xref: /netbsd-src/sys/netinet/tcp_subr.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: tcp_subr.c,v 1.218 2007/08/02 02:42:41 rmind Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. Neither the name of the University nor the names of its contributors
82  *    may be used to endorse or promote products derived from this software
83  *    without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.218 2007/08/02 02:42:41 rmind Exp $");
102 
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109 
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125 
126 #include <net/route.h>
127 #include <net/if.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135 
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148 
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcp_congctl.h>
155 #include <netinet/tcpip.h>
156 
157 #ifdef IPSEC
158 #include <netinet6/ipsec.h>
159 #include <netkey/key.h>
160 #endif /*IPSEC*/
161 
162 #ifdef FAST_IPSEC
163 #include <netipsec/ipsec.h>
164 #include <netipsec/xform.h>
165 #ifdef INET6
166 #include <netipsec/ipsec6.h>
167 #endif
168  #include <netipsec/key.h>
169 #endif	/* FAST_IPSEC*/
170 
171 
172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
173 struct	tcpstat tcpstat;	/* tcp statistics */
174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
175 
176 /* patchable/settable parameters for tcp */
177 int 	tcp_mssdflt = TCP_MSS;
178 int	tcp_minmss = TCP_MINMSS;
179 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
180 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
181 #if NRND > 0
182 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
183 #endif
184 int	tcp_do_sack = 1;	/* selective acknowledgement */
185 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
186 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
187 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
188 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
189 #ifndef TCP_INIT_WIN
190 #define	TCP_INIT_WIN	0	/* initial slow start window */
191 #endif
192 #ifndef TCP_INIT_WIN_LOCAL
193 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
194 #endif
195 int	tcp_init_win = TCP_INIT_WIN;
196 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
197 int	tcp_mss_ifmtu = 0;
198 #ifdef TCP_COMPAT_42
199 int	tcp_compat_42 = 1;
200 #else
201 int	tcp_compat_42 = 0;
202 #endif
203 int	tcp_rst_ppslim = 100;	/* 100pps */
204 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
205 int	tcp_do_loopback_cksum = 0;
206 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
207 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
208 int	tcp_sack_tp_maxholes = 32;
209 int	tcp_sack_globalmaxholes = 1024;
210 int	tcp_sack_globalholes = 0;
211 int	tcp_ecn_maxretries = 1;
212 
213 /* tcb hash */
214 #ifndef TCBHASHSIZE
215 #define	TCBHASHSIZE	128
216 #endif
217 int	tcbhashsize = TCBHASHSIZE;
218 
219 /* syn hash parameters */
220 #define	TCP_SYN_HASH_SIZE	293
221 #define	TCP_SYN_BUCKET_SIZE	35
222 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
223 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
224 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
225 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
226 
227 int	tcp_freeq(struct tcpcb *);
228 
229 #ifdef INET
230 void	tcp_mtudisc_callback(struct in_addr);
231 #endif
232 #ifdef INET6
233 void	tcp6_mtudisc_callback(struct in6_addr *);
234 #endif
235 
236 #ifdef INET6
237 void	tcp6_mtudisc(struct in6pcb *, int);
238 #endif
239 
240 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
241     IPL_SOFTNET);
242 
243 #ifdef TCP_CSUM_COUNTERS
244 #include <sys/device.h>
245 
246 #if defined(INET)
247 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248     NULL, "tcp", "hwcsum bad");
249 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250     NULL, "tcp", "hwcsum ok");
251 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252     NULL, "tcp", "hwcsum data");
253 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254     NULL, "tcp", "swcsum");
255 
256 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
257 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
258 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
259 EVCNT_ATTACH_STATIC(tcp_swcsum);
260 #endif /* defined(INET) */
261 
262 #if defined(INET6)
263 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp6", "hwcsum bad");
265 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266     NULL, "tcp6", "hwcsum ok");
267 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268     NULL, "tcp6", "hwcsum data");
269 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270     NULL, "tcp6", "swcsum");
271 
272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
275 EVCNT_ATTACH_STATIC(tcp6_swcsum);
276 #endif /* defined(INET6) */
277 #endif /* TCP_CSUM_COUNTERS */
278 
279 
280 #ifdef TCP_OUTPUT_COUNTERS
281 #include <sys/device.h>
282 
283 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp", "output big header");
285 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output predict hit");
287 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output predict miss");
289 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290     NULL, "tcp", "output copy small");
291 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292     NULL, "tcp", "output copy big");
293 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294     NULL, "tcp", "output reference big");
295 
296 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
297 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
298 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
299 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
300 EVCNT_ATTACH_STATIC(tcp_output_copybig);
301 EVCNT_ATTACH_STATIC(tcp_output_refbig);
302 
303 #endif /* TCP_OUTPUT_COUNTERS */
304 
305 #ifdef TCP_REASS_COUNTERS
306 #include <sys/device.h>
307 
308 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309     NULL, "tcp_reass", "calls");
310 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311     &tcp_reass_, "tcp_reass", "insert into empty queue");
312 struct evcnt tcp_reass_iteration[8] = {
313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
321 };
322 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323     &tcp_reass_, "tcp_reass", "prepend to first");
324 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "prepend");
326 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "insert");
328 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "insert at tail");
330 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "append");
332 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "append to tail fragment");
334 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "overlap at end");
336 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337     &tcp_reass_, "tcp_reass", "overlap at start");
338 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339     &tcp_reass_, "tcp_reass", "duplicate segment");
340 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
341     &tcp_reass_, "tcp_reass", "duplicate fragment");
342 
343 EVCNT_ATTACH_STATIC(tcp_reass_);
344 EVCNT_ATTACH_STATIC(tcp_reass_empty);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
353 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
354 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
355 EVCNT_ATTACH_STATIC(tcp_reass_insert);
356 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
357 EVCNT_ATTACH_STATIC(tcp_reass_append);
358 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
359 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
360 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
361 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
362 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
363 
364 #endif /* TCP_REASS_COUNTERS */
365 
366 #ifdef MBUFTRACE
367 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
368 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
369 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
370 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
371 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
372 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
373 #endif
374 
375 /*
376  * Tcp initialization
377  */
378 void
379 tcp_init(void)
380 {
381 	int hlen;
382 
383 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
384 
385 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
386 #ifdef INET6
387 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
388 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
389 #endif
390 	if (max_protohdr < hlen)
391 		max_protohdr = hlen;
392 	if (max_linkhdr + hlen > MHLEN)
393 		panic("tcp_init");
394 
395 #ifdef INET
396 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
397 #endif
398 #ifdef INET6
399 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
400 #endif
401 
402 	/* Initialize timer state. */
403 	tcp_timer_init();
404 
405 	/* Initialize the compressed state engine. */
406 	syn_cache_init();
407 
408 	/* Initialize the congestion control algorithms. */
409 	tcp_congctl_init();
410 
411 	/* Initialize the TCPCB template. */
412 	tcp_tcpcb_template();
413 
414 	MOWNER_ATTACH(&tcp_tx_mowner);
415 	MOWNER_ATTACH(&tcp_rx_mowner);
416 	MOWNER_ATTACH(&tcp_reass_mowner);
417 	MOWNER_ATTACH(&tcp_sock_mowner);
418 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
419 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
420 	MOWNER_ATTACH(&tcp_mowner);
421 }
422 
423 /*
424  * Create template to be used to send tcp packets on a connection.
425  * Call after host entry created, allocates an mbuf and fills
426  * in a skeletal tcp/ip header, minimizing the amount of work
427  * necessary when the connection is used.
428  */
429 struct mbuf *
430 tcp_template(struct tcpcb *tp)
431 {
432 	struct inpcb *inp = tp->t_inpcb;
433 #ifdef INET6
434 	struct in6pcb *in6p = tp->t_in6pcb;
435 #endif
436 	struct tcphdr *n;
437 	struct mbuf *m;
438 	int hlen;
439 
440 	switch (tp->t_family) {
441 	case AF_INET:
442 		hlen = sizeof(struct ip);
443 		if (inp)
444 			break;
445 #ifdef INET6
446 		if (in6p) {
447 			/* mapped addr case */
448 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
449 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
450 				break;
451 		}
452 #endif
453 		return NULL;	/*EINVAL*/
454 #ifdef INET6
455 	case AF_INET6:
456 		hlen = sizeof(struct ip6_hdr);
457 		if (in6p) {
458 			/* more sainty check? */
459 			break;
460 		}
461 		return NULL;	/*EINVAL*/
462 #endif
463 	default:
464 		hlen = 0;	/*pacify gcc*/
465 		return NULL;	/*EAFNOSUPPORT*/
466 	}
467 #ifdef DIAGNOSTIC
468 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
469 		panic("mclbytes too small for t_template");
470 #endif
471 	m = tp->t_template;
472 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
473 		;
474 	else {
475 		if (m)
476 			m_freem(m);
477 		m = tp->t_template = NULL;
478 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
479 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
480 			MCLGET(m, M_DONTWAIT);
481 			if ((m->m_flags & M_EXT) == 0) {
482 				m_free(m);
483 				m = NULL;
484 			}
485 		}
486 		if (m == NULL)
487 			return NULL;
488 		MCLAIM(m, &tcp_mowner);
489 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
490 	}
491 
492 	bzero(mtod(m, void *), m->m_len);
493 
494 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
495 
496 	switch (tp->t_family) {
497 	case AF_INET:
498 	    {
499 		struct ipovly *ipov;
500 		mtod(m, struct ip *)->ip_v = 4;
501 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
502 		ipov = mtod(m, struct ipovly *);
503 		ipov->ih_pr = IPPROTO_TCP;
504 		ipov->ih_len = htons(sizeof(struct tcphdr));
505 		if (inp) {
506 			ipov->ih_src = inp->inp_laddr;
507 			ipov->ih_dst = inp->inp_faddr;
508 		}
509 #ifdef INET6
510 		else if (in6p) {
511 			/* mapped addr case */
512 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
513 				sizeof(ipov->ih_src));
514 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
515 				sizeof(ipov->ih_dst));
516 		}
517 #endif
518 		/*
519 		 * Compute the pseudo-header portion of the checksum
520 		 * now.  We incrementally add in the TCP option and
521 		 * payload lengths later, and then compute the TCP
522 		 * checksum right before the packet is sent off onto
523 		 * the wire.
524 		 */
525 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
526 		    ipov->ih_dst.s_addr,
527 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
528 		break;
529 	    }
530 #ifdef INET6
531 	case AF_INET6:
532 	    {
533 		struct ip6_hdr *ip6;
534 		mtod(m, struct ip *)->ip_v = 6;
535 		ip6 = mtod(m, struct ip6_hdr *);
536 		ip6->ip6_nxt = IPPROTO_TCP;
537 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
538 		ip6->ip6_src = in6p->in6p_laddr;
539 		ip6->ip6_dst = in6p->in6p_faddr;
540 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
541 		if (ip6_auto_flowlabel) {
542 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
543 			ip6->ip6_flow |=
544 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
545 		}
546 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
547 		ip6->ip6_vfc |= IPV6_VERSION;
548 
549 		/*
550 		 * Compute the pseudo-header portion of the checksum
551 		 * now.  We incrementally add in the TCP option and
552 		 * payload lengths later, and then compute the TCP
553 		 * checksum right before the packet is sent off onto
554 		 * the wire.
555 		 */
556 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
557 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
558 		    htonl(IPPROTO_TCP));
559 		break;
560 	    }
561 #endif
562 	}
563 	if (inp) {
564 		n->th_sport = inp->inp_lport;
565 		n->th_dport = inp->inp_fport;
566 	}
567 #ifdef INET6
568 	else if (in6p) {
569 		n->th_sport = in6p->in6p_lport;
570 		n->th_dport = in6p->in6p_fport;
571 	}
572 #endif
573 	n->th_seq = 0;
574 	n->th_ack = 0;
575 	n->th_x2 = 0;
576 	n->th_off = 5;
577 	n->th_flags = 0;
578 	n->th_win = 0;
579 	n->th_urp = 0;
580 	return (m);
581 }
582 
583 /*
584  * Send a single message to the TCP at address specified by
585  * the given TCP/IP header.  If m == 0, then we make a copy
586  * of the tcpiphdr at ti and send directly to the addressed host.
587  * This is used to force keep alive messages out using the TCP
588  * template for a connection tp->t_template.  If flags are given
589  * then we send a message back to the TCP which originated the
590  * segment ti, and discard the mbuf containing it and any other
591  * attached mbufs.
592  *
593  * In any case the ack and sequence number of the transmitted
594  * segment are as specified by the parameters.
595  */
596 int
597 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
598     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
599 {
600 	struct route *ro;
601 	int error, tlen, win = 0;
602 	int hlen;
603 	struct ip *ip;
604 #ifdef INET6
605 	struct ip6_hdr *ip6;
606 #endif
607 	int family;	/* family on packet, not inpcb/in6pcb! */
608 	struct tcphdr *th;
609 	struct socket *so;
610 
611 	if (tp != NULL && (flags & TH_RST) == 0) {
612 #ifdef DIAGNOSTIC
613 		if (tp->t_inpcb && tp->t_in6pcb)
614 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
615 #endif
616 #ifdef INET
617 		if (tp->t_inpcb)
618 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
619 #endif
620 #ifdef INET6
621 		if (tp->t_in6pcb)
622 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
623 #endif
624 	}
625 
626 	th = NULL;	/* Quell uninitialized warning */
627 	ip = NULL;
628 #ifdef INET6
629 	ip6 = NULL;
630 #endif
631 	if (m == 0) {
632 		if (!template)
633 			return EINVAL;
634 
635 		/* get family information from template */
636 		switch (mtod(template, struct ip *)->ip_v) {
637 		case 4:
638 			family = AF_INET;
639 			hlen = sizeof(struct ip);
640 			break;
641 #ifdef INET6
642 		case 6:
643 			family = AF_INET6;
644 			hlen = sizeof(struct ip6_hdr);
645 			break;
646 #endif
647 		default:
648 			return EAFNOSUPPORT;
649 		}
650 
651 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
652 		if (m) {
653 			MCLAIM(m, &tcp_tx_mowner);
654 			MCLGET(m, M_DONTWAIT);
655 			if ((m->m_flags & M_EXT) == 0) {
656 				m_free(m);
657 				m = NULL;
658 			}
659 		}
660 		if (m == NULL)
661 			return (ENOBUFS);
662 
663 		if (tcp_compat_42)
664 			tlen = 1;
665 		else
666 			tlen = 0;
667 
668 		m->m_data += max_linkhdr;
669 		bcopy(mtod(template, void *), mtod(m, void *),
670 			template->m_len);
671 		switch (family) {
672 		case AF_INET:
673 			ip = mtod(m, struct ip *);
674 			th = (struct tcphdr *)(ip + 1);
675 			break;
676 #ifdef INET6
677 		case AF_INET6:
678 			ip6 = mtod(m, struct ip6_hdr *);
679 			th = (struct tcphdr *)(ip6 + 1);
680 			break;
681 #endif
682 #if 0
683 		default:
684 			/* noone will visit here */
685 			m_freem(m);
686 			return EAFNOSUPPORT;
687 #endif
688 		}
689 		flags = TH_ACK;
690 	} else {
691 
692 		if ((m->m_flags & M_PKTHDR) == 0) {
693 #if 0
694 			printf("non PKTHDR to tcp_respond\n");
695 #endif
696 			m_freem(m);
697 			return EINVAL;
698 		}
699 #ifdef DIAGNOSTIC
700 		if (!th0)
701 			panic("th0 == NULL in tcp_respond");
702 #endif
703 
704 		/* get family information from m */
705 		switch (mtod(m, struct ip *)->ip_v) {
706 		case 4:
707 			family = AF_INET;
708 			hlen = sizeof(struct ip);
709 			ip = mtod(m, struct ip *);
710 			break;
711 #ifdef INET6
712 		case 6:
713 			family = AF_INET6;
714 			hlen = sizeof(struct ip6_hdr);
715 			ip6 = mtod(m, struct ip6_hdr *);
716 			break;
717 #endif
718 		default:
719 			m_freem(m);
720 			return EAFNOSUPPORT;
721 		}
722 		/* clear h/w csum flags inherited from rx packet */
723 		m->m_pkthdr.csum_flags = 0;
724 
725 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
726 			tlen = sizeof(*th0);
727 		else
728 			tlen = th0->th_off << 2;
729 
730 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
731 		    mtod(m, char *) + hlen == (char *)th0) {
732 			m->m_len = hlen + tlen;
733 			m_freem(m->m_next);
734 			m->m_next = NULL;
735 		} else {
736 			struct mbuf *n;
737 
738 #ifdef DIAGNOSTIC
739 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
740 				m_freem(m);
741 				return EMSGSIZE;
742 			}
743 #endif
744 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
745 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
746 				MCLGET(n, M_DONTWAIT);
747 				if ((n->m_flags & M_EXT) == 0) {
748 					m_freem(n);
749 					n = NULL;
750 				}
751 			}
752 			if (!n) {
753 				m_freem(m);
754 				return ENOBUFS;
755 			}
756 
757 			MCLAIM(n, &tcp_tx_mowner);
758 			n->m_data += max_linkhdr;
759 			n->m_len = hlen + tlen;
760 			m_copyback(n, 0, hlen, mtod(m, void *));
761 			m_copyback(n, hlen, tlen, (void *)th0);
762 
763 			m_freem(m);
764 			m = n;
765 			n = NULL;
766 		}
767 
768 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
769 		switch (family) {
770 		case AF_INET:
771 			ip = mtod(m, struct ip *);
772 			th = (struct tcphdr *)(ip + 1);
773 			ip->ip_p = IPPROTO_TCP;
774 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
775 			ip->ip_p = IPPROTO_TCP;
776 			break;
777 #ifdef INET6
778 		case AF_INET6:
779 			ip6 = mtod(m, struct ip6_hdr *);
780 			th = (struct tcphdr *)(ip6 + 1);
781 			ip6->ip6_nxt = IPPROTO_TCP;
782 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
783 			ip6->ip6_nxt = IPPROTO_TCP;
784 			break;
785 #endif
786 #if 0
787 		default:
788 			/* noone will visit here */
789 			m_freem(m);
790 			return EAFNOSUPPORT;
791 #endif
792 		}
793 		xchg(th->th_dport, th->th_sport, u_int16_t);
794 #undef xchg
795 		tlen = 0;	/*be friendly with the following code*/
796 	}
797 	th->th_seq = htonl(seq);
798 	th->th_ack = htonl(ack);
799 	th->th_x2 = 0;
800 	if ((flags & TH_SYN) == 0) {
801 		if (tp)
802 			win >>= tp->rcv_scale;
803 		if (win > TCP_MAXWIN)
804 			win = TCP_MAXWIN;
805 		th->th_win = htons((u_int16_t)win);
806 		th->th_off = sizeof (struct tcphdr) >> 2;
807 		tlen += sizeof(*th);
808 	} else
809 		tlen += th->th_off << 2;
810 	m->m_len = hlen + tlen;
811 	m->m_pkthdr.len = hlen + tlen;
812 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
813 	th->th_flags = flags;
814 	th->th_urp = 0;
815 
816 	switch (family) {
817 #ifdef INET
818 	case AF_INET:
819 	    {
820 		struct ipovly *ipov = (struct ipovly *)ip;
821 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
822 		ipov->ih_len = htons((u_int16_t)tlen);
823 
824 		th->th_sum = 0;
825 		th->th_sum = in_cksum(m, hlen + tlen);
826 		ip->ip_len = htons(hlen + tlen);
827 		ip->ip_ttl = ip_defttl;
828 		break;
829 	    }
830 #endif
831 #ifdef INET6
832 	case AF_INET6:
833 	    {
834 		th->th_sum = 0;
835 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
836 				tlen);
837 		ip6->ip6_plen = htons(tlen);
838 		if (tp && tp->t_in6pcb) {
839 			struct ifnet *oifp;
840 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
841 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
842 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
843 		} else
844 			ip6->ip6_hlim = ip6_defhlim;
845 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
846 		if (ip6_auto_flowlabel) {
847 			ip6->ip6_flow |=
848 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
849 		}
850 		break;
851 	    }
852 #endif
853 	}
854 
855 	if (tp && tp->t_inpcb)
856 		so = tp->t_inpcb->inp_socket;
857 #ifdef INET6
858 	else if (tp && tp->t_in6pcb)
859 		so = tp->t_in6pcb->in6p_socket;
860 #endif
861 	else
862 		so = NULL;
863 
864 	if (tp != NULL && tp->t_inpcb != NULL) {
865 		ro = &tp->t_inpcb->inp_route;
866 #ifdef DIAGNOSTIC
867 		if (family != AF_INET)
868 			panic("tcp_respond: address family mismatch");
869 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
870 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
871 			    ntohl(ip->ip_dst.s_addr),
872 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
873 		}
874 #endif
875 	}
876 #ifdef INET6
877 	else if (tp != NULL && tp->t_in6pcb != NULL) {
878 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
879 #ifdef DIAGNOSTIC
880 		if (family == AF_INET) {
881 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
882 				panic("tcp_respond: not mapped addr");
883 			if (bcmp(&ip->ip_dst,
884 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
885 			    sizeof(ip->ip_dst)) != 0) {
886 				panic("tcp_respond: ip_dst != in6p_faddr");
887 			}
888 		} else if (family == AF_INET6) {
889 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
890 			    &tp->t_in6pcb->in6p_faddr))
891 				panic("tcp_respond: ip6_dst != in6p_faddr");
892 		} else
893 			panic("tcp_respond: address family mismatch");
894 #endif
895 	}
896 #endif
897 	else
898 		ro = NULL;
899 
900 	switch (family) {
901 #ifdef INET
902 	case AF_INET:
903 		error = ip_output(m, NULL, ro,
904 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
905 		    (struct ip_moptions *)0, so);
906 		break;
907 #endif
908 #ifdef INET6
909 	case AF_INET6:
910 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
911 		break;
912 #endif
913 	default:
914 		error = EAFNOSUPPORT;
915 		break;
916 	}
917 
918 	return (error);
919 }
920 
921 /*
922  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
923  * a bunch of members individually, we maintain this template for the
924  * static and mostly-static components of the TCPCB, and copy it into
925  * the new TCPCB instead.
926  */
927 static struct tcpcb tcpcb_template = {
928 	.t_srtt = TCPTV_SRTTBASE,
929 	.t_rttmin = TCPTV_MIN,
930 
931 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
932 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
933 	.snd_numholes = 0,
934 
935 	.t_partialacks = -1,
936 	.t_bytes_acked = 0,
937 };
938 
939 /*
940  * Updates the TCPCB template whenever a parameter that would affect
941  * the template is changed.
942  */
943 void
944 tcp_tcpcb_template(void)
945 {
946 	struct tcpcb *tp = &tcpcb_template;
947 	int flags;
948 
949 	tp->t_peermss = tcp_mssdflt;
950 	tp->t_ourmss = tcp_mssdflt;
951 	tp->t_segsz = tcp_mssdflt;
952 
953 	flags = 0;
954 	if (tcp_do_rfc1323 && tcp_do_win_scale)
955 		flags |= TF_REQ_SCALE;
956 	if (tcp_do_rfc1323 && tcp_do_timestamps)
957 		flags |= TF_REQ_TSTMP;
958 	tp->t_flags = flags;
959 
960 	/*
961 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
962 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
963 	 * reasonable initial retransmit time.
964 	 */
965 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
966 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
967 	    TCPTV_MIN, TCPTV_REXMTMAX);
968 
969 	/* Keep Alive */
970 	tp->t_keepinit = tcp_keepinit;
971 	tp->t_keepidle = tcp_keepidle;
972 	tp->t_keepintvl = tcp_keepintvl;
973 	tp->t_keepcnt = tcp_keepcnt;
974 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
975 }
976 
977 /*
978  * Create a new TCP control block, making an
979  * empty reassembly queue and hooking it to the argument
980  * protocol control block.
981  */
982 /* family selects inpcb, or in6pcb */
983 struct tcpcb *
984 tcp_newtcpcb(int family, void *aux)
985 {
986 	struct tcpcb *tp;
987 	int i;
988 
989 	/* XXX Consider using a pool_cache for speed. */
990 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
991 	if (tp == NULL)
992 		return (NULL);
993 	memcpy(tp, &tcpcb_template, sizeof(*tp));
994 	TAILQ_INIT(&tp->segq);
995 	TAILQ_INIT(&tp->timeq);
996 	tp->t_family = family;		/* may be overridden later on */
997 	TAILQ_INIT(&tp->snd_holes);
998 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
999 
1000 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
1001 	for (i = 0; i < TCPT_NTIMERS; i++) {
1002 		callout_init(&tp->t_timer[i], 0);
1003 		TCP_TIMER_INIT(tp, i);
1004 	}
1005 	callout_init(&tp->t_delack_ch, 0);
1006 
1007 	switch (family) {
1008 	case AF_INET:
1009 	    {
1010 		struct inpcb *inp = (struct inpcb *)aux;
1011 
1012 		inp->inp_ip.ip_ttl = ip_defttl;
1013 		inp->inp_ppcb = (void *)tp;
1014 
1015 		tp->t_inpcb = inp;
1016 		tp->t_mtudisc = ip_mtudisc;
1017 		break;
1018 	    }
1019 #ifdef INET6
1020 	case AF_INET6:
1021 	    {
1022 		struct in6pcb *in6p = (struct in6pcb *)aux;
1023 
1024 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1025 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1026 					       : NULL);
1027 		in6p->in6p_ppcb = (void *)tp;
1028 
1029 		tp->t_in6pcb = in6p;
1030 		/* for IPv6, always try to run path MTU discovery */
1031 		tp->t_mtudisc = 1;
1032 		break;
1033 	    }
1034 #endif /* INET6 */
1035 	default:
1036 		for (i = 0; i < TCPT_NTIMERS; i++)
1037 			callout_destroy(&tp->t_timer[i]);
1038 		callout_destroy(&tp->t_delack_ch);
1039 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1040 		return (NULL);
1041 	}
1042 
1043 	/*
1044 	 * Initialize our timebase.  When we send timestamps, we take
1045 	 * the delta from tcp_now -- this means each connection always
1046 	 * gets a timebase of 0, which makes it, among other things,
1047 	 * more difficult to determine how long a system has been up,
1048 	 * and thus how many TCP sequence increments have occurred.
1049 	 */
1050 	tp->ts_timebase = tcp_now;
1051 
1052 	tp->t_congctl = tcp_congctl_global;
1053 	tp->t_congctl->refcnt++;
1054 
1055 	return (tp);
1056 }
1057 
1058 /*
1059  * Drop a TCP connection, reporting
1060  * the specified error.  If connection is synchronized,
1061  * then send a RST to peer.
1062  */
1063 struct tcpcb *
1064 tcp_drop(struct tcpcb *tp, int errno)
1065 {
1066 	struct socket *so = NULL;
1067 
1068 #ifdef DIAGNOSTIC
1069 	if (tp->t_inpcb && tp->t_in6pcb)
1070 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1071 #endif
1072 #ifdef INET
1073 	if (tp->t_inpcb)
1074 		so = tp->t_inpcb->inp_socket;
1075 #endif
1076 #ifdef INET6
1077 	if (tp->t_in6pcb)
1078 		so = tp->t_in6pcb->in6p_socket;
1079 #endif
1080 	if (!so)
1081 		return NULL;
1082 
1083 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1084 		tp->t_state = TCPS_CLOSED;
1085 		(void) tcp_output(tp);
1086 		tcpstat.tcps_drops++;
1087 	} else
1088 		tcpstat.tcps_conndrops++;
1089 	if (errno == ETIMEDOUT && tp->t_softerror)
1090 		errno = tp->t_softerror;
1091 	so->so_error = errno;
1092 	return (tcp_close(tp));
1093 }
1094 
1095 /*
1096  * Return whether this tcpcb is marked as dead, indicating
1097  * to the calling timer function that no further action should
1098  * be taken, as we are about to release this tcpcb.  The release
1099  * of the storage will be done if this is the last timer running.
1100  *
1101  * This should be called from the callout handler function after
1102  * callout_ack() is done, so that the number of invoking timer
1103  * functions is 0.
1104  */
1105 int
1106 tcp_isdead(struct tcpcb *tp)
1107 {
1108 	int i, dead = (tp->t_flags & TF_DEAD);
1109 
1110 	if (__predict_false(dead)) {
1111 		if (tcp_timers_invoking(tp) > 0)
1112 				/* not quite there yet -- count separately? */
1113 			return dead;
1114 		tcpstat.tcps_delayed_free++;
1115 		for (i = 0; i < TCPT_NTIMERS; i++)
1116 			callout_destroy(&tp->t_timer[i]);
1117 		callout_destroy(&tp->t_delack_ch);
1118 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_timer.c */
1119 	}
1120 	return dead;
1121 }
1122 
1123 /*
1124  * Close a TCP control block:
1125  *	discard all space held by the tcp
1126  *	discard internet protocol block
1127  *	wake up any sleepers
1128  */
1129 struct tcpcb *
1130 tcp_close(struct tcpcb *tp)
1131 {
1132 	struct inpcb *inp;
1133 #ifdef INET6
1134 	struct in6pcb *in6p;
1135 #endif
1136 	struct socket *so;
1137 #ifdef RTV_RTT
1138 	struct rtentry *rt;
1139 #endif
1140 	struct route *ro;
1141 	int j;
1142 
1143 	inp = tp->t_inpcb;
1144 #ifdef INET6
1145 	in6p = tp->t_in6pcb;
1146 #endif
1147 	so = NULL;
1148 	ro = NULL;
1149 	if (inp) {
1150 		so = inp->inp_socket;
1151 		ro = &inp->inp_route;
1152 	}
1153 #ifdef INET6
1154 	else if (in6p) {
1155 		so = in6p->in6p_socket;
1156 		ro = (struct route *)&in6p->in6p_route;
1157 	}
1158 #endif
1159 
1160 #ifdef RTV_RTT
1161 	/*
1162 	 * If we sent enough data to get some meaningful characteristics,
1163 	 * save them in the routing entry.  'Enough' is arbitrarily
1164 	 * defined as the sendpipesize (default 4K) * 16.  This would
1165 	 * give us 16 rtt samples assuming we only get one sample per
1166 	 * window (the usual case on a long haul net).  16 samples is
1167 	 * enough for the srtt filter to converge to within 5% of the correct
1168 	 * value; fewer samples and we could save a very bogus rtt.
1169 	 *
1170 	 * Don't update the default route's characteristics and don't
1171 	 * update anything that the user "locked".
1172 	 */
1173 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1174 	    ro && (rt = ro->ro_rt) &&
1175 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1176 		u_long i = 0;
1177 
1178 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1179 			i = tp->t_srtt *
1180 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1181 			if (rt->rt_rmx.rmx_rtt && i)
1182 				/*
1183 				 * filter this update to half the old & half
1184 				 * the new values, converting scale.
1185 				 * See route.h and tcp_var.h for a
1186 				 * description of the scaling constants.
1187 				 */
1188 				rt->rt_rmx.rmx_rtt =
1189 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1190 			else
1191 				rt->rt_rmx.rmx_rtt = i;
1192 		}
1193 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1194 			i = tp->t_rttvar *
1195 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1196 			if (rt->rt_rmx.rmx_rttvar && i)
1197 				rt->rt_rmx.rmx_rttvar =
1198 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1199 			else
1200 				rt->rt_rmx.rmx_rttvar = i;
1201 		}
1202 		/*
1203 		 * update the pipelimit (ssthresh) if it has been updated
1204 		 * already or if a pipesize was specified & the threshhold
1205 		 * got below half the pipesize.  I.e., wait for bad news
1206 		 * before we start updating, then update on both good
1207 		 * and bad news.
1208 		 */
1209 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1210 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1211 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1212 			/*
1213 			 * convert the limit from user data bytes to
1214 			 * packets then to packet data bytes.
1215 			 */
1216 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1217 			if (i < 2)
1218 				i = 2;
1219 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1220 			if (rt->rt_rmx.rmx_ssthresh)
1221 				rt->rt_rmx.rmx_ssthresh =
1222 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1223 			else
1224 				rt->rt_rmx.rmx_ssthresh = i;
1225 		}
1226 	}
1227 #endif /* RTV_RTT */
1228 	/* free the reassembly queue, if any */
1229 	TCP_REASS_LOCK(tp);
1230 	(void) tcp_freeq(tp);
1231 	TCP_REASS_UNLOCK(tp);
1232 
1233 	/* free the SACK holes list. */
1234 	tcp_free_sackholes(tp);
1235 
1236 	tp->t_congctl->refcnt--;
1237 
1238 	tcp_canceltimers(tp);
1239 	TCP_CLEAR_DELACK(tp);
1240 	syn_cache_cleanup(tp);
1241 
1242 	if (tp->t_template) {
1243 		m_free(tp->t_template);
1244 		tp->t_template = NULL;
1245 	}
1246 	if (tcp_timers_invoking(tp))
1247 		tp->t_flags |= TF_DEAD;
1248 	else {
1249 		for (j = 0; j < TCPT_NTIMERS; j++)
1250 			callout_destroy(&tp->t_timer[j]);
1251 		callout_destroy(&tp->t_delack_ch);
1252 		pool_put(&tcpcb_pool, tp);
1253 	}
1254 
1255 	if (inp) {
1256 		inp->inp_ppcb = 0;
1257 		soisdisconnected(so);
1258 		in_pcbdetach(inp);
1259 	}
1260 #ifdef INET6
1261 	else if (in6p) {
1262 		in6p->in6p_ppcb = 0;
1263 		soisdisconnected(so);
1264 		in6_pcbdetach(in6p);
1265 	}
1266 #endif
1267 	tcpstat.tcps_closed++;
1268 	return ((struct tcpcb *)0);
1269 }
1270 
1271 int
1272 tcp_freeq(tp)
1273 	struct tcpcb *tp;
1274 {
1275 	struct ipqent *qe;
1276 	int rv = 0;
1277 #ifdef TCPREASS_DEBUG
1278 	int i = 0;
1279 #endif
1280 
1281 	TCP_REASS_LOCK_CHECK(tp);
1282 
1283 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1284 #ifdef TCPREASS_DEBUG
1285 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1286 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1287 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1288 #endif
1289 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1290 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1291 		m_freem(qe->ipqe_m);
1292 		tcpipqent_free(qe);
1293 		rv = 1;
1294 	}
1295 	tp->t_segqlen = 0;
1296 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1297 	return (rv);
1298 }
1299 
1300 /*
1301  * Protocol drain routine.  Called when memory is in short supply.
1302  */
1303 void
1304 tcp_drain(void)
1305 {
1306 	struct inpcb_hdr *inph;
1307 	struct tcpcb *tp;
1308 
1309 	/*
1310 	 * Free the sequence queue of all TCP connections.
1311 	 */
1312 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1313 		switch (inph->inph_af) {
1314 		case AF_INET:
1315 			tp = intotcpcb((struct inpcb *)inph);
1316 			break;
1317 #ifdef INET6
1318 		case AF_INET6:
1319 			tp = in6totcpcb((struct in6pcb *)inph);
1320 			break;
1321 #endif
1322 		default:
1323 			tp = NULL;
1324 			break;
1325 		}
1326 		if (tp != NULL) {
1327 			/*
1328 			 * We may be called from a device's interrupt
1329 			 * context.  If the tcpcb is already busy,
1330 			 * just bail out now.
1331 			 */
1332 			if (tcp_reass_lock_try(tp) == 0)
1333 				continue;
1334 			if (tcp_freeq(tp))
1335 				tcpstat.tcps_connsdrained++;
1336 			TCP_REASS_UNLOCK(tp);
1337 		}
1338 	}
1339 }
1340 
1341 /*
1342  * Notify a tcp user of an asynchronous error;
1343  * store error as soft error, but wake up user
1344  * (for now, won't do anything until can select for soft error).
1345  */
1346 void
1347 tcp_notify(struct inpcb *inp, int error)
1348 {
1349 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1350 	struct socket *so = inp->inp_socket;
1351 
1352 	/*
1353 	 * Ignore some errors if we are hooked up.
1354 	 * If connection hasn't completed, has retransmitted several times,
1355 	 * and receives a second error, give up now.  This is better
1356 	 * than waiting a long time to establish a connection that
1357 	 * can never complete.
1358 	 */
1359 	if (tp->t_state == TCPS_ESTABLISHED &&
1360 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1361 	      error == EHOSTDOWN)) {
1362 		return;
1363 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1364 	    tp->t_rxtshift > 3 && tp->t_softerror)
1365 		so->so_error = error;
1366 	else
1367 		tp->t_softerror = error;
1368 	wakeup((void *) &so->so_timeo);
1369 	sorwakeup(so);
1370 	sowwakeup(so);
1371 }
1372 
1373 #ifdef INET6
1374 void
1375 tcp6_notify(struct in6pcb *in6p, int error)
1376 {
1377 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1378 	struct socket *so = in6p->in6p_socket;
1379 
1380 	/*
1381 	 * Ignore some errors if we are hooked up.
1382 	 * If connection hasn't completed, has retransmitted several times,
1383 	 * and receives a second error, give up now.  This is better
1384 	 * than waiting a long time to establish a connection that
1385 	 * can never complete.
1386 	 */
1387 	if (tp->t_state == TCPS_ESTABLISHED &&
1388 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1389 	      error == EHOSTDOWN)) {
1390 		return;
1391 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1392 	    tp->t_rxtshift > 3 && tp->t_softerror)
1393 		so->so_error = error;
1394 	else
1395 		tp->t_softerror = error;
1396 	wakeup((void *) &so->so_timeo);
1397 	sorwakeup(so);
1398 	sowwakeup(so);
1399 }
1400 #endif
1401 
1402 #ifdef INET6
1403 void
1404 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1405 {
1406 	struct tcphdr th;
1407 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1408 	int nmatch;
1409 	struct ip6_hdr *ip6;
1410 	const struct sockaddr_in6 *sa6_src = NULL;
1411 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1412 	struct mbuf *m;
1413 	int off;
1414 
1415 	if (sa->sa_family != AF_INET6 ||
1416 	    sa->sa_len != sizeof(struct sockaddr_in6))
1417 		return;
1418 	if ((unsigned)cmd >= PRC_NCMDS)
1419 		return;
1420 	else if (cmd == PRC_QUENCH) {
1421 		/*
1422 		 * Don't honor ICMP Source Quench messages meant for
1423 		 * TCP connections.
1424 		 */
1425 		return;
1426 	} else if (PRC_IS_REDIRECT(cmd))
1427 		notify = in6_rtchange, d = NULL;
1428 	else if (cmd == PRC_MSGSIZE)
1429 		; /* special code is present, see below */
1430 	else if (cmd == PRC_HOSTDEAD)
1431 		d = NULL;
1432 	else if (inet6ctlerrmap[cmd] == 0)
1433 		return;
1434 
1435 	/* if the parameter is from icmp6, decode it. */
1436 	if (d != NULL) {
1437 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1438 		m = ip6cp->ip6c_m;
1439 		ip6 = ip6cp->ip6c_ip6;
1440 		off = ip6cp->ip6c_off;
1441 		sa6_src = ip6cp->ip6c_src;
1442 	} else {
1443 		m = NULL;
1444 		ip6 = NULL;
1445 		sa6_src = &sa6_any;
1446 		off = 0;
1447 	}
1448 
1449 	if (ip6) {
1450 		/*
1451 		 * XXX: We assume that when ip6 is non NULL,
1452 		 * M and OFF are valid.
1453 		 */
1454 
1455 		/* check if we can safely examine src and dst ports */
1456 		if (m->m_pkthdr.len < off + sizeof(th)) {
1457 			if (cmd == PRC_MSGSIZE)
1458 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1459 			return;
1460 		}
1461 
1462 		bzero(&th, sizeof(th));
1463 		m_copydata(m, off, sizeof(th), (void *)&th);
1464 
1465 		if (cmd == PRC_MSGSIZE) {
1466 			int valid = 0;
1467 
1468 			/*
1469 			 * Check to see if we have a valid TCP connection
1470 			 * corresponding to the address in the ICMPv6 message
1471 			 * payload.
1472 			 */
1473 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1474 			    th.th_dport,
1475 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1476 			    th.th_sport, 0))
1477 				valid++;
1478 
1479 			/*
1480 			 * Depending on the value of "valid" and routing table
1481 			 * size (mtudisc_{hi,lo}wat), we will:
1482 			 * - recalcurate the new MTU and create the
1483 			 *   corresponding routing entry, or
1484 			 * - ignore the MTU change notification.
1485 			 */
1486 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1487 
1488 			/*
1489 			 * no need to call in6_pcbnotify, it should have been
1490 			 * called via callback if necessary
1491 			 */
1492 			return;
1493 		}
1494 
1495 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1496 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1497 		if (nmatch == 0 && syn_cache_count &&
1498 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1499 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1500 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1501 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1502 					  sa, &th);
1503 	} else {
1504 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1505 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1506 	}
1507 }
1508 #endif
1509 
1510 #ifdef INET
1511 /* assumes that ip header and tcp header are contiguous on mbuf */
1512 void *
1513 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1514 {
1515 	struct ip *ip = v;
1516 	struct tcphdr *th;
1517 	struct icmp *icp;
1518 	extern const int inetctlerrmap[];
1519 	void (*notify)(struct inpcb *, int) = tcp_notify;
1520 	int errno;
1521 	int nmatch;
1522 	struct tcpcb *tp;
1523 	u_int mtu;
1524 	tcp_seq seq;
1525 	struct inpcb *inp;
1526 #ifdef INET6
1527 	struct in6pcb *in6p;
1528 	struct in6_addr src6, dst6;
1529 #endif
1530 
1531 	if (sa->sa_family != AF_INET ||
1532 	    sa->sa_len != sizeof(struct sockaddr_in))
1533 		return NULL;
1534 	if ((unsigned)cmd >= PRC_NCMDS)
1535 		return NULL;
1536 	errno = inetctlerrmap[cmd];
1537 	if (cmd == PRC_QUENCH)
1538 		/*
1539 		 * Don't honor ICMP Source Quench messages meant for
1540 		 * TCP connections.
1541 		 */
1542 		return NULL;
1543 	else if (PRC_IS_REDIRECT(cmd))
1544 		notify = in_rtchange, ip = 0;
1545 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1546 		/*
1547 		 * Check to see if we have a valid TCP connection
1548 		 * corresponding to the address in the ICMP message
1549 		 * payload.
1550 		 *
1551 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1552 		 */
1553 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1554 #ifdef INET6
1555 		memset(&src6, 0, sizeof(src6));
1556 		memset(&dst6, 0, sizeof(dst6));
1557 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1558 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1559 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1560 #endif
1561 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1562 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1563 #ifdef INET6
1564 			in6p = NULL;
1565 #else
1566 			;
1567 #endif
1568 #ifdef INET6
1569 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1570 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
1571 			;
1572 #endif
1573 		else
1574 			return NULL;
1575 
1576 		/*
1577 		 * Now that we've validated that we are actually communicating
1578 		 * with the host indicated in the ICMP message, locate the
1579 		 * ICMP header, recalculate the new MTU, and create the
1580 		 * corresponding routing entry.
1581 		 */
1582 		icp = (struct icmp *)((char *)ip -
1583 		    offsetof(struct icmp, icmp_ip));
1584 		if (inp) {
1585 			if ((tp = intotcpcb(inp)) == NULL)
1586 				return NULL;
1587 		}
1588 #ifdef INET6
1589 		else if (in6p) {
1590 			if ((tp = in6totcpcb(in6p)) == NULL)
1591 				return NULL;
1592 		}
1593 #endif
1594 		else
1595 			return NULL;
1596 		seq = ntohl(th->th_seq);
1597 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1598 			return NULL;
1599 		/*
1600 		 * If the ICMP message advertises a Next-Hop MTU
1601 		 * equal or larger than the maximum packet size we have
1602 		 * ever sent, drop the message.
1603 		 */
1604 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1605 		if (mtu >= tp->t_pmtud_mtu_sent)
1606 			return NULL;
1607 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1608 			/*
1609 			 * Calculate new MTU, and create corresponding
1610 			 * route (traditional PMTUD).
1611 			 */
1612 			tp->t_flags &= ~TF_PMTUD_PEND;
1613 			icmp_mtudisc(icp, ip->ip_dst);
1614 		} else {
1615 			/*
1616 			 * Record the information got in the ICMP
1617 			 * message; act on it later.
1618 			 * If we had already recorded an ICMP message,
1619 			 * replace the old one only if the new message
1620 			 * refers to an older TCP segment
1621 			 */
1622 			if (tp->t_flags & TF_PMTUD_PEND) {
1623 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1624 					return NULL;
1625 			} else
1626 				tp->t_flags |= TF_PMTUD_PEND;
1627 			tp->t_pmtud_th_seq = seq;
1628 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1629 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1630 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1631 		}
1632 		return NULL;
1633 	} else if (cmd == PRC_HOSTDEAD)
1634 		ip = 0;
1635 	else if (errno == 0)
1636 		return NULL;
1637 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1638 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1639 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1640 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1641 		if (nmatch == 0 && syn_cache_count &&
1642 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1643 		    inetctlerrmap[cmd] == ENETUNREACH ||
1644 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1645 			struct sockaddr_in sin;
1646 			bzero(&sin, sizeof(sin));
1647 			sin.sin_len = sizeof(sin);
1648 			sin.sin_family = AF_INET;
1649 			sin.sin_port = th->th_sport;
1650 			sin.sin_addr = ip->ip_src;
1651 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1652 		}
1653 
1654 		/* XXX mapped address case */
1655 	} else
1656 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1657 		    notify);
1658 	return NULL;
1659 }
1660 
1661 /*
1662  * When a source quench is received, we are being notified of congestion.
1663  * Close the congestion window down to the Loss Window (one segment).
1664  * We will gradually open it again as we proceed.
1665  */
1666 void
1667 tcp_quench(struct inpcb *inp, int errno)
1668 {
1669 	struct tcpcb *tp = intotcpcb(inp);
1670 
1671 	if (tp) {
1672 		tp->snd_cwnd = tp->t_segsz;
1673 		tp->t_bytes_acked = 0;
1674 	}
1675 }
1676 #endif
1677 
1678 #ifdef INET6
1679 void
1680 tcp6_quench(struct in6pcb *in6p, int errno)
1681 {
1682 	struct tcpcb *tp = in6totcpcb(in6p);
1683 
1684 	if (tp) {
1685 		tp->snd_cwnd = tp->t_segsz;
1686 		tp->t_bytes_acked = 0;
1687 	}
1688 }
1689 #endif
1690 
1691 #ifdef INET
1692 /*
1693  * Path MTU Discovery handlers.
1694  */
1695 void
1696 tcp_mtudisc_callback(struct in_addr faddr)
1697 {
1698 #ifdef INET6
1699 	struct in6_addr in6;
1700 #endif
1701 
1702 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1703 #ifdef INET6
1704 	memset(&in6, 0, sizeof(in6));
1705 	in6.s6_addr16[5] = 0xffff;
1706 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1707 	tcp6_mtudisc_callback(&in6);
1708 #endif
1709 }
1710 
1711 /*
1712  * On receipt of path MTU corrections, flush old route and replace it
1713  * with the new one.  Retransmit all unacknowledged packets, to ensure
1714  * that all packets will be received.
1715  */
1716 void
1717 tcp_mtudisc(struct inpcb *inp, int errno)
1718 {
1719 	struct tcpcb *tp = intotcpcb(inp);
1720 	struct rtentry *rt = in_pcbrtentry(inp);
1721 
1722 	if (tp != 0) {
1723 		if (rt != 0) {
1724 			/*
1725 			 * If this was not a host route, remove and realloc.
1726 			 */
1727 			if ((rt->rt_flags & RTF_HOST) == 0) {
1728 				in_rtchange(inp, errno);
1729 				if ((rt = in_pcbrtentry(inp)) == 0)
1730 					return;
1731 			}
1732 
1733 			/*
1734 			 * Slow start out of the error condition.  We
1735 			 * use the MTU because we know it's smaller
1736 			 * than the previously transmitted segment.
1737 			 *
1738 			 * Note: This is more conservative than the
1739 			 * suggestion in draft-floyd-incr-init-win-03.
1740 			 */
1741 			if (rt->rt_rmx.rmx_mtu != 0)
1742 				tp->snd_cwnd =
1743 				    TCP_INITIAL_WINDOW(tcp_init_win,
1744 				    rt->rt_rmx.rmx_mtu);
1745 		}
1746 
1747 		/*
1748 		 * Resend unacknowledged packets.
1749 		 */
1750 		tp->snd_nxt = tp->snd_una;
1751 		tcp_output(tp);
1752 	}
1753 }
1754 #endif
1755 
1756 #ifdef INET6
1757 /*
1758  * Path MTU Discovery handlers.
1759  */
1760 void
1761 tcp6_mtudisc_callback(struct in6_addr *faddr)
1762 {
1763 	struct sockaddr_in6 sin6;
1764 
1765 	bzero(&sin6, sizeof(sin6));
1766 	sin6.sin6_family = AF_INET6;
1767 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1768 	sin6.sin6_addr = *faddr;
1769 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1770 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1771 }
1772 
1773 void
1774 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1775 {
1776 	struct tcpcb *tp = in6totcpcb(in6p);
1777 	struct rtentry *rt = in6_pcbrtentry(in6p);
1778 
1779 	if (tp != 0) {
1780 		if (rt != 0) {
1781 			/*
1782 			 * If this was not a host route, remove and realloc.
1783 			 */
1784 			if ((rt->rt_flags & RTF_HOST) == 0) {
1785 				in6_rtchange(in6p, errno);
1786 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1787 					return;
1788 			}
1789 
1790 			/*
1791 			 * Slow start out of the error condition.  We
1792 			 * use the MTU because we know it's smaller
1793 			 * than the previously transmitted segment.
1794 			 *
1795 			 * Note: This is more conservative than the
1796 			 * suggestion in draft-floyd-incr-init-win-03.
1797 			 */
1798 			if (rt->rt_rmx.rmx_mtu != 0)
1799 				tp->snd_cwnd =
1800 				    TCP_INITIAL_WINDOW(tcp_init_win,
1801 				    rt->rt_rmx.rmx_mtu);
1802 		}
1803 
1804 		/*
1805 		 * Resend unacknowledged packets.
1806 		 */
1807 		tp->snd_nxt = tp->snd_una;
1808 		tcp_output(tp);
1809 	}
1810 }
1811 #endif /* INET6 */
1812 
1813 /*
1814  * Compute the MSS to advertise to the peer.  Called only during
1815  * the 3-way handshake.  If we are the server (peer initiated
1816  * connection), we are called with a pointer to the interface
1817  * on which the SYN packet arrived.  If we are the client (we
1818  * initiated connection), we are called with a pointer to the
1819  * interface out which this connection should go.
1820  *
1821  * NOTE: Do not subtract IP option/extension header size nor IPsec
1822  * header size from MSS advertisement.  MSS option must hold the maximum
1823  * segment size we can accept, so it must always be:
1824  *	 max(if mtu) - ip header - tcp header
1825  */
1826 u_long
1827 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1828 {
1829 	extern u_long in_maxmtu;
1830 	u_long mss = 0;
1831 	u_long hdrsiz;
1832 
1833 	/*
1834 	 * In order to avoid defeating path MTU discovery on the peer,
1835 	 * we advertise the max MTU of all attached networks as our MSS,
1836 	 * per RFC 1191, section 3.1.
1837 	 *
1838 	 * We provide the option to advertise just the MTU of
1839 	 * the interface on which we hope this connection will
1840 	 * be receiving.  If we are responding to a SYN, we
1841 	 * will have a pretty good idea about this, but when
1842 	 * initiating a connection there is a bit more doubt.
1843 	 *
1844 	 * We also need to ensure that loopback has a large enough
1845 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1846 	 */
1847 
1848 	if (ifp != NULL)
1849 		switch (af) {
1850 		case AF_INET:
1851 			mss = ifp->if_mtu;
1852 			break;
1853 #ifdef INET6
1854 		case AF_INET6:
1855 			mss = IN6_LINKMTU(ifp);
1856 			break;
1857 #endif
1858 		}
1859 
1860 	if (tcp_mss_ifmtu == 0)
1861 		switch (af) {
1862 		case AF_INET:
1863 			mss = max(in_maxmtu, mss);
1864 			break;
1865 #ifdef INET6
1866 		case AF_INET6:
1867 			mss = max(in6_maxmtu, mss);
1868 			break;
1869 #endif
1870 		}
1871 
1872 	switch (af) {
1873 	case AF_INET:
1874 		hdrsiz = sizeof(struct ip);
1875 		break;
1876 #ifdef INET6
1877 	case AF_INET6:
1878 		hdrsiz = sizeof(struct ip6_hdr);
1879 		break;
1880 #endif
1881 	default:
1882 		hdrsiz = 0;
1883 		break;
1884 	}
1885 	hdrsiz += sizeof(struct tcphdr);
1886 	if (mss > hdrsiz)
1887 		mss -= hdrsiz;
1888 
1889 	mss = max(tcp_mssdflt, mss);
1890 	return (mss);
1891 }
1892 
1893 /*
1894  * Set connection variables based on the peer's advertised MSS.
1895  * We are passed the TCPCB for the actual connection.  If we
1896  * are the server, we are called by the compressed state engine
1897  * when the 3-way handshake is complete.  If we are the client,
1898  * we are called when we receive the SYN,ACK from the server.
1899  *
1900  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1901  * before this routine is called!
1902  */
1903 void
1904 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1905 {
1906 	struct socket *so;
1907 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1908 	struct rtentry *rt;
1909 #endif
1910 	u_long bufsize;
1911 	int mss;
1912 
1913 #ifdef DIAGNOSTIC
1914 	if (tp->t_inpcb && tp->t_in6pcb)
1915 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1916 #endif
1917 	so = NULL;
1918 	rt = NULL;
1919 #ifdef INET
1920 	if (tp->t_inpcb) {
1921 		so = tp->t_inpcb->inp_socket;
1922 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1923 		rt = in_pcbrtentry(tp->t_inpcb);
1924 #endif
1925 	}
1926 #endif
1927 #ifdef INET6
1928 	if (tp->t_in6pcb) {
1929 		so = tp->t_in6pcb->in6p_socket;
1930 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1931 		rt = in6_pcbrtentry(tp->t_in6pcb);
1932 #endif
1933 	}
1934 #endif
1935 
1936 	/*
1937 	 * As per RFC1122, use the default MSS value, unless they
1938 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1939 	 */
1940 	mss = tcp_mssdflt;
1941 	if (offer)
1942 		mss = offer;
1943 	mss = max(mss, 256);		/* sanity */
1944 	tp->t_peermss = mss;
1945 	mss -= tcp_optlen(tp);
1946 #ifdef INET
1947 	if (tp->t_inpcb)
1948 		mss -= ip_optlen(tp->t_inpcb);
1949 #endif
1950 #ifdef INET6
1951 	if (tp->t_in6pcb)
1952 		mss -= ip6_optlen(tp->t_in6pcb);
1953 #endif
1954 
1955 	/*
1956 	 * If there's a pipesize, change the socket buffer to that size.
1957 	 * Make the socket buffer an integral number of MSS units.  If
1958 	 * the MSS is larger than the socket buffer, artificially decrease
1959 	 * the MSS.
1960 	 */
1961 #ifdef RTV_SPIPE
1962 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1963 		bufsize = rt->rt_rmx.rmx_sendpipe;
1964 	else
1965 #endif
1966 	{
1967 		KASSERT(so != NULL);
1968 		bufsize = so->so_snd.sb_hiwat;
1969 	}
1970 	if (bufsize < mss)
1971 		mss = bufsize;
1972 	else {
1973 		bufsize = roundup(bufsize, mss);
1974 		if (bufsize > sb_max)
1975 			bufsize = sb_max;
1976 		(void) sbreserve(&so->so_snd, bufsize, so);
1977 	}
1978 	tp->t_segsz = mss;
1979 
1980 #ifdef RTV_SSTHRESH
1981 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1982 		/*
1983 		 * There's some sort of gateway or interface buffer
1984 		 * limit on the path.  Use this to set the slow
1985 		 * start threshold, but set the threshold to no less
1986 		 * than 2 * MSS.
1987 		 */
1988 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1989 	}
1990 #endif
1991 }
1992 
1993 /*
1994  * Processing necessary when a TCP connection is established.
1995  */
1996 void
1997 tcp_established(struct tcpcb *tp)
1998 {
1999 	struct socket *so;
2000 #ifdef RTV_RPIPE
2001 	struct rtentry *rt;
2002 #endif
2003 	u_long bufsize;
2004 
2005 #ifdef DIAGNOSTIC
2006 	if (tp->t_inpcb && tp->t_in6pcb)
2007 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
2008 #endif
2009 	so = NULL;
2010 	rt = NULL;
2011 #ifdef INET
2012 	if (tp->t_inpcb) {
2013 		so = tp->t_inpcb->inp_socket;
2014 #if defined(RTV_RPIPE)
2015 		rt = in_pcbrtentry(tp->t_inpcb);
2016 #endif
2017 	}
2018 #endif
2019 #ifdef INET6
2020 	if (tp->t_in6pcb) {
2021 		so = tp->t_in6pcb->in6p_socket;
2022 #if defined(RTV_RPIPE)
2023 		rt = in6_pcbrtentry(tp->t_in6pcb);
2024 #endif
2025 	}
2026 #endif
2027 
2028 	tp->t_state = TCPS_ESTABLISHED;
2029 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2030 
2031 #ifdef RTV_RPIPE
2032 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2033 		bufsize = rt->rt_rmx.rmx_recvpipe;
2034 	else
2035 #endif
2036 	{
2037 		KASSERT(so != NULL);
2038 		bufsize = so->so_rcv.sb_hiwat;
2039 	}
2040 	if (bufsize > tp->t_ourmss) {
2041 		bufsize = roundup(bufsize, tp->t_ourmss);
2042 		if (bufsize > sb_max)
2043 			bufsize = sb_max;
2044 		(void) sbreserve(&so->so_rcv, bufsize, so);
2045 	}
2046 }
2047 
2048 /*
2049  * Check if there's an initial rtt or rttvar.  Convert from the
2050  * route-table units to scaled multiples of the slow timeout timer.
2051  * Called only during the 3-way handshake.
2052  */
2053 void
2054 tcp_rmx_rtt(struct tcpcb *tp)
2055 {
2056 #ifdef RTV_RTT
2057 	struct rtentry *rt = NULL;
2058 	int rtt;
2059 
2060 #ifdef DIAGNOSTIC
2061 	if (tp->t_inpcb && tp->t_in6pcb)
2062 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2063 #endif
2064 #ifdef INET
2065 	if (tp->t_inpcb)
2066 		rt = in_pcbrtentry(tp->t_inpcb);
2067 #endif
2068 #ifdef INET6
2069 	if (tp->t_in6pcb)
2070 		rt = in6_pcbrtentry(tp->t_in6pcb);
2071 #endif
2072 	if (rt == NULL)
2073 		return;
2074 
2075 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2076 		/*
2077 		 * XXX The lock bit for MTU indicates that the value
2078 		 * is also a minimum value; this is subject to time.
2079 		 */
2080 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2081 			TCPT_RANGESET(tp->t_rttmin,
2082 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2083 			    TCPTV_MIN, TCPTV_REXMTMAX);
2084 		tp->t_srtt = rtt /
2085 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2086 		if (rt->rt_rmx.rmx_rttvar) {
2087 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2088 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2089 				(TCP_RTTVAR_SHIFT + 2));
2090 		} else {
2091 			/* Default variation is +- 1 rtt */
2092 			tp->t_rttvar =
2093 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2094 		}
2095 		TCPT_RANGESET(tp->t_rxtcur,
2096 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2097 		    tp->t_rttmin, TCPTV_REXMTMAX);
2098 	}
2099 #endif
2100 }
2101 
2102 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2103 #if NRND > 0
2104 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2105 #endif
2106 
2107 /*
2108  * Get a new sequence value given a tcp control block
2109  */
2110 tcp_seq
2111 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2112 {
2113 
2114 #ifdef INET
2115 	if (tp->t_inpcb != NULL) {
2116 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2117 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2118 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2119 		    addin));
2120 	}
2121 #endif
2122 #ifdef INET6
2123 	if (tp->t_in6pcb != NULL) {
2124 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2125 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2126 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2127 		    addin));
2128 	}
2129 #endif
2130 	/* Not possible. */
2131 	panic("tcp_new_iss");
2132 }
2133 
2134 /*
2135  * This routine actually generates a new TCP initial sequence number.
2136  */
2137 tcp_seq
2138 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2139     size_t addrsz, tcp_seq addin)
2140 {
2141 	tcp_seq tcp_iss;
2142 
2143 #if NRND > 0
2144 	static int beenhere;
2145 
2146 	/*
2147 	 * If we haven't been here before, initialize our cryptographic
2148 	 * hash secret.
2149 	 */
2150 	if (beenhere == 0) {
2151 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2152 		    RND_EXTRACT_ANY);
2153 		beenhere = 1;
2154 	}
2155 
2156 	if (tcp_do_rfc1948) {
2157 		MD5_CTX ctx;
2158 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2159 
2160 		/*
2161 		 * Compute the base value of the ISS.  It is a hash
2162 		 * of (saddr, sport, daddr, dport, secret).
2163 		 */
2164 		MD5Init(&ctx);
2165 
2166 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2167 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2168 
2169 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2170 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2171 
2172 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2173 
2174 		MD5Final(hash, &ctx);
2175 
2176 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2177 
2178 		/*
2179 		 * Now increment our "timer", and add it in to
2180 		 * the computed value.
2181 		 *
2182 		 * XXX Use `addin'?
2183 		 * XXX TCP_ISSINCR too large to use?
2184 		 */
2185 		tcp_iss_seq += TCP_ISSINCR;
2186 #ifdef TCPISS_DEBUG
2187 		printf("ISS hash 0x%08x, ", tcp_iss);
2188 #endif
2189 		tcp_iss += tcp_iss_seq + addin;
2190 #ifdef TCPISS_DEBUG
2191 		printf("new ISS 0x%08x\n", tcp_iss);
2192 #endif
2193 	} else
2194 #endif /* NRND > 0 */
2195 	{
2196 		/*
2197 		 * Randomize.
2198 		 */
2199 #if NRND > 0
2200 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2201 #else
2202 		tcp_iss = arc4random();
2203 #endif
2204 
2205 		/*
2206 		 * If we were asked to add some amount to a known value,
2207 		 * we will take a random value obtained above, mask off
2208 		 * the upper bits, and add in the known value.  We also
2209 		 * add in a constant to ensure that we are at least a
2210 		 * certain distance from the original value.
2211 		 *
2212 		 * This is used when an old connection is in timed wait
2213 		 * and we have a new one coming in, for instance.
2214 		 */
2215 		if (addin != 0) {
2216 #ifdef TCPISS_DEBUG
2217 			printf("Random %08x, ", tcp_iss);
2218 #endif
2219 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2220 			tcp_iss += addin + TCP_ISSINCR;
2221 #ifdef TCPISS_DEBUG
2222 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2223 #endif
2224 		} else {
2225 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2226 			tcp_iss += tcp_iss_seq;
2227 			tcp_iss_seq += TCP_ISSINCR;
2228 #ifdef TCPISS_DEBUG
2229 			printf("ISS %08x\n", tcp_iss);
2230 #endif
2231 		}
2232 	}
2233 
2234 	if (tcp_compat_42) {
2235 		/*
2236 		 * Limit it to the positive range for really old TCP
2237 		 * implementations.
2238 		 * Just AND off the top bit instead of checking if
2239 		 * is set first - saves a branch 50% of the time.
2240 		 */
2241 		tcp_iss &= 0x7fffffff;		/* XXX */
2242 	}
2243 
2244 	return (tcp_iss);
2245 }
2246 
2247 #if defined(IPSEC) || defined(FAST_IPSEC)
2248 /* compute ESP/AH header size for TCP, including outer IP header. */
2249 size_t
2250 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2251 {
2252 	struct inpcb *inp;
2253 	size_t hdrsiz;
2254 
2255 	/* XXX mapped addr case (tp->t_in6pcb) */
2256 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2257 		return 0;
2258 	switch (tp->t_family) {
2259 	case AF_INET:
2260 		/* XXX: should use currect direction. */
2261 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2262 		break;
2263 	default:
2264 		hdrsiz = 0;
2265 		break;
2266 	}
2267 
2268 	return hdrsiz;
2269 }
2270 
2271 #ifdef INET6
2272 size_t
2273 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2274 {
2275 	struct in6pcb *in6p;
2276 	size_t hdrsiz;
2277 
2278 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2279 		return 0;
2280 	switch (tp->t_family) {
2281 	case AF_INET6:
2282 		/* XXX: should use currect direction. */
2283 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2284 		break;
2285 	case AF_INET:
2286 		/* mapped address case - tricky */
2287 	default:
2288 		hdrsiz = 0;
2289 		break;
2290 	}
2291 
2292 	return hdrsiz;
2293 }
2294 #endif
2295 #endif /*IPSEC*/
2296 
2297 /*
2298  * Determine the length of the TCP options for this connection.
2299  *
2300  * XXX:  What do we do for SACK, when we add that?  Just reserve
2301  *       all of the space?  Otherwise we can't exactly be incrementing
2302  *       cwnd by an amount that varies depending on the amount we last
2303  *       had to SACK!
2304  */
2305 
2306 u_int
2307 tcp_optlen(struct tcpcb *tp)
2308 {
2309 	u_int optlen;
2310 
2311 	optlen = 0;
2312 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2313 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2314 		optlen += TCPOLEN_TSTAMP_APPA;
2315 
2316 #ifdef TCP_SIGNATURE
2317 	if (tp->t_flags & TF_SIGNATURE)
2318 		optlen += TCPOLEN_SIGNATURE + 2;
2319 #endif /* TCP_SIGNATURE */
2320 
2321 	return optlen;
2322 }
2323 
2324 u_int
2325 tcp_hdrsz(struct tcpcb *tp)
2326 {
2327 	u_int hlen;
2328 
2329 	switch (tp->t_family) {
2330 #ifdef INET6
2331 	case AF_INET6:
2332 		hlen = sizeof(struct ip6_hdr);
2333 		break;
2334 #endif
2335 	case AF_INET:
2336 		hlen = sizeof(struct ip);
2337 		break;
2338 	default:
2339 		hlen = 0;
2340 		break;
2341 	}
2342 	hlen += sizeof(struct tcphdr);
2343 
2344 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2345 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2346 		hlen += TCPOLEN_TSTAMP_APPA;
2347 #ifdef TCP_SIGNATURE
2348 	if (tp->t_flags & TF_SIGNATURE)
2349 		hlen += TCPOLEN_SIGLEN;
2350 #endif
2351 	return hlen;
2352 }
2353