1 /* $NetBSD: nd6.c,v 1.256 2019/07/26 10:18:42 christos Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.256 2019/07/26 10:18:42 christos Exp $"); 35 36 #ifdef _KERNEL_OPT 37 #include "opt_net_mpsafe.h" 38 #endif 39 40 #include "bridge.h" 41 #include "carp.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/callout.h> 46 #include <sys/kmem.h> 47 #include <sys/mbuf.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/errno.h> 54 #include <sys/ioctl.h> 55 #include <sys/syslog.h> 56 #include <sys/queue.h> 57 #include <sys/cprng.h> 58 #include <sys/workqueue.h> 59 60 #include <net/if.h> 61 #include <net/if_dl.h> 62 #include <net/if_llatbl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/if_ether.h> 66 #include <net/if_fddi.h> 67 #include <net/if_arc.h> 68 69 #include <netinet/in.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/icmp6_private.h> 78 79 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 80 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 81 82 /* timer values */ 83 int nd6_prune = 1; /* walk list every 1 seconds */ 84 int nd6_delay = 5; /* delay first probe time 5 second */ 85 int nd6_umaxtries = 3; /* maximum unicast query */ 86 int nd6_mmaxtries = 3; /* maximum multicast query */ 87 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 88 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 89 90 /* preventing too many loops in ND option parsing */ 91 int nd6_maxndopt = 10; /* max # of ND options allowed */ 92 93 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 94 95 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ 96 97 #ifdef ND6_DEBUG 98 int nd6_debug = 1; 99 #else 100 int nd6_debug = 0; 101 #endif 102 103 krwlock_t nd6_lock __cacheline_aligned; 104 105 struct nd_drhead nd_defrouter; 106 struct nd_prhead nd_prefix = { 0 }; 107 108 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 109 110 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 111 static void nd6_slowtimo(void *); 112 static int regen_tmpaddr(const struct in6_ifaddr *); 113 static void nd6_free(struct llentry *, int); 114 static void nd6_llinfo_timer(void *); 115 static void nd6_timer(void *); 116 static void nd6_timer_work(struct work *, void *); 117 static void clear_llinfo_pqueue(struct llentry *); 118 static struct nd_opt_hdr *nd6_option(union nd_opts *); 119 120 static callout_t nd6_slowtimo_ch; 121 static callout_t nd6_timer_ch; 122 static struct workqueue *nd6_timer_wq; 123 static struct work nd6_timer_wk; 124 125 static int fill_drlist(void *, size_t *); 126 static int fill_prlist(void *, size_t *); 127 128 static struct ifnet *nd6_defifp; 129 static int nd6_defifindex; 130 131 static int nd6_setdefaultiface(int); 132 133 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 134 135 void 136 nd6_init(void) 137 { 138 int error; 139 140 rw_init(&nd6_lock); 141 142 /* initialization of the default router list */ 143 ND_DEFROUTER_LIST_INIT(); 144 145 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE); 146 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE); 147 148 error = workqueue_create(&nd6_timer_wq, "nd6_timer", 149 nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 150 if (error) 151 panic("%s: workqueue_create failed (%d)\n", __func__, error); 152 153 /* start timer */ 154 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 155 nd6_slowtimo, NULL); 156 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL); 157 } 158 159 struct nd_ifinfo * 160 nd6_ifattach(struct ifnet *ifp) 161 { 162 struct nd_ifinfo *nd; 163 164 nd = kmem_zalloc(sizeof(*nd), KM_SLEEP); 165 166 nd->initialized = 1; 167 168 nd->chlim = IPV6_DEFHLIM; 169 nd->basereachable = REACHABLE_TIME; 170 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 171 nd->retrans = RETRANS_TIMER; 172 173 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV; 174 175 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 176 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL 177 * because one of its members should. */ 178 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 179 (ifp->if_flags & IFF_LOOPBACK)) 180 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 181 182 /* A loopback interface does not need to accept RTADV. 183 * A bridge interface should not accept RTADV 184 * because one of its members should. */ 185 if (ip6_accept_rtadv && 186 !(ifp->if_flags & IFF_LOOPBACK) && 187 !(ifp->if_type != IFT_BRIDGE)) 188 nd->flags |= ND6_IFF_ACCEPT_RTADV; 189 190 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 191 nd6_setmtu0(ifp, nd); 192 193 return nd; 194 } 195 196 void 197 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext) 198 { 199 200 /* Ensure all IPv6 addresses are purged before calling nd6_purge */ 201 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr); 202 nd6_purge(ifp, ext); 203 kmem_free(ext->nd_ifinfo, sizeof(struct nd_ifinfo)); 204 } 205 206 void 207 nd6_setmtu(struct ifnet *ifp) 208 { 209 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 210 } 211 212 void 213 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 214 { 215 u_int32_t omaxmtu; 216 217 omaxmtu = ndi->maxmtu; 218 219 switch (ifp->if_type) { 220 case IFT_ARCNET: 221 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 222 break; 223 case IFT_FDDI: 224 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 225 break; 226 default: 227 ndi->maxmtu = ifp->if_mtu; 228 break; 229 } 230 231 /* 232 * Decreasing the interface MTU under IPV6 minimum MTU may cause 233 * undesirable situation. We thus notify the operator of the change 234 * explicitly. The check for omaxmtu is necessary to restrict the 235 * log to the case of changing the MTU, not initializing it. 236 */ 237 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 238 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 239 " small for IPv6 which needs %lu\n", 240 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 241 IPV6_MMTU); 242 } 243 244 if (ndi->maxmtu > in6_maxmtu) 245 in6_setmaxmtu(); /* check all interfaces just in case */ 246 } 247 248 void 249 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 250 { 251 252 memset(ndopts, 0, sizeof(*ndopts)); 253 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 254 ndopts->nd_opts_last 255 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 256 257 if (icmp6len == 0) { 258 ndopts->nd_opts_done = 1; 259 ndopts->nd_opts_search = NULL; 260 } 261 } 262 263 /* 264 * Take one ND option. 265 */ 266 static struct nd_opt_hdr * 267 nd6_option(union nd_opts *ndopts) 268 { 269 struct nd_opt_hdr *nd_opt; 270 int olen; 271 272 KASSERT(ndopts != NULL); 273 KASSERT(ndopts->nd_opts_last != NULL); 274 275 if (ndopts->nd_opts_search == NULL) 276 return NULL; 277 if (ndopts->nd_opts_done) 278 return NULL; 279 280 nd_opt = ndopts->nd_opts_search; 281 282 /* make sure nd_opt_len is inside the buffer */ 283 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) { 284 memset(ndopts, 0, sizeof(*ndopts)); 285 return NULL; 286 } 287 288 olen = nd_opt->nd_opt_len << 3; 289 if (olen == 0) { 290 /* 291 * Message validation requires that all included 292 * options have a length that is greater than zero. 293 */ 294 memset(ndopts, 0, sizeof(*ndopts)); 295 return NULL; 296 } 297 298 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen); 299 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 300 /* option overruns the end of buffer, invalid */ 301 memset(ndopts, 0, sizeof(*ndopts)); 302 return NULL; 303 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 304 /* reached the end of options chain */ 305 ndopts->nd_opts_done = 1; 306 ndopts->nd_opts_search = NULL; 307 } 308 return nd_opt; 309 } 310 311 /* 312 * Parse multiple ND options. 313 * This function is much easier to use, for ND routines that do not need 314 * multiple options of the same type. 315 */ 316 int 317 nd6_options(union nd_opts *ndopts) 318 { 319 struct nd_opt_hdr *nd_opt; 320 int i = 0; 321 322 KASSERT(ndopts != NULL); 323 KASSERT(ndopts->nd_opts_last != NULL); 324 325 if (ndopts->nd_opts_search == NULL) 326 return 0; 327 328 while (1) { 329 nd_opt = nd6_option(ndopts); 330 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 331 /* 332 * Message validation requires that all included 333 * options have a length that is greater than zero. 334 */ 335 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT); 336 memset(ndopts, 0, sizeof(*ndopts)); 337 return -1; 338 } 339 340 if (nd_opt == NULL) 341 goto skip1; 342 343 switch (nd_opt->nd_opt_type) { 344 case ND_OPT_SOURCE_LINKADDR: 345 case ND_OPT_TARGET_LINKADDR: 346 case ND_OPT_MTU: 347 case ND_OPT_REDIRECTED_HEADER: 348 case ND_OPT_NONCE: 349 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 350 nd6log(LOG_INFO, 351 "duplicated ND6 option found (type=%d)\n", 352 nd_opt->nd_opt_type); 353 /* XXX bark? */ 354 } else { 355 ndopts->nd_opt_array[nd_opt->nd_opt_type] 356 = nd_opt; 357 } 358 break; 359 case ND_OPT_PREFIX_INFORMATION: 360 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 361 ndopts->nd_opt_array[nd_opt->nd_opt_type] 362 = nd_opt; 363 } 364 ndopts->nd_opts_pi_end = 365 (struct nd_opt_prefix_info *)nd_opt; 366 break; 367 default: 368 /* 369 * Unknown options must be silently ignored, 370 * to accommodate future extension to the protocol. 371 */ 372 nd6log(LOG_DEBUG, 373 "nd6_options: unsupported option %d - " 374 "option ignored\n", nd_opt->nd_opt_type); 375 } 376 377 skip1: 378 i++; 379 if (i > nd6_maxndopt) { 380 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT); 381 nd6log(LOG_INFO, "too many loop in nd opt\n"); 382 break; 383 } 384 385 if (ndopts->nd_opts_done) 386 break; 387 } 388 389 return 0; 390 } 391 392 /* 393 * ND6 timer routine to handle ND6 entries 394 */ 395 void 396 nd6_llinfo_settimer(struct llentry *ln, time_t xtick) 397 { 398 399 CTASSERT(sizeof(time_t) > sizeof(int)); 400 LLE_WLOCK_ASSERT(ln); 401 402 KASSERT(xtick >= 0); 403 404 /* 405 * We have to take care of a reference leak which occurs if 406 * callout_reset overwrites a pending callout schedule. Unfortunately 407 * we don't have a mean to know the overwrite, so we need to know it 408 * using callout_stop. We need to call callout_pending first to exclude 409 * the case that the callout has never been scheduled. 410 */ 411 if (callout_pending(&ln->la_timer)) { 412 bool expired = callout_stop(&ln->la_timer); 413 if (!expired) 414 LLE_REMREF(ln); 415 } 416 417 ln->ln_expire = time_uptime + xtick / hz; 418 LLE_ADDREF(ln); 419 if (xtick > INT_MAX) { 420 ln->ln_ntick = xtick - INT_MAX; 421 callout_reset(&ln->ln_timer_ch, INT_MAX, 422 nd6_llinfo_timer, ln); 423 } else { 424 ln->ln_ntick = 0; 425 callout_reset(&ln->ln_timer_ch, xtick, 426 nd6_llinfo_timer, ln); 427 } 428 } 429 430 /* 431 * Gets source address of the first packet in hold queue 432 * and stores it in @src. 433 * Returns pointer to @src (if hold queue is not empty) or NULL. 434 */ 435 static struct in6_addr * 436 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 437 { 438 struct ip6_hdr *hip6; 439 440 if (ln == NULL || ln->ln_hold == NULL) 441 return NULL; 442 443 /* 444 * assuming every packet in ln_hold has the same IP header 445 */ 446 hip6 = mtod(ln->ln_hold, struct ip6_hdr *); 447 /* XXX pullup? */ 448 if (sizeof(*hip6) < ln->ln_hold->m_len) 449 *src = hip6->ip6_src; 450 else 451 src = NULL; 452 453 return src; 454 } 455 456 static void 457 nd6_llinfo_timer(void *arg) 458 { 459 struct llentry *ln = arg; 460 struct ifnet *ifp; 461 struct nd_ifinfo *ndi = NULL; 462 bool send_ns = false; 463 const struct in6_addr *daddr6 = NULL; 464 465 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 466 467 LLE_WLOCK(ln); 468 if ((ln->la_flags & LLE_LINKED) == 0) 469 goto out; 470 if (ln->ln_ntick > 0) { 471 nd6_llinfo_settimer(ln, ln->ln_ntick); 472 goto out; 473 } 474 475 476 ifp = ln->lle_tbl->llt_ifp; 477 KASSERT(ifp != NULL); 478 479 ndi = ND_IFINFO(ifp); 480 481 switch (ln->ln_state) { 482 case ND6_LLINFO_INCOMPLETE: 483 if (ln->ln_asked < nd6_mmaxtries) { 484 ln->ln_asked++; 485 send_ns = true; 486 } else { 487 struct mbuf *m = ln->ln_hold; 488 if (m) { 489 struct mbuf *m0; 490 491 /* 492 * assuming every packet in ln_hold has 493 * the same IP header 494 */ 495 m0 = m->m_nextpkt; 496 m->m_nextpkt = NULL; 497 ln->ln_hold = m0; 498 clear_llinfo_pqueue(ln); 499 } 500 LLE_REMREF(ln); 501 nd6_free(ln, 0); 502 ln = NULL; 503 if (m != NULL) { 504 icmp6_error2(m, ICMP6_DST_UNREACH, 505 ICMP6_DST_UNREACH_ADDR, 0, ifp); 506 } 507 } 508 break; 509 case ND6_LLINFO_REACHABLE: 510 if (!ND6_LLINFO_PERMANENT(ln)) { 511 ln->ln_state = ND6_LLINFO_STALE; 512 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 513 } 514 break; 515 516 case ND6_LLINFO_PURGE: 517 case ND6_LLINFO_STALE: 518 /* Garbage Collection(RFC 2461 5.3) */ 519 if (!ND6_LLINFO_PERMANENT(ln)) { 520 LLE_REMREF(ln); 521 nd6_free(ln, 1); 522 ln = NULL; 523 } 524 break; 525 526 case ND6_LLINFO_DELAY: 527 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 528 /* We need NUD */ 529 ln->ln_asked = 1; 530 ln->ln_state = ND6_LLINFO_PROBE; 531 daddr6 = &ln->r_l3addr.addr6; 532 send_ns = true; 533 } else { 534 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 535 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 536 } 537 break; 538 case ND6_LLINFO_PROBE: 539 if (ln->ln_asked < nd6_umaxtries) { 540 ln->ln_asked++; 541 daddr6 = &ln->r_l3addr.addr6; 542 send_ns = true; 543 } else { 544 LLE_REMREF(ln); 545 nd6_free(ln, 0); 546 ln = NULL; 547 } 548 break; 549 } 550 551 if (send_ns) { 552 struct in6_addr src, *psrc; 553 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6; 554 555 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000); 556 psrc = nd6_llinfo_get_holdsrc(ln, &src); 557 LLE_FREE_LOCKED(ln); 558 ln = NULL; 559 nd6_ns_output(ifp, daddr6, taddr6, psrc, NULL); 560 } 561 562 out: 563 if (ln != NULL) 564 LLE_FREE_LOCKED(ln); 565 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 566 } 567 568 /* 569 * ND6 timer routine to expire default route list and prefix list 570 */ 571 static void 572 nd6_timer_work(struct work *wk, void *arg) 573 { 574 struct nd_defrouter *next_dr, *dr; 575 struct nd_prefix *next_pr, *pr; 576 struct in6_ifaddr *ia6, *nia6; 577 int s, bound; 578 struct psref psref; 579 580 callout_reset(&nd6_timer_ch, nd6_prune * hz, 581 nd6_timer, NULL); 582 583 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 584 585 /* expire default router list */ 586 587 ND6_WLOCK(); 588 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) { 589 if (dr->expire && dr->expire < time_uptime) { 590 nd6_defrtrlist_del(dr, NULL); 591 } 592 } 593 ND6_UNLOCK(); 594 595 /* 596 * expire interface addresses. 597 * in the past the loop was inside prefix expiry processing. 598 * However, from a stricter speci-confrmance standpoint, we should 599 * rather separate address lifetimes and prefix lifetimes. 600 */ 601 bound = curlwp_bind(); 602 addrloop: 603 s = pserialize_read_enter(); 604 for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) { 605 nia6 = IN6_ADDRLIST_READER_NEXT(ia6); 606 607 ia6_acquire(ia6, &psref); 608 pserialize_read_exit(s); 609 610 /* check address lifetime */ 611 if (IFA6_IS_INVALID(ia6)) { 612 int regen = 0; 613 struct ifnet *ifp; 614 615 /* 616 * If the expiring address is temporary, try 617 * regenerating a new one. This would be useful when 618 * we suspended a laptop PC, then turned it on after a 619 * period that could invalidate all temporary 620 * addresses. Although we may have to restart the 621 * loop (see below), it must be after purging the 622 * address. Otherwise, we'd see an infinite loop of 623 * regeneration. 624 */ 625 if (ip6_use_tempaddr && 626 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 627 IFNET_LOCK(ia6->ia_ifa.ifa_ifp); 628 if (regen_tmpaddr(ia6) == 0) 629 regen = 1; 630 IFNET_UNLOCK(ia6->ia_ifa.ifa_ifp); 631 } 632 633 ifp = ia6->ia_ifa.ifa_ifp; 634 IFNET_LOCK(ifp); 635 /* 636 * Need to take the lock first to prevent if_detach 637 * from running in6_purgeaddr concurrently. 638 */ 639 if (!if_is_deactivated(ifp)) { 640 ia6_release(ia6, &psref); 641 in6_purgeaddr(&ia6->ia_ifa); 642 } else { 643 /* 644 * ifp is being destroyed, ia6 will be destroyed 645 * by if_detach. 646 */ 647 ia6_release(ia6, &psref); 648 } 649 ia6 = NULL; 650 IFNET_UNLOCK(ifp); 651 652 if (regen) 653 goto addrloop; /* XXX: see below */ 654 } else if (IFA6_IS_DEPRECATED(ia6)) { 655 int oldflags = ia6->ia6_flags; 656 657 if ((oldflags & IN6_IFF_DEPRECATED) == 0) { 658 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 659 rt_addrmsg(RTM_NEWADDR, (struct ifaddr *)ia6); 660 } 661 662 /* 663 * If a temporary address has just become deprecated, 664 * regenerate a new one if possible. 665 */ 666 if (ip6_use_tempaddr && 667 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 668 (oldflags & IN6_IFF_DEPRECATED) == 0) { 669 670 if (regen_tmpaddr(ia6) == 0) { 671 /* 672 * A new temporary address is 673 * generated. 674 * XXX: this means the address chain 675 * has changed while we are still in 676 * the loop. Although the change 677 * would not cause disaster (because 678 * it's not a deletion, but an 679 * addition,) we'd rather restart the 680 * loop just for safety. Or does this 681 * significantly reduce performance?? 682 */ 683 ia6_release(ia6, &psref); 684 goto addrloop; 685 } 686 } 687 } else { 688 /* 689 * A new RA might have made a deprecated address 690 * preferred. 691 */ 692 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) { 693 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 694 rt_addrmsg(RTM_NEWADDR, (struct ifaddr *)ia6); 695 } 696 } 697 s = pserialize_read_enter(); 698 ia6_release(ia6, &psref); 699 } 700 pserialize_read_exit(s); 701 curlwp_bindx(bound); 702 703 /* expire prefix list */ 704 ND6_WLOCK(); 705 ND_PREFIX_LIST_FOREACH_SAFE(pr, next_pr) { 706 /* 707 * check prefix lifetime. 708 * since pltime is just for autoconf, pltime processing for 709 * prefix is not necessary. 710 */ 711 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 712 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 713 /* 714 * Just invalidate the prefix here. Removing it 715 * will be done when purging an associated address. 716 */ 717 KASSERT(pr->ndpr_refcnt > 0); 718 nd6_invalidate_prefix(pr); 719 } 720 } 721 ND6_UNLOCK(); 722 723 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 724 } 725 726 static void 727 nd6_timer(void *ignored_arg) 728 { 729 730 workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL); 731 } 732 733 /* ia6: deprecated/invalidated temporary address */ 734 static int 735 regen_tmpaddr(const struct in6_ifaddr *ia6) 736 { 737 struct ifaddr *ifa; 738 struct ifnet *ifp; 739 struct in6_ifaddr *public_ifa6 = NULL; 740 int s; 741 742 ifp = ia6->ia_ifa.ifa_ifp; 743 s = pserialize_read_enter(); 744 IFADDR_READER_FOREACH(ifa, ifp) { 745 struct in6_ifaddr *it6; 746 747 if (ifa->ifa_addr->sa_family != AF_INET6) 748 continue; 749 750 it6 = (struct in6_ifaddr *)ifa; 751 752 /* ignore no autoconf addresses. */ 753 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 754 continue; 755 756 /* ignore autoconf addresses with different prefixes. */ 757 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 758 continue; 759 760 /* 761 * Now we are looking at an autoconf address with the same 762 * prefix as ours. If the address is temporary and is still 763 * preferred, do not create another one. It would be rare, but 764 * could happen, for example, when we resume a laptop PC after 765 * a long period. 766 */ 767 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 768 !IFA6_IS_DEPRECATED(it6)) { 769 public_ifa6 = NULL; 770 break; 771 } 772 773 /* 774 * This is a public autoconf address that has the same prefix 775 * as ours. If it is preferred, keep it. We can't break the 776 * loop here, because there may be a still-preferred temporary 777 * address with the prefix. 778 */ 779 if (!IFA6_IS_DEPRECATED(it6)) 780 public_ifa6 = it6; 781 } 782 783 if (public_ifa6 != NULL) { 784 int e; 785 struct psref psref; 786 787 ia6_acquire(public_ifa6, &psref); 788 pserialize_read_exit(s); 789 /* 790 * Random factor is introduced in the preferred lifetime, so 791 * we do not need additional delay (3rd arg to in6_tmpifadd). 792 */ 793 ND6_WLOCK(); 794 e = in6_tmpifadd(public_ifa6, 0, 0); 795 ND6_UNLOCK(); 796 if (e != 0) { 797 ia6_release(public_ifa6, &psref); 798 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 799 " tmp addr, errno=%d\n", e); 800 return -1; 801 } 802 ia6_release(public_ifa6, &psref); 803 return 0; 804 } 805 pserialize_read_exit(s); 806 807 return -1; 808 } 809 810 bool 811 nd6_accepts_rtadv(const struct nd_ifinfo *ndi) 812 { 813 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) { 814 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV: 815 return true; 816 case ND6_IFF_ACCEPT_RTADV: 817 return ip6_accept_rtadv != 0; 818 case ND6_IFF_OVERRIDE_RTADV: 819 case 0: 820 default: 821 return false; 822 } 823 } 824 825 /* 826 * Nuke neighbor cache/prefix/default router management table, right before 827 * ifp goes away. 828 */ 829 void 830 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext) 831 { 832 struct nd_defrouter *dr, *ndr; 833 struct nd_prefix *pr, *npr; 834 835 /* 836 * During detach, the ND info might be already removed, but 837 * then is explitly passed as argument. 838 * Otherwise get it from ifp->if_afdata. 839 */ 840 if (ext == NULL) 841 ext = ifp->if_afdata[AF_INET6]; 842 if (ext == NULL) 843 return; 844 845 ND6_WLOCK(); 846 /* 847 * Nuke default router list entries toward ifp. 848 * We defer removal of default router list entries that is installed 849 * in the routing table, in order to keep additional side effects as 850 * small as possible. 851 */ 852 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) { 853 if (dr->installed) 854 continue; 855 856 if (dr->ifp == ifp) { 857 KASSERT(ext != NULL); 858 nd6_defrtrlist_del(dr, ext); 859 } 860 } 861 862 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) { 863 if (!dr->installed) 864 continue; 865 866 if (dr->ifp == ifp) { 867 KASSERT(ext != NULL); 868 nd6_defrtrlist_del(dr, ext); 869 } 870 } 871 872 /* Nuke prefix list entries toward ifp */ 873 ND_PREFIX_LIST_FOREACH_SAFE(pr, npr) { 874 if (pr->ndpr_ifp == ifp) { 875 /* 876 * All addresses referencing pr should be already freed. 877 */ 878 KASSERT(pr->ndpr_refcnt == 0); 879 nd6_prelist_remove(pr); 880 } 881 } 882 883 /* cancel default outgoing interface setting */ 884 if (nd6_defifindex == ifp->if_index) 885 nd6_setdefaultiface(0); 886 887 /* XXX: too restrictive? */ 888 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) { 889 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 890 if (ndi && nd6_accepts_rtadv(ndi)) { 891 /* refresh default router list */ 892 nd6_defrouter_select(); 893 } 894 } 895 ND6_UNLOCK(); 896 897 /* 898 * We may not need to nuke the neighbor cache entries here 899 * because the neighbor cache is kept in if_afdata[AF_INET6]. 900 * nd6_purge() is invoked by in6_ifdetach() which is called 901 * from if_detach() where everything gets purged. However 902 * in6_ifdetach is directly called from vlan(4), so we still 903 * need to purge entries here. 904 */ 905 if (ext->lltable != NULL) 906 lltable_purge_entries(ext->lltable); 907 } 908 909 void 910 nd6_assert_purged(struct ifnet *ifp) 911 { 912 struct nd_defrouter *dr; 913 struct nd_prefix *pr; 914 char ip6buf[INET6_ADDRSTRLEN] __diagused; 915 916 ND6_RLOCK(); 917 ND_DEFROUTER_LIST_FOREACH(dr) { 918 KASSERTMSG(dr->ifp != ifp, 919 "defrouter %s remains on %s", 920 IN6_PRINT(ip6buf, &dr->rtaddr), ifp->if_xname); 921 } 922 923 ND_PREFIX_LIST_FOREACH(pr) { 924 KASSERTMSG(pr->ndpr_ifp != ifp, 925 "prefix %s/%d remains on %s", 926 IN6_PRINT(ip6buf, &pr->ndpr_prefix.sin6_addr), 927 pr->ndpr_plen, ifp->if_xname); 928 } 929 ND6_UNLOCK(); 930 } 931 932 struct llentry * 933 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock) 934 { 935 struct sockaddr_in6 sin6; 936 struct llentry *ln; 937 938 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 939 940 IF_AFDATA_RLOCK(ifp); 941 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0, 942 sin6tosa(&sin6)); 943 IF_AFDATA_RUNLOCK(ifp); 944 945 return ln; 946 } 947 948 struct llentry * 949 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp) 950 { 951 struct sockaddr_in6 sin6; 952 struct llentry *ln; 953 struct rtentry *rt; 954 955 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 956 rt = rtalloc1(sin6tosa(&sin6), 0); 957 958 IF_AFDATA_WLOCK(ifp); 959 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE, sin6tosa(&sin6), rt); 960 IF_AFDATA_WUNLOCK(ifp); 961 962 if (rt != NULL) 963 rt_unref(rt); 964 if (ln != NULL) 965 ln->ln_state = ND6_LLINFO_NOSTATE; 966 967 return ln; 968 } 969 970 /* 971 * Test whether a given IPv6 address is a neighbor or not, ignoring 972 * the actual neighbor cache. The neighbor cache is ignored in order 973 * to not reenter the routing code from within itself. 974 */ 975 static int 976 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 977 { 978 struct nd_prefix *pr; 979 struct ifaddr *dstaddr; 980 int s; 981 982 /* 983 * A link-local address is always a neighbor. 984 * XXX: a link does not necessarily specify a single interface. 985 */ 986 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 987 struct sockaddr_in6 sin6_copy; 988 u_int32_t zone; 989 990 /* 991 * We need sin6_copy since sa6_recoverscope() may modify the 992 * content (XXX). 993 */ 994 sin6_copy = *addr; 995 if (sa6_recoverscope(&sin6_copy)) 996 return 0; /* XXX: should be impossible */ 997 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 998 return 0; 999 if (sin6_copy.sin6_scope_id == zone) 1000 return 1; 1001 else 1002 return 0; 1003 } 1004 1005 /* 1006 * If the address matches one of our addresses, 1007 * it should be a neighbor. 1008 * If the address matches one of our on-link prefixes, it should be a 1009 * neighbor. 1010 */ 1011 ND6_RLOCK(); 1012 ND_PREFIX_LIST_FOREACH(pr) { 1013 if (pr->ndpr_ifp != ifp) 1014 continue; 1015 1016 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1017 struct rtentry *rt; 1018 1019 rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0); 1020 if (rt == NULL) 1021 continue; 1022 /* 1023 * This is the case where multiple interfaces 1024 * have the same prefix, but only one is installed 1025 * into the routing table and that prefix entry 1026 * is not the one being examined here. In the case 1027 * where RADIX_MPATH is enabled, multiple route 1028 * entries (of the same rt_key value) will be 1029 * installed because the interface addresses all 1030 * differ. 1031 */ 1032 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1033 &satocsin6(rt_getkey(rt))->sin6_addr)) { 1034 rt_unref(rt); 1035 continue; 1036 } 1037 rt_unref(rt); 1038 } 1039 1040 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1041 &addr->sin6_addr, &pr->ndpr_mask)) { 1042 ND6_UNLOCK(); 1043 return 1; 1044 } 1045 } 1046 ND6_UNLOCK(); 1047 1048 /* 1049 * If the address is assigned on the node of the other side of 1050 * a p2p interface, the address should be a neighbor. 1051 */ 1052 s = pserialize_read_enter(); 1053 dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr)); 1054 if (dstaddr != NULL) { 1055 if (dstaddr->ifa_ifp == ifp) { 1056 pserialize_read_exit(s); 1057 return 1; 1058 } 1059 } 1060 pserialize_read_exit(s); 1061 1062 /* 1063 * If the default router list is empty, all addresses are regarded 1064 * as on-link, and thus, as a neighbor. 1065 */ 1066 ND6_RLOCK(); 1067 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1068 ND_DEFROUTER_LIST_EMPTY() && nd6_defifindex == ifp->if_index) { 1069 ND6_UNLOCK(); 1070 return 1; 1071 } 1072 ND6_UNLOCK(); 1073 1074 return 0; 1075 } 1076 1077 /* 1078 * Detect if a given IPv6 address identifies a neighbor on a given link. 1079 * XXX: should take care of the destination of a p2p link? 1080 */ 1081 int 1082 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1083 { 1084 struct nd_prefix *pr; 1085 struct llentry *ln; 1086 struct rtentry *rt; 1087 1088 /* 1089 * A link-local address is always a neighbor. 1090 * XXX: a link does not necessarily specify a single interface. 1091 */ 1092 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1093 struct sockaddr_in6 sin6_copy; 1094 u_int32_t zone; 1095 1096 /* 1097 * We need sin6_copy since sa6_recoverscope() may modify the 1098 * content (XXX). 1099 */ 1100 sin6_copy = *addr; 1101 if (sa6_recoverscope(&sin6_copy)) 1102 return 0; /* XXX: should be impossible */ 1103 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1104 return 0; 1105 if (sin6_copy.sin6_scope_id == zone) 1106 return 1; 1107 else 1108 return 0; 1109 } 1110 1111 /* 1112 * If the address matches one of our on-link prefixes, it should be a 1113 * neighbor. 1114 */ 1115 ND6_RLOCK(); 1116 ND_PREFIX_LIST_FOREACH(pr) { 1117 if (pr->ndpr_ifp != ifp) 1118 continue; 1119 1120 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 1121 continue; 1122 1123 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1124 &addr->sin6_addr, &pr->ndpr_mask)) { 1125 ND6_UNLOCK(); 1126 return 1; 1127 } 1128 } 1129 1130 /* 1131 * If the default router list is empty, all addresses are regarded 1132 * as on-link, and thus, as a neighbor. 1133 * XXX: we restrict the condition to hosts, because routers usually do 1134 * not have the "default router list". 1135 */ 1136 if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() && 1137 nd6_defifindex == ifp->if_index) { 1138 ND6_UNLOCK(); 1139 return 1; 1140 } 1141 ND6_UNLOCK(); 1142 1143 if (nd6_is_new_addr_neighbor(addr, ifp)) 1144 return 1; 1145 1146 /* 1147 * Even if the address matches none of our addresses, it might be 1148 * in the neighbor cache or a connected route. 1149 */ 1150 ln = nd6_lookup(&addr->sin6_addr, ifp, false); 1151 if (ln != NULL) { 1152 LLE_RUNLOCK(ln); 1153 return 1; 1154 } 1155 1156 rt = rtalloc1(sin6tocsa(addr), 0); 1157 if (rt == NULL) 1158 return 0; 1159 1160 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp 1161 #if NBRIDGE > 0 1162 || rt->rt_ifp->if_bridge == ifp->if_bridge 1163 #endif 1164 #if NCARP > 0 1165 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) || 1166 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)|| 1167 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP && 1168 rt->rt_ifp->if_carpdev == ifp->if_carpdev) 1169 #endif 1170 )) { 1171 rt_unref(rt); 1172 return 1; 1173 } 1174 rt_unref(rt); 1175 1176 return 0; 1177 } 1178 1179 /* 1180 * Free an nd6 llinfo entry. 1181 * Since the function would cause significant changes in the kernel, DO NOT 1182 * make it global, unless you have a strong reason for the change, and are sure 1183 * that the change is safe. 1184 */ 1185 static void 1186 nd6_free(struct llentry *ln, int gc) 1187 { 1188 struct nd_defrouter *dr; 1189 struct ifnet *ifp; 1190 struct in6_addr *in6; 1191 1192 KASSERT(ln != NULL); 1193 LLE_WLOCK_ASSERT(ln); 1194 1195 ifp = ln->lle_tbl->llt_ifp; 1196 in6 = &ln->r_l3addr.addr6; 1197 /* 1198 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1199 * even though it is not harmful, it was not really necessary. 1200 */ 1201 1202 if (!ip6_forwarding) { 1203 ND6_WLOCK(); 1204 dr = nd6_defrouter_lookup(in6, ifp); 1205 1206 if (dr != NULL && dr->expire && 1207 ln->ln_state == ND6_LLINFO_STALE && gc) { 1208 /* 1209 * If the reason for the deletion is just garbage 1210 * collection, and the neighbor is an active default 1211 * router, do not delete it. Instead, reset the GC 1212 * timer using the router's lifetime. 1213 * Simply deleting the entry would affect default 1214 * router selection, which is not necessarily a good 1215 * thing, especially when we're using router preference 1216 * values. 1217 * XXX: the check for ln_state would be redundant, 1218 * but we intentionally keep it just in case. 1219 */ 1220 if (dr->expire > time_uptime) 1221 nd6_llinfo_settimer(ln, 1222 (dr->expire - time_uptime) * hz); 1223 else 1224 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 1225 ND6_UNLOCK(); 1226 LLE_WUNLOCK(ln); 1227 return; 1228 } 1229 1230 if (ln->ln_router || dr) { 1231 /* 1232 * We need to unlock to avoid a LOR with nd6_rt_flush() 1233 * with the rnh and for the calls to 1234 * nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the 1235 * block further down for calls into nd6_lookup(). 1236 * We still hold a ref. 1237 */ 1238 LLE_WUNLOCK(ln); 1239 1240 /* 1241 * nd6_rt_flush must be called whether or not the neighbor 1242 * is in the Default Router List. 1243 * See a corresponding comment in nd6_na_input(). 1244 */ 1245 nd6_rt_flush(in6, ifp); 1246 } 1247 1248 if (dr) { 1249 /* 1250 * Unreachablity of a router might affect the default 1251 * router selection and on-link detection of advertised 1252 * prefixes. 1253 */ 1254 1255 /* 1256 * Temporarily fake the state to choose a new default 1257 * router and to perform on-link determination of 1258 * prefixes correctly. 1259 * Below the state will be set correctly, 1260 * or the entry itself will be deleted. 1261 */ 1262 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1263 1264 /* 1265 * Since nd6_defrouter_select() does not affect the 1266 * on-link determination and MIP6 needs the check 1267 * before the default router selection, we perform 1268 * the check now. 1269 */ 1270 nd6_pfxlist_onlink_check(); 1271 1272 /* 1273 * refresh default router list 1274 */ 1275 nd6_defrouter_select(); 1276 } 1277 1278 #ifdef __FreeBSD__ 1279 /* 1280 * If this entry was added by an on-link redirect, remove the 1281 * corresponding host route. 1282 */ 1283 if (ln->la_flags & LLE_REDIRECT) 1284 nd6_free_redirect(ln); 1285 #endif 1286 ND6_UNLOCK(); 1287 1288 if (ln->ln_router || dr) 1289 LLE_WLOCK(ln); 1290 } 1291 1292 /* 1293 * Save to unlock. We still hold an extra reference and will not 1294 * free(9) in llentry_free() if someone else holds one as well. 1295 */ 1296 LLE_WUNLOCK(ln); 1297 IF_AFDATA_LOCK(ifp); 1298 LLE_WLOCK(ln); 1299 1300 lltable_free_entry(LLTABLE6(ifp), ln); 1301 1302 IF_AFDATA_UNLOCK(ifp); 1303 } 1304 1305 /* 1306 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1307 * 1308 * XXX cost-effective methods? 1309 */ 1310 void 1311 nd6_nud_hint(struct rtentry *rt) 1312 { 1313 struct llentry *ln; 1314 struct ifnet *ifp; 1315 1316 if (rt == NULL) 1317 return; 1318 1319 ifp = rt->rt_ifp; 1320 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true); 1321 if (ln == NULL) 1322 return; 1323 1324 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1325 goto done; 1326 1327 /* 1328 * if we get upper-layer reachability confirmation many times, 1329 * it is possible we have false information. 1330 */ 1331 ln->ln_byhint++; 1332 if (ln->ln_byhint > nd6_maxnudhint) 1333 goto done; 1334 1335 ln->ln_state = ND6_LLINFO_REACHABLE; 1336 if (!ND6_LLINFO_PERMANENT(ln)) 1337 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz); 1338 1339 done: 1340 LLE_WUNLOCK(ln); 1341 1342 return; 1343 } 1344 1345 struct gc_args { 1346 int gc_entries; 1347 const struct in6_addr *skip_in6; 1348 }; 1349 1350 static int 1351 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg) 1352 { 1353 struct gc_args *args = farg; 1354 int *n = &args->gc_entries; 1355 const struct in6_addr *skip_in6 = args->skip_in6; 1356 1357 if (*n <= 0) 1358 return 0; 1359 1360 if (ND6_LLINFO_PERMANENT(ln)) 1361 return 0; 1362 1363 if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6)) 1364 return 0; 1365 1366 LLE_WLOCK(ln); 1367 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1368 ln->ln_state = ND6_LLINFO_STALE; 1369 else 1370 ln->ln_state = ND6_LLINFO_PURGE; 1371 nd6_llinfo_settimer(ln, 0); 1372 LLE_WUNLOCK(ln); 1373 1374 (*n)--; 1375 return 0; 1376 } 1377 1378 static void 1379 nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6) 1380 { 1381 1382 if (ip6_neighborgcthresh >= 0 && 1383 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) { 1384 struct gc_args gc_args = {10, in6}; 1385 /* 1386 * XXX entries that are "less recently used" should be 1387 * freed first. 1388 */ 1389 lltable_foreach_lle(llt, nd6_purge_entry, &gc_args); 1390 } 1391 } 1392 1393 void 1394 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) 1395 { 1396 struct sockaddr *gate = rt->rt_gateway; 1397 struct ifnet *ifp = rt->rt_ifp; 1398 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen; 1399 struct ifaddr *ifa; 1400 1401 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1402 1403 if (req == RTM_LLINFO_UPD) { 1404 int rc; 1405 struct in6_addr *in6; 1406 struct in6_addr in6_all; 1407 int anycast; 1408 1409 if ((ifa = info->rti_ifa) == NULL) 1410 return; 1411 1412 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr; 1413 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST; 1414 1415 in6_all = in6addr_linklocal_allnodes; 1416 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) { 1417 log(LOG_ERR, "%s: failed to set scope %s " 1418 "(errno=%d)\n", __func__, if_name(ifp), rc); 1419 return; 1420 } 1421 1422 /* XXX don't set Override for proxy addresses */ 1423 nd6_na_output(ifa->ifa_ifp, &in6_all, in6, 1424 (anycast ? 0 : ND_NA_FLAG_OVERRIDE) 1425 #if 0 1426 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0) 1427 #endif 1428 , 1, NULL); 1429 return; 1430 } 1431 1432 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1433 return; 1434 1435 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1436 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1437 /* 1438 * This is probably an interface direct route for a link 1439 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1440 * We do not need special treatment below for such a route. 1441 * Moreover, the RTF_LLINFO flag which would be set below 1442 * would annoy the ndp(8) command. 1443 */ 1444 return; 1445 } 1446 1447 switch (req) { 1448 case RTM_ADD: { 1449 struct psref psref; 1450 1451 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1452 /* 1453 * There is no backward compatibility :) 1454 * 1455 * if ((rt->rt_flags & RTF_HOST) == 0 && 1456 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1457 * rt->rt_flags |= RTF_CLONING; 1458 */ 1459 /* XXX should move to route.c? */ 1460 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) { 1461 union { 1462 struct sockaddr sa; 1463 struct sockaddr_dl sdl; 1464 struct sockaddr_storage ss; 1465 } u; 1466 /* 1467 * Case 1: This route should come from a route to 1468 * interface (RTF_CLONING case) or the route should be 1469 * treated as on-link but is currently not 1470 * (RTF_LLINFO && ln == NULL case). 1471 */ 1472 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss), 1473 ifp->if_index, ifp->if_type, 1474 NULL, namelen, NULL, addrlen) == NULL) { 1475 printf("%s.%d: sockaddr_dl_init(, %zu, ) " 1476 "failed on %s\n", __func__, __LINE__, 1477 sizeof(u.ss), if_name(ifp)); 1478 } 1479 rt_setgate(rt, &u.sa); 1480 gate = rt->rt_gateway; 1481 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1482 if (gate == NULL) { 1483 log(LOG_ERR, 1484 "%s: rt_setgate failed on %s\n", __func__, 1485 if_name(ifp)); 1486 break; 1487 } 1488 1489 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1490 if ((rt->rt_flags & RTF_CONNECTED) != 0) 1491 break; 1492 } 1493 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1494 /* 1495 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1496 * We don't do that here since llinfo is not ready yet. 1497 * 1498 * There are also couple of other things to be discussed: 1499 * - unsolicited NA code needs improvement beforehand 1500 * - RFC2461 says we MAY send multicast unsolicited NA 1501 * (7.2.6 paragraph 4), however, it also says that we 1502 * SHOULD provide a mechanism to prevent multicast NA storm. 1503 * we don't have anything like it right now. 1504 * note that the mechanism needs a mutual agreement 1505 * between proxies, which means that we need to implement 1506 * a new protocol, or a new kludge. 1507 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1508 * we need to check ip6forwarding before sending it. 1509 * (or should we allow proxy ND configuration only for 1510 * routers? there's no mention about proxy ND from hosts) 1511 */ 1512 #if 0 1513 /* XXX it does not work */ 1514 if (rt->rt_flags & RTF_ANNOUNCE) 1515 nd6_na_output(ifp, 1516 &satocsin6(rt_getkey(rt))->sin6_addr, 1517 &satocsin6(rt_getkey(rt))->sin6_addr, 1518 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1519 1, NULL); 1520 #endif 1521 1522 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1523 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1524 /* 1525 * Address resolution isn't necessary for a point to 1526 * point link, so we can skip this test for a p2p link. 1527 */ 1528 if (gate->sa_family != AF_LINK || 1529 gate->sa_len < 1530 sockaddr_dl_measure(namelen, addrlen)) { 1531 log(LOG_DEBUG, 1532 "nd6_rtrequest: bad gateway value: %s\n", 1533 if_name(ifp)); 1534 break; 1535 } 1536 satosdl(gate)->sdl_type = ifp->if_type; 1537 satosdl(gate)->sdl_index = ifp->if_index; 1538 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1539 } 1540 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1541 1542 /* 1543 * When called from rt_ifa_addlocal, we cannot depend on that 1544 * the address (rt_getkey(rt)) exits in the address list of the 1545 * interface. So check RTF_LOCAL instead. 1546 */ 1547 if (rt->rt_flags & RTF_LOCAL) { 1548 if (nd6_useloopback) 1549 rt->rt_ifp = lo0ifp; /* XXX */ 1550 break; 1551 } 1552 1553 /* 1554 * check if rt_getkey(rt) is an address assigned 1555 * to the interface. 1556 */ 1557 ifa = (struct ifaddr *)in6ifa_ifpwithaddr_psref(ifp, 1558 &satocsin6(rt_getkey(rt))->sin6_addr, &psref); 1559 if (ifa != NULL) { 1560 if (nd6_useloopback) { 1561 rt->rt_ifp = lo0ifp; /* XXX */ 1562 /* 1563 * Make sure rt_ifa be equal to the ifaddr 1564 * corresponding to the address. 1565 * We need this because when we refer 1566 * rt_ifa->ia6_flags in ip6_input, we assume 1567 * that the rt_ifa points to the address instead 1568 * of the loopback address. 1569 */ 1570 if (!ISSET(info->rti_flags, RTF_DONTCHANGEIFA) 1571 && ifa != rt->rt_ifa) 1572 rt_replace_ifa(rt, ifa); 1573 } 1574 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1575 /* join solicited node multicast for proxy ND */ 1576 if (ifp->if_flags & IFF_MULTICAST) { 1577 struct in6_addr llsol; 1578 int error; 1579 1580 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1581 llsol.s6_addr32[0] = htonl(0xff020000); 1582 llsol.s6_addr32[1] = 0; 1583 llsol.s6_addr32[2] = htonl(1); 1584 llsol.s6_addr8[12] = 0xff; 1585 if (in6_setscope(&llsol, ifp, NULL)) 1586 goto out; 1587 if (!in6_addmulti(&llsol, ifp, &error, 0)) { 1588 char ip6buf[INET6_ADDRSTRLEN]; 1589 nd6log(LOG_ERR, "%s: failed to join " 1590 "%s (errno=%d)\n", if_name(ifp), 1591 IN6_PRINT(ip6buf, &llsol), error); 1592 } 1593 } 1594 } 1595 out: 1596 ifa_release(ifa, &psref); 1597 /* 1598 * If we have too many cache entries, initiate immediate 1599 * purging for some entries. 1600 */ 1601 if (rt->rt_ifp != NULL) 1602 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL); 1603 break; 1604 } 1605 1606 case RTM_DELETE: 1607 /* leave from solicited node multicast for proxy ND */ 1608 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1609 (ifp->if_flags & IFF_MULTICAST) != 0) { 1610 struct in6_addr llsol; 1611 1612 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1613 llsol.s6_addr32[0] = htonl(0xff020000); 1614 llsol.s6_addr32[1] = 0; 1615 llsol.s6_addr32[2] = htonl(1); 1616 llsol.s6_addr8[12] = 0xff; 1617 if (in6_setscope(&llsol, ifp, NULL) == 0) 1618 in6_lookup_and_delete_multi(&llsol, ifp); 1619 } 1620 break; 1621 } 1622 } 1623 1624 int 1625 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp) 1626 { 1627 struct in6_drlist *drl = (struct in6_drlist *)data; 1628 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1629 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1630 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1631 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1632 struct nd_defrouter *dr; 1633 struct nd_prefix *pr; 1634 int i = 0, error = 0; 1635 1636 switch (cmd) { 1637 case SIOCGDRLST_IN6: 1638 /* 1639 * obsolete API, use sysctl under net.inet6.icmp6 1640 */ 1641 memset(drl, 0, sizeof(*drl)); 1642 ND6_RLOCK(); 1643 ND_DEFROUTER_LIST_FOREACH(dr) { 1644 if (i >= DRLSTSIZ) 1645 break; 1646 drl->defrouter[i].rtaddr = dr->rtaddr; 1647 in6_clearscope(&drl->defrouter[i].rtaddr); 1648 1649 drl->defrouter[i].flags = dr->flags; 1650 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1651 drl->defrouter[i].expire = dr->expire ? 1652 time_mono_to_wall(dr->expire) : 0; 1653 drl->defrouter[i].if_index = dr->ifp->if_index; 1654 i++; 1655 } 1656 ND6_UNLOCK(); 1657 break; 1658 case SIOCGPRLST_IN6: 1659 /* 1660 * obsolete API, use sysctl under net.inet6.icmp6 1661 * 1662 * XXX the structure in6_prlist was changed in backward- 1663 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1664 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1665 */ 1666 /* 1667 * XXX meaning of fields, especialy "raflags", is very 1668 * differnet between RA prefix list and RR/static prefix list. 1669 * how about separating ioctls into two? 1670 */ 1671 memset(oprl, 0, sizeof(*oprl)); 1672 ND6_RLOCK(); 1673 ND_PREFIX_LIST_FOREACH(pr) { 1674 struct nd_pfxrouter *pfr; 1675 int j; 1676 1677 if (i >= PRLSTSIZ) 1678 break; 1679 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1680 oprl->prefix[i].raflags = pr->ndpr_raf; 1681 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1682 oprl->prefix[i].vltime = pr->ndpr_vltime; 1683 oprl->prefix[i].pltime = pr->ndpr_pltime; 1684 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1685 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1686 oprl->prefix[i].expire = 0; 1687 else { 1688 time_t maxexpire; 1689 1690 /* XXX: we assume time_t is signed. */ 1691 maxexpire = (-1) & 1692 ~((time_t)1 << 1693 ((sizeof(maxexpire) * 8) - 1)); 1694 if (pr->ndpr_vltime < 1695 maxexpire - pr->ndpr_lastupdate) { 1696 time_t expire; 1697 expire = pr->ndpr_lastupdate + 1698 pr->ndpr_vltime; 1699 oprl->prefix[i].expire = expire ? 1700 time_mono_to_wall(expire) : 0; 1701 } else 1702 oprl->prefix[i].expire = maxexpire; 1703 } 1704 1705 j = 0; 1706 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1707 if (j < DRLSTSIZ) { 1708 #define RTRADDR oprl->prefix[i].advrtr[j] 1709 RTRADDR = pfr->router->rtaddr; 1710 in6_clearscope(&RTRADDR); 1711 #undef RTRADDR 1712 } 1713 j++; 1714 } 1715 oprl->prefix[i].advrtrs = j; 1716 oprl->prefix[i].origin = PR_ORIG_RA; 1717 1718 i++; 1719 } 1720 ND6_UNLOCK(); 1721 1722 break; 1723 case OSIOCGIFINFO_IN6: 1724 #define ND ndi->ndi 1725 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1726 memset(&ND, 0, sizeof(ND)); 1727 ND.linkmtu = IN6_LINKMTU(ifp); 1728 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1729 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1730 ND.reachable = ND_IFINFO(ifp)->reachable; 1731 ND.retrans = ND_IFINFO(ifp)->retrans; 1732 ND.flags = ND_IFINFO(ifp)->flags; 1733 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1734 ND.chlim = ND_IFINFO(ifp)->chlim; 1735 break; 1736 case SIOCGIFINFO_IN6: 1737 ND = *ND_IFINFO(ifp); 1738 break; 1739 case SIOCSIFINFO_IN6: 1740 /* 1741 * used to change host variables from userland. 1742 * intented for a use on router to reflect RA configurations. 1743 */ 1744 /* 0 means 'unspecified' */ 1745 if (ND.linkmtu != 0) { 1746 if (ND.linkmtu < IPV6_MMTU || 1747 ND.linkmtu > IN6_LINKMTU(ifp)) { 1748 error = EINVAL; 1749 break; 1750 } 1751 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1752 } 1753 1754 if (ND.basereachable != 0) { 1755 int obasereachable = ND_IFINFO(ifp)->basereachable; 1756 1757 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1758 if (ND.basereachable != obasereachable) 1759 ND_IFINFO(ifp)->reachable = 1760 ND_COMPUTE_RTIME(ND.basereachable); 1761 } 1762 if (ND.retrans != 0) 1763 ND_IFINFO(ifp)->retrans = ND.retrans; 1764 if (ND.chlim != 0) 1765 ND_IFINFO(ifp)->chlim = ND.chlim; 1766 /* FALLTHROUGH */ 1767 case SIOCSIFINFO_FLAGS: 1768 { 1769 struct ifaddr *ifa; 1770 struct in6_ifaddr *ia; 1771 int s; 1772 1773 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1774 !(ND.flags & ND6_IFF_IFDISABLED)) 1775 { 1776 /* 1777 * If the interface is marked as ND6_IFF_IFDISABLED and 1778 * has a link-local address with IN6_IFF_DUPLICATED, 1779 * do not clear ND6_IFF_IFDISABLED. 1780 * See RFC 4862, section 5.4.5. 1781 */ 1782 int duplicated_linklocal = 0; 1783 1784 s = pserialize_read_enter(); 1785 IFADDR_READER_FOREACH(ifa, ifp) { 1786 if (ifa->ifa_addr->sa_family != AF_INET6) 1787 continue; 1788 ia = (struct in6_ifaddr *)ifa; 1789 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1790 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1791 { 1792 duplicated_linklocal = 1; 1793 break; 1794 } 1795 } 1796 pserialize_read_exit(s); 1797 1798 if (duplicated_linklocal) { 1799 ND.flags |= ND6_IFF_IFDISABLED; 1800 log(LOG_ERR, "%s: Cannot enable an interface" 1801 " with a link-local address marked" 1802 " duplicate.\n", if_name(ifp)); 1803 } else { 1804 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1805 if (ifp->if_flags & IFF_UP) 1806 in6_if_up(ifp); 1807 } 1808 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1809 (ND.flags & ND6_IFF_IFDISABLED)) { 1810 int bound = curlwp_bind(); 1811 /* Mark all IPv6 addresses as tentative. */ 1812 1813 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1814 s = pserialize_read_enter(); 1815 IFADDR_READER_FOREACH(ifa, ifp) { 1816 struct psref psref; 1817 if (ifa->ifa_addr->sa_family != AF_INET6) 1818 continue; 1819 ifa_acquire(ifa, &psref); 1820 pserialize_read_exit(s); 1821 1822 nd6_dad_stop(ifa); 1823 1824 ia = (struct in6_ifaddr *)ifa; 1825 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1826 1827 s = pserialize_read_enter(); 1828 ifa_release(ifa, &psref); 1829 } 1830 pserialize_read_exit(s); 1831 curlwp_bindx(bound); 1832 } 1833 1834 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1835 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1836 /* auto_linklocal 0->1 transition */ 1837 1838 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1839 in6_ifattach(ifp, NULL); 1840 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1841 ifp->if_flags & IFF_UP) 1842 { 1843 /* 1844 * When the IF already has 1845 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1846 * address is assigned, and IFF_UP, try to 1847 * assign one. 1848 */ 1849 int haslinklocal = 0; 1850 1851 s = pserialize_read_enter(); 1852 IFADDR_READER_FOREACH(ifa, ifp) { 1853 if (ifa->ifa_addr->sa_family !=AF_INET6) 1854 continue; 1855 ia = (struct in6_ifaddr *)ifa; 1856 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){ 1857 haslinklocal = 1; 1858 break; 1859 } 1860 } 1861 pserialize_read_exit(s); 1862 if (!haslinklocal) 1863 in6_ifattach(ifp, NULL); 1864 } 1865 } 1866 } 1867 ND_IFINFO(ifp)->flags = ND.flags; 1868 break; 1869 #undef ND 1870 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1871 /* sync kernel routing table with the default router list */ 1872 ND6_WLOCK(); 1873 nd6_defrouter_reset(); 1874 nd6_defrouter_select(); 1875 ND6_UNLOCK(); 1876 break; 1877 case SIOCSPFXFLUSH_IN6: 1878 { 1879 /* flush all the prefix advertised by routers */ 1880 struct nd_prefix *pfx, *next; 1881 1882 restart: 1883 ND6_WLOCK(); 1884 ND_PREFIX_LIST_FOREACH_SAFE(pfx, next) { 1885 struct in6_ifaddr *ia, *ia_next; 1886 int _s; 1887 1888 /* Only flush prefixes for the given interface. */ 1889 if (ifp != lo0ifp && ifp != pfx->ndpr_ifp) 1890 continue; 1891 1892 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr)) 1893 continue; /* XXX */ 1894 1895 /* do we really have to remove addresses as well? */ 1896 _s = pserialize_read_enter(); 1897 for (ia = IN6_ADDRLIST_READER_FIRST(); ia; 1898 ia = ia_next) { 1899 struct ifnet *ifa_ifp; 1900 int bound; 1901 struct psref psref; 1902 1903 /* ia might be removed. keep the next ptr. */ 1904 ia_next = IN6_ADDRLIST_READER_NEXT(ia); 1905 1906 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1907 continue; 1908 1909 if (ia->ia6_ndpr != pfx) 1910 continue; 1911 1912 bound = curlwp_bind(); 1913 ia6_acquire(ia, &psref); 1914 pserialize_read_exit(_s); 1915 ND6_UNLOCK(); 1916 1917 ifa_ifp = ia->ia_ifa.ifa_ifp; 1918 if (ifa_ifp == ifp) { 1919 /* Already have IFNET_LOCK(ifp) */ 1920 KASSERT(!if_is_deactivated(ifp)); 1921 ia6_release(ia, &psref); 1922 in6_purgeaddr(&ia->ia_ifa); 1923 curlwp_bindx(bound); 1924 goto restart; 1925 } 1926 IFNET_LOCK(ifa_ifp); 1927 /* 1928 * Need to take the lock first to prevent 1929 * if_detach from running in6_purgeaddr 1930 * concurrently. 1931 */ 1932 if (!if_is_deactivated(ifa_ifp)) { 1933 ia6_release(ia, &psref); 1934 in6_purgeaddr(&ia->ia_ifa); 1935 } else { 1936 /* 1937 * ifp is being destroyed, ia will be 1938 * destroyed by if_detach. 1939 */ 1940 ia6_release(ia, &psref); 1941 /* XXX may cause busy loop */ 1942 } 1943 IFNET_UNLOCK(ifa_ifp); 1944 curlwp_bindx(bound); 1945 goto restart; 1946 } 1947 pserialize_read_exit(_s); 1948 1949 KASSERT(pfx->ndpr_refcnt == 0); 1950 nd6_prelist_remove(pfx); 1951 } 1952 ND6_UNLOCK(); 1953 break; 1954 } 1955 case SIOCSRTRFLUSH_IN6: 1956 { 1957 /* flush all the default routers */ 1958 struct nd_defrouter *drtr, *next; 1959 1960 ND6_WLOCK(); 1961 #if 0 1962 /* XXX Is this really needed? */ 1963 nd6_defrouter_reset(); 1964 #endif 1965 ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) { 1966 /* Only flush routers for the given interface. */ 1967 if (ifp != lo0ifp && ifp != drtr->ifp) 1968 continue; 1969 1970 nd6_defrtrlist_del(drtr, NULL); 1971 } 1972 nd6_defrouter_select(); 1973 ND6_UNLOCK(); 1974 break; 1975 } 1976 case SIOCGNBRINFO_IN6: 1977 { 1978 struct llentry *ln; 1979 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1980 1981 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1982 return error; 1983 1984 ln = nd6_lookup(&nb_addr, ifp, false); 1985 if (ln == NULL) { 1986 error = EINVAL; 1987 break; 1988 } 1989 nbi->state = ln->ln_state; 1990 nbi->asked = ln->ln_asked; 1991 nbi->isrouter = ln->ln_router; 1992 nbi->expire = ln->ln_expire ? 1993 time_mono_to_wall(ln->ln_expire) : 0; 1994 LLE_RUNLOCK(ln); 1995 1996 break; 1997 } 1998 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1999 ndif->ifindex = nd6_defifindex; 2000 break; 2001 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 2002 return nd6_setdefaultiface(ndif->ifindex); 2003 } 2004 return error; 2005 } 2006 2007 void 2008 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp) 2009 { 2010 struct mbuf *m_hold, *m_hold_next; 2011 struct sockaddr_in6 sin6; 2012 2013 LLE_WLOCK_ASSERT(ln); 2014 2015 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0); 2016 2017 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0; 2018 2019 LLE_WUNLOCK(ln); 2020 for (; m_hold != NULL; m_hold = m_hold_next) { 2021 m_hold_next = m_hold->m_nextpkt; 2022 m_hold->m_nextpkt = NULL; 2023 2024 /* 2025 * we assume ifp is not a p2p here, so 2026 * just set the 2nd argument as the 2027 * 1st one. 2028 */ 2029 ip6_if_output(ifp, ifp, m_hold, &sin6, NULL); 2030 } 2031 LLE_WLOCK(ln); 2032 } 2033 2034 /* 2035 * Create neighbor cache entry and cache link-layer address, 2036 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 2037 */ 2038 void 2039 nd6_cache_lladdr( 2040 struct ifnet *ifp, 2041 struct in6_addr *from, 2042 char *lladdr, 2043 int lladdrlen, 2044 int type, /* ICMP6 type */ 2045 int code /* type dependent information */ 2046 ) 2047 { 2048 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 2049 struct llentry *ln = NULL; 2050 int is_newentry; 2051 int do_update; 2052 int olladdr; 2053 int llchange; 2054 int newstate = 0; 2055 uint16_t router = 0; 2056 2057 KASSERT(ifp != NULL); 2058 KASSERT(from != NULL); 2059 2060 /* nothing must be updated for unspecified address */ 2061 if (IN6_IS_ADDR_UNSPECIFIED(from)) 2062 return; 2063 2064 /* 2065 * Validation about ifp->if_addrlen and lladdrlen must be done in 2066 * the caller. 2067 * 2068 * XXX If the link does not have link-layer adderss, what should 2069 * we do? (ifp->if_addrlen == 0) 2070 * Spec says nothing in sections for RA, RS and NA. There's small 2071 * description on it in NS section (RFC 2461 7.2.3). 2072 */ 2073 2074 ln = nd6_lookup(from, ifp, true); 2075 if (ln == NULL) { 2076 #if 0 2077 /* nothing must be done if there's no lladdr */ 2078 if (!lladdr || !lladdrlen) 2079 return NULL; 2080 #endif 2081 2082 ln = nd6_create(from, ifp); 2083 is_newentry = 1; 2084 } else { 2085 /* do nothing if static ndp is set */ 2086 if (ln->la_flags & LLE_STATIC) { 2087 LLE_WUNLOCK(ln); 2088 return; 2089 } 2090 is_newentry = 0; 2091 } 2092 2093 if (ln == NULL) 2094 return; 2095 2096 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2097 if (olladdr && lladdr) { 2098 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen); 2099 } else 2100 llchange = 0; 2101 2102 /* 2103 * newentry olladdr lladdr llchange (*=record) 2104 * 0 n n -- (1) 2105 * 0 y n -- (2) 2106 * 0 n y -- (3) * STALE 2107 * 0 y y n (4) * 2108 * 0 y y y (5) * STALE 2109 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2110 * 1 -- y -- (7) * STALE 2111 */ 2112 2113 if (lladdr) { /* (3-5) and (7) */ 2114 /* 2115 * Record source link-layer address 2116 * XXX is it dependent to ifp->if_type? 2117 */ 2118 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen); 2119 ln->la_flags |= LLE_VALID; 2120 } 2121 2122 if (!is_newentry) { 2123 if ((!olladdr && lladdr) || /* (3) */ 2124 (olladdr && lladdr && llchange)) { /* (5) */ 2125 do_update = 1; 2126 newstate = ND6_LLINFO_STALE; 2127 } else /* (1-2,4) */ 2128 do_update = 0; 2129 } else { 2130 do_update = 1; 2131 if (lladdr == NULL) /* (6) */ 2132 newstate = ND6_LLINFO_NOSTATE; 2133 else /* (7) */ 2134 newstate = ND6_LLINFO_STALE; 2135 } 2136 2137 if (do_update) { 2138 /* 2139 * Update the state of the neighbor cache. 2140 */ 2141 ln->ln_state = newstate; 2142 2143 if (ln->ln_state == ND6_LLINFO_STALE) { 2144 /* 2145 * XXX: since nd6_output() below will cause 2146 * state tansition to DELAY and reset the timer, 2147 * we must set the timer now, although it is actually 2148 * meaningless. 2149 */ 2150 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2151 2152 nd6_llinfo_release_pkts(ln, ifp); 2153 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 2154 /* probe right away */ 2155 nd6_llinfo_settimer((void *)ln, 0); 2156 } 2157 } 2158 2159 /* 2160 * ICMP6 type dependent behavior. 2161 * 2162 * NS: clear IsRouter if new entry 2163 * RS: clear IsRouter 2164 * RA: set IsRouter if there's lladdr 2165 * redir: clear IsRouter if new entry 2166 * 2167 * RA case, (1): 2168 * The spec says that we must set IsRouter in the following cases: 2169 * - If lladdr exist, set IsRouter. This means (1-5). 2170 * - If it is old entry (!newentry), set IsRouter. This means (7). 2171 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 2172 * A quetion arises for (1) case. (1) case has no lladdr in the 2173 * neighbor cache, this is similar to (6). 2174 * This case is rare but we figured that we MUST NOT set IsRouter. 2175 * 2176 * newentry olladdr lladdr llchange NS RS RA redir 2177 * D R 2178 * 0 n n -- (1) c ? s 2179 * 0 y n -- (2) c s s 2180 * 0 n y -- (3) c s s 2181 * 0 y y n (4) c s s 2182 * 0 y y y (5) c s s 2183 * 1 -- n -- (6) c c c s 2184 * 1 -- y -- (7) c c s c s 2185 * 2186 * (c=clear s=set) 2187 */ 2188 switch (type & 0xff) { 2189 case ND_NEIGHBOR_SOLICIT: 2190 /* 2191 * New entry must have is_router flag cleared. 2192 */ 2193 if (is_newentry) /* (6-7) */ 2194 ln->ln_router = 0; 2195 break; 2196 case ND_REDIRECT: 2197 /* 2198 * If the icmp is a redirect to a better router, always set the 2199 * is_router flag. Otherwise, if the entry is newly created, 2200 * clear the flag. [RFC 2461, sec 8.3] 2201 */ 2202 if (code == ND_REDIRECT_ROUTER) 2203 ln->ln_router = 1; 2204 else if (is_newentry) /* (6-7) */ 2205 ln->ln_router = 0; 2206 break; 2207 case ND_ROUTER_SOLICIT: 2208 /* 2209 * is_router flag must always be cleared. 2210 */ 2211 ln->ln_router = 0; 2212 break; 2213 case ND_ROUTER_ADVERT: 2214 /* 2215 * Mark an entry with lladdr as a router. 2216 */ 2217 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 2218 (is_newentry && lladdr)) { /* (7) */ 2219 ln->ln_router = 1; 2220 } 2221 break; 2222 } 2223 2224 #if 0 2225 /* XXX should we send rtmsg as it used to be? */ 2226 if (do_update) 2227 rt_newmsg(RTM_CHANGE, rt); /* tell user process */ 2228 #endif 2229 2230 if (ln != NULL) { 2231 router = ln->ln_router; 2232 LLE_WUNLOCK(ln); 2233 } 2234 2235 /* 2236 * If we have too many cache entries, initiate immediate 2237 * purging for some entries. 2238 */ 2239 if (is_newentry) 2240 nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6); 2241 2242 /* 2243 * When the link-layer address of a router changes, select the 2244 * best router again. In particular, when the neighbor entry is newly 2245 * created, it might affect the selection policy. 2246 * Question: can we restrict the first condition to the "is_newentry" 2247 * case? 2248 * XXX: when we hear an RA from a new router with the link-layer 2249 * address option, nd6_defrouter_select() is called twice, since 2250 * defrtrlist_update called the function as well. However, I believe 2251 * we can compromise the overhead, since it only happens the first 2252 * time. 2253 * XXX: although nd6_defrouter_select() should not have a bad effect 2254 * for those are not autoconfigured hosts, we explicitly avoid such 2255 * cases for safety. 2256 */ 2257 if (do_update && router && !ip6_forwarding && 2258 nd6_accepts_rtadv(ndi)) { 2259 ND6_WLOCK(); 2260 nd6_defrouter_select(); 2261 ND6_UNLOCK(); 2262 } 2263 } 2264 2265 static void 2266 nd6_slowtimo(void *ignored_arg) 2267 { 2268 struct nd_ifinfo *nd6if; 2269 struct ifnet *ifp; 2270 int s; 2271 2272 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2273 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2274 nd6_slowtimo, NULL); 2275 2276 s = pserialize_read_enter(); 2277 IFNET_READER_FOREACH(ifp) { 2278 nd6if = ND_IFINFO(ifp); 2279 if (nd6if->basereachable && /* already initialized */ 2280 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2281 /* 2282 * Since reachable time rarely changes by router 2283 * advertisements, we SHOULD insure that a new random 2284 * value gets recomputed at least once every few hours. 2285 * (RFC 2461, 6.3.4) 2286 */ 2287 nd6if->recalctm = nd6_recalc_reachtm_interval; 2288 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2289 } 2290 } 2291 pserialize_read_exit(s); 2292 2293 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2294 } 2295 2296 /* 2297 * Return 0 if a neighbor cache is found. Return EWOULDBLOCK if a cache is not 2298 * found and trying to resolve a neighbor; in this case the mbuf is queued in 2299 * the list. Otherwise return errno after freeing the mbuf. 2300 */ 2301 int 2302 nd6_resolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m, 2303 const struct sockaddr *_dst, uint8_t *lldst, size_t dstsize) 2304 { 2305 struct llentry *ln = NULL; 2306 bool created = false; 2307 const struct sockaddr_in6 *dst = satocsin6(_dst); 2308 2309 /* discard the packet if IPv6 operation is disabled on the interface */ 2310 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2311 m_freem(m); 2312 return ENETDOWN; /* better error? */ 2313 } 2314 2315 /* 2316 * Address resolution or Neighbor Unreachability Detection 2317 * for the next hop. 2318 * At this point, the destination of the packet must be a unicast 2319 * or an anycast address(i.e. not a multicast). 2320 */ 2321 2322 /* Look up the neighbor cache for the nexthop */ 2323 ln = nd6_lookup(&dst->sin6_addr, ifp, false); 2324 2325 if (ln != NULL && (ln->la_flags & LLE_VALID) != 0 && 2326 ln->ln_state == ND6_LLINFO_REACHABLE) { 2327 /* Fast path */ 2328 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen)); 2329 LLE_RUNLOCK(ln); 2330 return 0; 2331 } 2332 if (ln != NULL) 2333 LLE_RUNLOCK(ln); 2334 2335 /* Slow path */ 2336 ln = nd6_lookup(&dst->sin6_addr, ifp, true); 2337 if (ln == NULL && nd6_is_addr_neighbor(dst, ifp)) { 2338 struct sockaddr_in6 sin6; 2339 /* 2340 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2341 * the condition below is not very efficient. But we believe 2342 * it is tolerable, because this should be a rare case. 2343 */ 2344 ln = nd6_create(&dst->sin6_addr, ifp); 2345 if (ln == NULL) { 2346 char ip6buf[INET6_ADDRSTRLEN]; 2347 log(LOG_DEBUG, 2348 "%s: can't allocate llinfo for %s " 2349 "(ln=%p, rt=%p)\n", __func__, 2350 IN6_PRINT(ip6buf, &dst->sin6_addr), ln, rt); 2351 m_freem(m); 2352 return ENOBUFS; 2353 } 2354 2355 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0); 2356 rt_clonedmsg(sin6tosa(&sin6), ifp, rt); 2357 2358 created = true; 2359 } 2360 2361 if (ln == NULL) { 2362 m_freem(m); 2363 return ENETDOWN; /* better error? */ 2364 } 2365 2366 LLE_WLOCK_ASSERT(ln); 2367 2368 /* We don't have to do link-layer address resolution on a p2p link. */ 2369 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2370 ln->ln_state < ND6_LLINFO_REACHABLE) { 2371 ln->ln_state = ND6_LLINFO_STALE; 2372 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2373 } 2374 2375 /* 2376 * The first time we send a packet to a neighbor whose entry is 2377 * STALE, we have to change the state to DELAY and a sets a timer to 2378 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2379 * neighbor unreachability detection on expiration. 2380 * (RFC 2461 7.3.3) 2381 */ 2382 if (ln->ln_state == ND6_LLINFO_STALE) { 2383 ln->ln_asked = 0; 2384 ln->ln_state = ND6_LLINFO_DELAY; 2385 nd6_llinfo_settimer(ln, nd6_delay * hz); 2386 } 2387 2388 /* 2389 * If the neighbor cache entry has a state other than INCOMPLETE 2390 * (i.e. its link-layer address is already resolved), just 2391 * send the packet. 2392 */ 2393 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) { 2394 KASSERT((ln->la_flags & LLE_VALID) != 0); 2395 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen)); 2396 LLE_WUNLOCK(ln); 2397 return 0; 2398 } 2399 2400 /* 2401 * There is a neighbor cache entry, but no ethernet address 2402 * response yet. Append this latest packet to the end of the 2403 * packet queue in the mbuf, unless the number of the packet 2404 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2405 * the oldest packet in the queue will be removed. 2406 */ 2407 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2408 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2409 if (ln->ln_hold) { 2410 struct mbuf *m_hold; 2411 int i; 2412 2413 i = 0; 2414 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { 2415 i++; 2416 if (m_hold->m_nextpkt == NULL) { 2417 m_hold->m_nextpkt = m; 2418 break; 2419 } 2420 } 2421 while (i >= nd6_maxqueuelen) { 2422 m_hold = ln->ln_hold; 2423 ln->ln_hold = ln->ln_hold->m_nextpkt; 2424 m_freem(m_hold); 2425 i--; 2426 } 2427 } else { 2428 ln->ln_hold = m; 2429 } 2430 2431 /* 2432 * If there has been no NS for the neighbor after entering the 2433 * INCOMPLETE state, send the first solicitation. 2434 */ 2435 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 2436 struct in6_addr src, *psrc; 2437 2438 ln->ln_asked++; 2439 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000); 2440 psrc = nd6_llinfo_get_holdsrc(ln, &src); 2441 LLE_WUNLOCK(ln); 2442 ln = NULL; 2443 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, NULL); 2444 } else { 2445 /* We did the lookup so we need to do the unlock here. */ 2446 LLE_WUNLOCK(ln); 2447 } 2448 2449 if (created) 2450 nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr); 2451 2452 return EWOULDBLOCK; 2453 } 2454 2455 int 2456 nd6_need_cache(struct ifnet *ifp) 2457 { 2458 /* 2459 * XXX: we currently do not make neighbor cache on any interface 2460 * other than ARCnet, Ethernet, FDDI and GIF. 2461 * 2462 * RFC2893 says: 2463 * - unidirectional tunnels needs no ND 2464 */ 2465 switch (ifp->if_type) { 2466 case IFT_ARCNET: 2467 case IFT_ETHER: 2468 case IFT_FDDI: 2469 case IFT_IEEE1394: 2470 case IFT_CARP: 2471 case IFT_GIF: /* XXX need more cases? */ 2472 case IFT_PPP: 2473 case IFT_TUNNEL: 2474 return 1; 2475 default: 2476 return 0; 2477 } 2478 } 2479 2480 static void 2481 clear_llinfo_pqueue(struct llentry *ln) 2482 { 2483 struct mbuf *m_hold, *m_hold_next; 2484 2485 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { 2486 m_hold_next = m_hold->m_nextpkt; 2487 m_hold->m_nextpkt = NULL; 2488 m_freem(m_hold); 2489 } 2490 2491 ln->ln_hold = NULL; 2492 return; 2493 } 2494 2495 int 2496 nd6_sysctl( 2497 int name, 2498 void *oldp, /* syscall arg, need copyout */ 2499 size_t *oldlenp, 2500 void *newp, /* syscall arg, need copyin */ 2501 size_t newlen 2502 ) 2503 { 2504 int (*fill_func)(void *, size_t *); 2505 2506 if (newp) 2507 return EPERM; 2508 2509 switch (name) { 2510 case ICMPV6CTL_ND6_DRLIST: 2511 fill_func = fill_drlist; 2512 break; 2513 2514 case ICMPV6CTL_ND6_PRLIST: 2515 fill_func = fill_prlist; 2516 break; 2517 2518 case ICMPV6CTL_ND6_MAXQLEN: 2519 return 0; 2520 2521 default: 2522 return ENOPROTOOPT; 2523 } 2524 2525 if (oldlenp == NULL) 2526 return EINVAL; 2527 2528 size_t ol; 2529 int error = (*fill_func)(NULL, &ol); /* calc len needed */ 2530 if (error) 2531 return error; 2532 2533 if (oldp == NULL) { 2534 *oldlenp = ol; 2535 return 0; 2536 } 2537 2538 ol = *oldlenp = uimin(ol, *oldlenp); 2539 if (ol == 0) 2540 return 0; 2541 2542 void *p = kmem_alloc(ol, KM_SLEEP); 2543 error = (*fill_func)(p, oldlenp); 2544 if (!error) 2545 error = copyout(p, oldp, *oldlenp); 2546 kmem_free(p, ol); 2547 2548 return error; 2549 } 2550 2551 static int 2552 fill_drlist(void *oldp, size_t *oldlenp) 2553 { 2554 int error = 0; 2555 struct in6_defrouter *d = NULL, *de = NULL; 2556 struct nd_defrouter *dr; 2557 size_t l; 2558 2559 if (oldp) { 2560 d = (struct in6_defrouter *)oldp; 2561 de = (struct in6_defrouter *)((char *)oldp + *oldlenp); 2562 } 2563 l = 0; 2564 2565 ND6_RLOCK(); 2566 ND_DEFROUTER_LIST_FOREACH(dr) { 2567 2568 if (oldp && d + 1 <= de) { 2569 memset(d, 0, sizeof(*d)); 2570 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0); 2571 if (sa6_recoverscope(&d->rtaddr)) { 2572 char ip6buf[INET6_ADDRSTRLEN]; 2573 log(LOG_ERR, 2574 "scope error in router list (%s)\n", 2575 IN6_PRINT(ip6buf, &d->rtaddr.sin6_addr)); 2576 /* XXX: press on... */ 2577 } 2578 d->flags = dr->flags; 2579 d->rtlifetime = dr->rtlifetime; 2580 d->expire = dr->expire ? 2581 time_mono_to_wall(dr->expire) : 0; 2582 d->if_index = dr->ifp->if_index; 2583 } 2584 2585 l += sizeof(*d); 2586 if (d) 2587 d++; 2588 } 2589 ND6_UNLOCK(); 2590 2591 *oldlenp = l; /* (void *)d - (void *)oldp */ 2592 2593 return error; 2594 } 2595 2596 static int 2597 fill_prlist(void *oldp, size_t *oldlenp) 2598 { 2599 int error = 0; 2600 struct nd_prefix *pr; 2601 uint8_t *p = NULL, *ps = NULL; 2602 uint8_t *pe = NULL; 2603 size_t l; 2604 char ip6buf[INET6_ADDRSTRLEN]; 2605 2606 if (oldp) { 2607 ps = p = (uint8_t*)oldp; 2608 pe = (uint8_t*)oldp + *oldlenp; 2609 } 2610 l = 0; 2611 2612 ND6_RLOCK(); 2613 ND_PREFIX_LIST_FOREACH(pr) { 2614 u_short advrtrs; 2615 struct sockaddr_in6 sin6; 2616 struct nd_pfxrouter *pfr; 2617 struct in6_prefix pfx; 2618 2619 if (oldp && p + sizeof(struct in6_prefix) <= pe) 2620 { 2621 memset(&pfx, 0, sizeof(pfx)); 2622 ps = p; 2623 pfx.prefix = pr->ndpr_prefix; 2624 2625 if (sa6_recoverscope(&pfx.prefix)) { 2626 log(LOG_ERR, 2627 "scope error in prefix list (%s)\n", 2628 IN6_PRINT(ip6buf, &pfx.prefix.sin6_addr)); 2629 /* XXX: press on... */ 2630 } 2631 pfx.raflags = pr->ndpr_raf; 2632 pfx.prefixlen = pr->ndpr_plen; 2633 pfx.vltime = pr->ndpr_vltime; 2634 pfx.pltime = pr->ndpr_pltime; 2635 pfx.if_index = pr->ndpr_ifp->if_index; 2636 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2637 pfx.expire = 0; 2638 else { 2639 time_t maxexpire; 2640 2641 /* XXX: we assume time_t is signed. */ 2642 maxexpire = (-1) & 2643 ~((time_t)1 << 2644 ((sizeof(maxexpire) * 8) - 1)); 2645 if (pr->ndpr_vltime < 2646 maxexpire - pr->ndpr_lastupdate) { 2647 pfx.expire = pr->ndpr_lastupdate + 2648 pr->ndpr_vltime; 2649 } else 2650 pfx.expire = maxexpire; 2651 } 2652 pfx.refcnt = pr->ndpr_refcnt; 2653 pfx.flags = pr->ndpr_stateflags; 2654 pfx.origin = PR_ORIG_RA; 2655 2656 p += sizeof(pfx); l += sizeof(pfx); 2657 2658 advrtrs = 0; 2659 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2660 if (p + sizeof(sin6) > pe) { 2661 advrtrs++; 2662 continue; 2663 } 2664 2665 sockaddr_in6_init(&sin6, &pfr->router->rtaddr, 2666 0, 0, 0); 2667 if (sa6_recoverscope(&sin6)) { 2668 log(LOG_ERR, 2669 "scope error in " 2670 "prefix list (%s)\n", 2671 IN6_PRINT(ip6buf, 2672 &pfr->router->rtaddr)); 2673 } 2674 advrtrs++; 2675 memcpy(p, &sin6, sizeof(sin6)); 2676 p += sizeof(sin6); 2677 l += sizeof(sin6); 2678 } 2679 pfx.advrtrs = advrtrs; 2680 memcpy(ps, &pfx, sizeof(pfx)); 2681 } 2682 else { 2683 l += sizeof(pfx); 2684 advrtrs = 0; 2685 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2686 advrtrs++; 2687 l += sizeof(sin6); 2688 } 2689 } 2690 } 2691 ND6_UNLOCK(); 2692 2693 *oldlenp = l; 2694 2695 return error; 2696 } 2697 2698 static int 2699 nd6_setdefaultiface(int ifindex) 2700 { 2701 ifnet_t *ifp; 2702 int error = 0; 2703 int s; 2704 2705 s = pserialize_read_enter(); 2706 ifp = if_byindex(ifindex); 2707 if (ifp == NULL) { 2708 pserialize_read_exit(s); 2709 return EINVAL; 2710 } 2711 if (nd6_defifindex != ifindex) { 2712 nd6_defifindex = ifindex; 2713 nd6_defifp = nd6_defifindex > 0 ? ifp : NULL; 2714 2715 /* 2716 * Our current implementation assumes one-to-one maping between 2717 * interfaces and links, so it would be natural to use the 2718 * default interface as the default link. 2719 */ 2720 scope6_setdefault(nd6_defifp); 2721 } 2722 pserialize_read_exit(s); 2723 2724 return (error); 2725 } 2726