xref: /netbsd-src/sys/netinet/tcp_subr.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: tcp_subr.c,v 1.281 2018/09/03 16:29:36 riastradh Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.281 2018/09/03 16:29:36 riastradh Exp $");
95 
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 #endif
102 
103 #include <sys/param.h>
104 #include <sys/atomic.h>
105 #include <sys/proc.h>
106 #include <sys/systm.h>
107 #include <sys/mbuf.h>
108 #include <sys/once.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/protosw.h>
112 #include <sys/errno.h>
113 #include <sys/kernel.h>
114 #include <sys/pool.h>
115 #include <sys/md5.h>
116 #include <sys/cprng.h>
117 
118 #include <net/route.h>
119 #include <net/if.h>
120 
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_icmp.h>
127 
128 #ifdef INET6
129 #include <netinet/ip6.h>
130 #include <netinet6/in6_pcb.h>
131 #include <netinet6/ip6_var.h>
132 #include <netinet6/in6_var.h>
133 #include <netinet6/ip6protosw.h>
134 #include <netinet/icmp6.h>
135 #include <netinet6/nd6.h>
136 #endif
137 
138 #include <netinet/tcp.h>
139 #include <netinet/tcp_fsm.h>
140 #include <netinet/tcp_seq.h>
141 #include <netinet/tcp_timer.h>
142 #include <netinet/tcp_var.h>
143 #include <netinet/tcp_vtw.h>
144 #include <netinet/tcp_private.h>
145 #include <netinet/tcp_congctl.h>
146 
147 #ifdef IPSEC
148 #include <netipsec/ipsec.h>
149 #ifdef INET6
150 #include <netipsec/ipsec6.h>
151 #endif
152 #include <netipsec/key.h>
153 #endif
154 
155 
156 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
157 u_int32_t tcp_now;		/* slow ticks, for RFC 1323 timestamps */
158 
159 percpu_t *tcpstat_percpu;
160 
161 /* patchable/settable parameters for tcp */
162 int 	tcp_mssdflt = TCP_MSS;
163 int	tcp_minmss = TCP_MINMSS;
164 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
165 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
166 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
167 int	tcp_do_sack = 1;	/* selective acknowledgement */
168 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
169 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
170 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
171 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
172 #ifndef TCP_INIT_WIN
173 #define	TCP_INIT_WIN	4	/* initial slow start window */
174 #endif
175 #ifndef TCP_INIT_WIN_LOCAL
176 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
177 #endif
178 /*
179  * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
180  * This is to simulate current behavior for iw == 4
181  */
182 int tcp_init_win_max[] = {
183 	 1 * 1460,
184 	 1 * 1460,
185 	 2 * 1460,
186 	 2 * 1460,
187 	 3 * 1460,
188 	 5 * 1460,
189 	 6 * 1460,
190 	 7 * 1460,
191 	 8 * 1460,
192 	 9 * 1460,
193 	10 * 1460
194 };
195 int	tcp_init_win = TCP_INIT_WIN;
196 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
197 int	tcp_mss_ifmtu = 0;
198 int	tcp_rst_ppslim = 100;	/* 100pps */
199 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
200 int	tcp_do_loopback_cksum = 0;
201 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
202 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
203 int	tcp_sack_tp_maxholes = 32;
204 int	tcp_sack_globalmaxholes = 1024;
205 int	tcp_sack_globalholes = 0;
206 int	tcp_ecn_maxretries = 1;
207 int	tcp_msl_enable = 1;		/* enable TIME_WAIT truncation	*/
208 int	tcp_msl_loop   = PR_SLOWHZ;	/* MSL for loopback		*/
209 int	tcp_msl_local  = 5 * PR_SLOWHZ;	/* MSL for 'local'		*/
210 int	tcp_msl_remote = TCPTV_MSL;	/* MSL otherwise		*/
211 int	tcp_msl_remote_threshold = TCPTV_SRTTDFLT;	/* RTT threshold */
212 int	tcp_rttlocal = 0;		/* Use RTT to decide who's 'local' */
213 
214 int	tcp4_vtw_enable = 0;		/* 1 to enable */
215 int	tcp6_vtw_enable = 0;		/* 1 to enable */
216 int	tcp_vtw_was_enabled = 0;
217 int	tcp_vtw_entries = 1 << 4;	/* 16 vestigial TIME_WAIT entries */
218 
219 /* tcb hash */
220 #ifndef TCBHASHSIZE
221 #define	TCBHASHSIZE	128
222 #endif
223 int	tcbhashsize = TCBHASHSIZE;
224 
225 /* syn hash parameters */
226 #define	TCP_SYN_HASH_SIZE	293
227 #define	TCP_SYN_BUCKET_SIZE	35
228 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
229 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
230 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
231 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
232 
233 int	tcp_freeq(struct tcpcb *);
234 static int	tcp_iss_secret_init(void);
235 
236 static void	tcp_mtudisc_callback(struct in_addr);
237 
238 #ifdef INET6
239 static void	tcp6_mtudisc(struct in6pcb *, int);
240 #endif
241 
242 static struct pool tcpcb_pool;
243 
244 static int tcp_drainwanted;
245 
246 #ifdef TCP_CSUM_COUNTERS
247 #include <sys/device.h>
248 
249 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250     NULL, "tcp", "hwcsum bad");
251 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252     NULL, "tcp", "hwcsum ok");
253 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254     NULL, "tcp", "hwcsum data");
255 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
256     NULL, "tcp", "swcsum");
257 
258 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
259 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
260 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
261 EVCNT_ATTACH_STATIC(tcp_swcsum);
262 
263 #if defined(INET6)
264 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265     NULL, "tcp6", "hwcsum bad");
266 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267     NULL, "tcp6", "hwcsum ok");
268 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
269     NULL, "tcp6", "hwcsum data");
270 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
271     NULL, "tcp6", "swcsum");
272 
273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
275 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
276 EVCNT_ATTACH_STATIC(tcp6_swcsum);
277 #endif /* defined(INET6) */
278 #endif /* TCP_CSUM_COUNTERS */
279 
280 
281 #ifdef TCP_OUTPUT_COUNTERS
282 #include <sys/device.h>
283 
284 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285     NULL, "tcp", "output big header");
286 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
287     NULL, "tcp", "output predict hit");
288 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
289     NULL, "tcp", "output predict miss");
290 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
291     NULL, "tcp", "output copy small");
292 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
293     NULL, "tcp", "output copy big");
294 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
295     NULL, "tcp", "output reference big");
296 
297 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
298 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
299 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
300 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
301 EVCNT_ATTACH_STATIC(tcp_output_copybig);
302 EVCNT_ATTACH_STATIC(tcp_output_refbig);
303 
304 #endif /* TCP_OUTPUT_COUNTERS */
305 
306 #ifdef TCP_REASS_COUNTERS
307 #include <sys/device.h>
308 
309 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
310     NULL, "tcp_reass", "calls");
311 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
312     &tcp_reass_, "tcp_reass", "insert into empty queue");
313 struct evcnt tcp_reass_iteration[8] = {
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
322 };
323 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
324     &tcp_reass_, "tcp_reass", "prepend to first");
325 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
326     &tcp_reass_, "tcp_reass", "prepend");
327 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
328     &tcp_reass_, "tcp_reass", "insert");
329 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
330     &tcp_reass_, "tcp_reass", "insert at tail");
331 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
332     &tcp_reass_, "tcp_reass", "append");
333 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
334     &tcp_reass_, "tcp_reass", "append to tail fragment");
335 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
336     &tcp_reass_, "tcp_reass", "overlap at end");
337 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
338     &tcp_reass_, "tcp_reass", "overlap at start");
339 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
340     &tcp_reass_, "tcp_reass", "duplicate segment");
341 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342     &tcp_reass_, "tcp_reass", "duplicate fragment");
343 
344 EVCNT_ATTACH_STATIC(tcp_reass_);
345 EVCNT_ATTACH_STATIC(tcp_reass_empty);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
353 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
354 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
355 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
356 EVCNT_ATTACH_STATIC(tcp_reass_insert);
357 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
358 EVCNT_ATTACH_STATIC(tcp_reass_append);
359 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
360 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
361 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
362 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
363 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
364 
365 #endif /* TCP_REASS_COUNTERS */
366 
367 #ifdef MBUFTRACE
368 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
369 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
370 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
371 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
372 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
373 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
374 #endif
375 
376 static int
377 do_tcpinit(void)
378 {
379 
380 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
381 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
382 	    NULL, IPL_SOFTNET);
383 
384 	tcp_usrreq_init();
385 
386 	/* Initialize timer state. */
387 	tcp_timer_init();
388 
389 	/* Initialize the compressed state engine. */
390 	syn_cache_init();
391 
392 	/* Initialize the congestion control algorithms. */
393 	tcp_congctl_init();
394 
395 	/* Initialize the TCPCB template. */
396 	tcp_tcpcb_template();
397 
398 	/* Initialize reassembly queue */
399 	tcpipqent_init();
400 
401 	/* SACK */
402 	tcp_sack_init();
403 
404 	MOWNER_ATTACH(&tcp_tx_mowner);
405 	MOWNER_ATTACH(&tcp_rx_mowner);
406 	MOWNER_ATTACH(&tcp_reass_mowner);
407 	MOWNER_ATTACH(&tcp_sock_mowner);
408 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
409 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
410 	MOWNER_ATTACH(&tcp_mowner);
411 
412 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
413 
414 	vtw_earlyinit();
415 
416 	tcp_slowtimo_init();
417 
418 	return 0;
419 }
420 
421 void
422 tcp_init_common(unsigned basehlen)
423 {
424 	static ONCE_DECL(dotcpinit);
425 	unsigned hlen = basehlen + sizeof(struct tcphdr);
426 	unsigned oldhlen;
427 
428 	if (max_linkhdr + hlen > MHLEN)
429 		panic("tcp_init");
430 	while ((oldhlen = max_protohdr) < hlen)
431 		atomic_cas_uint(&max_protohdr, oldhlen, hlen);
432 
433 	RUN_ONCE(&dotcpinit, do_tcpinit);
434 }
435 
436 /*
437  * Tcp initialization
438  */
439 void
440 tcp_init(void)
441 {
442 
443 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
444 
445 	tcp_init_common(sizeof(struct ip));
446 }
447 
448 /*
449  * Create template to be used to send tcp packets on a connection.
450  * Call after host entry created, allocates an mbuf and fills
451  * in a skeletal tcp/ip header, minimizing the amount of work
452  * necessary when the connection is used.
453  */
454 struct mbuf *
455 tcp_template(struct tcpcb *tp)
456 {
457 	struct inpcb *inp = tp->t_inpcb;
458 #ifdef INET6
459 	struct in6pcb *in6p = tp->t_in6pcb;
460 #endif
461 	struct tcphdr *n;
462 	struct mbuf *m;
463 	int hlen;
464 
465 	switch (tp->t_family) {
466 	case AF_INET:
467 		hlen = sizeof(struct ip);
468 		if (inp)
469 			break;
470 #ifdef INET6
471 		if (in6p) {
472 			/* mapped addr case */
473 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
474 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
475 				break;
476 		}
477 #endif
478 		return NULL;	/*EINVAL*/
479 #ifdef INET6
480 	case AF_INET6:
481 		hlen = sizeof(struct ip6_hdr);
482 		if (in6p) {
483 			/* more sainty check? */
484 			break;
485 		}
486 		return NULL;	/*EINVAL*/
487 #endif
488 	default:
489 		return NULL;	/*EAFNOSUPPORT*/
490 	}
491 
492 	KASSERT(hlen + sizeof(struct tcphdr) <= MCLBYTES);
493 
494 	m = tp->t_template;
495 	if (m && m->m_len == hlen + sizeof(struct tcphdr)) {
496 		;
497 	} else {
498 		if (m)
499 			m_freem(m);
500 		m = tp->t_template = NULL;
501 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
502 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
503 			MCLGET(m, M_DONTWAIT);
504 			if ((m->m_flags & M_EXT) == 0) {
505 				m_free(m);
506 				m = NULL;
507 			}
508 		}
509 		if (m == NULL)
510 			return NULL;
511 		MCLAIM(m, &tcp_mowner);
512 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
513 	}
514 
515 	memset(mtod(m, void *), 0, m->m_len);
516 
517 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
518 
519 	switch (tp->t_family) {
520 	case AF_INET:
521 	    {
522 		struct ipovly *ipov;
523 		mtod(m, struct ip *)->ip_v = 4;
524 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
525 		ipov = mtod(m, struct ipovly *);
526 		ipov->ih_pr = IPPROTO_TCP;
527 		ipov->ih_len = htons(sizeof(struct tcphdr));
528 		if (inp) {
529 			ipov->ih_src = inp->inp_laddr;
530 			ipov->ih_dst = inp->inp_faddr;
531 		}
532 #ifdef INET6
533 		else if (in6p) {
534 			/* mapped addr case */
535 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
536 				sizeof(ipov->ih_src));
537 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
538 				sizeof(ipov->ih_dst));
539 		}
540 #endif
541 
542 		/*
543 		 * Compute the pseudo-header portion of the checksum
544 		 * now.  We incrementally add in the TCP option and
545 		 * payload lengths later, and then compute the TCP
546 		 * checksum right before the packet is sent off onto
547 		 * the wire.
548 		 */
549 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
550 		    ipov->ih_dst.s_addr,
551 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
552 		break;
553 	    }
554 #ifdef INET6
555 	case AF_INET6:
556 	    {
557 		struct ip6_hdr *ip6;
558 		mtod(m, struct ip *)->ip_v = 6;
559 		ip6 = mtod(m, struct ip6_hdr *);
560 		ip6->ip6_nxt = IPPROTO_TCP;
561 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
562 		ip6->ip6_src = in6p->in6p_laddr;
563 		ip6->ip6_dst = in6p->in6p_faddr;
564 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
565 		if (ip6_auto_flowlabel) {
566 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
567 			ip6->ip6_flow |=
568 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
569 		}
570 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
571 		ip6->ip6_vfc |= IPV6_VERSION;
572 
573 		/*
574 		 * Compute the pseudo-header portion of the checksum
575 		 * now.  We incrementally add in the TCP option and
576 		 * payload lengths later, and then compute the TCP
577 		 * checksum right before the packet is sent off onto
578 		 * the wire.
579 		 */
580 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
581 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
582 		    htonl(IPPROTO_TCP));
583 		break;
584 	    }
585 #endif
586 	}
587 
588 	if (inp) {
589 		n->th_sport = inp->inp_lport;
590 		n->th_dport = inp->inp_fport;
591 	}
592 #ifdef INET6
593 	else if (in6p) {
594 		n->th_sport = in6p->in6p_lport;
595 		n->th_dport = in6p->in6p_fport;
596 	}
597 #endif
598 
599 	n->th_seq = 0;
600 	n->th_ack = 0;
601 	n->th_x2 = 0;
602 	n->th_off = 5;
603 	n->th_flags = 0;
604 	n->th_win = 0;
605 	n->th_urp = 0;
606 	return m;
607 }
608 
609 /*
610  * Send a single message to the TCP at address specified by
611  * the given TCP/IP header.  If m == 0, then we make a copy
612  * of the tcpiphdr at ti and send directly to the addressed host.
613  * This is used to force keep alive messages out using the TCP
614  * template for a connection tp->t_template.  If flags are given
615  * then we send a message back to the TCP which originated the
616  * segment ti, and discard the mbuf containing it and any other
617  * attached mbufs.
618  *
619  * In any case the ack and sequence number of the transmitted
620  * segment are as specified by the parameters.
621  */
622 int
623 tcp_respond(struct tcpcb *tp, struct mbuf *mtemplate, struct mbuf *m,
624     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
625 {
626 	struct route *ro;
627 	int error, tlen, win = 0;
628 	int hlen;
629 	struct ip *ip;
630 #ifdef INET6
631 	struct ip6_hdr *ip6;
632 #endif
633 	int family;	/* family on packet, not inpcb/in6pcb! */
634 	struct tcphdr *th;
635 
636 	if (tp != NULL && (flags & TH_RST) == 0) {
637 		KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
638 
639 		if (tp->t_inpcb)
640 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
641 #ifdef INET6
642 		if (tp->t_in6pcb)
643 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
644 #endif
645 	}
646 
647 	th = NULL;	/* Quell uninitialized warning */
648 	ip = NULL;
649 #ifdef INET6
650 	ip6 = NULL;
651 #endif
652 	if (m == NULL) {
653 		if (!mtemplate)
654 			return EINVAL;
655 
656 		/* get family information from template */
657 		switch (mtod(mtemplate, struct ip *)->ip_v) {
658 		case 4:
659 			family = AF_INET;
660 			hlen = sizeof(struct ip);
661 			break;
662 #ifdef INET6
663 		case 6:
664 			family = AF_INET6;
665 			hlen = sizeof(struct ip6_hdr);
666 			break;
667 #endif
668 		default:
669 			return EAFNOSUPPORT;
670 		}
671 
672 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
673 		if (m) {
674 			MCLAIM(m, &tcp_tx_mowner);
675 			MCLGET(m, M_DONTWAIT);
676 			if ((m->m_flags & M_EXT) == 0) {
677 				m_free(m);
678 				m = NULL;
679 			}
680 		}
681 		if (m == NULL)
682 			return ENOBUFS;
683 
684 		tlen = 0;
685 
686 		m->m_data += max_linkhdr;
687 		bcopy(mtod(mtemplate, void *), mtod(m, void *),
688 			mtemplate->m_len);
689 		switch (family) {
690 		case AF_INET:
691 			ip = mtod(m, struct ip *);
692 			th = (struct tcphdr *)(ip + 1);
693 			break;
694 #ifdef INET6
695 		case AF_INET6:
696 			ip6 = mtod(m, struct ip6_hdr *);
697 			th = (struct tcphdr *)(ip6 + 1);
698 			break;
699 #endif
700 		}
701 		flags = TH_ACK;
702 	} else {
703 		if ((m->m_flags & M_PKTHDR) == 0) {
704 			m_freem(m);
705 			return EINVAL;
706 		}
707 		KASSERT(th0 != NULL);
708 
709 		/* get family information from m */
710 		switch (mtod(m, struct ip *)->ip_v) {
711 		case 4:
712 			family = AF_INET;
713 			hlen = sizeof(struct ip);
714 			ip = mtod(m, struct ip *);
715 			break;
716 #ifdef INET6
717 		case 6:
718 			family = AF_INET6;
719 			hlen = sizeof(struct ip6_hdr);
720 			ip6 = mtod(m, struct ip6_hdr *);
721 			break;
722 #endif
723 		default:
724 			m_freem(m);
725 			return EAFNOSUPPORT;
726 		}
727 		/* clear h/w csum flags inherited from rx packet */
728 		m->m_pkthdr.csum_flags = 0;
729 
730 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
731 			tlen = sizeof(*th0);
732 		else
733 			tlen = th0->th_off << 2;
734 
735 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
736 		    mtod(m, char *) + hlen == (char *)th0) {
737 			m->m_len = hlen + tlen;
738 			m_freem(m->m_next);
739 			m->m_next = NULL;
740 		} else {
741 			struct mbuf *n;
742 
743 			KASSERT(max_linkhdr + hlen + tlen <= MCLBYTES);
744 
745 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
746 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
747 				MCLGET(n, M_DONTWAIT);
748 				if ((n->m_flags & M_EXT) == 0) {
749 					m_freem(n);
750 					n = NULL;
751 				}
752 			}
753 			if (!n) {
754 				m_freem(m);
755 				return ENOBUFS;
756 			}
757 
758 			MCLAIM(n, &tcp_tx_mowner);
759 			n->m_data += max_linkhdr;
760 			n->m_len = hlen + tlen;
761 			m_copyback(n, 0, hlen, mtod(m, void *));
762 			m_copyback(n, hlen, tlen, (void *)th0);
763 
764 			m_freem(m);
765 			m = n;
766 			n = NULL;
767 		}
768 
769 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
770 		switch (family) {
771 		case AF_INET:
772 			ip = mtod(m, struct ip *);
773 			th = (struct tcphdr *)(ip + 1);
774 			ip->ip_p = IPPROTO_TCP;
775 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
776 			ip->ip_p = IPPROTO_TCP;
777 			break;
778 #ifdef INET6
779 		case AF_INET6:
780 			ip6 = mtod(m, struct ip6_hdr *);
781 			th = (struct tcphdr *)(ip6 + 1);
782 			ip6->ip6_nxt = IPPROTO_TCP;
783 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
784 			ip6->ip6_nxt = IPPROTO_TCP;
785 			break;
786 #endif
787 		}
788 		xchg(th->th_dport, th->th_sport, u_int16_t);
789 #undef xchg
790 		tlen = 0;	/*be friendly with the following code*/
791 	}
792 	th->th_seq = htonl(seq);
793 	th->th_ack = htonl(ack);
794 	th->th_x2 = 0;
795 	if ((flags & TH_SYN) == 0) {
796 		if (tp)
797 			win >>= tp->rcv_scale;
798 		if (win > TCP_MAXWIN)
799 			win = TCP_MAXWIN;
800 		th->th_win = htons((u_int16_t)win);
801 		th->th_off = sizeof (struct tcphdr) >> 2;
802 		tlen += sizeof(*th);
803 	} else {
804 		tlen += th->th_off << 2;
805 	}
806 	m->m_len = hlen + tlen;
807 	m->m_pkthdr.len = hlen + tlen;
808 	m_reset_rcvif(m);
809 	th->th_flags = flags;
810 	th->th_urp = 0;
811 
812 	switch (family) {
813 	case AF_INET:
814 	    {
815 		struct ipovly *ipov = (struct ipovly *)ip;
816 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
817 		ipov->ih_len = htons((u_int16_t)tlen);
818 
819 		th->th_sum = 0;
820 		th->th_sum = in_cksum(m, hlen + tlen);
821 		ip->ip_len = htons(hlen + tlen);
822 		ip->ip_ttl = ip_defttl;
823 		break;
824 	    }
825 #ifdef INET6
826 	case AF_INET6:
827 	    {
828 		th->th_sum = 0;
829 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
830 		    tlen);
831 		ip6->ip6_plen = htons(tlen);
832 		if (tp && tp->t_in6pcb)
833 			ip6->ip6_hlim = in6_selecthlim_rt(tp->t_in6pcb);
834 		else
835 			ip6->ip6_hlim = ip6_defhlim;
836 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
837 		if (ip6_auto_flowlabel) {
838 			ip6->ip6_flow |=
839 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
840 		}
841 		break;
842 	    }
843 #endif
844 	}
845 
846 	if (tp != NULL && tp->t_inpcb != NULL) {
847 		ro = &tp->t_inpcb->inp_route;
848 		KASSERT(family == AF_INET);
849 		KASSERT(in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr));
850 	}
851 #ifdef INET6
852 	else if (tp != NULL && tp->t_in6pcb != NULL) {
853 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
854 
855 #ifdef DIAGNOSTIC
856 		if (family == AF_INET) {
857 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
858 				panic("tcp_respond: not mapped addr");
859 			if (memcmp(&ip->ip_dst,
860 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
861 			    sizeof(ip->ip_dst)) != 0) {
862 				panic("tcp_respond: ip_dst != in6p_faddr");
863 			}
864 		} else if (family == AF_INET6) {
865 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
866 			    &tp->t_in6pcb->in6p_faddr))
867 				panic("tcp_respond: ip6_dst != in6p_faddr");
868 		} else
869 			panic("tcp_respond: address family mismatch");
870 #endif
871 	}
872 #endif
873 	else
874 		ro = NULL;
875 
876 	switch (family) {
877 	case AF_INET:
878 		error = ip_output(m, NULL, ro,
879 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL,
880 		    tp ? tp->t_inpcb : NULL);
881 		break;
882 #ifdef INET6
883 	case AF_INET6:
884 		error = ip6_output(m, NULL, ro, 0, NULL,
885 		    tp ? tp->t_in6pcb : NULL, NULL);
886 		break;
887 #endif
888 	default:
889 		error = EAFNOSUPPORT;
890 		break;
891 	}
892 
893 	return error;
894 }
895 
896 /*
897  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
898  * a bunch of members individually, we maintain this template for the
899  * static and mostly-static components of the TCPCB, and copy it into
900  * the new TCPCB instead.
901  */
902 static struct tcpcb tcpcb_template = {
903 	.t_srtt = TCPTV_SRTTBASE,
904 	.t_rttmin = TCPTV_MIN,
905 
906 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
907 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
908 	.snd_numholes = 0,
909 	.snd_cubic_wmax = 0,
910 	.snd_cubic_wmax_last = 0,
911 	.snd_cubic_ctime = 0,
912 
913 	.t_partialacks = -1,
914 	.t_bytes_acked = 0,
915 	.t_sndrexmitpack = 0,
916 	.t_rcvoopack = 0,
917 	.t_sndzerowin = 0,
918 };
919 
920 /*
921  * Updates the TCPCB template whenever a parameter that would affect
922  * the template is changed.
923  */
924 void
925 tcp_tcpcb_template(void)
926 {
927 	struct tcpcb *tp = &tcpcb_template;
928 	int flags;
929 
930 	tp->t_peermss = tcp_mssdflt;
931 	tp->t_ourmss = tcp_mssdflt;
932 	tp->t_segsz = tcp_mssdflt;
933 
934 	flags = 0;
935 	if (tcp_do_rfc1323 && tcp_do_win_scale)
936 		flags |= TF_REQ_SCALE;
937 	if (tcp_do_rfc1323 && tcp_do_timestamps)
938 		flags |= TF_REQ_TSTMP;
939 	tp->t_flags = flags;
940 
941 	/*
942 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
943 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
944 	 * reasonable initial retransmit time.
945 	 */
946 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
947 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
948 	    TCPTV_MIN, TCPTV_REXMTMAX);
949 
950 	/* Keep Alive */
951 	tp->t_keepinit = tcp_keepinit;
952 	tp->t_keepidle = tcp_keepidle;
953 	tp->t_keepintvl = tcp_keepintvl;
954 	tp->t_keepcnt = tcp_keepcnt;
955 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
956 
957 	/* MSL */
958 	tp->t_msl = TCPTV_MSL;
959 }
960 
961 /*
962  * Create a new TCP control block, making an
963  * empty reassembly queue and hooking it to the argument
964  * protocol control block.
965  */
966 /* family selects inpcb, or in6pcb */
967 struct tcpcb *
968 tcp_newtcpcb(int family, void *aux)
969 {
970 	struct tcpcb *tp;
971 	int i;
972 
973 	/* XXX Consider using a pool_cache for speed. */
974 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
975 	if (tp == NULL)
976 		return NULL;
977 	memcpy(tp, &tcpcb_template, sizeof(*tp));
978 	TAILQ_INIT(&tp->segq);
979 	TAILQ_INIT(&tp->timeq);
980 	tp->t_family = family;		/* may be overridden later on */
981 	TAILQ_INIT(&tp->snd_holes);
982 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
983 
984 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
985 	for (i = 0; i < TCPT_NTIMERS; i++) {
986 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
987 		TCP_TIMER_INIT(tp, i);
988 	}
989 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
990 
991 	switch (family) {
992 	case AF_INET:
993 	    {
994 		struct inpcb *inp = (struct inpcb *)aux;
995 
996 		inp->inp_ip.ip_ttl = ip_defttl;
997 		inp->inp_ppcb = (void *)tp;
998 
999 		tp->t_inpcb = inp;
1000 		tp->t_mtudisc = ip_mtudisc;
1001 		break;
1002 	    }
1003 #ifdef INET6
1004 	case AF_INET6:
1005 	    {
1006 		struct in6pcb *in6p = (struct in6pcb *)aux;
1007 
1008 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim_rt(in6p);
1009 		in6p->in6p_ppcb = (void *)tp;
1010 
1011 		tp->t_in6pcb = in6p;
1012 		/* for IPv6, always try to run path MTU discovery */
1013 		tp->t_mtudisc = 1;
1014 		break;
1015 	    }
1016 #endif /* INET6 */
1017 	default:
1018 		for (i = 0; i < TCPT_NTIMERS; i++)
1019 			callout_destroy(&tp->t_timer[i]);
1020 		callout_destroy(&tp->t_delack_ch);
1021 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1022 		return NULL;
1023 	}
1024 
1025 	/*
1026 	 * Initialize our timebase.  When we send timestamps, we take
1027 	 * the delta from tcp_now -- this means each connection always
1028 	 * gets a timebase of 1, which makes it, among other things,
1029 	 * more difficult to determine how long a system has been up,
1030 	 * and thus how many TCP sequence increments have occurred.
1031 	 *
1032 	 * We start with 1, because 0 doesn't work with linux, which
1033 	 * considers timestamp 0 in a SYN packet as a bug and disables
1034 	 * timestamps.
1035 	 */
1036 	tp->ts_timebase = tcp_now - 1;
1037 
1038 	tcp_congctl_select(tp, tcp_congctl_global_name);
1039 
1040 	return tp;
1041 }
1042 
1043 /*
1044  * Drop a TCP connection, reporting
1045  * the specified error.  If connection is synchronized,
1046  * then send a RST to peer.
1047  */
1048 struct tcpcb *
1049 tcp_drop(struct tcpcb *tp, int errno)
1050 {
1051 	struct socket *so = NULL;
1052 
1053 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1054 
1055 	if (tp->t_inpcb)
1056 		so = tp->t_inpcb->inp_socket;
1057 #ifdef INET6
1058 	if (tp->t_in6pcb)
1059 		so = tp->t_in6pcb->in6p_socket;
1060 #endif
1061 	if (!so)
1062 		return NULL;
1063 
1064 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1065 		tp->t_state = TCPS_CLOSED;
1066 		(void) tcp_output(tp);
1067 		TCP_STATINC(TCP_STAT_DROPS);
1068 	} else
1069 		TCP_STATINC(TCP_STAT_CONNDROPS);
1070 	if (errno == ETIMEDOUT && tp->t_softerror)
1071 		errno = tp->t_softerror;
1072 	so->so_error = errno;
1073 	return (tcp_close(tp));
1074 }
1075 
1076 /*
1077  * Close a TCP control block:
1078  *	discard all space held by the tcp
1079  *	discard internet protocol block
1080  *	wake up any sleepers
1081  */
1082 struct tcpcb *
1083 tcp_close(struct tcpcb *tp)
1084 {
1085 	struct inpcb *inp;
1086 #ifdef INET6
1087 	struct in6pcb *in6p;
1088 #endif
1089 	struct socket *so;
1090 #ifdef RTV_RTT
1091 	struct rtentry *rt = NULL;
1092 #endif
1093 	struct route *ro;
1094 	int j;
1095 
1096 	inp = tp->t_inpcb;
1097 #ifdef INET6
1098 	in6p = tp->t_in6pcb;
1099 #endif
1100 	so = NULL;
1101 	ro = NULL;
1102 	if (inp) {
1103 		so = inp->inp_socket;
1104 		ro = &inp->inp_route;
1105 	}
1106 #ifdef INET6
1107 	else if (in6p) {
1108 		so = in6p->in6p_socket;
1109 		ro = (struct route *)&in6p->in6p_route;
1110 	}
1111 #endif
1112 
1113 #ifdef RTV_RTT
1114 	/*
1115 	 * If we sent enough data to get some meaningful characteristics,
1116 	 * save them in the routing entry.  'Enough' is arbitrarily
1117 	 * defined as the sendpipesize (default 4K) * 16.  This would
1118 	 * give us 16 rtt samples assuming we only get one sample per
1119 	 * window (the usual case on a long haul net).  16 samples is
1120 	 * enough for the srtt filter to converge to within 5% of the correct
1121 	 * value; fewer samples and we could save a very bogus rtt.
1122 	 *
1123 	 * Don't update the default route's characteristics and don't
1124 	 * update anything that the user "locked".
1125 	 */
1126 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1127 	    ro && (rt = rtcache_validate(ro)) != NULL &&
1128 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1129 		u_long i = 0;
1130 
1131 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1132 			i = tp->t_srtt *
1133 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1134 			if (rt->rt_rmx.rmx_rtt && i)
1135 				/*
1136 				 * filter this update to half the old & half
1137 				 * the new values, converting scale.
1138 				 * See route.h and tcp_var.h for a
1139 				 * description of the scaling constants.
1140 				 */
1141 				rt->rt_rmx.rmx_rtt =
1142 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1143 			else
1144 				rt->rt_rmx.rmx_rtt = i;
1145 		}
1146 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1147 			i = tp->t_rttvar *
1148 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1149 			if (rt->rt_rmx.rmx_rttvar && i)
1150 				rt->rt_rmx.rmx_rttvar =
1151 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1152 			else
1153 				rt->rt_rmx.rmx_rttvar = i;
1154 		}
1155 		/*
1156 		 * update the pipelimit (ssthresh) if it has been updated
1157 		 * already or if a pipesize was specified & the threshhold
1158 		 * got below half the pipesize.  I.e., wait for bad news
1159 		 * before we start updating, then update on both good
1160 		 * and bad news.
1161 		 */
1162 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1163 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1164 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1165 			/*
1166 			 * convert the limit from user data bytes to
1167 			 * packets then to packet data bytes.
1168 			 */
1169 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1170 			if (i < 2)
1171 				i = 2;
1172 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1173 			if (rt->rt_rmx.rmx_ssthresh)
1174 				rt->rt_rmx.rmx_ssthresh =
1175 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1176 			else
1177 				rt->rt_rmx.rmx_ssthresh = i;
1178 		}
1179 	}
1180 	rtcache_unref(rt, ro);
1181 #endif /* RTV_RTT */
1182 	/* free the reassembly queue, if any */
1183 	TCP_REASS_LOCK(tp);
1184 	(void) tcp_freeq(tp);
1185 	TCP_REASS_UNLOCK(tp);
1186 
1187 	/* free the SACK holes list. */
1188 	tcp_free_sackholes(tp);
1189 	tcp_congctl_release(tp);
1190 	syn_cache_cleanup(tp);
1191 
1192 	if (tp->t_template) {
1193 		m_free(tp->t_template);
1194 		tp->t_template = NULL;
1195 	}
1196 
1197 	/*
1198 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1199 	 * the timers can also drop the lock.  We need to prevent access
1200 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
1201 	 * (prevents access by timers) and only then detach it.
1202 	 */
1203 	tp->t_flags |= TF_DEAD;
1204 	if (inp) {
1205 		inp->inp_ppcb = 0;
1206 		soisdisconnected(so);
1207 		in_pcbdetach(inp);
1208 	}
1209 #ifdef INET6
1210 	else if (in6p) {
1211 		in6p->in6p_ppcb = 0;
1212 		soisdisconnected(so);
1213 		in6_pcbdetach(in6p);
1214 	}
1215 #endif
1216 	/*
1217 	 * pcb is no longer visble elsewhere, so we can safely release
1218 	 * the lock in callout_halt() if needed.
1219 	 */
1220 	TCP_STATINC(TCP_STAT_CLOSED);
1221 	for (j = 0; j < TCPT_NTIMERS; j++) {
1222 		callout_halt(&tp->t_timer[j], softnet_lock);
1223 		callout_destroy(&tp->t_timer[j]);
1224 	}
1225 	callout_halt(&tp->t_delack_ch, softnet_lock);
1226 	callout_destroy(&tp->t_delack_ch);
1227 	pool_put(&tcpcb_pool, tp);
1228 
1229 	return NULL;
1230 }
1231 
1232 int
1233 tcp_freeq(struct tcpcb *tp)
1234 {
1235 	struct ipqent *qe;
1236 	int rv = 0;
1237 
1238 	TCP_REASS_LOCK_CHECK(tp);
1239 
1240 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1241 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1242 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1243 		m_freem(qe->ipqe_m);
1244 		tcpipqent_free(qe);
1245 		rv = 1;
1246 	}
1247 	tp->t_segqlen = 0;
1248 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1249 	return (rv);
1250 }
1251 
1252 void
1253 tcp_fasttimo(void)
1254 {
1255 	if (tcp_drainwanted) {
1256 		tcp_drain();
1257 		tcp_drainwanted = 0;
1258 	}
1259 }
1260 
1261 void
1262 tcp_drainstub(void)
1263 {
1264 	tcp_drainwanted = 1;
1265 }
1266 
1267 /*
1268  * Protocol drain routine.  Called when memory is in short supply.
1269  * Called from pr_fasttimo thus a callout context.
1270  */
1271 void
1272 tcp_drain(void)
1273 {
1274 	struct inpcb_hdr *inph;
1275 	struct tcpcb *tp;
1276 
1277 	mutex_enter(softnet_lock);
1278 	KERNEL_LOCK(1, NULL);
1279 
1280 	/*
1281 	 * Free the sequence queue of all TCP connections.
1282 	 */
1283 	TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1284 		switch (inph->inph_af) {
1285 		case AF_INET:
1286 			tp = intotcpcb((struct inpcb *)inph);
1287 			break;
1288 #ifdef INET6
1289 		case AF_INET6:
1290 			tp = in6totcpcb((struct in6pcb *)inph);
1291 			break;
1292 #endif
1293 		default:
1294 			tp = NULL;
1295 			break;
1296 		}
1297 		if (tp != NULL) {
1298 			/*
1299 			 * We may be called from a device's interrupt
1300 			 * context.  If the tcpcb is already busy,
1301 			 * just bail out now.
1302 			 */
1303 			if (tcp_reass_lock_try(tp) == 0)
1304 				continue;
1305 			if (tcp_freeq(tp))
1306 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
1307 			TCP_REASS_UNLOCK(tp);
1308 		}
1309 	}
1310 
1311 	KERNEL_UNLOCK_ONE(NULL);
1312 	mutex_exit(softnet_lock);
1313 }
1314 
1315 /*
1316  * Notify a tcp user of an asynchronous error;
1317  * store error as soft error, but wake up user
1318  * (for now, won't do anything until can select for soft error).
1319  */
1320 void
1321 tcp_notify(struct inpcb *inp, int error)
1322 {
1323 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1324 	struct socket *so = inp->inp_socket;
1325 
1326 	/*
1327 	 * Ignore some errors if we are hooked up.
1328 	 * If connection hasn't completed, has retransmitted several times,
1329 	 * and receives a second error, give up now.  This is better
1330 	 * than waiting a long time to establish a connection that
1331 	 * can never complete.
1332 	 */
1333 	if (tp->t_state == TCPS_ESTABLISHED &&
1334 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1335 	      error == EHOSTDOWN)) {
1336 		return;
1337 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1338 	    tp->t_rxtshift > 3 && tp->t_softerror)
1339 		so->so_error = error;
1340 	else
1341 		tp->t_softerror = error;
1342 	cv_broadcast(&so->so_cv);
1343 	sorwakeup(so);
1344 	sowwakeup(so);
1345 }
1346 
1347 #ifdef INET6
1348 void
1349 tcp6_notify(struct in6pcb *in6p, int error)
1350 {
1351 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1352 	struct socket *so = in6p->in6p_socket;
1353 
1354 	/*
1355 	 * Ignore some errors if we are hooked up.
1356 	 * If connection hasn't completed, has retransmitted several times,
1357 	 * and receives a second error, give up now.  This is better
1358 	 * than waiting a long time to establish a connection that
1359 	 * can never complete.
1360 	 */
1361 	if (tp->t_state == TCPS_ESTABLISHED &&
1362 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1363 	      error == EHOSTDOWN)) {
1364 		return;
1365 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1366 	    tp->t_rxtshift > 3 && tp->t_softerror)
1367 		so->so_error = error;
1368 	else
1369 		tp->t_softerror = error;
1370 	cv_broadcast(&so->so_cv);
1371 	sorwakeup(so);
1372 	sowwakeup(so);
1373 }
1374 #endif
1375 
1376 #ifdef INET6
1377 void *
1378 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1379 {
1380 	struct tcphdr th;
1381 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1382 	int nmatch;
1383 	struct ip6_hdr *ip6;
1384 	const struct sockaddr_in6 *sa6_src = NULL;
1385 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1386 	struct mbuf *m;
1387 	int off;
1388 
1389 	if (sa->sa_family != AF_INET6 ||
1390 	    sa->sa_len != sizeof(struct sockaddr_in6))
1391 		return NULL;
1392 	if ((unsigned)cmd >= PRC_NCMDS)
1393 		return NULL;
1394 	else if (cmd == PRC_QUENCH) {
1395 		/*
1396 		 * Don't honor ICMP Source Quench messages meant for
1397 		 * TCP connections.
1398 		 */
1399 		return NULL;
1400 	} else if (PRC_IS_REDIRECT(cmd))
1401 		notify = in6_rtchange, d = NULL;
1402 	else if (cmd == PRC_MSGSIZE)
1403 		; /* special code is present, see below */
1404 	else if (cmd == PRC_HOSTDEAD)
1405 		d = NULL;
1406 	else if (inet6ctlerrmap[cmd] == 0)
1407 		return NULL;
1408 
1409 	/* if the parameter is from icmp6, decode it. */
1410 	if (d != NULL) {
1411 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1412 		m = ip6cp->ip6c_m;
1413 		ip6 = ip6cp->ip6c_ip6;
1414 		off = ip6cp->ip6c_off;
1415 		sa6_src = ip6cp->ip6c_src;
1416 	} else {
1417 		m = NULL;
1418 		ip6 = NULL;
1419 		sa6_src = &sa6_any;
1420 		off = 0;
1421 	}
1422 
1423 	if (ip6) {
1424 		/* check if we can safely examine src and dst ports */
1425 		if (m->m_pkthdr.len < off + sizeof(th)) {
1426 			if (cmd == PRC_MSGSIZE)
1427 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1428 			return NULL;
1429 		}
1430 
1431 		memset(&th, 0, sizeof(th));
1432 		m_copydata(m, off, sizeof(th), (void *)&th);
1433 
1434 		if (cmd == PRC_MSGSIZE) {
1435 			int valid = 0;
1436 
1437 			/*
1438 			 * Check to see if we have a valid TCP connection
1439 			 * corresponding to the address in the ICMPv6 message
1440 			 * payload.
1441 			 */
1442 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1443 			    th.th_dport,
1444 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1445 						  th.th_sport, 0, 0))
1446 				valid++;
1447 
1448 			/*
1449 			 * Depending on the value of "valid" and routing table
1450 			 * size (mtudisc_{hi,lo}wat), we will:
1451 			 * - recalcurate the new MTU and create the
1452 			 *   corresponding routing entry, or
1453 			 * - ignore the MTU change notification.
1454 			 */
1455 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1456 
1457 			/*
1458 			 * no need to call in6_pcbnotify, it should have been
1459 			 * called via callback if necessary
1460 			 */
1461 			return NULL;
1462 		}
1463 
1464 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1465 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1466 		if (nmatch == 0 && syn_cache_count &&
1467 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1468 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1469 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1470 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1471 					  sa, &th);
1472 	} else {
1473 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1474 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1475 	}
1476 
1477 	return NULL;
1478 }
1479 #endif
1480 
1481 /* assumes that ip header and tcp header are contiguous on mbuf */
1482 void *
1483 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1484 {
1485 	struct ip *ip = v;
1486 	struct tcphdr *th;
1487 	struct icmp *icp;
1488 	extern const int inetctlerrmap[];
1489 	void (*notify)(struct inpcb *, int) = tcp_notify;
1490 	int errno;
1491 	int nmatch;
1492 	struct tcpcb *tp;
1493 	u_int mtu;
1494 	tcp_seq seq;
1495 	struct inpcb *inp;
1496 #ifdef INET6
1497 	struct in6pcb *in6p;
1498 	struct in6_addr src6, dst6;
1499 #endif
1500 
1501 	if (sa->sa_family != AF_INET ||
1502 	    sa->sa_len != sizeof(struct sockaddr_in))
1503 		return NULL;
1504 	if ((unsigned)cmd >= PRC_NCMDS)
1505 		return NULL;
1506 	errno = inetctlerrmap[cmd];
1507 	if (cmd == PRC_QUENCH)
1508 		/*
1509 		 * Don't honor ICMP Source Quench messages meant for
1510 		 * TCP connections.
1511 		 */
1512 		return NULL;
1513 	else if (PRC_IS_REDIRECT(cmd))
1514 		notify = in_rtchange, ip = 0;
1515 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1516 		/*
1517 		 * Check to see if we have a valid TCP connection
1518 		 * corresponding to the address in the ICMP message
1519 		 * payload.
1520 		 *
1521 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1522 		 */
1523 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1524 #ifdef INET6
1525 		in6_in_2_v4mapin6(&ip->ip_src, &src6);
1526 		in6_in_2_v4mapin6(&ip->ip_dst, &dst6);
1527 #endif
1528 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1529 		    th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1530 #ifdef INET6
1531 			in6p = NULL;
1532 #else
1533 			;
1534 #endif
1535 #ifdef INET6
1536 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1537 		    th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1538 			;
1539 #endif
1540 		else
1541 			return NULL;
1542 
1543 		/*
1544 		 * Now that we've validated that we are actually communicating
1545 		 * with the host indicated in the ICMP message, locate the
1546 		 * ICMP header, recalculate the new MTU, and create the
1547 		 * corresponding routing entry.
1548 		 */
1549 		icp = (struct icmp *)((char *)ip -
1550 		    offsetof(struct icmp, icmp_ip));
1551 		if (inp) {
1552 			if ((tp = intotcpcb(inp)) == NULL)
1553 				return NULL;
1554 		}
1555 #ifdef INET6
1556 		else if (in6p) {
1557 			if ((tp = in6totcpcb(in6p)) == NULL)
1558 				return NULL;
1559 		}
1560 #endif
1561 		else
1562 			return NULL;
1563 		seq = ntohl(th->th_seq);
1564 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1565 			return NULL;
1566 		/*
1567 		 * If the ICMP message advertises a Next-Hop MTU
1568 		 * equal or larger than the maximum packet size we have
1569 		 * ever sent, drop the message.
1570 		 */
1571 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1572 		if (mtu >= tp->t_pmtud_mtu_sent)
1573 			return NULL;
1574 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1575 			/*
1576 			 * Calculate new MTU, and create corresponding
1577 			 * route (traditional PMTUD).
1578 			 */
1579 			tp->t_flags &= ~TF_PMTUD_PEND;
1580 			icmp_mtudisc(icp, ip->ip_dst);
1581 		} else {
1582 			/*
1583 			 * Record the information got in the ICMP
1584 			 * message; act on it later.
1585 			 * If we had already recorded an ICMP message,
1586 			 * replace the old one only if the new message
1587 			 * refers to an older TCP segment
1588 			 */
1589 			if (tp->t_flags & TF_PMTUD_PEND) {
1590 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1591 					return NULL;
1592 			} else
1593 				tp->t_flags |= TF_PMTUD_PEND;
1594 			tp->t_pmtud_th_seq = seq;
1595 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1596 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1597 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1598 		}
1599 		return NULL;
1600 	} else if (cmd == PRC_HOSTDEAD)
1601 		ip = 0;
1602 	else if (errno == 0)
1603 		return NULL;
1604 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1605 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1606 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1607 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1608 		if (nmatch == 0 && syn_cache_count &&
1609 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1610 		    inetctlerrmap[cmd] == ENETUNREACH ||
1611 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1612 			struct sockaddr_in sin;
1613 			memset(&sin, 0, sizeof(sin));
1614 			sin.sin_len = sizeof(sin);
1615 			sin.sin_family = AF_INET;
1616 			sin.sin_port = th->th_sport;
1617 			sin.sin_addr = ip->ip_src;
1618 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1619 		}
1620 
1621 		/* XXX mapped address case */
1622 	} else
1623 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1624 		    notify);
1625 	return NULL;
1626 }
1627 
1628 /*
1629  * When a source quench is received, we are being notified of congestion.
1630  * Close the congestion window down to the Loss Window (one segment).
1631  * We will gradually open it again as we proceed.
1632  */
1633 void
1634 tcp_quench(struct inpcb *inp, int errno)
1635 {
1636 	struct tcpcb *tp = intotcpcb(inp);
1637 
1638 	if (tp) {
1639 		tp->snd_cwnd = tp->t_segsz;
1640 		tp->t_bytes_acked = 0;
1641 	}
1642 }
1643 
1644 #ifdef INET6
1645 void
1646 tcp6_quench(struct in6pcb *in6p, int errno)
1647 {
1648 	struct tcpcb *tp = in6totcpcb(in6p);
1649 
1650 	if (tp) {
1651 		tp->snd_cwnd = tp->t_segsz;
1652 		tp->t_bytes_acked = 0;
1653 	}
1654 }
1655 #endif
1656 
1657 /*
1658  * Path MTU Discovery handlers.
1659  */
1660 void
1661 tcp_mtudisc_callback(struct in_addr faddr)
1662 {
1663 #ifdef INET6
1664 	struct in6_addr in6;
1665 #endif
1666 
1667 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1668 #ifdef INET6
1669 	in6_in_2_v4mapin6(&faddr, &in6);
1670 	tcp6_mtudisc_callback(&in6);
1671 #endif
1672 }
1673 
1674 /*
1675  * On receipt of path MTU corrections, flush old route and replace it
1676  * with the new one.  Retransmit all unacknowledged packets, to ensure
1677  * that all packets will be received.
1678  */
1679 void
1680 tcp_mtudisc(struct inpcb *inp, int errno)
1681 {
1682 	struct tcpcb *tp = intotcpcb(inp);
1683 	struct rtentry *rt;
1684 
1685 	if (tp == NULL)
1686 		return;
1687 
1688 	rt = in_pcbrtentry(inp);
1689 	if (rt != NULL) {
1690 		/*
1691 		 * If this was not a host route, remove and realloc.
1692 		 */
1693 		if ((rt->rt_flags & RTF_HOST) == 0) {
1694 			in_pcbrtentry_unref(rt, inp);
1695 			in_rtchange(inp, errno);
1696 			if ((rt = in_pcbrtentry(inp)) == NULL)
1697 				return;
1698 		}
1699 
1700 		/*
1701 		 * Slow start out of the error condition.  We
1702 		 * use the MTU because we know it's smaller
1703 		 * than the previously transmitted segment.
1704 		 *
1705 		 * Note: This is more conservative than the
1706 		 * suggestion in draft-floyd-incr-init-win-03.
1707 		 */
1708 		if (rt->rt_rmx.rmx_mtu != 0)
1709 			tp->snd_cwnd =
1710 			    TCP_INITIAL_WINDOW(tcp_init_win,
1711 			    rt->rt_rmx.rmx_mtu);
1712 		in_pcbrtentry_unref(rt, inp);
1713 	}
1714 
1715 	/*
1716 	 * Resend unacknowledged packets.
1717 	 */
1718 	tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1719 	tcp_output(tp);
1720 }
1721 
1722 #ifdef INET6
1723 /*
1724  * Path MTU Discovery handlers.
1725  */
1726 void
1727 tcp6_mtudisc_callback(struct in6_addr *faddr)
1728 {
1729 	struct sockaddr_in6 sin6;
1730 
1731 	memset(&sin6, 0, sizeof(sin6));
1732 	sin6.sin6_family = AF_INET6;
1733 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1734 	sin6.sin6_addr = *faddr;
1735 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1736 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1737 }
1738 
1739 void
1740 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1741 {
1742 	struct tcpcb *tp = in6totcpcb(in6p);
1743 	struct rtentry *rt;
1744 
1745 	if (tp == NULL)
1746 		return;
1747 
1748 	rt = in6_pcbrtentry(in6p);
1749 	if (rt != NULL) {
1750 		/*
1751 		 * If this was not a host route, remove and realloc.
1752 		 */
1753 		if ((rt->rt_flags & RTF_HOST) == 0) {
1754 			in6_pcbrtentry_unref(rt, in6p);
1755 			in6_rtchange(in6p, errno);
1756 			rt = in6_pcbrtentry(in6p);
1757 			if (rt == NULL)
1758 				return;
1759 		}
1760 
1761 		/*
1762 		 * Slow start out of the error condition.  We
1763 		 * use the MTU because we know it's smaller
1764 		 * than the previously transmitted segment.
1765 		 *
1766 		 * Note: This is more conservative than the
1767 		 * suggestion in draft-floyd-incr-init-win-03.
1768 		 */
1769 		if (rt->rt_rmx.rmx_mtu != 0) {
1770 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1771 			    rt->rt_rmx.rmx_mtu);
1772 		}
1773 		in6_pcbrtentry_unref(rt, in6p);
1774 	}
1775 
1776 	/*
1777 	 * Resend unacknowledged packets.
1778 	 */
1779 	tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1780 	tcp_output(tp);
1781 }
1782 #endif /* INET6 */
1783 
1784 /*
1785  * Compute the MSS to advertise to the peer.  Called only during
1786  * the 3-way handshake.  If we are the server (peer initiated
1787  * connection), we are called with a pointer to the interface
1788  * on which the SYN packet arrived.  If we are the client (we
1789  * initiated connection), we are called with a pointer to the
1790  * interface out which this connection should go.
1791  *
1792  * NOTE: Do not subtract IP option/extension header size nor IPsec
1793  * header size from MSS advertisement.  MSS option must hold the maximum
1794  * segment size we can accept, so it must always be:
1795  *	 max(if mtu) - ip header - tcp header
1796  */
1797 u_long
1798 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1799 {
1800 	extern u_long in_maxmtu;
1801 	u_long mss = 0;
1802 	u_long hdrsiz;
1803 
1804 	/*
1805 	 * In order to avoid defeating path MTU discovery on the peer,
1806 	 * we advertise the max MTU of all attached networks as our MSS,
1807 	 * per RFC 1191, section 3.1.
1808 	 *
1809 	 * We provide the option to advertise just the MTU of
1810 	 * the interface on which we hope this connection will
1811 	 * be receiving.  If we are responding to a SYN, we
1812 	 * will have a pretty good idea about this, but when
1813 	 * initiating a connection there is a bit more doubt.
1814 	 *
1815 	 * We also need to ensure that loopback has a large enough
1816 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1817 	 */
1818 
1819 	if (ifp != NULL)
1820 		switch (af) {
1821 		case AF_INET:
1822 			mss = ifp->if_mtu;
1823 			break;
1824 #ifdef INET6
1825 		case AF_INET6:
1826 			mss = IN6_LINKMTU(ifp);
1827 			break;
1828 #endif
1829 		}
1830 
1831 	if (tcp_mss_ifmtu == 0)
1832 		switch (af) {
1833 		case AF_INET:
1834 			mss = uimax(in_maxmtu, mss);
1835 			break;
1836 #ifdef INET6
1837 		case AF_INET6:
1838 			mss = uimax(in6_maxmtu, mss);
1839 			break;
1840 #endif
1841 		}
1842 
1843 	switch (af) {
1844 	case AF_INET:
1845 		hdrsiz = sizeof(struct ip);
1846 		break;
1847 #ifdef INET6
1848 	case AF_INET6:
1849 		hdrsiz = sizeof(struct ip6_hdr);
1850 		break;
1851 #endif
1852 	default:
1853 		hdrsiz = 0;
1854 		break;
1855 	}
1856 	hdrsiz += sizeof(struct tcphdr);
1857 	if (mss > hdrsiz)
1858 		mss -= hdrsiz;
1859 
1860 	mss = uimax(tcp_mssdflt, mss);
1861 	return (mss);
1862 }
1863 
1864 /*
1865  * Set connection variables based on the peer's advertised MSS.
1866  * We are passed the TCPCB for the actual connection.  If we
1867  * are the server, we are called by the compressed state engine
1868  * when the 3-way handshake is complete.  If we are the client,
1869  * we are called when we receive the SYN,ACK from the server.
1870  *
1871  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1872  * before this routine is called!
1873  */
1874 void
1875 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1876 {
1877 	struct socket *so;
1878 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1879 	struct rtentry *rt;
1880 #endif
1881 	u_long bufsize;
1882 	int mss;
1883 
1884 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1885 
1886 	so = NULL;
1887 	rt = NULL;
1888 
1889 	if (tp->t_inpcb) {
1890 		so = tp->t_inpcb->inp_socket;
1891 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1892 		rt = in_pcbrtentry(tp->t_inpcb);
1893 #endif
1894 	}
1895 
1896 #ifdef INET6
1897 	if (tp->t_in6pcb) {
1898 		so = tp->t_in6pcb->in6p_socket;
1899 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1900 		rt = in6_pcbrtentry(tp->t_in6pcb);
1901 #endif
1902 	}
1903 #endif
1904 
1905 	/*
1906 	 * As per RFC1122, use the default MSS value, unless they
1907 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1908 	 */
1909 	mss = tcp_mssdflt;
1910 	if (offer)
1911 		mss = offer;
1912 	mss = uimax(mss, 256);		/* sanity */
1913 	tp->t_peermss = mss;
1914 	mss -= tcp_optlen(tp);
1915 	if (tp->t_inpcb)
1916 		mss -= ip_optlen(tp->t_inpcb);
1917 #ifdef INET6
1918 	if (tp->t_in6pcb)
1919 		mss -= ip6_optlen(tp->t_in6pcb);
1920 #endif
1921 	/*
1922 	 * XXX XXX What if mss goes negative or zero? This can happen if a
1923 	 * socket has large IPv6 options. We crash below.
1924 	 */
1925 
1926 	/*
1927 	 * If there's a pipesize, change the socket buffer to that size.
1928 	 * Make the socket buffer an integral number of MSS units.  If
1929 	 * the MSS is larger than the socket buffer, artificially decrease
1930 	 * the MSS.
1931 	 */
1932 #ifdef RTV_SPIPE
1933 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1934 		bufsize = rt->rt_rmx.rmx_sendpipe;
1935 	else
1936 #endif
1937 	{
1938 		KASSERT(so != NULL);
1939 		bufsize = so->so_snd.sb_hiwat;
1940 	}
1941 	if (bufsize < mss)
1942 		mss = bufsize;
1943 	else {
1944 		bufsize = roundup(bufsize, mss);
1945 		if (bufsize > sb_max)
1946 			bufsize = sb_max;
1947 		(void) sbreserve(&so->so_snd, bufsize, so);
1948 	}
1949 	tp->t_segsz = mss;
1950 
1951 #ifdef RTV_SSTHRESH
1952 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1953 		/*
1954 		 * There's some sort of gateway or interface buffer
1955 		 * limit on the path.  Use this to set the slow
1956 		 * start threshold, but set the threshold to no less
1957 		 * than 2 * MSS.
1958 		 */
1959 		tp->snd_ssthresh = uimax(2 * mss, rt->rt_rmx.rmx_ssthresh);
1960 	}
1961 #endif
1962 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1963 	if (tp->t_inpcb)
1964 		in_pcbrtentry_unref(rt, tp->t_inpcb);
1965 #ifdef INET6
1966 	if (tp->t_in6pcb)
1967 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
1968 #endif
1969 #endif
1970 }
1971 
1972 /*
1973  * Processing necessary when a TCP connection is established.
1974  */
1975 void
1976 tcp_established(struct tcpcb *tp)
1977 {
1978 	struct socket *so;
1979 #ifdef RTV_RPIPE
1980 	struct rtentry *rt;
1981 #endif
1982 	u_long bufsize;
1983 
1984 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1985 
1986 	so = NULL;
1987 	rt = NULL;
1988 
1989 	/* This is a while() to reduce the dreadful stairstepping below */
1990 	while (tp->t_inpcb) {
1991 		so = tp->t_inpcb->inp_socket;
1992 #if defined(RTV_RPIPE)
1993 		rt = in_pcbrtentry(tp->t_inpcb);
1994 #endif
1995 		if (__predict_true(tcp_msl_enable)) {
1996 			if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
1997 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
1998 				break;
1999 			}
2000 
2001 			if (__predict_false(tcp_rttlocal)) {
2002 				/* This may be adjusted by tcp_input */
2003 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2004 				break;
2005 			}
2006 			if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2007 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2008 				break;
2009 			}
2010 		}
2011 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2012 		break;
2013 	}
2014 
2015 #ifdef INET6
2016 	/* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2017 	while (!tp->t_inpcb && tp->t_in6pcb) {
2018 		so = tp->t_in6pcb->in6p_socket;
2019 #if defined(RTV_RPIPE)
2020 		rt = in6_pcbrtentry(tp->t_in6pcb);
2021 #endif
2022 		if (__predict_true(tcp_msl_enable)) {
2023 			extern const struct in6_addr in6addr_loopback;
2024 
2025 			if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2026 			    &in6addr_loopback)) {
2027 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2028 				break;
2029 			}
2030 
2031 			if (__predict_false(tcp_rttlocal)) {
2032 				/* This may be adjusted by tcp_input */
2033 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2034 				break;
2035 			}
2036 			if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2037 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2038 				break;
2039 			}
2040 		}
2041 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2042 		break;
2043 	}
2044 #endif
2045 
2046 	tp->t_state = TCPS_ESTABLISHED;
2047 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2048 
2049 #ifdef RTV_RPIPE
2050 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2051 		bufsize = rt->rt_rmx.rmx_recvpipe;
2052 	else
2053 #endif
2054 	{
2055 		KASSERT(so != NULL);
2056 		bufsize = so->so_rcv.sb_hiwat;
2057 	}
2058 	if (bufsize > tp->t_ourmss) {
2059 		bufsize = roundup(bufsize, tp->t_ourmss);
2060 		if (bufsize > sb_max)
2061 			bufsize = sb_max;
2062 		(void) sbreserve(&so->so_rcv, bufsize, so);
2063 	}
2064 #ifdef RTV_RPIPE
2065 	if (tp->t_inpcb)
2066 		in_pcbrtentry_unref(rt, tp->t_inpcb);
2067 #ifdef INET6
2068 	if (tp->t_in6pcb)
2069 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2070 #endif
2071 #endif
2072 }
2073 
2074 /*
2075  * Check if there's an initial rtt or rttvar.  Convert from the
2076  * route-table units to scaled multiples of the slow timeout timer.
2077  * Called only during the 3-way handshake.
2078  */
2079 void
2080 tcp_rmx_rtt(struct tcpcb *tp)
2081 {
2082 #ifdef RTV_RTT
2083 	struct rtentry *rt = NULL;
2084 	int rtt;
2085 
2086 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
2087 
2088 	if (tp->t_inpcb)
2089 		rt = in_pcbrtentry(tp->t_inpcb);
2090 #ifdef INET6
2091 	if (tp->t_in6pcb)
2092 		rt = in6_pcbrtentry(tp->t_in6pcb);
2093 #endif
2094 	if (rt == NULL)
2095 		return;
2096 
2097 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2098 		/*
2099 		 * XXX The lock bit for MTU indicates that the value
2100 		 * is also a minimum value; this is subject to time.
2101 		 */
2102 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2103 			TCPT_RANGESET(tp->t_rttmin,
2104 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2105 			    TCPTV_MIN, TCPTV_REXMTMAX);
2106 		tp->t_srtt = rtt /
2107 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2108 		if (rt->rt_rmx.rmx_rttvar) {
2109 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2110 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2111 				(TCP_RTTVAR_SHIFT + 2));
2112 		} else {
2113 			/* Default variation is +- 1 rtt */
2114 			tp->t_rttvar =
2115 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2116 		}
2117 		TCPT_RANGESET(tp->t_rxtcur,
2118 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2119 		    tp->t_rttmin, TCPTV_REXMTMAX);
2120 	}
2121 	if (tp->t_inpcb)
2122 		in_pcbrtentry_unref(rt, tp->t_inpcb);
2123 #ifdef INET6
2124 	if (tp->t_in6pcb)
2125 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2126 #endif
2127 #endif
2128 }
2129 
2130 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2131 
2132 /*
2133  * Get a new sequence value given a tcp control block
2134  */
2135 tcp_seq
2136 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2137 {
2138 
2139 	if (tp->t_inpcb != NULL) {
2140 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2141 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2142 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2143 		    addin));
2144 	}
2145 #ifdef INET6
2146 	if (tp->t_in6pcb != NULL) {
2147 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2148 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2149 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2150 		    addin));
2151 	}
2152 #endif
2153 
2154 	panic("tcp_new_iss: unreachable");
2155 }
2156 
2157 static u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2158 
2159 /*
2160  * Initialize RFC 1948 ISS Secret
2161  */
2162 static int
2163 tcp_iss_secret_init(void)
2164 {
2165 	cprng_strong(kern_cprng,
2166 	    tcp_iss_secret, sizeof(tcp_iss_secret), 0);
2167 
2168 	return 0;
2169 }
2170 
2171 /*
2172  * This routine actually generates a new TCP initial sequence number.
2173  */
2174 tcp_seq
2175 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2176     size_t addrsz, tcp_seq addin)
2177 {
2178 	tcp_seq tcp_iss;
2179 
2180 	if (tcp_do_rfc1948) {
2181 		MD5_CTX ctx;
2182 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2183 		static ONCE_DECL(tcp_iss_secret_control);
2184 
2185 		/*
2186 		 * If we haven't been here before, initialize our cryptographic
2187 		 * hash secret.
2188 		 */
2189 		RUN_ONCE(&tcp_iss_secret_control, tcp_iss_secret_init);
2190 
2191 		/*
2192 		 * Compute the base value of the ISS.  It is a hash
2193 		 * of (saddr, sport, daddr, dport, secret).
2194 		 */
2195 		MD5Init(&ctx);
2196 
2197 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2198 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2199 
2200 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2201 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2202 
2203 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2204 
2205 		MD5Final(hash, &ctx);
2206 
2207 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2208 
2209 		/*
2210 		 * Now increment our "timer", and add it in to
2211 		 * the computed value.
2212 		 *
2213 		 * XXX Use `addin'?
2214 		 * XXX TCP_ISSINCR too large to use?
2215 		 */
2216 		tcp_iss_seq += TCP_ISSINCR;
2217 #ifdef TCPISS_DEBUG
2218 		printf("ISS hash 0x%08x, ", tcp_iss);
2219 #endif
2220 		tcp_iss += tcp_iss_seq + addin;
2221 #ifdef TCPISS_DEBUG
2222 		printf("new ISS 0x%08x\n", tcp_iss);
2223 #endif
2224 	} else {
2225 		/*
2226 		 * Randomize.
2227 		 */
2228 		tcp_iss = cprng_fast32();
2229 
2230 		/*
2231 		 * If we were asked to add some amount to a known value,
2232 		 * we will take a random value obtained above, mask off
2233 		 * the upper bits, and add in the known value.  We also
2234 		 * add in a constant to ensure that we are at least a
2235 		 * certain distance from the original value.
2236 		 *
2237 		 * This is used when an old connection is in timed wait
2238 		 * and we have a new one coming in, for instance.
2239 		 */
2240 		if (addin != 0) {
2241 #ifdef TCPISS_DEBUG
2242 			printf("Random %08x, ", tcp_iss);
2243 #endif
2244 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2245 			tcp_iss += addin + TCP_ISSINCR;
2246 #ifdef TCPISS_DEBUG
2247 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2248 #endif
2249 		} else {
2250 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2251 			tcp_iss += tcp_iss_seq;
2252 			tcp_iss_seq += TCP_ISSINCR;
2253 #ifdef TCPISS_DEBUG
2254 			printf("ISS %08x\n", tcp_iss);
2255 #endif
2256 		}
2257 	}
2258 
2259 	return (tcp_iss);
2260 }
2261 
2262 #if defined(IPSEC)
2263 /* compute ESP/AH header size for TCP, including outer IP header. */
2264 size_t
2265 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2266 {
2267 	struct inpcb *inp;
2268 	size_t hdrsiz;
2269 
2270 	/* XXX mapped addr case (tp->t_in6pcb) */
2271 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2272 		return 0;
2273 	switch (tp->t_family) {
2274 	case AF_INET:
2275 		/* XXX: should use correct direction. */
2276 		hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2277 		break;
2278 	default:
2279 		hdrsiz = 0;
2280 		break;
2281 	}
2282 
2283 	return hdrsiz;
2284 }
2285 
2286 #ifdef INET6
2287 size_t
2288 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2289 {
2290 	struct in6pcb *in6p;
2291 	size_t hdrsiz;
2292 
2293 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2294 		return 0;
2295 	switch (tp->t_family) {
2296 	case AF_INET6:
2297 		/* XXX: should use correct direction. */
2298 		hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2299 		break;
2300 	case AF_INET:
2301 		/* mapped address case - tricky */
2302 	default:
2303 		hdrsiz = 0;
2304 		break;
2305 	}
2306 
2307 	return hdrsiz;
2308 }
2309 #endif
2310 #endif /*IPSEC*/
2311 
2312 /*
2313  * Determine the length of the TCP options for this connection.
2314  *
2315  * XXX:  What do we do for SACK, when we add that?  Just reserve
2316  *       all of the space?  Otherwise we can't exactly be incrementing
2317  *       cwnd by an amount that varies depending on the amount we last
2318  *       had to SACK!
2319  */
2320 
2321 u_int
2322 tcp_optlen(struct tcpcb *tp)
2323 {
2324 	u_int optlen;
2325 
2326 	optlen = 0;
2327 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2328 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2329 		optlen += TCPOLEN_TSTAMP_APPA;
2330 
2331 #ifdef TCP_SIGNATURE
2332 	if (tp->t_flags & TF_SIGNATURE)
2333 		optlen += TCPOLEN_SIGLEN;
2334 #endif
2335 
2336 	return optlen;
2337 }
2338 
2339 u_int
2340 tcp_hdrsz(struct tcpcb *tp)
2341 {
2342 	u_int hlen;
2343 
2344 	switch (tp->t_family) {
2345 #ifdef INET6
2346 	case AF_INET6:
2347 		hlen = sizeof(struct ip6_hdr);
2348 		break;
2349 #endif
2350 	case AF_INET:
2351 		hlen = sizeof(struct ip);
2352 		break;
2353 	default:
2354 		hlen = 0;
2355 		break;
2356 	}
2357 	hlen += sizeof(struct tcphdr);
2358 
2359 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2360 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2361 		hlen += TCPOLEN_TSTAMP_APPA;
2362 #ifdef TCP_SIGNATURE
2363 	if (tp->t_flags & TF_SIGNATURE)
2364 		hlen += TCPOLEN_SIGLEN;
2365 #endif
2366 	return hlen;
2367 }
2368 
2369 void
2370 tcp_statinc(u_int stat)
2371 {
2372 
2373 	KASSERT(stat < TCP_NSTATS);
2374 	TCP_STATINC(stat);
2375 }
2376 
2377 void
2378 tcp_statadd(u_int stat, uint64_t val)
2379 {
2380 
2381 	KASSERT(stat < TCP_NSTATS);
2382 	TCP_STATADD(stat, val);
2383 }
2384