (!retry_cred) 1260 break; 1261 m_freem(mrep); 1262 m_freem(rep->r_mreq); 1263 FREE(rep, M_NFSREQ); 1264 use_opencred = !use_opencred; 1265 if (mrest_backup == NULL) { 1266 /* m_copym failure */ 1267 KASSERT( 1268 kauth_cred_getrefcnt(acred) == 1); 1269 kauth_cred_free(acred); 1270 return ENOMEM; 1271 } 1272 mrest = mrest_backup; 1273 mrest_backup = NULL; 1274 cred = origcred; 1275 error = 0; 1276 retry_cred = false; 1277 goto tryagain_cred; 1278 1279 case NFSERR_EXIST: 1280 error = EEXIST; 1281 break; 1282 1283 case NFSERR_XDEV: 1284 error = EXDEV; 1285 break; 1286 1287 case NFSERR_NODEV: 1288 error = ENODEV; 1289 break; 1290 1291 case NFSERR_NOTDIR: 1292 error = ENOTDIR; 1293 break; 1294 1295 case NFSERR_ISDIR: 1296 error = EISDIR; 1297 break; 1298 1299 case NFSERR_INVAL: 1300 error = EINVAL; 1301 break; 1302 1303 case NFSERR_FBIG: 1304 error = EFBIG; 1305 break; 1306 1307 case NFSERR_NOSPC: 1308 error = ENOSPC; 1309 break; 1310 1311 case NFSERR_ROFS: 1312 error = EROFS; 1313 break; 1314 1315 case NFSERR_MLINK: 1316 error = EMLINK; 1317 break; 1318 1319 case NFSERR_TIMEDOUT: 1320 error = ETIMEDOUT; 1321 break; 1322 1323 case NFSERR_NAMETOL: 1324 error = ENAMETOOLONG; 1325 break; 1326 1327 case NFSERR_NOTEMPTY: 1328 error = ENOTEMPTY; 1329 break; 1330 1331 case NFSERR_DQUOT: 1332 error = EDQUOT; 1333 break; 1334 1335 case NFSERR_STALE: 1336 /* 1337 * If the File Handle was stale, invalidate the 1338 * lookup cache, just in case. 1339 */ 1340 error = ESTALE; 1341 cache_purge(NFSTOV(np)); 1342 break; 1343 1344 case NFSERR_REMOTE: 1345 error = EREMOTE; 1346 break; 1347 1348 case NFSERR_WFLUSH: 1349 case NFSERR_BADHANDLE: 1350 case NFSERR_NOT_SYNC: 1351 case NFSERR_BAD_COOKIE: 1352 error = EINVAL; 1353 break; 1354 1355 case NFSERR_NOTSUPP: 1356 error = ENOTSUP; 1357 break; 1358 1359 case NFSERR_TOOSMALL: 1360 case NFSERR_SERVERFAULT: 1361 case NFSERR_BADTYPE: 1362 error = EINVAL; 1363 break; 1364 1365 case NFSERR_TRYLATER: 1366 if ((nmp->nm_flag & NFSMNT_NFSV3) == 0) 1367 break; 1368 m_freem(mrep); 1369 error = 0; 1370 waituntil = time_second + trylater_delay; 1371 while (time_second < waituntil) { 1372 kpause("nfstrylater", false, hz, NULL); 1373 } 1374 trylater_delay *= NFS_TRYLATERDELMUL; 1375 if (trylater_delay > NFS_TRYLATERDELMAX) 1376 trylater_delay = NFS_TRYLATERDELMAX; 1377 /* 1378 * RFC1813: 1379 * The client should wait and then try 1380 * the request with a new RPC transaction ID. 1381 */ 1382 nfs_renewxid(rep); 1383 goto tryagain; 1384 1385 default: 1386 #ifdef DIAGNOSTIC 1387 printf("Invalid rpc error code %d\n", error); 1388 #endif 1389 error = EINVAL; 1390 break; 1391 } 1392 1393 if (nmp->nm_flag & NFSMNT_NFSV3) { 1394 *mrp = mrep; 1395 *mdp = md; 1396 *dposp = dpos; 1397 error |= NFSERR_RETERR; 1398 } else 1399 m_freem(mrep); 1400 goto nfsmout; 1401 } 1402 1403 /* 1404 * note which credential worked to minimize number of retries. 1405 */ 1406 if (use_opencred) 1407 np->n_flag |= NUSEOPENCRED; 1408 else 1409 np->n_flag &= ~NUSEOPENCRED; 1410 1411 *mrp = mrep; 1412 *mdp = md; 1413 *dposp = dpos; 1414 1415 KASSERT(error == 0); 1416 goto nfsmout; 1417 } 1418 m_freem(mrep); 1419 error = EPROTONOSUPPORT; 1420 nfsmout: 1421 KASSERT(kauth_cred_getrefcnt(acred) == 1); 1422 kauth_cred_free(acred); 1423 m_freem(rep->r_mreq); 1424 free((void *)rep, M_NFSREQ); 1425 m_freem(mrest_backup); 1426 return (error); 1427 } 1428 #endif /* NFS */ 1429 1430 /* 1431 * Generate the rpc reply header 1432 * siz arg. is used to decide if adding a cluster is worthwhile 1433 */ 1434 int 1435 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) 1436 int siz; 1437 struct nfsrv_descript *nd; 1438 struct nfssvc_sock *slp; 1439 int err; 1440 int cache; 1441 u_quad_t *frev; 1442 struct mbuf **mrq; 1443 struct mbuf **mbp; 1444 char **bposp; 1445 { 1446 u_int32_t *tl; 1447 struct mbuf *mreq; 1448 char *bpos; 1449 struct mbuf *mb; 1450 1451 mreq = m_gethdr(M_WAIT, MT_DATA); 1452 MCLAIM(mreq, &nfs_mowner); 1453 mb = mreq; 1454 /* 1455 * If this is a big reply, use a cluster else 1456 * try and leave leading space for the lower level headers. 1457 */ 1458 siz += RPC_REPLYSIZ; 1459 if (siz >= max_datalen) { 1460 m_clget(mreq, M_WAIT); 1461 } else 1462 mreq->m_data += max_hdr; 1463 tl = mtod(mreq, u_int32_t *); 1464 mreq->m_len = 6 * NFSX_UNSIGNED; 1465 bpos = ((char *)tl) + mreq->m_len; 1466 *tl++ = txdr_unsigned(nd->nd_retxid); 1467 *tl++ = rpc_reply; 1468 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1469 *tl++ = rpc_msgdenied; 1470 if (err & NFSERR_AUTHERR) { 1471 *tl++ = rpc_autherr; 1472 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1473 mreq->m_len -= NFSX_UNSIGNED; 1474 bpos -= NFSX_UNSIGNED; 1475 } else { 1476 *tl++ = rpc_mismatch; 1477 *tl++ = txdr_unsigned(RPC_VER2); 1478 *tl = txdr_unsigned(RPC_VER2); 1479 } 1480 } else { 1481 *tl++ = rpc_msgaccepted; 1482 1483 /* 1484 * For Kerberos authentication, we must send the nickname 1485 * verifier back, otherwise just RPCAUTH_NULL. 1486 */ 1487 if (nd->nd_flag & ND_KERBFULL) { 1488 struct nfsuid *nuidp; 1489 struct timeval ktvin, ktvout; 1490 1491 memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */ 1492 1493 LIST_FOREACH(nuidp, 1494 NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)), 1495 nu_hash) { 1496 if (kauth_cred_geteuid(nuidp->nu_cr) == 1497 kauth_cred_geteuid(nd->nd_cr) && 1498 (!nd->nd_nam2 || netaddr_match( 1499 NU_NETFAM(nuidp), &nuidp->nu_haddr, 1500 nd->nd_nam2))) 1501 break; 1502 } 1503 if (nuidp) { 1504 ktvin.tv_sec = 1505 txdr_unsigned(nuidp->nu_timestamp.tv_sec 1506 - 1); 1507 ktvin.tv_usec = 1508 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1509 1510 /* 1511 * Encrypt the timestamp in ecb mode using the 1512 * session key. 1513 */ 1514 #ifdef NFSKERB 1515 XXX 1516 #endif 1517 1518 *tl++ = rpc_auth_kerb; 1519 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1520 *tl = ktvout.tv_sec; 1521 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1522 *tl++ = ktvout.tv_usec; 1523 *tl++ = txdr_unsigned( 1524 kauth_cred_geteuid(nuidp->nu_cr)); 1525 } else { 1526 *tl++ = 0; 1527 *tl++ = 0; 1528 } 1529 } else { 1530 *tl++ = 0; 1531 *tl++ = 0; 1532 } 1533 switch (err) { 1534 case EPROGUNAVAIL: 1535 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1536 break; 1537 case EPROGMISMATCH: 1538 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1539 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1540 *tl++ = txdr_unsigned(2); 1541 *tl = txdr_unsigned(3); 1542 break; 1543 case EPROCUNAVAIL: 1544 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1545 break; 1546 case EBADRPC: 1547 *tl = txdr_unsigned(RPC_GARBAGE); 1548 break; 1549 default: 1550 *tl = 0; 1551 if (err != NFSERR_RETVOID) { 1552 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1553 if (err) 1554 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1555 else 1556 *tl = 0; 1557 } 1558 break; 1559 }; 1560 } 1561 1562 if (mrq != NULL) 1563 *mrq = mreq; 1564 *mbp = mb; 1565 *bposp = bpos; 1566 if (err != 0 && err != NFSERR_RETVOID) 1567 nfsstats.srvrpc_errs++; 1568 return (0); 1569 } 1570 1571 static void 1572 nfs_timer_schedule(void) 1573 { 1574 1575 callout_schedule(&nfs_timer_ch, nfs_ticks); 1576 } 1577 1578 void 1579 nfs_timer_start(void) 1580 { 1581 1582 if (callout_pending(&nfs_timer_ch)) 1583 return; 1584 1585 nfs_timer_start_ev.ev_count++; 1586 nfs_timer_schedule(); 1587 } 1588 1589 void 1590 nfs_timer_init(void) 1591 { 1592 1593 callout_init(&nfs_timer_ch, 0); 1594 callout_setfunc(&nfs_timer_ch, nfs_timer, NULL); 1595 evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL, 1596 "nfs", "timer"); 1597 evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL, 1598 "nfs", "timer start"); 1599 evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL, 1600 "nfs", "timer stop"); 1601 } 1602 1603 /* 1604 * Nfs timer routine 1605 * Scan the nfsreq list and retranmit any requests that have timed out 1606 * To avoid retransmission attempts on STREAM sockets (in the future) make 1607 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1608 * A non-NULL argument means 'initialize'. 1609 */ 1610 void 1611 nfs_timer(void *arg) 1612 { 1613 struct nfsreq *rep; 1614 struct mbuf *m; 1615 struct socket *so; 1616 struct nfsmount *nmp; 1617 int timeo; 1618 int s, error; 1619 bool more = false; 1620 #ifdef NFSSERVER 1621 struct timeval tv; 1622 struct nfssvc_sock *slp; 1623 u_quad_t cur_usec; 1624 #endif 1625 1626 nfs_timer_ev.ev_count++; 1627 1628 s = splsoftnet(); 1629 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 1630 more = true; 1631 nmp = rep->r_nmp; 1632 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1633 continue; 1634 if (nfs_sigintr(nmp, rep, rep->r_lwp)) { 1635 rep->r_flags |= R_SOFTTERM; 1636 continue; 1637 } 1638 if (rep->r_rtt >= 0) { 1639 rep->r_rtt++; 1640 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1641 timeo = nmp->nm_timeo; 1642 else 1643 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1644 if (nmp->nm_timeouts > 0) 1645 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1646 if (rep->r_rtt <= timeo) 1647 continue; 1648 if (nmp->nm_timeouts < 1649 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0]))) 1650 nmp->nm_timeouts++; 1651 } 1652 /* 1653 * Check for server not responding 1654 */ 1655 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1656 rep->r_rexmit > nmp->nm_deadthresh) { 1657 nfs_msg(rep->r_lwp, 1658 nmp->nm_mountp->mnt_stat.f_mntfromname, 1659 "not responding"); 1660 rep->r_flags |= R_TPRINTFMSG; 1661 } 1662 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1663 nfsstats.rpctimeouts++; 1664 rep->r_flags |= R_SOFTTERM; 1665 continue; 1666 } 1667 if (nmp->nm_sotype != SOCK_DGRAM) { 1668 if (++rep->r_rexmit > NFS_MAXREXMIT) 1669 rep->r_rexmit = NFS_MAXREXMIT; 1670 continue; 1671 } 1672 if ((so = nmp->nm_so) == NULL) 1673 continue; 1674 1675 /* 1676 * If there is enough space and the window allows.. 1677 * Resend it 1678 * Set r_rtt to -1 in case we fail to send it now. 1679 */ 1680 rep->r_rtt = -1; 1681 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1682 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1683 (rep->r_flags & R_SENT) || 1684 nmp->nm_sent < nmp->nm_cwnd) && 1685 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1686 if (so->so_state & SS_ISCONNECTED) 1687 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1688 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0); 1689 else 1690 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1691 nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0); 1692 if (error) { 1693 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 1694 #ifdef DEBUG 1695 printf("nfs_timer: ignoring error %d\n", 1696 error); 1697 #endif 1698 so->so_error = 0; 1699 } 1700 } else { 1701 /* 1702 * Iff first send, start timing 1703 * else turn timing off, backoff timer 1704 * and divide congestion window by 2. 1705 */ 1706 if (rep->r_flags & R_SENT) { 1707 rep->r_flags &= ~R_TIMING; 1708 if (++rep->r_rexmit > NFS_MAXREXMIT) 1709 rep->r_rexmit = NFS_MAXREXMIT; 1710 nmp->nm_cwnd >>= 1; 1711 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1712 nmp->nm_cwnd = NFS_CWNDSCALE; 1713 nfsstats.rpcretries++; 1714 } else { 1715 rep->r_flags |= R_SENT; 1716 nmp->nm_sent += NFS_CWNDSCALE; 1717 } 1718 rep->r_rtt = 0; 1719 } 1720 } 1721 } 1722 1723 #ifdef NFSSERVER 1724 /* 1725 * Scan the write gathering queues for writes that need to be 1726 * completed now. 1727 */ 1728 getmicrotime(&tv); 1729 cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec; 1730 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) { 1731 if (LIST_FIRST(&slp->ns_tq)) { 1732 if (LIST_FIRST(&slp->ns_tq)->nd_time <= cur_usec) { 1733 nfsrv_wakenfsd(slp); 1734 } 1735 more = true; 1736 } 1737 } 1738 #endif /* NFSSERVER */ 1739 splx(s); 1740 if (more) { 1741 nfs_timer_schedule(); 1742 } else { 1743 nfs_timer_stop_ev.ev_count++; 1744 } 1745 } 1746 1747 /* 1748 * Test for a termination condition pending on the process. 1749 * This is used for NFSMNT_INT mounts. 1750 */ 1751 int 1752 nfs_sigintr(nmp, rep, l) 1753 struct nfsmount *nmp; 1754 struct nfsreq *rep; 1755 struct lwp *l; 1756 { 1757 sigset_t ss; 1758 1759 if (rep && (rep->r_flags & R_SOFTTERM)) 1760 return (EINTR); 1761 if (!(nmp->nm_flag & NFSMNT_INT)) 1762 return (0); 1763 if (l) { 1764 sigpending1(l, &ss); 1765 #if 0 1766 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss); 1767 #endif 1768 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) || 1769 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) || 1770 sigismember(&ss, SIGQUIT)) 1771 return (EINTR); 1772 } 1773 return (0); 1774 } 1775 1776 /* 1777 * Lock a socket against others. 1778 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1779 * and also to avoid race conditions between the processes with nfs requests 1780 * in progress when a reconnect is necessary. 1781 */ 1782 static int 1783 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep) 1784 { 1785 struct lwp *l; 1786 int timeo = 0; 1787 bool catch = false; 1788 int error = 0; 1789 1790 if (rep) { 1791 l = rep->r_lwp; 1792 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1793 catch = true; 1794 } else 1795 l = NULL; 1796 mutex_enter(&nmp->nm_lock); 1797 while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) { 1798 if (rep && nfs_sigintr(rep->r_nmp, rep, l)) { 1799 error = EINTR; 1800 goto quit; 1801 } 1802 if (catch) { 1803 cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo); 1804 } else { 1805 cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo); 1806 } 1807 if (catch) { 1808 catch = false; 1809 timeo = 2 * hz; 1810 } 1811 } 1812 nmp->nm_iflag |= NFSMNT_SNDLOCK; 1813 quit: 1814 mutex_exit(&nmp->nm_lock); 1815 return error; 1816 } 1817 1818 /* 1819 * Unlock the stream socket for others. 1820 */ 1821 static void 1822 nfs_sndunlock(struct nfsmount *nmp) 1823 { 1824 1825 mutex_enter(&nmp->nm_lock); 1826 if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0) 1827 panic("nfs sndunlock"); 1828 nmp->nm_iflag &= ~NFSMNT_SNDLOCK; 1829 cv_signal(&nmp->nm_sndcv); 1830 mutex_exit(&nmp->nm_lock); 1831 } 1832 1833 static int 1834 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep) 1835 { 1836 int *flagp = &nmp->nm_iflag; 1837 int slptimeo = 0; 1838 bool catch; 1839 int error = 0; 1840 1841 KASSERT(nmp == rep->r_nmp); 1842 1843 catch = (nmp->nm_flag & NFSMNT_INT) != 0; 1844 mutex_enter(&nmp->nm_lock); 1845 while (/* CONSTCOND */ true) { 1846 if (*flagp & NFSMNT_DISMNT) { 1847 cv_signal(&nmp->nm_disconcv); 1848 error = EIO; 1849 break; 1850 } 1851 /* If our reply was received while we were sleeping, 1852 * then just return without taking the lock to avoid a 1853 * situation where a single iod could 'capture' the 1854 * receive lock. 1855 */ 1856 if (rep->r_mrep != NULL) { 1857 error = EALREADY; 1858 break; 1859 } 1860 if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) { 1861 error = EINTR; 1862 break; 1863 } 1864 if ((*flagp & NFSMNT_RCVLOCK) == 0) { 1865 *flagp |= NFSMNT_RCVLOCK; 1866 break; 1867 } 1868 if (catch) { 1869 cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock, 1870 slptimeo); 1871 } else { 1872 cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock, 1873 slptimeo); 1874 } 1875 if (catch) { 1876 catch = false; 1877 slptimeo = 2 * hz; 1878 } 1879 } 1880 mutex_exit(&nmp->nm_lock); 1881 return error; 1882 } 1883 1884 /* 1885 * Unlock the stream socket for others. 1886 */ 1887 static void 1888 nfs_rcvunlock(struct nfsmount *nmp) 1889 { 1890 1891 mutex_enter(&nmp->nm_lock); 1892 if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0) 1893 panic("nfs rcvunlock"); 1894 nmp->nm_iflag &= ~NFSMNT_RCVLOCK; 1895 cv_broadcast(&nmp->nm_rcvcv); 1896 mutex_exit(&nmp->nm_lock); 1897 } 1898 1899 /* 1900 * Parse an RPC request 1901 * - verify it 1902 * - allocate and fill in the cred. 1903 */ 1904 int 1905 nfs_getreq(nd, nfsd, has_header) 1906 struct nfsrv_descript *nd; 1907 struct nfsd *nfsd; 1908 int has_header; 1909 { 1910 int len, i; 1911 u_int32_t *tl; 1912 int32_t t1; 1913 struct uio uio; 1914 struct iovec iov; 1915 char *dpos, *cp2, *cp; 1916 u_int32_t nfsvers, auth_type; 1917 uid_t nickuid; 1918 int error = 0, ticklen; 1919 struct mbuf *mrep, *md; 1920 struct nfsuid *nuidp; 1921 struct timeval tvin, tvout; 1922 1923 memset(&tvout, 0, sizeof tvout); /* XXX gcc */ 1924 1925 KASSERT(nd->nd_cr == NULL); 1926 mrep = nd->nd_mrep; 1927 md = nd->nd_md; 1928 dpos = nd->nd_dpos; 1929 if (has_header) { 1930 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1931 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1932 if (*tl++ != rpc_call) { 1933 m_freem(mrep); 1934 return (EBADRPC); 1935 } 1936 } else 1937 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1938 nd->nd_repstat = 0; 1939 nd->nd_flag = 0; 1940 if (*tl++ != rpc_vers) { 1941 nd->nd_repstat = ERPCMISMATCH; 1942 nd->nd_procnum = NFSPROC_NOOP; 1943 return (0); 1944 } 1945 if (*tl != nfs_prog) { 1946 nd->nd_repstat = EPROGUNAVAIL; 1947 nd->nd_procnum = NFSPROC_NOOP; 1948 return (0); 1949 } 1950 tl++; 1951 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1952 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) { 1953 nd->nd_repstat = EPROGMISMATCH; 1954 nd->nd_procnum = NFSPROC_NOOP; 1955 return (0); 1956 } 1957 if (nfsvers == NFS_VER3) 1958 nd->nd_flag = ND_NFSV3; 1959 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1960 if (nd->nd_procnum == NFSPROC_NULL) 1961 return (0); 1962 if (nd->nd_procnum > NFSPROC_COMMIT || 1963 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1964 nd->nd_repstat = EPROCUNAVAIL; 1965 nd->nd_procnum = NFSPROC_NOOP; 1966 return (0); 1967 } 1968 if ((nd->nd_flag & ND_NFSV3) == 0) 1969 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1970 auth_type = *tl++; 1971 len = fxdr_unsigned(int, *tl++); 1972 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1973 m_freem(mrep); 1974 return (EBADRPC); 1975 } 1976 1977 nd->nd_flag &= ~ND_KERBAUTH; 1978 /* 1979 * Handle auth_unix or auth_kerb. 1980 */ 1981 if (auth_type == rpc_auth_unix) { 1982 uid_t uid; 1983 gid_t gid, *grbuf; 1984 1985 nd->nd_cr = kauth_cred_alloc(); 1986 len = fxdr_unsigned(int, *++tl); 1987 if (len < 0 || len > NFS_MAXNAMLEN) { 1988 m_freem(mrep); 1989 error = EBADRPC; 1990 goto errout; 1991 } 1992 nfsm_adv(nfsm_rndup(len)); 1993 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1994 1995 uid = fxdr_unsigned(uid_t, *tl++); 1996 gid = fxdr_unsigned(gid_t, *tl++); 1997 kauth_cred_setuid(nd->nd_cr, uid); 1998 kauth_cred_seteuid(nd->nd_cr, uid); 1999 kauth_cred_setsvuid(nd->nd_cr, uid); 2000 kauth_cred_setgid(nd->nd_cr, gid); 2001 kauth_cred_setegid(nd->nd_cr, gid); 2002 kauth_cred_setsvgid(nd->nd_cr, gid); 2003 2004 len = fxdr_unsigned(int, *tl); 2005 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 2006 m_freem(mrep); 2007 error = EBADRPC; 2008 goto errout; 2009 } 2010 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 2011 2012 grbuf = malloc(len * sizeof(gid_t), M_TEMP, M_WAITOK); 2013 for (i = 0; i < len; i++) { 2014 if (i < NGROUPS) /* XXX elad */ 2015 grbuf[i] = fxdr_unsigned(gid_t, *tl++); 2016 else 2017 tl++; 2018 } 2019 kauth_cred_setgroups(nd->nd_cr, grbuf, min(len, NGROUPS), -1, 2020 UIO_SYSSPACE); 2021 free(grbuf, M_TEMP); 2022 2023 len = fxdr_unsigned(int, *++tl); 2024 if (len < 0 || len > RPCAUTH_MAXSIZ) { 2025 m_freem(mrep); 2026 error = EBADRPC; 2027 goto errout; 2028 } 2029 if (len > 0) 2030 nfsm_adv(nfsm_rndup(len)); 2031 } else if (auth_type == rpc_auth_kerb) { 2032 switch (fxdr_unsigned(int, *tl++)) { 2033 case RPCAKN_FULLNAME: 2034 ticklen = fxdr_unsigned(int, *tl); 2035 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 2036 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 2037 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 2038 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 2039 m_freem(mrep); 2040 error = EBADRPC; 2041 goto errout; 2042 } 2043 uio.uio_offset = 0; 2044 uio.uio_iov = &iov; 2045 uio.uio_iovcnt = 1; 2046 UIO_SETUP_SYSSPACE(&uio); 2047 iov.iov_base = (void *)&nfsd->nfsd_authstr[4]; 2048 iov.iov_len = RPCAUTH_MAXSIZ - 4; 2049 nfsm_mtouio(&uio, uio.uio_resid); 2050 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 2051 if (*tl++ != rpc_auth_kerb || 2052 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 2053 printf("Bad kerb verifier\n"); 2054 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 2055 nd->nd_procnum = NFSPROC_NOOP; 2056 return (0); 2057 } 2058 nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED); 2059 tl = (u_int32_t *)cp; 2060 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 2061 printf("Not fullname kerb verifier\n"); 2062 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 2063 nd->nd_procnum = NFSPROC_NOOP; 2064 return (0); 2065 } 2066 cp += NFSX_UNSIGNED; 2067 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED); 2068 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 2069 nd->nd_flag |= ND_KERBFULL; 2070 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 2071 break; 2072 case RPCAKN_NICKNAME: 2073 if (len != 2 * NFSX_UNSIGNED) { 2074 printf("Kerb nickname short\n"); 2075 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 2076 nd->nd_procnum = NFSPROC_NOOP; 2077 return (0); 2078 } 2079 nickuid = fxdr_unsigned(uid_t, *tl); 2080 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 2081 if (*tl++ != rpc_auth_kerb || 2082 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 2083 printf("Kerb nick verifier bad\n"); 2084 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 2085 nd->nd_procnum = NFSPROC_NOOP; 2086 return (0); 2087 } 2088 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 2089 tvin.tv_sec = *tl++; 2090 tvin.tv_usec = *tl; 2091 2092 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid), 2093 nu_hash) { 2094 if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid && 2095 (!nd->nd_nam2 || 2096 netaddr_match(NU_NETFAM(nuidp), 2097 &nuidp->nu_haddr, nd->nd_nam2))) 2098 break; 2099 } 2100 if (!nuidp) { 2101 nd->nd_repstat = 2102 (NFSERR_AUTHERR|AUTH_REJECTCRED); 2103 nd->nd_procnum = NFSPROC_NOOP; 2104 return (0); 2105 } 2106 2107 /* 2108 * Now, decrypt the timestamp using the session key 2109 * and validate it. 2110 */ 2111 #ifdef NFSKERB 2112 XXX 2113 #endif 2114 2115 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 2116 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 2117 if (nuidp->nu_expire < time_second || 2118 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 2119 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 2120 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 2121 nuidp->nu_expire = 0; 2122 nd->nd_repstat = 2123 (NFSERR_AUTHERR|AUTH_REJECTVERF); 2124 nd->nd_procnum = NFSPROC_NOOP; 2125 return (0); 2126 } 2127 kauth_cred_hold(nuidp->nu_cr); 2128 nd->nd_cr = nuidp->nu_cr; 2129 nd->nd_flag |= ND_KERBNICK; 2130 } 2131 } else { 2132 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 2133 nd->nd_procnum = NFSPROC_NOOP; 2134 return (0); 2135 } 2136 2137 nd->nd_md = md; 2138 nd->nd_dpos = dpos; 2139 KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0) 2140 || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0)); 2141 return (0); 2142 nfsmout: 2143 errout: 2144 KASSERT(error != 0); 2145 if (nd->nd_cr != NULL) { 2146 kauth_cred_free(nd->nd_cr); 2147 nd->nd_cr = NULL; 2148 } 2149 return (error); 2150 } 2151 2152 int 2153 nfs_msg(l, server, msg) 2154 struct lwp *l; 2155 const char *server, *msg; 2156 { 2157 tpr_t tpr; 2158 2159 if (l) 2160 tpr = tprintf_open(l->l_proc); 2161 else 2162 tpr = NULL; 2163 tprintf(tpr, "nfs server %s: %s\n", server, msg); 2164 tprintf_close(tpr); 2165 return (0); 2166 } 2167 2168 #ifdef NFSSERVER 2169 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *, 2170 struct nfssvc_sock *, struct lwp *, 2171 struct mbuf **)) = { 2172 nfsrv_null, 2173 nfsrv_getattr, 2174 nfsrv_setattr, 2175 nfsrv_lookup, 2176 nfsrv3_access, 2177 nfsrv_readlink, 2178 nfsrv_read, 2179 nfsrv_write, 2180 nfsrv_create, 2181 nfsrv_mkdir, 2182 nfsrv_symlink, 2183 nfsrv_mknod, 2184 nfsrv_remove, 2185 nfsrv_rmdir, 2186 nfsrv_rename, 2187 nfsrv_link, 2188 nfsrv_readdir, 2189 nfsrv_readdirplus, 2190 nfsrv_statfs, 2191 nfsrv_fsinfo, 2192 nfsrv_pathconf, 2193 nfsrv_commit, 2194 nfsrv_noop 2195 }; 2196 2197 /* 2198 * Socket upcall routine for the nfsd sockets. 2199 * The void *arg is a pointer to the "struct nfssvc_sock". 2200 * Essentially do as much as possible non-blocking, else punt and it will 2201 * be called with M_WAIT from an nfsd. 2202 */ 2203 void 2204 nfsrv_rcv(so, arg, waitflag) 2205 struct socket *so; 2206 void *arg; 2207 int waitflag; 2208 { 2209 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 2210 struct mbuf *m; 2211 struct mbuf *mp, *nam; 2212 struct uio auio; 2213 int flags, error; 2214 int setflags = 0; 2215 2216 error = nfsdsock_lock(slp, (waitflag != M_DONTWAIT)); 2217 if (error) { 2218 setflags |= SLP_NEEDQ; 2219 goto dorecs_unlocked; 2220 } 2221 2222 KASSERT(so == slp->ns_so); 2223 #define NFS_TEST_HEAVY 2224 #ifdef NFS_TEST_HEAVY 2225 /* 2226 * Define this to test for nfsds handling this under heavy load. 2227 * 2228 * XXX it isn't safe to call so_receive from so_upcall context. 2229 */ 2230 if (waitflag == M_DONTWAIT) { 2231 setflags |= SLP_NEEDQ; 2232 goto dorecs; 2233 } 2234 #endif 2235 mutex_enter(&slp->ns_lock); 2236 slp->ns_flag &= ~SLP_NEEDQ; 2237 mutex_exit(&slp->ns_lock); 2238 if (so->so_type == SOCK_STREAM) { 2239 #ifndef NFS_TEST_HEAVY 2240 /* 2241 * If there are already records on the queue, defer soreceive() 2242 * to an nfsd so that there is feedback to the TCP layer that 2243 * the nfs servers are heavily loaded. 2244 */ 2245 if (slp->ns_rec && waitflag == M_DONTWAIT) { 2246 setflags |= SLP_NEEDQ; 2247 goto dorecs; 2248 } 2249 #endif 2250 2251 /* 2252 * Do soreceive(). 2253 */ 2254 auio.uio_resid = 1000000000; 2255 /* not need to setup uio_vmspace */ 2256 flags = MSG_DONTWAIT; 2257 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags); 2258 if (error || mp == NULL) { 2259 if (error == EWOULDBLOCK) 2260 setflags |= SLP_NEEDQ; 2261 else 2262 setflags |= SLP_DISCONN; 2263 goto dorecs; 2264 } 2265 m = mp; 2266 m_claimm(m, &nfs_mowner); 2267 if (slp->ns_rawend) { 2268 slp->ns_rawend->m_next = m; 2269 slp->ns_cc += 1000000000 - auio.uio_resid; 2270 } else { 2271 slp->ns_raw = m; 2272 slp->ns_cc = 1000000000 - auio.uio_resid; 2273 } 2274 while (m->m_next) 2275 m = m->m_next; 2276 slp->ns_rawend = m; 2277 2278 /* 2279 * Now try and parse record(s) out of the raw stream data. 2280 */ 2281 error = nfsrv_getstream(slp, waitflag); 2282 if (error) { 2283 if (error == EPERM) 2284 setflags |= SLP_DISCONN; 2285 else 2286 setflags |= SLP_NEEDQ; 2287 } 2288 } else { 2289 do { 2290 auio.uio_resid = 1000000000; 2291 /* not need to setup uio_vmspace */ 2292 flags = MSG_DONTWAIT; 2293 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, 2294 &flags); 2295 if (mp) { 2296 if (nam) { 2297 m = nam; 2298 m->m_next = mp; 2299 } else 2300 m = mp; 2301 m_claimm(m, &nfs_mowner); 2302 if (slp->ns_recend) 2303 slp->ns_recend->m_nextpkt = m; 2304 else 2305 slp->ns_rec = m; 2306 slp->ns_recend = m; 2307 m->m_nextpkt = (struct mbuf *)0; 2308 } 2309 if (error) { 2310 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2311 && error != EWOULDBLOCK) { 2312 setflags |= SLP_DISCONN; 2313 goto dorecs; 2314 } 2315 } 2316 } while (mp); 2317 } 2318 dorecs: 2319 nfsdsock_unlock(slp); 2320 2321 dorecs_unlocked: 2322 /* 2323 * Now try and process the request records, non-blocking. 2324 */ 2325 if (setflags) { 2326 mutex_enter(&slp->ns_lock); 2327 slp->ns_flag |= setflags; 2328 mutex_exit(&slp->ns_lock); 2329 } 2330 if (waitflag == M_DONTWAIT && 2331 (slp->ns_rec || (slp->ns_flag & (SLP_DISCONN | SLP_NEEDQ)) != 0)) { 2332 nfsrv_wakenfsd(slp); 2333 } 2334 } 2335 2336 int 2337 nfsdsock_lock(struct nfssvc_sock *slp, bool waitok) 2338 { 2339 2340 mutex_enter(&slp->ns_lock); 2341 while ((~slp->ns_flag & (SLP_BUSY|SLP_VALID)) == 0) { 2342 if (!waitok) { 2343 mutex_exit(&slp->ns_lock); 2344 return EWOULDBLOCK; 2345 } 2346 cv_wait(&slp->ns_cv, &slp->ns_lock); 2347 } 2348 if ((slp->ns_flag & SLP_VALID) == 0) { 2349 mutex_exit(&slp->ns_lock); 2350 return EINVAL; 2351 } 2352 KASSERT((slp->ns_flag & SLP_BUSY) == 0); 2353 slp->ns_flag |= SLP_BUSY; 2354 mutex_exit(&slp->ns_lock); 2355 2356 return 0; 2357 } 2358 2359 void 2360 nfsdsock_unlock(struct nfssvc_sock *slp) 2361 { 2362 2363 mutex_enter(&slp->ns_lock); 2364 KASSERT((slp->ns_flag & SLP_BUSY) != 0); 2365 KASSERT((slp->ns_flag & SLP_VALID) != 0); 2366 cv_broadcast(&slp->ns_cv); 2367 slp->ns_flag &= ~SLP_BUSY; 2368 mutex_exit(&slp->ns_lock); 2369 } 2370 2371 int 2372 nfsdsock_drain(struct nfssvc_sock *slp) 2373 { 2374 int error = 0; 2375 2376 mutex_enter(&slp->ns_lock); 2377 if ((slp->ns_flag & SLP_VALID) == 0) { 2378 error = EINVAL; 2379 goto done; 2380 } 2381 slp->ns_flag &= ~SLP_VALID; 2382 while ((slp->ns_flag & SLP_BUSY) != 0) { 2383 cv_wait(&slp->ns_cv, &slp->ns_lock); 2384 } 2385 done: 2386 mutex_exit(&slp->ns_lock); 2387 2388 return error; 2389 } 2390 2391 /* 2392 * Try and extract an RPC request from the mbuf data list received on a 2393 * stream socket. The "waitflag" argument indicates whether or not it 2394 * can sleep. 2395 */ 2396 int 2397 nfsrv_getstream(slp, waitflag) 2398 struct nfssvc_sock *slp; 2399 int waitflag; 2400 { 2401 struct mbuf *m, **mpp; 2402 struct mbuf *recm; 2403 u_int32_t recmark; 2404 int error = 0; 2405 2406 KASSERT((slp->ns_flag & SLP_BUSY) != 0); 2407 for (;;) { 2408 if (slp->ns_reclen == 0) { 2409 if (slp->ns_cc < NFSX_UNSIGNED) { 2410 break; 2411 } 2412 m = slp->ns_raw; 2413 m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark); 2414 m_adj(m, NFSX_UNSIGNED); 2415 slp->ns_cc -= NFSX_UNSIGNED; 2416 recmark = ntohl(recmark); 2417 slp->ns_reclen = recmark & ~0x80000000; 2418 if (recmark & 0x80000000) 2419 slp->ns_flag |= SLP_LASTFRAG; 2420 else 2421 slp->ns_flag &= ~SLP_LASTFRAG; 2422 if (slp->ns_reclen > NFS_MAXPACKET) { 2423 error = EPERM; 2424 break; 2425 } 2426 } 2427 2428 /* 2429 * Now get the record part. 2430 * 2431 * Note that slp->ns_reclen may be 0. Linux sometimes 2432 * generates 0-length records. 2433 */ 2434 if (slp->ns_cc == slp->ns_reclen) { 2435 recm = slp->ns_raw; 2436 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2437 slp->ns_cc = slp->ns_reclen = 0; 2438 } else if (slp->ns_cc > slp->ns_reclen) { 2439 recm = slp->ns_raw; 2440 m = m_split(recm, slp->ns_reclen, waitflag); 2441 if (m == NULL) { 2442 error = EWOULDBLOCK; 2443 break; 2444 } 2445 m_claimm(recm, &nfs_mowner); 2446 slp->ns_raw = m; 2447 if (m->m_next == NULL) 2448 slp->ns_rawend = m; 2449 slp->ns_cc -= slp->ns_reclen; 2450 slp->ns_reclen = 0; 2451 } else { 2452 break; 2453 } 2454 2455 /* 2456 * Accumulate the fragments into a record. 2457 */ 2458 mpp = &slp->ns_frag; 2459 while (*mpp) 2460 mpp = &((*mpp)->m_next); 2461 *mpp = recm; 2462 if (slp->ns_flag & SLP_LASTFRAG) { 2463 if (slp->ns_recend) 2464 slp->ns_recend->m_nextpkt = slp->ns_frag; 2465 else 2466 slp->ns_rec = slp->ns_frag; 2467 slp->ns_recend = slp->ns_frag; 2468 slp->ns_frag = (struct mbuf *)0; 2469 } 2470 } 2471 2472 return error; 2473 } 2474 2475 /* 2476 * Parse an RPC header. 2477 */ 2478 int 2479 nfsrv_dorec(slp, nfsd, ndp) 2480 struct nfssvc_sock *slp; 2481 struct nfsd *nfsd; 2482 struct nfsrv_descript **ndp; 2483 { 2484 struct mbuf *m, *nam; 2485 struct nfsrv_descript *nd; 2486 int error; 2487 2488 *ndp = NULL; 2489 2490 if (nfsdsock_lock(slp, true)) { 2491 return ENOBUFS; 2492 } 2493 m = slp->ns_rec; 2494 if (m == NULL) { 2495 nfsdsock_unlock(slp); 2496 return ENOBUFS; 2497 } 2498 slp->ns_rec = m->m_nextpkt; 2499 if (slp->ns_rec) 2500 m->m_nextpkt = NULL; 2501 else 2502 slp->ns_recend = NULL; 2503 nfsdsock_unlock(slp); 2504 2505 if (m->m_type == MT_SONAME) { 2506 nam = m; 2507 m = m->m_next; 2508 nam->m_next = NULL; 2509 } else 2510 nam = NULL; 2511 nd = nfsdreq_alloc(); 2512 nd->nd_md = nd->nd_mrep = m; 2513 nd->nd_nam2 = nam; 2514 nd->nd_dpos = mtod(m, void *); 2515 error = nfs_getreq(nd, nfsd, true); 2516 if (error) { 2517 m_freem(nam); 2518 nfsdreq_free(nd); 2519 return (error); 2520 } 2521 *ndp = nd; 2522 nfsd->nfsd_nd = nd; 2523 return (0); 2524 } 2525 2526 /* 2527 * Search for a sleeping nfsd and wake it up. 2528 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2529 * running nfsds will go look for the work in the nfssvc_sock list. 2530 */ 2531 void 2532 nfsrv_wakenfsd(slp) 2533 struct nfssvc_sock *slp; 2534 { 2535 struct nfsd *nd; 2536 2537 if ((slp->ns_flag & SLP_VALID) == 0) 2538 return; 2539 mutex_enter(&nfsd_lock); 2540 if (slp->ns_flag & SLP_DOREC) { 2541 mutex_exit(&nfsd_lock); 2542 return; 2543 } 2544 nd = SLIST_FIRST(&nfsd_idle_head); 2545 if (nd) { 2546 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle); 2547 if (nd->nfsd_slp) 2548 panic("nfsd wakeup"); 2549 slp->ns_sref++; 2550 KASSERT(slp->ns_sref > 0); 2551 nd->nfsd_slp = slp; 2552 cv_signal(&nd->nfsd_cv); 2553 } else { 2554 slp->ns_flag |= SLP_DOREC; 2555 nfsd_head_flag |= NFSD_CHECKSLP; 2556 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending); 2557 } 2558 mutex_exit(&nfsd_lock); 2559 } 2560 2561 int 2562 nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd) 2563 { 2564 int error; 2565 2566 if (nd->nd_mrep != NULL) { 2567 m_freem(nd->nd_mrep); 2568 nd->nd_mrep = NULL; 2569 } 2570 2571 mutex_enter(&slp->ns_lock); 2572 if ((slp->ns_flag & SLP_SENDING) != 0) { 2573 SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq); 2574 mutex_exit(&slp->ns_lock); 2575 return 0; 2576 } 2577 KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq)); 2578 slp->ns_flag |= SLP_SENDING; 2579 mutex_exit(&slp->ns_lock); 2580 2581 again: 2582 error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp); 2583 if (nd->nd_nam2) { 2584 m_free(nd->nd_nam2); 2585 } 2586 nfsdreq_free(nd); 2587 2588 mutex_enter(&slp->ns_lock); 2589 KASSERT((slp->ns_flag & SLP_SENDING) != 0); 2590 nd = SIMPLEQ_FIRST(&slp->ns_sendq); 2591 if (nd != NULL) { 2592 SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq); 2593 mutex_exit(&slp->ns_lock); 2594 goto again; 2595 } 2596 slp->ns_flag &= ~SLP_SENDING; 2597 mutex_exit(&slp->ns_lock); 2598 2599 return error; 2600 } 2601 #endif /* NFSSERVER */ 2602 2603 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) 2604 static struct pool nfs_srvdesc_pool; 2605 2606 void 2607 nfsdreq_init(void) 2608 { 2609 2610 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript), 2611 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE); 2612 } 2613 2614 struct nfsrv_descript * 2615 nfsdreq_alloc(void) 2616 { 2617 struct nfsrv_descript *nd; 2618 2619 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK); 2620 nd->nd_cr = NULL; 2621 return nd; 2622 } 2623 2624 void 2625 nfsdreq_free(struct nfsrv_descript *nd) 2626 { 2627 kauth_cred_t cr; 2628 2629 cr = nd->nd_cr; 2630 if (cr != NULL) { 2631 kauth_cred_free(cr); 2632 } 2633 pool_put(&nfs_srvdesc_pool, nd); 2634 } 2635 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */ 2636