xref: /netbsd-src/sys/netinet/tcp_subr.c (revision de2138164cd16145ee5fd4d0aef1e8f952c1a9fb)
1 /*	$NetBSD: tcp_subr.c,v 1.211 2007/02/17 22:34:12 dyoung Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. Neither the name of the University nor the names of its contributors
82  *    may be used to endorse or promote products derived from this software
83  *    without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.211 2007/02/17 22:34:12 dyoung Exp $");
102 
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109 
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125 
126 #include <net/route.h>
127 #include <net/if.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135 
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148 
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcp_congctl.h>
155 #include <netinet/tcpip.h>
156 
157 #ifdef IPSEC
158 #include <netinet6/ipsec.h>
159 #include <netkey/key.h>
160 #endif /*IPSEC*/
161 
162 #ifdef FAST_IPSEC
163 #include <netipsec/ipsec.h>
164 #include <netipsec/xform.h>
165 #ifdef INET6
166 #include <netipsec/ipsec6.h>
167 #endif
168  #include <netipsec/key.h>
169 #endif	/* FAST_IPSEC*/
170 
171 
172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
173 struct	tcpstat tcpstat;	/* tcp statistics */
174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
175 
176 /* patchable/settable parameters for tcp */
177 int 	tcp_mssdflt = TCP_MSS;
178 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
179 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
180 #if NRND > 0
181 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
182 #endif
183 int	tcp_do_sack = 1;	/* selective acknowledgement */
184 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
185 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
187 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
188 #ifndef TCP_INIT_WIN
189 #define	TCP_INIT_WIN	0	/* initial slow start window */
190 #endif
191 #ifndef TCP_INIT_WIN_LOCAL
192 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
193 #endif
194 int	tcp_init_win = TCP_INIT_WIN;
195 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
196 int	tcp_mss_ifmtu = 0;
197 #ifdef TCP_COMPAT_42
198 int	tcp_compat_42 = 1;
199 #else
200 int	tcp_compat_42 = 0;
201 #endif
202 int	tcp_rst_ppslim = 100;	/* 100pps */
203 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
204 int	tcp_do_loopback_cksum = 0;
205 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
206 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
207 int	tcp_sack_tp_maxholes = 32;
208 int	tcp_sack_globalmaxholes = 1024;
209 int	tcp_sack_globalholes = 0;
210 int	tcp_ecn_maxretries = 1;
211 
212 /* tcb hash */
213 #ifndef TCBHASHSIZE
214 #define	TCBHASHSIZE	128
215 #endif
216 int	tcbhashsize = TCBHASHSIZE;
217 
218 /* syn hash parameters */
219 #define	TCP_SYN_HASH_SIZE	293
220 #define	TCP_SYN_BUCKET_SIZE	35
221 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
222 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
223 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
224 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
225 
226 int	tcp_freeq(struct tcpcb *);
227 
228 #ifdef INET
229 void	tcp_mtudisc_callback(struct in_addr);
230 #endif
231 #ifdef INET6
232 void	tcp6_mtudisc_callback(struct in6_addr *);
233 #endif
234 
235 #ifdef INET6
236 void	tcp6_mtudisc(struct in6pcb *, int);
237 #endif
238 
239 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
240 
241 #ifdef TCP_CSUM_COUNTERS
242 #include <sys/device.h>
243 
244 #if defined(INET)
245 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246     NULL, "tcp", "hwcsum bad");
247 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248     NULL, "tcp", "hwcsum ok");
249 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250     NULL, "tcp", "hwcsum data");
251 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252     NULL, "tcp", "swcsum");
253 
254 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
255 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
256 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
257 EVCNT_ATTACH_STATIC(tcp_swcsum);
258 #endif /* defined(INET) */
259 
260 #if defined(INET6)
261 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262     NULL, "tcp6", "hwcsum bad");
263 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp6", "hwcsum ok");
265 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266     NULL, "tcp6", "hwcsum data");
267 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268     NULL, "tcp6", "swcsum");
269 
270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
271 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
273 EVCNT_ATTACH_STATIC(tcp6_swcsum);
274 #endif /* defined(INET6) */
275 #endif /* TCP_CSUM_COUNTERS */
276 
277 
278 #ifdef TCP_OUTPUT_COUNTERS
279 #include <sys/device.h>
280 
281 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282     NULL, "tcp", "output big header");
283 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp", "output predict hit");
285 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output predict miss");
287 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output copy small");
289 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290     NULL, "tcp", "output copy big");
291 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292     NULL, "tcp", "output reference big");
293 
294 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
295 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
296 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
297 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
298 EVCNT_ATTACH_STATIC(tcp_output_copybig);
299 EVCNT_ATTACH_STATIC(tcp_output_refbig);
300 
301 #endif /* TCP_OUTPUT_COUNTERS */
302 
303 #ifdef TCP_REASS_COUNTERS
304 #include <sys/device.h>
305 
306 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307     NULL, "tcp_reass", "calls");
308 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309     &tcp_reass_, "tcp_reass", "insert into empty queue");
310 struct evcnt tcp_reass_iteration[8] = {
311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
319 };
320 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321     &tcp_reass_, "tcp_reass", "prepend to first");
322 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323     &tcp_reass_, "tcp_reass", "prepend");
324 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "insert");
326 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "insert at tail");
328 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "append");
330 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "append to tail fragment");
332 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "overlap at end");
334 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "overlap at start");
336 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337     &tcp_reass_, "tcp_reass", "duplicate segment");
338 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339     &tcp_reass_, "tcp_reass", "duplicate fragment");
340 
341 EVCNT_ATTACH_STATIC(tcp_reass_);
342 EVCNT_ATTACH_STATIC(tcp_reass_empty);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
351 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
352 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
353 EVCNT_ATTACH_STATIC(tcp_reass_insert);
354 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
355 EVCNT_ATTACH_STATIC(tcp_reass_append);
356 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
357 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
358 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
359 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
360 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
361 
362 #endif /* TCP_REASS_COUNTERS */
363 
364 #ifdef MBUFTRACE
365 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
366 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
367 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
368 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
369 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
370 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
371 #endif
372 
373 /*
374  * Tcp initialization
375  */
376 void
377 tcp_init(void)
378 {
379 	int hlen;
380 
381 	/* Initialize the TCPCB template. */
382 	tcp_tcpcb_template();
383 
384 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
385 
386 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
387 #ifdef INET6
388 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
389 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
390 #endif
391 	if (max_protohdr < hlen)
392 		max_protohdr = hlen;
393 	if (max_linkhdr + hlen > MHLEN)
394 		panic("tcp_init");
395 
396 #ifdef INET
397 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
398 #endif
399 #ifdef INET6
400 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
401 #endif
402 
403 	/* Initialize timer state. */
404 	tcp_timer_init();
405 
406 	/* Initialize the compressed state engine. */
407 	syn_cache_init();
408 
409 	/* Initialize the congestion control algorithms. */
410 	tcp_congctl_init();
411 
412 	MOWNER_ATTACH(&tcp_tx_mowner);
413 	MOWNER_ATTACH(&tcp_rx_mowner);
414 	MOWNER_ATTACH(&tcp_reass_mowner);
415 	MOWNER_ATTACH(&tcp_sock_mowner);
416 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
417 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
418 	MOWNER_ATTACH(&tcp_mowner);
419 }
420 
421 /*
422  * Create template to be used to send tcp packets on a connection.
423  * Call after host entry created, allocates an mbuf and fills
424  * in a skeletal tcp/ip header, minimizing the amount of work
425  * necessary when the connection is used.
426  */
427 struct mbuf *
428 tcp_template(struct tcpcb *tp)
429 {
430 	struct inpcb *inp = tp->t_inpcb;
431 #ifdef INET6
432 	struct in6pcb *in6p = tp->t_in6pcb;
433 #endif
434 	struct tcphdr *n;
435 	struct mbuf *m;
436 	int hlen;
437 
438 	switch (tp->t_family) {
439 	case AF_INET:
440 		hlen = sizeof(struct ip);
441 		if (inp)
442 			break;
443 #ifdef INET6
444 		if (in6p) {
445 			/* mapped addr case */
446 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
447 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
448 				break;
449 		}
450 #endif
451 		return NULL;	/*EINVAL*/
452 #ifdef INET6
453 	case AF_INET6:
454 		hlen = sizeof(struct ip6_hdr);
455 		if (in6p) {
456 			/* more sainty check? */
457 			break;
458 		}
459 		return NULL;	/*EINVAL*/
460 #endif
461 	default:
462 		hlen = 0;	/*pacify gcc*/
463 		return NULL;	/*EAFNOSUPPORT*/
464 	}
465 #ifdef DIAGNOSTIC
466 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
467 		panic("mclbytes too small for t_template");
468 #endif
469 	m = tp->t_template;
470 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
471 		;
472 	else {
473 		if (m)
474 			m_freem(m);
475 		m = tp->t_template = NULL;
476 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
477 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
478 			MCLGET(m, M_DONTWAIT);
479 			if ((m->m_flags & M_EXT) == 0) {
480 				m_free(m);
481 				m = NULL;
482 			}
483 		}
484 		if (m == NULL)
485 			return NULL;
486 		MCLAIM(m, &tcp_mowner);
487 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
488 	}
489 
490 	bzero(mtod(m, caddr_t), m->m_len);
491 
492 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
493 
494 	switch (tp->t_family) {
495 	case AF_INET:
496 	    {
497 		struct ipovly *ipov;
498 		mtod(m, struct ip *)->ip_v = 4;
499 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
500 		ipov = mtod(m, struct ipovly *);
501 		ipov->ih_pr = IPPROTO_TCP;
502 		ipov->ih_len = htons(sizeof(struct tcphdr));
503 		if (inp) {
504 			ipov->ih_src = inp->inp_laddr;
505 			ipov->ih_dst = inp->inp_faddr;
506 		}
507 #ifdef INET6
508 		else if (in6p) {
509 			/* mapped addr case */
510 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
511 				sizeof(ipov->ih_src));
512 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
513 				sizeof(ipov->ih_dst));
514 		}
515 #endif
516 		/*
517 		 * Compute the pseudo-header portion of the checksum
518 		 * now.  We incrementally add in the TCP option and
519 		 * payload lengths later, and then compute the TCP
520 		 * checksum right before the packet is sent off onto
521 		 * the wire.
522 		 */
523 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
524 		    ipov->ih_dst.s_addr,
525 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
526 		break;
527 	    }
528 #ifdef INET6
529 	case AF_INET6:
530 	    {
531 		struct ip6_hdr *ip6;
532 		mtod(m, struct ip *)->ip_v = 6;
533 		ip6 = mtod(m, struct ip6_hdr *);
534 		ip6->ip6_nxt = IPPROTO_TCP;
535 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
536 		ip6->ip6_src = in6p->in6p_laddr;
537 		ip6->ip6_dst = in6p->in6p_faddr;
538 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
539 		if (ip6_auto_flowlabel) {
540 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
541 			ip6->ip6_flow |=
542 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
543 		}
544 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
545 		ip6->ip6_vfc |= IPV6_VERSION;
546 
547 		/*
548 		 * Compute the pseudo-header portion of the checksum
549 		 * now.  We incrementally add in the TCP option and
550 		 * payload lengths later, and then compute the TCP
551 		 * checksum right before the packet is sent off onto
552 		 * the wire.
553 		 */
554 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
555 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
556 		    htonl(IPPROTO_TCP));
557 		break;
558 	    }
559 #endif
560 	}
561 	if (inp) {
562 		n->th_sport = inp->inp_lport;
563 		n->th_dport = inp->inp_fport;
564 	}
565 #ifdef INET6
566 	else if (in6p) {
567 		n->th_sport = in6p->in6p_lport;
568 		n->th_dport = in6p->in6p_fport;
569 	}
570 #endif
571 	n->th_seq = 0;
572 	n->th_ack = 0;
573 	n->th_x2 = 0;
574 	n->th_off = 5;
575 	n->th_flags = 0;
576 	n->th_win = 0;
577 	n->th_urp = 0;
578 	return (m);
579 }
580 
581 /*
582  * Send a single message to the TCP at address specified by
583  * the given TCP/IP header.  If m == 0, then we make a copy
584  * of the tcpiphdr at ti and send directly to the addressed host.
585  * This is used to force keep alive messages out using the TCP
586  * template for a connection tp->t_template.  If flags are given
587  * then we send a message back to the TCP which originated the
588  * segment ti, and discard the mbuf containing it and any other
589  * attached mbufs.
590  *
591  * In any case the ack and sequence number of the transmitted
592  * segment are as specified by the parameters.
593  */
594 int
595 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
596     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
597 {
598 	struct route *ro;
599 	int error, tlen, win = 0;
600 	int hlen;
601 	struct ip *ip;
602 #ifdef INET6
603 	struct ip6_hdr *ip6;
604 #endif
605 	int family;	/* family on packet, not inpcb/in6pcb! */
606 	struct tcphdr *th;
607 	struct socket *so;
608 
609 	if (tp != NULL && (flags & TH_RST) == 0) {
610 #ifdef DIAGNOSTIC
611 		if (tp->t_inpcb && tp->t_in6pcb)
612 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
613 #endif
614 #ifdef INET
615 		if (tp->t_inpcb)
616 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
617 #endif
618 #ifdef INET6
619 		if (tp->t_in6pcb)
620 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
621 #endif
622 	}
623 
624 	th = NULL;	/* Quell uninitialized warning */
625 	ip = NULL;
626 #ifdef INET6
627 	ip6 = NULL;
628 #endif
629 	if (m == 0) {
630 		if (!template)
631 			return EINVAL;
632 
633 		/* get family information from template */
634 		switch (mtod(template, struct ip *)->ip_v) {
635 		case 4:
636 			family = AF_INET;
637 			hlen = sizeof(struct ip);
638 			break;
639 #ifdef INET6
640 		case 6:
641 			family = AF_INET6;
642 			hlen = sizeof(struct ip6_hdr);
643 			break;
644 #endif
645 		default:
646 			return EAFNOSUPPORT;
647 		}
648 
649 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
650 		if (m) {
651 			MCLAIM(m, &tcp_tx_mowner);
652 			MCLGET(m, M_DONTWAIT);
653 			if ((m->m_flags & M_EXT) == 0) {
654 				m_free(m);
655 				m = NULL;
656 			}
657 		}
658 		if (m == NULL)
659 			return (ENOBUFS);
660 
661 		if (tcp_compat_42)
662 			tlen = 1;
663 		else
664 			tlen = 0;
665 
666 		m->m_data += max_linkhdr;
667 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
668 			template->m_len);
669 		switch (family) {
670 		case AF_INET:
671 			ip = mtod(m, struct ip *);
672 			th = (struct tcphdr *)(ip + 1);
673 			break;
674 #ifdef INET6
675 		case AF_INET6:
676 			ip6 = mtod(m, struct ip6_hdr *);
677 			th = (struct tcphdr *)(ip6 + 1);
678 			break;
679 #endif
680 #if 0
681 		default:
682 			/* noone will visit here */
683 			m_freem(m);
684 			return EAFNOSUPPORT;
685 #endif
686 		}
687 		flags = TH_ACK;
688 	} else {
689 
690 		if ((m->m_flags & M_PKTHDR) == 0) {
691 #if 0
692 			printf("non PKTHDR to tcp_respond\n");
693 #endif
694 			m_freem(m);
695 			return EINVAL;
696 		}
697 #ifdef DIAGNOSTIC
698 		if (!th0)
699 			panic("th0 == NULL in tcp_respond");
700 #endif
701 
702 		/* get family information from m */
703 		switch (mtod(m, struct ip *)->ip_v) {
704 		case 4:
705 			family = AF_INET;
706 			hlen = sizeof(struct ip);
707 			ip = mtod(m, struct ip *);
708 			break;
709 #ifdef INET6
710 		case 6:
711 			family = AF_INET6;
712 			hlen = sizeof(struct ip6_hdr);
713 			ip6 = mtod(m, struct ip6_hdr *);
714 			break;
715 #endif
716 		default:
717 			m_freem(m);
718 			return EAFNOSUPPORT;
719 		}
720 		/* clear h/w csum flags inherited from rx packet */
721 		m->m_pkthdr.csum_flags = 0;
722 
723 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
724 			tlen = sizeof(*th0);
725 		else
726 			tlen = th0->th_off << 2;
727 
728 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
729 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
730 			m->m_len = hlen + tlen;
731 			m_freem(m->m_next);
732 			m->m_next = NULL;
733 		} else {
734 			struct mbuf *n;
735 
736 #ifdef DIAGNOSTIC
737 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
738 				m_freem(m);
739 				return EMSGSIZE;
740 			}
741 #endif
742 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
743 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
744 				MCLGET(n, M_DONTWAIT);
745 				if ((n->m_flags & M_EXT) == 0) {
746 					m_freem(n);
747 					n = NULL;
748 				}
749 			}
750 			if (!n) {
751 				m_freem(m);
752 				return ENOBUFS;
753 			}
754 
755 			MCLAIM(n, &tcp_tx_mowner);
756 			n->m_data += max_linkhdr;
757 			n->m_len = hlen + tlen;
758 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
759 			m_copyback(n, hlen, tlen, (caddr_t)th0);
760 
761 			m_freem(m);
762 			m = n;
763 			n = NULL;
764 		}
765 
766 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
767 		switch (family) {
768 		case AF_INET:
769 			ip = mtod(m, struct ip *);
770 			th = (struct tcphdr *)(ip + 1);
771 			ip->ip_p = IPPROTO_TCP;
772 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
773 			ip->ip_p = IPPROTO_TCP;
774 			break;
775 #ifdef INET6
776 		case AF_INET6:
777 			ip6 = mtod(m, struct ip6_hdr *);
778 			th = (struct tcphdr *)(ip6 + 1);
779 			ip6->ip6_nxt = IPPROTO_TCP;
780 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
781 			ip6->ip6_nxt = IPPROTO_TCP;
782 			break;
783 #endif
784 #if 0
785 		default:
786 			/* noone will visit here */
787 			m_freem(m);
788 			return EAFNOSUPPORT;
789 #endif
790 		}
791 		xchg(th->th_dport, th->th_sport, u_int16_t);
792 #undef xchg
793 		tlen = 0;	/*be friendly with the following code*/
794 	}
795 	th->th_seq = htonl(seq);
796 	th->th_ack = htonl(ack);
797 	th->th_x2 = 0;
798 	if ((flags & TH_SYN) == 0) {
799 		if (tp)
800 			win >>= tp->rcv_scale;
801 		if (win > TCP_MAXWIN)
802 			win = TCP_MAXWIN;
803 		th->th_win = htons((u_int16_t)win);
804 		th->th_off = sizeof (struct tcphdr) >> 2;
805 		tlen += sizeof(*th);
806 	} else
807 		tlen += th->th_off << 2;
808 	m->m_len = hlen + tlen;
809 	m->m_pkthdr.len = hlen + tlen;
810 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
811 	th->th_flags = flags;
812 	th->th_urp = 0;
813 
814 	switch (family) {
815 #ifdef INET
816 	case AF_INET:
817 	    {
818 		struct ipovly *ipov = (struct ipovly *)ip;
819 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
820 		ipov->ih_len = htons((u_int16_t)tlen);
821 
822 		th->th_sum = 0;
823 		th->th_sum = in_cksum(m, hlen + tlen);
824 		ip->ip_len = htons(hlen + tlen);
825 		ip->ip_ttl = ip_defttl;
826 		break;
827 	    }
828 #endif
829 #ifdef INET6
830 	case AF_INET6:
831 	    {
832 		th->th_sum = 0;
833 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
834 				tlen);
835 		ip6->ip6_plen = htons(tlen);
836 		if (tp && tp->t_in6pcb) {
837 			struct ifnet *oifp;
838 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
839 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
840 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
841 		} else
842 			ip6->ip6_hlim = ip6_defhlim;
843 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
844 		if (ip6_auto_flowlabel) {
845 			ip6->ip6_flow |=
846 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
847 		}
848 		break;
849 	    }
850 #endif
851 	}
852 
853 	if (tp && tp->t_inpcb)
854 		so = tp->t_inpcb->inp_socket;
855 #ifdef INET6
856 	else if (tp && tp->t_in6pcb)
857 		so = tp->t_in6pcb->in6p_socket;
858 #endif
859 	else
860 		so = NULL;
861 
862 	if (tp != NULL && tp->t_inpcb != NULL) {
863 		ro = &tp->t_inpcb->inp_route;
864 #ifdef DIAGNOSTIC
865 		if (family != AF_INET)
866 			panic("tcp_respond: address family mismatch");
867 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
868 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
869 			    ntohl(ip->ip_dst.s_addr),
870 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
871 		}
872 #endif
873 	}
874 #ifdef INET6
875 	else if (tp != NULL && tp->t_in6pcb != NULL) {
876 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
877 #ifdef DIAGNOSTIC
878 		if (family == AF_INET) {
879 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
880 				panic("tcp_respond: not mapped addr");
881 			if (bcmp(&ip->ip_dst,
882 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
883 			    sizeof(ip->ip_dst)) != 0) {
884 				panic("tcp_respond: ip_dst != in6p_faddr");
885 			}
886 		} else if (family == AF_INET6) {
887 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
888 			    &tp->t_in6pcb->in6p_faddr))
889 				panic("tcp_respond: ip6_dst != in6p_faddr");
890 		} else
891 			panic("tcp_respond: address family mismatch");
892 #endif
893 	}
894 #endif
895 	else
896 		ro = NULL;
897 
898 	switch (family) {
899 #ifdef INET
900 	case AF_INET:
901 		error = ip_output(m, NULL, ro,
902 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
903 		    (struct ip_moptions *)0, so);
904 		break;
905 #endif
906 #ifdef INET6
907 	case AF_INET6:
908 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
909 		    (struct ip6_moptions *)0, so, NULL);
910 		break;
911 #endif
912 	default:
913 		error = EAFNOSUPPORT;
914 		break;
915 	}
916 
917 	return (error);
918 }
919 
920 /*
921  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
922  * a bunch of members individually, we maintain this template for the
923  * static and mostly-static components of the TCPCB, and copy it into
924  * the new TCPCB instead.
925  */
926 static struct tcpcb tcpcb_template = {
927 	/*
928 	 * If TCP_NTIMERS ever changes, we'll need to update this
929 	 * initializer.
930 	 */
931 	.t_timer = {
932 		CALLOUT_INITIALIZER,
933 		CALLOUT_INITIALIZER,
934 		CALLOUT_INITIALIZER,
935 		CALLOUT_INITIALIZER,
936 	},
937 	.t_delack_ch = CALLOUT_INITIALIZER,
938 
939 	.t_srtt = TCPTV_SRTTBASE,
940 	.t_rttmin = TCPTV_MIN,
941 
942 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
943 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
944 	.snd_numholes = 0,
945 
946 	.t_partialacks = -1,
947 	.t_bytes_acked = 0,
948 };
949 
950 /*
951  * Updates the TCPCB template whenever a parameter that would affect
952  * the template is changed.
953  */
954 void
955 tcp_tcpcb_template(void)
956 {
957 	struct tcpcb *tp = &tcpcb_template;
958 	int flags;
959 
960 	tp->t_peermss = tcp_mssdflt;
961 	tp->t_ourmss = tcp_mssdflt;
962 	tp->t_segsz = tcp_mssdflt;
963 
964 	flags = 0;
965 	if (tcp_do_rfc1323 && tcp_do_win_scale)
966 		flags |= TF_REQ_SCALE;
967 	if (tcp_do_rfc1323 && tcp_do_timestamps)
968 		flags |= TF_REQ_TSTMP;
969 	tp->t_flags = flags;
970 
971 	/*
972 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
973 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
974 	 * reasonable initial retransmit time.
975 	 */
976 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
977 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
978 	    TCPTV_MIN, TCPTV_REXMTMAX);
979 }
980 
981 /*
982  * Create a new TCP control block, making an
983  * empty reassembly queue and hooking it to the argument
984  * protocol control block.
985  */
986 /* family selects inpcb, or in6pcb */
987 struct tcpcb *
988 tcp_newtcpcb(int family, void *aux)
989 {
990 	struct tcpcb *tp;
991 	int i;
992 
993 	/* XXX Consider using a pool_cache for speed. */
994 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
995 	if (tp == NULL)
996 		return (NULL);
997 	memcpy(tp, &tcpcb_template, sizeof(*tp));
998 	TAILQ_INIT(&tp->segq);
999 	TAILQ_INIT(&tp->timeq);
1000 	tp->t_family = family;		/* may be overridden later on */
1001 	TAILQ_INIT(&tp->snd_holes);
1002 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
1003 
1004 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
1005 	for (i = 0; i < TCPT_NTIMERS; i++)
1006 		TCP_TIMER_INIT(tp, i);
1007 
1008 	switch (family) {
1009 	case AF_INET:
1010 	    {
1011 		struct inpcb *inp = (struct inpcb *)aux;
1012 
1013 		inp->inp_ip.ip_ttl = ip_defttl;
1014 		inp->inp_ppcb = (caddr_t)tp;
1015 
1016 		tp->t_inpcb = inp;
1017 		tp->t_mtudisc = ip_mtudisc;
1018 		break;
1019 	    }
1020 #ifdef INET6
1021 	case AF_INET6:
1022 	    {
1023 		struct in6pcb *in6p = (struct in6pcb *)aux;
1024 
1025 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1026 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1027 					       : NULL);
1028 		in6p->in6p_ppcb = (caddr_t)tp;
1029 
1030 		tp->t_in6pcb = in6p;
1031 		/* for IPv6, always try to run path MTU discovery */
1032 		tp->t_mtudisc = 1;
1033 		break;
1034 	    }
1035 #endif /* INET6 */
1036 	default:
1037 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1038 		return (NULL);
1039 	}
1040 
1041 	/*
1042 	 * Initialize our timebase.  When we send timestamps, we take
1043 	 * the delta from tcp_now -- this means each connection always
1044 	 * gets a timebase of 0, which makes it, among other things,
1045 	 * more difficult to determine how long a system has been up,
1046 	 * and thus how many TCP sequence increments have occurred.
1047 	 */
1048 	tp->ts_timebase = tcp_now;
1049 
1050 	tp->t_congctl = tcp_congctl_global;
1051 	tp->t_congctl->refcnt++;
1052 
1053 	return (tp);
1054 }
1055 
1056 /*
1057  * Drop a TCP connection, reporting
1058  * the specified error.  If connection is synchronized,
1059  * then send a RST to peer.
1060  */
1061 struct tcpcb *
1062 tcp_drop(struct tcpcb *tp, int errno)
1063 {
1064 	struct socket *so = NULL;
1065 
1066 #ifdef DIAGNOSTIC
1067 	if (tp->t_inpcb && tp->t_in6pcb)
1068 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1069 #endif
1070 #ifdef INET
1071 	if (tp->t_inpcb)
1072 		so = tp->t_inpcb->inp_socket;
1073 #endif
1074 #ifdef INET6
1075 	if (tp->t_in6pcb)
1076 		so = tp->t_in6pcb->in6p_socket;
1077 #endif
1078 	if (!so)
1079 		return NULL;
1080 
1081 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1082 		tp->t_state = TCPS_CLOSED;
1083 		(void) tcp_output(tp);
1084 		tcpstat.tcps_drops++;
1085 	} else
1086 		tcpstat.tcps_conndrops++;
1087 	if (errno == ETIMEDOUT && tp->t_softerror)
1088 		errno = tp->t_softerror;
1089 	so->so_error = errno;
1090 	return (tcp_close(tp));
1091 }
1092 
1093 /*
1094  * Return whether this tcpcb is marked as dead, indicating
1095  * to the calling timer function that no further action should
1096  * be taken, as we are about to release this tcpcb.  The release
1097  * of the storage will be done if this is the last timer running.
1098  *
1099  * This should be called from the callout handler function after
1100  * callout_ack() is done, so that the number of invoking timer
1101  * functions is 0.
1102  */
1103 int
1104 tcp_isdead(struct tcpcb *tp)
1105 {
1106 	int dead = (tp->t_flags & TF_DEAD);
1107 
1108 	if (__predict_false(dead)) {
1109 		if (tcp_timers_invoking(tp) > 0)
1110 				/* not quite there yet -- count separately? */
1111 			return dead;
1112 		tcpstat.tcps_delayed_free++;
1113 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_timer.c */
1114 	}
1115 	return dead;
1116 }
1117 
1118 /*
1119  * Close a TCP control block:
1120  *	discard all space held by the tcp
1121  *	discard internet protocol block
1122  *	wake up any sleepers
1123  */
1124 struct tcpcb *
1125 tcp_close(struct tcpcb *tp)
1126 {
1127 	struct inpcb *inp;
1128 #ifdef INET6
1129 	struct in6pcb *in6p;
1130 #endif
1131 	struct socket *so;
1132 #ifdef RTV_RTT
1133 	struct rtentry *rt;
1134 #endif
1135 	struct route *ro;
1136 
1137 	inp = tp->t_inpcb;
1138 #ifdef INET6
1139 	in6p = tp->t_in6pcb;
1140 #endif
1141 	so = NULL;
1142 	ro = NULL;
1143 	if (inp) {
1144 		so = inp->inp_socket;
1145 		ro = &inp->inp_route;
1146 	}
1147 #ifdef INET6
1148 	else if (in6p) {
1149 		so = in6p->in6p_socket;
1150 		ro = (struct route *)&in6p->in6p_route;
1151 	}
1152 #endif
1153 
1154 #ifdef RTV_RTT
1155 	/*
1156 	 * If we sent enough data to get some meaningful characteristics,
1157 	 * save them in the routing entry.  'Enough' is arbitrarily
1158 	 * defined as the sendpipesize (default 4K) * 16.  This would
1159 	 * give us 16 rtt samples assuming we only get one sample per
1160 	 * window (the usual case on a long haul net).  16 samples is
1161 	 * enough for the srtt filter to converge to within 5% of the correct
1162 	 * value; fewer samples and we could save a very bogus rtt.
1163 	 *
1164 	 * Don't update the default route's characteristics and don't
1165 	 * update anything that the user "locked".
1166 	 */
1167 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1168 	    ro && (rt = ro->ro_rt) &&
1169 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1170 		u_long i = 0;
1171 
1172 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1173 			i = tp->t_srtt *
1174 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1175 			if (rt->rt_rmx.rmx_rtt && i)
1176 				/*
1177 				 * filter this update to half the old & half
1178 				 * the new values, converting scale.
1179 				 * See route.h and tcp_var.h for a
1180 				 * description of the scaling constants.
1181 				 */
1182 				rt->rt_rmx.rmx_rtt =
1183 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1184 			else
1185 				rt->rt_rmx.rmx_rtt = i;
1186 		}
1187 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1188 			i = tp->t_rttvar *
1189 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1190 			if (rt->rt_rmx.rmx_rttvar && i)
1191 				rt->rt_rmx.rmx_rttvar =
1192 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1193 			else
1194 				rt->rt_rmx.rmx_rttvar = i;
1195 		}
1196 		/*
1197 		 * update the pipelimit (ssthresh) if it has been updated
1198 		 * already or if a pipesize was specified & the threshhold
1199 		 * got below half the pipesize.  I.e., wait for bad news
1200 		 * before we start updating, then update on both good
1201 		 * and bad news.
1202 		 */
1203 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1204 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1205 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1206 			/*
1207 			 * convert the limit from user data bytes to
1208 			 * packets then to packet data bytes.
1209 			 */
1210 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1211 			if (i < 2)
1212 				i = 2;
1213 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1214 			if (rt->rt_rmx.rmx_ssthresh)
1215 				rt->rt_rmx.rmx_ssthresh =
1216 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1217 			else
1218 				rt->rt_rmx.rmx_ssthresh = i;
1219 		}
1220 	}
1221 #endif /* RTV_RTT */
1222 	/* free the reassembly queue, if any */
1223 	TCP_REASS_LOCK(tp);
1224 	(void) tcp_freeq(tp);
1225 	TCP_REASS_UNLOCK(tp);
1226 
1227 	/* free the SACK holes list. */
1228 	tcp_free_sackholes(tp);
1229 
1230 	tp->t_congctl->refcnt--;
1231 
1232 	tcp_canceltimers(tp);
1233 	TCP_CLEAR_DELACK(tp);
1234 	syn_cache_cleanup(tp);
1235 
1236 	if (tp->t_template) {
1237 		m_free(tp->t_template);
1238 		tp->t_template = NULL;
1239 	}
1240 	if (tcp_timers_invoking(tp))
1241 		tp->t_flags |= TF_DEAD;
1242 	else
1243 		pool_put(&tcpcb_pool, tp);
1244 
1245 	if (inp) {
1246 		inp->inp_ppcb = 0;
1247 		soisdisconnected(so);
1248 		in_pcbdetach(inp);
1249 	}
1250 #ifdef INET6
1251 	else if (in6p) {
1252 		in6p->in6p_ppcb = 0;
1253 		soisdisconnected(so);
1254 		in6_pcbdetach(in6p);
1255 	}
1256 #endif
1257 	tcpstat.tcps_closed++;
1258 	return ((struct tcpcb *)0);
1259 }
1260 
1261 int
1262 tcp_freeq(tp)
1263 	struct tcpcb *tp;
1264 {
1265 	struct ipqent *qe;
1266 	int rv = 0;
1267 #ifdef TCPREASS_DEBUG
1268 	int i = 0;
1269 #endif
1270 
1271 	TCP_REASS_LOCK_CHECK(tp);
1272 
1273 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1274 #ifdef TCPREASS_DEBUG
1275 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1276 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1277 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1278 #endif
1279 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1280 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1281 		m_freem(qe->ipqe_m);
1282 		tcpipqent_free(qe);
1283 		rv = 1;
1284 	}
1285 	tp->t_segqlen = 0;
1286 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1287 	return (rv);
1288 }
1289 
1290 /*
1291  * Protocol drain routine.  Called when memory is in short supply.
1292  */
1293 void
1294 tcp_drain(void)
1295 {
1296 	struct inpcb_hdr *inph;
1297 	struct tcpcb *tp;
1298 
1299 	/*
1300 	 * Free the sequence queue of all TCP connections.
1301 	 */
1302 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1303 		switch (inph->inph_af) {
1304 		case AF_INET:
1305 			tp = intotcpcb((struct inpcb *)inph);
1306 			break;
1307 #ifdef INET6
1308 		case AF_INET6:
1309 			tp = in6totcpcb((struct in6pcb *)inph);
1310 			break;
1311 #endif
1312 		default:
1313 			tp = NULL;
1314 			break;
1315 		}
1316 		if (tp != NULL) {
1317 			/*
1318 			 * We may be called from a device's interrupt
1319 			 * context.  If the tcpcb is already busy,
1320 			 * just bail out now.
1321 			 */
1322 			if (tcp_reass_lock_try(tp) == 0)
1323 				continue;
1324 			if (tcp_freeq(tp))
1325 				tcpstat.tcps_connsdrained++;
1326 			TCP_REASS_UNLOCK(tp);
1327 		}
1328 	}
1329 }
1330 
1331 /*
1332  * Notify a tcp user of an asynchronous error;
1333  * store error as soft error, but wake up user
1334  * (for now, won't do anything until can select for soft error).
1335  */
1336 void
1337 tcp_notify(struct inpcb *inp, int error)
1338 {
1339 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1340 	struct socket *so = inp->inp_socket;
1341 
1342 	/*
1343 	 * Ignore some errors if we are hooked up.
1344 	 * If connection hasn't completed, has retransmitted several times,
1345 	 * and receives a second error, give up now.  This is better
1346 	 * than waiting a long time to establish a connection that
1347 	 * can never complete.
1348 	 */
1349 	if (tp->t_state == TCPS_ESTABLISHED &&
1350 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1351 	      error == EHOSTDOWN)) {
1352 		return;
1353 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1354 	    tp->t_rxtshift > 3 && tp->t_softerror)
1355 		so->so_error = error;
1356 	else
1357 		tp->t_softerror = error;
1358 	wakeup((caddr_t) &so->so_timeo);
1359 	sorwakeup(so);
1360 	sowwakeup(so);
1361 }
1362 
1363 #ifdef INET6
1364 void
1365 tcp6_notify(struct in6pcb *in6p, int error)
1366 {
1367 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1368 	struct socket *so = in6p->in6p_socket;
1369 
1370 	/*
1371 	 * Ignore some errors if we are hooked up.
1372 	 * If connection hasn't completed, has retransmitted several times,
1373 	 * and receives a second error, give up now.  This is better
1374 	 * than waiting a long time to establish a connection that
1375 	 * can never complete.
1376 	 */
1377 	if (tp->t_state == TCPS_ESTABLISHED &&
1378 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1379 	      error == EHOSTDOWN)) {
1380 		return;
1381 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1382 	    tp->t_rxtshift > 3 && tp->t_softerror)
1383 		so->so_error = error;
1384 	else
1385 		tp->t_softerror = error;
1386 	wakeup((caddr_t) &so->so_timeo);
1387 	sorwakeup(so);
1388 	sowwakeup(so);
1389 }
1390 #endif
1391 
1392 #ifdef INET6
1393 void
1394 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1395 {
1396 	struct tcphdr th;
1397 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1398 	int nmatch;
1399 	struct ip6_hdr *ip6;
1400 	const struct sockaddr_in6 *sa6_src = NULL;
1401 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1402 	struct mbuf *m;
1403 	int off;
1404 
1405 	if (sa->sa_family != AF_INET6 ||
1406 	    sa->sa_len != sizeof(struct sockaddr_in6))
1407 		return;
1408 	if ((unsigned)cmd >= PRC_NCMDS)
1409 		return;
1410 	else if (cmd == PRC_QUENCH) {
1411 		/*
1412 		 * Don't honor ICMP Source Quench messages meant for
1413 		 * TCP connections.
1414 		 */
1415 		return;
1416 	} else if (PRC_IS_REDIRECT(cmd))
1417 		notify = in6_rtchange, d = NULL;
1418 	else if (cmd == PRC_MSGSIZE)
1419 		; /* special code is present, see below */
1420 	else if (cmd == PRC_HOSTDEAD)
1421 		d = NULL;
1422 	else if (inet6ctlerrmap[cmd] == 0)
1423 		return;
1424 
1425 	/* if the parameter is from icmp6, decode it. */
1426 	if (d != NULL) {
1427 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1428 		m = ip6cp->ip6c_m;
1429 		ip6 = ip6cp->ip6c_ip6;
1430 		off = ip6cp->ip6c_off;
1431 		sa6_src = ip6cp->ip6c_src;
1432 	} else {
1433 		m = NULL;
1434 		ip6 = NULL;
1435 		sa6_src = &sa6_any;
1436 		off = 0;
1437 	}
1438 
1439 	if (ip6) {
1440 		/*
1441 		 * XXX: We assume that when ip6 is non NULL,
1442 		 * M and OFF are valid.
1443 		 */
1444 
1445 		/* check if we can safely examine src and dst ports */
1446 		if (m->m_pkthdr.len < off + sizeof(th)) {
1447 			if (cmd == PRC_MSGSIZE)
1448 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1449 			return;
1450 		}
1451 
1452 		bzero(&th, sizeof(th));
1453 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
1454 
1455 		if (cmd == PRC_MSGSIZE) {
1456 			int valid = 0;
1457 
1458 			/*
1459 			 * Check to see if we have a valid TCP connection
1460 			 * corresponding to the address in the ICMPv6 message
1461 			 * payload.
1462 			 */
1463 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1464 			    th.th_dport,
1465 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1466 			    th.th_sport, 0))
1467 				valid++;
1468 
1469 			/*
1470 			 * Depending on the value of "valid" and routing table
1471 			 * size (mtudisc_{hi,lo}wat), we will:
1472 			 * - recalcurate the new MTU and create the
1473 			 *   corresponding routing entry, or
1474 			 * - ignore the MTU change notification.
1475 			 */
1476 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1477 
1478 			/*
1479 			 * no need to call in6_pcbnotify, it should have been
1480 			 * called via callback if necessary
1481 			 */
1482 			return;
1483 		}
1484 
1485 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1486 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1487 		if (nmatch == 0 && syn_cache_count &&
1488 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1489 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1490 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1491 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1492 					  sa, &th);
1493 	} else {
1494 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1495 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1496 	}
1497 }
1498 #endif
1499 
1500 #ifdef INET
1501 /* assumes that ip header and tcp header are contiguous on mbuf */
1502 void *
1503 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1504 {
1505 	struct ip *ip = v;
1506 	struct tcphdr *th;
1507 	struct icmp *icp;
1508 	extern const int inetctlerrmap[];
1509 	void (*notify)(struct inpcb *, int) = tcp_notify;
1510 	int errno;
1511 	int nmatch;
1512 	struct tcpcb *tp;
1513 	u_int mtu;
1514 	tcp_seq seq;
1515 	struct inpcb *inp;
1516 #ifdef INET6
1517 	struct in6pcb *in6p;
1518 	struct in6_addr src6, dst6;
1519 #endif
1520 
1521 	if (sa->sa_family != AF_INET ||
1522 	    sa->sa_len != sizeof(struct sockaddr_in))
1523 		return NULL;
1524 	if ((unsigned)cmd >= PRC_NCMDS)
1525 		return NULL;
1526 	errno = inetctlerrmap[cmd];
1527 	if (cmd == PRC_QUENCH)
1528 		/*
1529 		 * Don't honor ICMP Source Quench messages meant for
1530 		 * TCP connections.
1531 		 */
1532 		return NULL;
1533 	else if (PRC_IS_REDIRECT(cmd))
1534 		notify = in_rtchange, ip = 0;
1535 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1536 		/*
1537 		 * Check to see if we have a valid TCP connection
1538 		 * corresponding to the address in the ICMP message
1539 		 * payload.
1540 		 *
1541 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1542 		 */
1543 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1544 #ifdef INET6
1545 		memset(&src6, 0, sizeof(src6));
1546 		memset(&dst6, 0, sizeof(dst6));
1547 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1548 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1549 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1550 #endif
1551 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1552 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1553 #ifdef INET6
1554 			in6p = NULL;
1555 #else
1556 			;
1557 #endif
1558 #ifdef INET6
1559 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1560 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
1561 			;
1562 #endif
1563 		else
1564 			return NULL;
1565 
1566 		/*
1567 		 * Now that we've validated that we are actually communicating
1568 		 * with the host indicated in the ICMP message, locate the
1569 		 * ICMP header, recalculate the new MTU, and create the
1570 		 * corresponding routing entry.
1571 		 */
1572 		icp = (struct icmp *)((caddr_t)ip -
1573 		    offsetof(struct icmp, icmp_ip));
1574 		if (inp) {
1575 			if ((tp = intotcpcb(inp)) == NULL)
1576 				return NULL;
1577 		}
1578 #ifdef INET6
1579 		else if (in6p) {
1580 			if ((tp = in6totcpcb(in6p)) == NULL)
1581 				return NULL;
1582 		}
1583 #endif
1584 		else
1585 			return NULL;
1586 		seq = ntohl(th->th_seq);
1587 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1588 			return NULL;
1589 		/*
1590 		 * If the ICMP message advertises a Next-Hop MTU
1591 		 * equal or larger than the maximum packet size we have
1592 		 * ever sent, drop the message.
1593 		 */
1594 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1595 		if (mtu >= tp->t_pmtud_mtu_sent)
1596 			return NULL;
1597 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1598 			/*
1599 			 * Calculate new MTU, and create corresponding
1600 			 * route (traditional PMTUD).
1601 			 */
1602 			tp->t_flags &= ~TF_PMTUD_PEND;
1603 			icmp_mtudisc(icp, ip->ip_dst);
1604 		} else {
1605 			/*
1606 			 * Record the information got in the ICMP
1607 			 * message; act on it later.
1608 			 * If we had already recorded an ICMP message,
1609 			 * replace the old one only if the new message
1610 			 * refers to an older TCP segment
1611 			 */
1612 			if (tp->t_flags & TF_PMTUD_PEND) {
1613 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1614 					return NULL;
1615 			} else
1616 				tp->t_flags |= TF_PMTUD_PEND;
1617 			tp->t_pmtud_th_seq = seq;
1618 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1619 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1620 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1621 		}
1622 		return NULL;
1623 	} else if (cmd == PRC_HOSTDEAD)
1624 		ip = 0;
1625 	else if (errno == 0)
1626 		return NULL;
1627 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1628 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1629 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1630 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1631 		if (nmatch == 0 && syn_cache_count &&
1632 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1633 		    inetctlerrmap[cmd] == ENETUNREACH ||
1634 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1635 			struct sockaddr_in sin;
1636 			bzero(&sin, sizeof(sin));
1637 			sin.sin_len = sizeof(sin);
1638 			sin.sin_family = AF_INET;
1639 			sin.sin_port = th->th_sport;
1640 			sin.sin_addr = ip->ip_src;
1641 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1642 		}
1643 
1644 		/* XXX mapped address case */
1645 	} else
1646 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1647 		    notify);
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * When a source quench is received, we are being notified of congestion.
1653  * Close the congestion window down to the Loss Window (one segment).
1654  * We will gradually open it again as we proceed.
1655  */
1656 void
1657 tcp_quench(struct inpcb *inp, int errno)
1658 {
1659 	struct tcpcb *tp = intotcpcb(inp);
1660 
1661 	if (tp) {
1662 		tp->snd_cwnd = tp->t_segsz;
1663 		tp->t_bytes_acked = 0;
1664 	}
1665 }
1666 #endif
1667 
1668 #ifdef INET6
1669 void
1670 tcp6_quench(struct in6pcb *in6p, int errno)
1671 {
1672 	struct tcpcb *tp = in6totcpcb(in6p);
1673 
1674 	if (tp) {
1675 		tp->snd_cwnd = tp->t_segsz;
1676 		tp->t_bytes_acked = 0;
1677 	}
1678 }
1679 #endif
1680 
1681 #ifdef INET
1682 /*
1683  * Path MTU Discovery handlers.
1684  */
1685 void
1686 tcp_mtudisc_callback(struct in_addr faddr)
1687 {
1688 #ifdef INET6
1689 	struct in6_addr in6;
1690 #endif
1691 
1692 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1693 #ifdef INET6
1694 	memset(&in6, 0, sizeof(in6));
1695 	in6.s6_addr16[5] = 0xffff;
1696 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1697 	tcp6_mtudisc_callback(&in6);
1698 #endif
1699 }
1700 
1701 /*
1702  * On receipt of path MTU corrections, flush old route and replace it
1703  * with the new one.  Retransmit all unacknowledged packets, to ensure
1704  * that all packets will be received.
1705  */
1706 void
1707 tcp_mtudisc(struct inpcb *inp, int errno)
1708 {
1709 	struct tcpcb *tp = intotcpcb(inp);
1710 	struct rtentry *rt = in_pcbrtentry(inp);
1711 
1712 	if (tp != 0) {
1713 		if (rt != 0) {
1714 			/*
1715 			 * If this was not a host route, remove and realloc.
1716 			 */
1717 			if ((rt->rt_flags & RTF_HOST) == 0) {
1718 				in_rtchange(inp, errno);
1719 				if ((rt = in_pcbrtentry(inp)) == 0)
1720 					return;
1721 			}
1722 
1723 			/*
1724 			 * Slow start out of the error condition.  We
1725 			 * use the MTU because we know it's smaller
1726 			 * than the previously transmitted segment.
1727 			 *
1728 			 * Note: This is more conservative than the
1729 			 * suggestion in draft-floyd-incr-init-win-03.
1730 			 */
1731 			if (rt->rt_rmx.rmx_mtu != 0)
1732 				tp->snd_cwnd =
1733 				    TCP_INITIAL_WINDOW(tcp_init_win,
1734 				    rt->rt_rmx.rmx_mtu);
1735 		}
1736 
1737 		/*
1738 		 * Resend unacknowledged packets.
1739 		 */
1740 		tp->snd_nxt = tp->snd_una;
1741 		tcp_output(tp);
1742 	}
1743 }
1744 #endif
1745 
1746 #ifdef INET6
1747 /*
1748  * Path MTU Discovery handlers.
1749  */
1750 void
1751 tcp6_mtudisc_callback(struct in6_addr *faddr)
1752 {
1753 	struct sockaddr_in6 sin6;
1754 
1755 	bzero(&sin6, sizeof(sin6));
1756 	sin6.sin6_family = AF_INET6;
1757 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1758 	sin6.sin6_addr = *faddr;
1759 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1760 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1761 }
1762 
1763 void
1764 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1765 {
1766 	struct tcpcb *tp = in6totcpcb(in6p);
1767 	struct rtentry *rt = in6_pcbrtentry(in6p);
1768 
1769 	if (tp != 0) {
1770 		if (rt != 0) {
1771 			/*
1772 			 * If this was not a host route, remove and realloc.
1773 			 */
1774 			if ((rt->rt_flags & RTF_HOST) == 0) {
1775 				in6_rtchange(in6p, errno);
1776 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1777 					return;
1778 			}
1779 
1780 			/*
1781 			 * Slow start out of the error condition.  We
1782 			 * use the MTU because we know it's smaller
1783 			 * than the previously transmitted segment.
1784 			 *
1785 			 * Note: This is more conservative than the
1786 			 * suggestion in draft-floyd-incr-init-win-03.
1787 			 */
1788 			if (rt->rt_rmx.rmx_mtu != 0)
1789 				tp->snd_cwnd =
1790 				    TCP_INITIAL_WINDOW(tcp_init_win,
1791 				    rt->rt_rmx.rmx_mtu);
1792 		}
1793 
1794 		/*
1795 		 * Resend unacknowledged packets.
1796 		 */
1797 		tp->snd_nxt = tp->snd_una;
1798 		tcp_output(tp);
1799 	}
1800 }
1801 #endif /* INET6 */
1802 
1803 /*
1804  * Compute the MSS to advertise to the peer.  Called only during
1805  * the 3-way handshake.  If we are the server (peer initiated
1806  * connection), we are called with a pointer to the interface
1807  * on which the SYN packet arrived.  If we are the client (we
1808  * initiated connection), we are called with a pointer to the
1809  * interface out which this connection should go.
1810  *
1811  * NOTE: Do not subtract IP option/extension header size nor IPsec
1812  * header size from MSS advertisement.  MSS option must hold the maximum
1813  * segment size we can accept, so it must always be:
1814  *	 max(if mtu) - ip header - tcp header
1815  */
1816 u_long
1817 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1818 {
1819 	extern u_long in_maxmtu;
1820 	u_long mss = 0;
1821 	u_long hdrsiz;
1822 
1823 	/*
1824 	 * In order to avoid defeating path MTU discovery on the peer,
1825 	 * we advertise the max MTU of all attached networks as our MSS,
1826 	 * per RFC 1191, section 3.1.
1827 	 *
1828 	 * We provide the option to advertise just the MTU of
1829 	 * the interface on which we hope this connection will
1830 	 * be receiving.  If we are responding to a SYN, we
1831 	 * will have a pretty good idea about this, but when
1832 	 * initiating a connection there is a bit more doubt.
1833 	 *
1834 	 * We also need to ensure that loopback has a large enough
1835 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1836 	 */
1837 
1838 	if (ifp != NULL)
1839 		switch (af) {
1840 		case AF_INET:
1841 			mss = ifp->if_mtu;
1842 			break;
1843 #ifdef INET6
1844 		case AF_INET6:
1845 			mss = IN6_LINKMTU(ifp);
1846 			break;
1847 #endif
1848 		}
1849 
1850 	if (tcp_mss_ifmtu == 0)
1851 		switch (af) {
1852 		case AF_INET:
1853 			mss = max(in_maxmtu, mss);
1854 			break;
1855 #ifdef INET6
1856 		case AF_INET6:
1857 			mss = max(in6_maxmtu, mss);
1858 			break;
1859 #endif
1860 		}
1861 
1862 	switch (af) {
1863 	case AF_INET:
1864 		hdrsiz = sizeof(struct ip);
1865 		break;
1866 #ifdef INET6
1867 	case AF_INET6:
1868 		hdrsiz = sizeof(struct ip6_hdr);
1869 		break;
1870 #endif
1871 	default:
1872 		hdrsiz = 0;
1873 		break;
1874 	}
1875 	hdrsiz += sizeof(struct tcphdr);
1876 	if (mss > hdrsiz)
1877 		mss -= hdrsiz;
1878 
1879 	mss = max(tcp_mssdflt, mss);
1880 	return (mss);
1881 }
1882 
1883 /*
1884  * Set connection variables based on the peer's advertised MSS.
1885  * We are passed the TCPCB for the actual connection.  If we
1886  * are the server, we are called by the compressed state engine
1887  * when the 3-way handshake is complete.  If we are the client,
1888  * we are called when we receive the SYN,ACK from the server.
1889  *
1890  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1891  * before this routine is called!
1892  */
1893 void
1894 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1895 {
1896 	struct socket *so;
1897 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1898 	struct rtentry *rt;
1899 #endif
1900 	u_long bufsize;
1901 	int mss;
1902 
1903 #ifdef DIAGNOSTIC
1904 	if (tp->t_inpcb && tp->t_in6pcb)
1905 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1906 #endif
1907 	so = NULL;
1908 	rt = NULL;
1909 #ifdef INET
1910 	if (tp->t_inpcb) {
1911 		so = tp->t_inpcb->inp_socket;
1912 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1913 		rt = in_pcbrtentry(tp->t_inpcb);
1914 #endif
1915 	}
1916 #endif
1917 #ifdef INET6
1918 	if (tp->t_in6pcb) {
1919 		so = tp->t_in6pcb->in6p_socket;
1920 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1921 		rt = in6_pcbrtentry(tp->t_in6pcb);
1922 #endif
1923 	}
1924 #endif
1925 
1926 	/*
1927 	 * As per RFC1122, use the default MSS value, unless they
1928 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1929 	 */
1930 	mss = tcp_mssdflt;
1931 	if (offer)
1932 		mss = offer;
1933 	mss = max(mss, 256);		/* sanity */
1934 	tp->t_peermss = mss;
1935 	mss -= tcp_optlen(tp);
1936 #ifdef INET
1937 	if (tp->t_inpcb)
1938 		mss -= ip_optlen(tp->t_inpcb);
1939 #endif
1940 #ifdef INET6
1941 	if (tp->t_in6pcb)
1942 		mss -= ip6_optlen(tp->t_in6pcb);
1943 #endif
1944 
1945 	/*
1946 	 * If there's a pipesize, change the socket buffer to that size.
1947 	 * Make the socket buffer an integral number of MSS units.  If
1948 	 * the MSS is larger than the socket buffer, artificially decrease
1949 	 * the MSS.
1950 	 */
1951 #ifdef RTV_SPIPE
1952 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1953 		bufsize = rt->rt_rmx.rmx_sendpipe;
1954 	else
1955 #endif
1956 	{
1957 		KASSERT(so != NULL);
1958 		bufsize = so->so_snd.sb_hiwat;
1959 	}
1960 	if (bufsize < mss)
1961 		mss = bufsize;
1962 	else {
1963 		bufsize = roundup(bufsize, mss);
1964 		if (bufsize > sb_max)
1965 			bufsize = sb_max;
1966 		(void) sbreserve(&so->so_snd, bufsize, so);
1967 	}
1968 	tp->t_segsz = mss;
1969 
1970 #ifdef RTV_SSTHRESH
1971 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1972 		/*
1973 		 * There's some sort of gateway or interface buffer
1974 		 * limit on the path.  Use this to set the slow
1975 		 * start threshold, but set the threshold to no less
1976 		 * than 2 * MSS.
1977 		 */
1978 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1979 	}
1980 #endif
1981 }
1982 
1983 /*
1984  * Processing necessary when a TCP connection is established.
1985  */
1986 void
1987 tcp_established(struct tcpcb *tp)
1988 {
1989 	struct socket *so;
1990 #ifdef RTV_RPIPE
1991 	struct rtentry *rt;
1992 #endif
1993 	u_long bufsize;
1994 
1995 #ifdef DIAGNOSTIC
1996 	if (tp->t_inpcb && tp->t_in6pcb)
1997 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
1998 #endif
1999 	so = NULL;
2000 	rt = NULL;
2001 #ifdef INET
2002 	if (tp->t_inpcb) {
2003 		so = tp->t_inpcb->inp_socket;
2004 #if defined(RTV_RPIPE)
2005 		rt = in_pcbrtentry(tp->t_inpcb);
2006 #endif
2007 	}
2008 #endif
2009 #ifdef INET6
2010 	if (tp->t_in6pcb) {
2011 		so = tp->t_in6pcb->in6p_socket;
2012 #if defined(RTV_RPIPE)
2013 		rt = in6_pcbrtentry(tp->t_in6pcb);
2014 #endif
2015 	}
2016 #endif
2017 
2018 	tp->t_state = TCPS_ESTABLISHED;
2019 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
2020 
2021 #ifdef RTV_RPIPE
2022 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2023 		bufsize = rt->rt_rmx.rmx_recvpipe;
2024 	else
2025 #endif
2026 	{
2027 		KASSERT(so != NULL);
2028 		bufsize = so->so_rcv.sb_hiwat;
2029 	}
2030 	if (bufsize > tp->t_ourmss) {
2031 		bufsize = roundup(bufsize, tp->t_ourmss);
2032 		if (bufsize > sb_max)
2033 			bufsize = sb_max;
2034 		(void) sbreserve(&so->so_rcv, bufsize, so);
2035 	}
2036 }
2037 
2038 /*
2039  * Check if there's an initial rtt or rttvar.  Convert from the
2040  * route-table units to scaled multiples of the slow timeout timer.
2041  * Called only during the 3-way handshake.
2042  */
2043 void
2044 tcp_rmx_rtt(struct tcpcb *tp)
2045 {
2046 #ifdef RTV_RTT
2047 	struct rtentry *rt = NULL;
2048 	int rtt;
2049 
2050 #ifdef DIAGNOSTIC
2051 	if (tp->t_inpcb && tp->t_in6pcb)
2052 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2053 #endif
2054 #ifdef INET
2055 	if (tp->t_inpcb)
2056 		rt = in_pcbrtentry(tp->t_inpcb);
2057 #endif
2058 #ifdef INET6
2059 	if (tp->t_in6pcb)
2060 		rt = in6_pcbrtentry(tp->t_in6pcb);
2061 #endif
2062 	if (rt == NULL)
2063 		return;
2064 
2065 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2066 		/*
2067 		 * XXX The lock bit for MTU indicates that the value
2068 		 * is also a minimum value; this is subject to time.
2069 		 */
2070 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2071 			TCPT_RANGESET(tp->t_rttmin,
2072 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2073 			    TCPTV_MIN, TCPTV_REXMTMAX);
2074 		tp->t_srtt = rtt /
2075 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2076 		if (rt->rt_rmx.rmx_rttvar) {
2077 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2078 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2079 				(TCP_RTTVAR_SHIFT + 2));
2080 		} else {
2081 			/* Default variation is +- 1 rtt */
2082 			tp->t_rttvar =
2083 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2084 		}
2085 		TCPT_RANGESET(tp->t_rxtcur,
2086 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2087 		    tp->t_rttmin, TCPTV_REXMTMAX);
2088 	}
2089 #endif
2090 }
2091 
2092 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2093 #if NRND > 0
2094 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2095 #endif
2096 
2097 /*
2098  * Get a new sequence value given a tcp control block
2099  */
2100 tcp_seq
2101 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2102 {
2103 
2104 #ifdef INET
2105 	if (tp->t_inpcb != NULL) {
2106 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2107 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2108 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2109 		    addin));
2110 	}
2111 #endif
2112 #ifdef INET6
2113 	if (tp->t_in6pcb != NULL) {
2114 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2115 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2116 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2117 		    addin));
2118 	}
2119 #endif
2120 	/* Not possible. */
2121 	panic("tcp_new_iss");
2122 }
2123 
2124 /*
2125  * This routine actually generates a new TCP initial sequence number.
2126  */
2127 tcp_seq
2128 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2129     size_t addrsz, tcp_seq addin)
2130 {
2131 	tcp_seq tcp_iss;
2132 
2133 #if NRND > 0
2134 	static int beenhere;
2135 
2136 	/*
2137 	 * If we haven't been here before, initialize our cryptographic
2138 	 * hash secret.
2139 	 */
2140 	if (beenhere == 0) {
2141 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2142 		    RND_EXTRACT_ANY);
2143 		beenhere = 1;
2144 	}
2145 
2146 	if (tcp_do_rfc1948) {
2147 		MD5_CTX ctx;
2148 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2149 
2150 		/*
2151 		 * Compute the base value of the ISS.  It is a hash
2152 		 * of (saddr, sport, daddr, dport, secret).
2153 		 */
2154 		MD5Init(&ctx);
2155 
2156 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2157 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2158 
2159 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2160 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2161 
2162 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2163 
2164 		MD5Final(hash, &ctx);
2165 
2166 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2167 
2168 		/*
2169 		 * Now increment our "timer", and add it in to
2170 		 * the computed value.
2171 		 *
2172 		 * XXX Use `addin'?
2173 		 * XXX TCP_ISSINCR too large to use?
2174 		 */
2175 		tcp_iss_seq += TCP_ISSINCR;
2176 #ifdef TCPISS_DEBUG
2177 		printf("ISS hash 0x%08x, ", tcp_iss);
2178 #endif
2179 		tcp_iss += tcp_iss_seq + addin;
2180 #ifdef TCPISS_DEBUG
2181 		printf("new ISS 0x%08x\n", tcp_iss);
2182 #endif
2183 	} else
2184 #endif /* NRND > 0 */
2185 	{
2186 		/*
2187 		 * Randomize.
2188 		 */
2189 #if NRND > 0
2190 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2191 #else
2192 		tcp_iss = arc4random();
2193 #endif
2194 
2195 		/*
2196 		 * If we were asked to add some amount to a known value,
2197 		 * we will take a random value obtained above, mask off
2198 		 * the upper bits, and add in the known value.  We also
2199 		 * add in a constant to ensure that we are at least a
2200 		 * certain distance from the original value.
2201 		 *
2202 		 * This is used when an old connection is in timed wait
2203 		 * and we have a new one coming in, for instance.
2204 		 */
2205 		if (addin != 0) {
2206 #ifdef TCPISS_DEBUG
2207 			printf("Random %08x, ", tcp_iss);
2208 #endif
2209 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2210 			tcp_iss += addin + TCP_ISSINCR;
2211 #ifdef TCPISS_DEBUG
2212 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2213 #endif
2214 		} else {
2215 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2216 			tcp_iss += tcp_iss_seq;
2217 			tcp_iss_seq += TCP_ISSINCR;
2218 #ifdef TCPISS_DEBUG
2219 			printf("ISS %08x\n", tcp_iss);
2220 #endif
2221 		}
2222 	}
2223 
2224 	if (tcp_compat_42) {
2225 		/*
2226 		 * Limit it to the positive range for really old TCP
2227 		 * implementations.
2228 		 * Just AND off the top bit instead of checking if
2229 		 * is set first - saves a branch 50% of the time.
2230 		 */
2231 		tcp_iss &= 0x7fffffff;		/* XXX */
2232 	}
2233 
2234 	return (tcp_iss);
2235 }
2236 
2237 #if defined(IPSEC) || defined(FAST_IPSEC)
2238 /* compute ESP/AH header size for TCP, including outer IP header. */
2239 size_t
2240 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2241 {
2242 	struct inpcb *inp;
2243 	size_t hdrsiz;
2244 
2245 	/* XXX mapped addr case (tp->t_in6pcb) */
2246 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2247 		return 0;
2248 	switch (tp->t_family) {
2249 	case AF_INET:
2250 		/* XXX: should use currect direction. */
2251 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2252 		break;
2253 	default:
2254 		hdrsiz = 0;
2255 		break;
2256 	}
2257 
2258 	return hdrsiz;
2259 }
2260 
2261 #ifdef INET6
2262 size_t
2263 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2264 {
2265 	struct in6pcb *in6p;
2266 	size_t hdrsiz;
2267 
2268 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2269 		return 0;
2270 	switch (tp->t_family) {
2271 	case AF_INET6:
2272 		/* XXX: should use currect direction. */
2273 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2274 		break;
2275 	case AF_INET:
2276 		/* mapped address case - tricky */
2277 	default:
2278 		hdrsiz = 0;
2279 		break;
2280 	}
2281 
2282 	return hdrsiz;
2283 }
2284 #endif
2285 #endif /*IPSEC*/
2286 
2287 /*
2288  * Determine the length of the TCP options for this connection.
2289  *
2290  * XXX:  What do we do for SACK, when we add that?  Just reserve
2291  *       all of the space?  Otherwise we can't exactly be incrementing
2292  *       cwnd by an amount that varies depending on the amount we last
2293  *       had to SACK!
2294  */
2295 
2296 u_int
2297 tcp_optlen(struct tcpcb *tp)
2298 {
2299 	u_int optlen;
2300 
2301 	optlen = 0;
2302 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2303 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2304 		optlen += TCPOLEN_TSTAMP_APPA;
2305 
2306 #ifdef TCP_SIGNATURE
2307 	if (tp->t_flags & TF_SIGNATURE)
2308 		optlen += TCPOLEN_SIGNATURE + 2;
2309 #endif /* TCP_SIGNATURE */
2310 
2311 	return optlen;
2312 }
2313 
2314 u_int
2315 tcp_hdrsz(struct tcpcb *tp)
2316 {
2317 	u_int hlen;
2318 
2319 	switch (tp->t_family) {
2320 #ifdef INET6
2321 	case AF_INET6:
2322 		hlen = sizeof(struct ip6_hdr);
2323 		break;
2324 #endif
2325 	case AF_INET:
2326 		hlen = sizeof(struct ip);
2327 		break;
2328 	default:
2329 		hlen = 0;
2330 		break;
2331 	}
2332 	hlen += sizeof(struct tcphdr);
2333 
2334 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2335 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2336 		hlen += TCPOLEN_TSTAMP_APPA;
2337 #ifdef TCP_SIGNATURE
2338 	if (tp->t_flags & TF_SIGNATURE)
2339 		hlen += TCPOLEN_SIGLEN;
2340 #endif
2341 	return hlen;
2342 }
2343