xref: /netbsd-src/sys/netinet/tcp_input.c (revision ed75d7a867996c84cfa88e3b8906816277e957f7)
1 /*	$NetBSD: tcp_input.c,v 1.417 2019/11/16 10:15:10 maxv Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.417 2019/11/16 10:15:10 maxv Exp $");
152 
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177 
178 #include <net/if.h>
179 #include <net/if_types.h>
180 
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188 
189 #ifdef INET6
190 #include <netinet/ip6.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_pcb.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_var.h>
195 #include <netinet/icmp6.h>
196 #include <netinet6/nd6.h>
197 #ifdef TCP_SIGNATURE
198 #include <netinet6/scope6_var.h>
199 #endif
200 #endif
201 
202 #ifndef INET6
203 #include <netinet/ip6.h>
204 #endif
205 
206 #include <netinet/tcp.h>
207 #include <netinet/tcp_fsm.h>
208 #include <netinet/tcp_seq.h>
209 #include <netinet/tcp_timer.h>
210 #include <netinet/tcp_var.h>
211 #include <netinet/tcp_private.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214 
215 #ifdef INET6
216 #include "faith.h"
217 #if defined(NFAITH) && NFAITH > 0
218 #include <net/if_faith.h>
219 #endif
220 #endif
221 
222 #ifdef IPSEC
223 #include <netipsec/ipsec.h>
224 #include <netipsec/key.h>
225 #ifdef INET6
226 #include <netipsec/ipsec6.h>
227 #endif
228 #endif	/* IPSEC*/
229 
230 #include <netinet/tcp_vtw.h>
231 
232 int	tcprexmtthresh = 3;
233 int	tcp_log_refused;
234 
235 int	tcp_do_autorcvbuf = 1;
236 int	tcp_autorcvbuf_inc = 16 * 1024;
237 int	tcp_autorcvbuf_max = 256 * 1024;
238 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
239 
240 static int tcp_rst_ppslim_count = 0;
241 static struct timeval tcp_rst_ppslim_last;
242 static int tcp_ackdrop_ppslim_count = 0;
243 static struct timeval tcp_ackdrop_ppslim_last;
244 
245 static void syn_cache_timer(void *);
246 
247 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
248 
249 /* for modulo comparisons of timestamps */
250 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
251 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
252 
253 /*
254  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
255  */
256 #ifdef INET6
257 static inline void
258 nd6_hint(struct tcpcb *tp)
259 {
260 	struct rtentry *rt = NULL;
261 
262 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
263 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL) {
264 		nd6_nud_hint(rt);
265 		rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
266 	}
267 }
268 #else
269 static inline void
270 nd6_hint(struct tcpcb *tp)
271 {
272 }
273 #endif
274 
275 /*
276  * Compute ACK transmission behavior.  Delay the ACK unless
277  * we have already delayed an ACK (must send an ACK every two segments).
278  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
279  * option is enabled.
280  */
281 static void
282 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
283 {
284 
285 	if (tp->t_flags & TF_DELACK ||
286 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
287 		tp->t_flags |= TF_ACKNOW;
288 	else
289 		TCP_SET_DELACK(tp);
290 }
291 
292 static void
293 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
294 {
295 
296 	/*
297 	 * If we had a pending ICMP message that refers to data that have
298 	 * just been acknowledged, disregard the recorded ICMP message.
299 	 */
300 	if ((tp->t_flags & TF_PMTUD_PEND) &&
301 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
302 		tp->t_flags &= ~TF_PMTUD_PEND;
303 
304 	/*
305 	 * Keep track of the largest chunk of data
306 	 * acknowledged since last PMTU update
307 	 */
308 	if (tp->t_pmtud_mss_acked < acked)
309 		tp->t_pmtud_mss_acked = acked;
310 }
311 
312 /*
313  * Convert TCP protocol fields to host order for easier processing.
314  */
315 static void
316 tcp_fields_to_host(struct tcphdr *th)
317 {
318 
319 	NTOHL(th->th_seq);
320 	NTOHL(th->th_ack);
321 	NTOHS(th->th_win);
322 	NTOHS(th->th_urp);
323 }
324 
325 /*
326  * ... and reverse the above.
327  */
328 static void
329 tcp_fields_to_net(struct tcphdr *th)
330 {
331 
332 	HTONL(th->th_seq);
333 	HTONL(th->th_ack);
334 	HTONS(th->th_win);
335 	HTONS(th->th_urp);
336 }
337 
338 static void
339 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
340 {
341 	if (th->th_urp > todrop) {
342 		th->th_urp -= todrop;
343 	} else {
344 		*tiflags &= ~TH_URG;
345 		th->th_urp = 0;
346 	}
347 }
348 
349 #ifdef TCP_CSUM_COUNTERS
350 #include <sys/device.h>
351 
352 extern struct evcnt tcp_hwcsum_ok;
353 extern struct evcnt tcp_hwcsum_bad;
354 extern struct evcnt tcp_hwcsum_data;
355 extern struct evcnt tcp_swcsum;
356 #if defined(INET6)
357 extern struct evcnt tcp6_hwcsum_ok;
358 extern struct evcnt tcp6_hwcsum_bad;
359 extern struct evcnt tcp6_hwcsum_data;
360 extern struct evcnt tcp6_swcsum;
361 #endif /* defined(INET6) */
362 
363 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
364 
365 #else
366 
367 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
368 
369 #endif /* TCP_CSUM_COUNTERS */
370 
371 #ifdef TCP_REASS_COUNTERS
372 #include <sys/device.h>
373 
374 extern struct evcnt tcp_reass_;
375 extern struct evcnt tcp_reass_empty;
376 extern struct evcnt tcp_reass_iteration[8];
377 extern struct evcnt tcp_reass_prependfirst;
378 extern struct evcnt tcp_reass_prepend;
379 extern struct evcnt tcp_reass_insert;
380 extern struct evcnt tcp_reass_inserttail;
381 extern struct evcnt tcp_reass_append;
382 extern struct evcnt tcp_reass_appendtail;
383 extern struct evcnt tcp_reass_overlaptail;
384 extern struct evcnt tcp_reass_overlapfront;
385 extern struct evcnt tcp_reass_segdup;
386 extern struct evcnt tcp_reass_fragdup;
387 
388 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
389 
390 #else
391 
392 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
393 
394 #endif /* TCP_REASS_COUNTERS */
395 
396 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
397     int);
398 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
399     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
400 
401 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
402 #ifdef INET6
403 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
404 #endif
405 
406 #if defined(MBUFTRACE)
407 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
408 #endif /* defined(MBUFTRACE) */
409 
410 static struct pool tcpipqent_pool;
411 
412 void
413 tcpipqent_init(void)
414 {
415 
416 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
417 	    NULL, IPL_VM);
418 }
419 
420 struct ipqent *
421 tcpipqent_alloc(void)
422 {
423 	struct ipqent *ipqe;
424 	int s;
425 
426 	s = splvm();
427 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
428 	splx(s);
429 
430 	return ipqe;
431 }
432 
433 void
434 tcpipqent_free(struct ipqent *ipqe)
435 {
436 	int s;
437 
438 	s = splvm();
439 	pool_put(&tcpipqent_pool, ipqe);
440 	splx(s);
441 }
442 
443 /*
444  * Insert segment ti into reassembly queue of tcp with
445  * control block tp.  Return TH_FIN if reassembly now includes
446  * a segment with FIN.
447  */
448 static int
449 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
450 {
451 	struct ipqent *p, *q, *nq, *tiqe = NULL;
452 	struct socket *so = NULL;
453 	int pkt_flags;
454 	tcp_seq pkt_seq;
455 	unsigned pkt_len;
456 	u_long rcvpartdupbyte = 0;
457 	u_long rcvoobyte;
458 #ifdef TCP_REASS_COUNTERS
459 	u_int count = 0;
460 #endif
461 	uint64_t *tcps;
462 
463 	if (tp->t_inpcb)
464 		so = tp->t_inpcb->inp_socket;
465 #ifdef INET6
466 	else if (tp->t_in6pcb)
467 		so = tp->t_in6pcb->in6p_socket;
468 #endif
469 
470 	TCP_REASS_LOCK_CHECK(tp);
471 
472 	/*
473 	 * Call with th==NULL after become established to
474 	 * force pre-ESTABLISHED data up to user socket.
475 	 */
476 	if (th == NULL)
477 		goto present;
478 
479 	m_claimm(m, &tcp_reass_mowner);
480 
481 	rcvoobyte = tlen;
482 	/*
483 	 * Copy these to local variables because the TCP header gets munged
484 	 * while we are collapsing mbufs.
485 	 */
486 	pkt_seq = th->th_seq;
487 	pkt_len = tlen;
488 	pkt_flags = th->th_flags;
489 
490 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
491 
492 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
493 		/*
494 		 * When we miss a packet, the vast majority of time we get
495 		 * packets that follow it in order.  So optimize for that.
496 		 */
497 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
498 			p->ipqe_len += pkt_len;
499 			p->ipqe_flags |= pkt_flags;
500 			m_cat(p->ipqe_m, m);
501 			m = NULL;
502 			tiqe = p;
503 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
504 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
505 			goto skip_replacement;
506 		}
507 		/*
508 		 * While we're here, if the pkt is completely beyond
509 		 * anything we have, just insert it at the tail.
510 		 */
511 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
512 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
513 			goto insert_it;
514 		}
515 	}
516 
517 	q = TAILQ_FIRST(&tp->segq);
518 
519 	if (q != NULL) {
520 		/*
521 		 * If this segment immediately precedes the first out-of-order
522 		 * block, simply slap the segment in front of it and (mostly)
523 		 * skip the complicated logic.
524 		 */
525 		if (pkt_seq + pkt_len == q->ipqe_seq) {
526 			q->ipqe_seq = pkt_seq;
527 			q->ipqe_len += pkt_len;
528 			q->ipqe_flags |= pkt_flags;
529 			m_cat(m, q->ipqe_m);
530 			q->ipqe_m = m;
531 			tiqe = q;
532 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
533 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
534 			goto skip_replacement;
535 		}
536 	} else {
537 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
538 	}
539 
540 	/*
541 	 * Find a segment which begins after this one does.
542 	 */
543 	for (p = NULL; q != NULL; q = nq) {
544 		nq = TAILQ_NEXT(q, ipqe_q);
545 #ifdef TCP_REASS_COUNTERS
546 		count++;
547 #endif
548 
549 		/*
550 		 * If the received segment is just right after this
551 		 * fragment, merge the two together and then check
552 		 * for further overlaps.
553 		 */
554 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
555 			pkt_len += q->ipqe_len;
556 			pkt_flags |= q->ipqe_flags;
557 			pkt_seq = q->ipqe_seq;
558 			m_cat(q->ipqe_m, m);
559 			m = q->ipqe_m;
560 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
561 			goto free_ipqe;
562 		}
563 
564 		/*
565 		 * If the received segment is completely past this
566 		 * fragment, we need to go to the next fragment.
567 		 */
568 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
569 			p = q;
570 			continue;
571 		}
572 
573 		/*
574 		 * If the fragment is past the received segment,
575 		 * it (or any following) can't be concatenated.
576 		 */
577 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
578 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
579 			break;
580 		}
581 
582 		/*
583 		 * We've received all the data in this segment before.
584 		 * Mark it as a duplicate and return.
585 		 */
586 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
587 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
588 			tcps = TCP_STAT_GETREF();
589 			tcps[TCP_STAT_RCVDUPPACK]++;
590 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
591 			TCP_STAT_PUTREF();
592 			tcp_new_dsack(tp, pkt_seq, pkt_len);
593 			m_freem(m);
594 			if (tiqe != NULL) {
595 				tcpipqent_free(tiqe);
596 			}
597 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
598 			goto out;
599 		}
600 
601 		/*
602 		 * Received segment completely overlaps this fragment
603 		 * so we drop the fragment (this keeps the temporal
604 		 * ordering of segments correct).
605 		 */
606 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
607 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
608 			rcvpartdupbyte += q->ipqe_len;
609 			m_freem(q->ipqe_m);
610 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
611 			goto free_ipqe;
612 		}
613 
614 		/*
615 		 * Received segment extends past the end of the fragment.
616 		 * Drop the overlapping bytes, merge the fragment and
617 		 * segment, and treat as a longer received packet.
618 		 */
619 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
620 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
621 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
622 			m_adj(m, overlap);
623 			rcvpartdupbyte += overlap;
624 			m_cat(q->ipqe_m, m);
625 			m = q->ipqe_m;
626 			pkt_seq = q->ipqe_seq;
627 			pkt_len += q->ipqe_len - overlap;
628 			rcvoobyte -= overlap;
629 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
630 			goto free_ipqe;
631 		}
632 
633 		/*
634 		 * Received segment extends past the front of the fragment.
635 		 * Drop the overlapping bytes on the received packet. The
636 		 * packet will then be concatenated with this fragment a
637 		 * bit later.
638 		 */
639 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
640 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
641 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
642 			m_adj(m, -overlap);
643 			pkt_len -= overlap;
644 			rcvpartdupbyte += overlap;
645 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
646 			rcvoobyte -= overlap;
647 		}
648 
649 		/*
650 		 * If the received segment immediately precedes this
651 		 * fragment then tack the fragment onto this segment
652 		 * and reinsert the data.
653 		 */
654 		if (q->ipqe_seq == pkt_seq + pkt_len) {
655 			pkt_len += q->ipqe_len;
656 			pkt_flags |= q->ipqe_flags;
657 			m_cat(m, q->ipqe_m);
658 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
659 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
660 			tp->t_segqlen--;
661 			KASSERT(tp->t_segqlen >= 0);
662 			KASSERT(tp->t_segqlen != 0 ||
663 			    (TAILQ_EMPTY(&tp->segq) &&
664 			    TAILQ_EMPTY(&tp->timeq)));
665 			if (tiqe == NULL) {
666 				tiqe = q;
667 			} else {
668 				tcpipqent_free(q);
669 			}
670 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
671 			break;
672 		}
673 
674 		/*
675 		 * If the fragment is before the segment, remember it.
676 		 * When this loop is terminated, p will contain the
677 		 * pointer to the fragment that is right before the
678 		 * received segment.
679 		 */
680 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
681 			p = q;
682 
683 		continue;
684 
685 		/*
686 		 * This is a common operation.  It also will allow
687 		 * to save doing a malloc/free in most instances.
688 		 */
689 	  free_ipqe:
690 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
691 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
692 		tp->t_segqlen--;
693 		KASSERT(tp->t_segqlen >= 0);
694 		KASSERT(tp->t_segqlen != 0 ||
695 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
696 		if (tiqe == NULL) {
697 			tiqe = q;
698 		} else {
699 			tcpipqent_free(q);
700 		}
701 	}
702 
703 #ifdef TCP_REASS_COUNTERS
704 	if (count > 7)
705 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
706 	else if (count > 0)
707 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
708 #endif
709 
710 insert_it:
711 	/*
712 	 * Allocate a new queue entry (block) since the received segment
713 	 * did not collapse onto any other out-of-order block. If it had
714 	 * collapsed, tiqe would not be NULL and we would be reusing it.
715 	 *
716 	 * If the allocation fails, drop the packet.
717 	 */
718 	if (tiqe == NULL) {
719 		tiqe = tcpipqent_alloc();
720 		if (tiqe == NULL) {
721 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
722 			m_freem(m);
723 			goto out;
724 		}
725 	}
726 
727 	/*
728 	 * Update the counters.
729 	 */
730 	tp->t_rcvoopack++;
731 	tcps = TCP_STAT_GETREF();
732 	tcps[TCP_STAT_RCVOOPACK]++;
733 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
734 	if (rcvpartdupbyte) {
735 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
736 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
737 	}
738 	TCP_STAT_PUTREF();
739 
740 	/*
741 	 * Insert the new fragment queue entry into both queues.
742 	 */
743 	tiqe->ipqe_m = m;
744 	tiqe->ipqe_seq = pkt_seq;
745 	tiqe->ipqe_len = pkt_len;
746 	tiqe->ipqe_flags = pkt_flags;
747 	if (p == NULL) {
748 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
749 	} else {
750 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
751 	}
752 	tp->t_segqlen++;
753 
754 skip_replacement:
755 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
756 
757 present:
758 	/*
759 	 * Present data to user, advancing rcv_nxt through
760 	 * completed sequence space.
761 	 */
762 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
763 		goto out;
764 	q = TAILQ_FIRST(&tp->segq);
765 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
766 		goto out;
767 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
768 		goto out;
769 
770 	tp->rcv_nxt += q->ipqe_len;
771 	pkt_flags = q->ipqe_flags & TH_FIN;
772 	nd6_hint(tp);
773 
774 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
775 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
776 	tp->t_segqlen--;
777 	KASSERT(tp->t_segqlen >= 0);
778 	KASSERT(tp->t_segqlen != 0 ||
779 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
780 	if (so->so_state & SS_CANTRCVMORE)
781 		m_freem(q->ipqe_m);
782 	else
783 		sbappendstream(&so->so_rcv, q->ipqe_m);
784 	tcpipqent_free(q);
785 	TCP_REASS_UNLOCK(tp);
786 	sorwakeup(so);
787 	return pkt_flags;
788 
789 out:
790 	TCP_REASS_UNLOCK(tp);
791 	return 0;
792 }
793 
794 #ifdef INET6
795 int
796 tcp6_input(struct mbuf **mp, int *offp, int proto)
797 {
798 	struct mbuf *m = *mp;
799 
800 	/*
801 	 * draft-itojun-ipv6-tcp-to-anycast
802 	 * better place to put this in?
803 	 */
804 	if (m->m_flags & M_ANYCAST6) {
805 		struct ip6_hdr *ip6;
806 		if (m->m_len < sizeof(struct ip6_hdr)) {
807 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
808 				TCP_STATINC(TCP_STAT_RCVSHORT);
809 				return IPPROTO_DONE;
810 			}
811 		}
812 		ip6 = mtod(m, struct ip6_hdr *);
813 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
814 		    (char *)&ip6->ip6_dst - (char *)ip6);
815 		return IPPROTO_DONE;
816 	}
817 
818 	tcp_input(m, *offp, proto);
819 	return IPPROTO_DONE;
820 }
821 #endif
822 
823 static void
824 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
825 {
826 	char src[INET_ADDRSTRLEN];
827 	char dst[INET_ADDRSTRLEN];
828 
829 	if (ip) {
830 		in_print(src, sizeof(src), &ip->ip_src);
831 		in_print(dst, sizeof(dst), &ip->ip_dst);
832 	} else {
833 		strlcpy(src, "(unknown)", sizeof(src));
834 		strlcpy(dst, "(unknown)", sizeof(dst));
835 	}
836 	log(LOG_INFO,
837 	    "Connection attempt to TCP %s:%d from %s:%d\n",
838 	    dst, ntohs(th->th_dport),
839 	    src, ntohs(th->th_sport));
840 }
841 
842 #ifdef INET6
843 static void
844 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
845 {
846 	char src[INET6_ADDRSTRLEN];
847 	char dst[INET6_ADDRSTRLEN];
848 
849 	if (ip6) {
850 		in6_print(src, sizeof(src), &ip6->ip6_src);
851 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
852 	} else {
853 		strlcpy(src, "(unknown v6)", sizeof(src));
854 		strlcpy(dst, "(unknown v6)", sizeof(dst));
855 	}
856 	log(LOG_INFO,
857 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
858 	    dst, ntohs(th->th_dport),
859 	    src, ntohs(th->th_sport));
860 }
861 #endif
862 
863 /*
864  * Checksum extended TCP header and data.
865  */
866 int
867 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
868     int toff, int off, int tlen)
869 {
870 	struct ifnet *rcvif;
871 	int s;
872 
873 	/*
874 	 * XXX it's better to record and check if this mbuf is
875 	 * already checked.
876 	 */
877 
878 	rcvif = m_get_rcvif(m, &s);
879 	if (__predict_false(rcvif == NULL))
880 		goto badcsum; /* XXX */
881 
882 	switch (af) {
883 	case AF_INET:
884 		switch (m->m_pkthdr.csum_flags &
885 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
886 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
887 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
888 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
889 			goto badcsum;
890 
891 		case M_CSUM_TCPv4|M_CSUM_DATA: {
892 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
893 
894 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
895 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
896 				const struct ip *ip =
897 				    mtod(m, const struct ip *);
898 
899 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
900 				    ip->ip_dst.s_addr,
901 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
902 			}
903 			if ((hw_csum ^ 0xffff) != 0)
904 				goto badcsum;
905 			break;
906 		}
907 
908 		case M_CSUM_TCPv4:
909 			/* Checksum was okay. */
910 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
911 			break;
912 
913 		default:
914 			/*
915 			 * Must compute it ourselves.  Maybe skip checksum
916 			 * on loopback interfaces.
917 			 */
918 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
919 					   tcp_do_loopback_cksum)) {
920 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
921 				if (in4_cksum(m, IPPROTO_TCP, toff,
922 					      tlen + off) != 0)
923 					goto badcsum;
924 			}
925 			break;
926 		}
927 		break;
928 
929 #ifdef INET6
930 	case AF_INET6:
931 		switch (m->m_pkthdr.csum_flags &
932 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
933 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
934 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
935 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
936 			goto badcsum;
937 
938 #if 0 /* notyet */
939 		case M_CSUM_TCPv6|M_CSUM_DATA:
940 #endif
941 
942 		case M_CSUM_TCPv6:
943 			/* Checksum was okay. */
944 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
945 			break;
946 
947 		default:
948 			/*
949 			 * Must compute it ourselves.  Maybe skip checksum
950 			 * on loopback interfaces.
951 			 */
952 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
953 			    tcp_do_loopback_cksum)) {
954 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
955 				if (in6_cksum(m, IPPROTO_TCP, toff,
956 				    tlen + off) != 0)
957 					goto badcsum;
958 			}
959 		}
960 		break;
961 #endif /* INET6 */
962 	}
963 	m_put_rcvif(rcvif, &s);
964 
965 	return 0;
966 
967 badcsum:
968 	m_put_rcvif(rcvif, &s);
969 	TCP_STATINC(TCP_STAT_RCVBADSUM);
970 	return -1;
971 }
972 
973 /*
974  * When a packet arrives addressed to a vestigial tcpbp, we
975  * nevertheless have to respond to it per the spec.
976  *
977  * This code is duplicated from the one in tcp_input().
978  */
979 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
980     struct mbuf *m, int tlen)
981 {
982 	int tiflags;
983 	int todrop;
984 	uint32_t t_flags = 0;
985 	uint64_t *tcps;
986 
987 	tiflags = th->th_flags;
988 	todrop  = vp->rcv_nxt - th->th_seq;
989 
990 	if (todrop > 0) {
991 		if (tiflags & TH_SYN) {
992 			tiflags &= ~TH_SYN;
993 			th->th_seq++;
994 			tcp_urp_drop(th, 1, &tiflags);
995 			todrop--;
996 		}
997 		if (todrop > tlen ||
998 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
999 			/*
1000 			 * Any valid FIN or RST must be to the left of the
1001 			 * window.  At this point the FIN or RST must be a
1002 			 * duplicate or out of sequence; drop it.
1003 			 */
1004 			if (tiflags & TH_RST)
1005 				goto drop;
1006 			tiflags &= ~(TH_FIN|TH_RST);
1007 
1008 			/*
1009 			 * Send an ACK to resynchronize and drop any data.
1010 			 * But keep on processing for RST or ACK.
1011 			 */
1012 			t_flags |= TF_ACKNOW;
1013 			todrop = tlen;
1014 			tcps = TCP_STAT_GETREF();
1015 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1016 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1017 			TCP_STAT_PUTREF();
1018 		} else if ((tiflags & TH_RST) &&
1019 		    th->th_seq != vp->rcv_nxt) {
1020 			/*
1021 			 * Test for reset before adjusting the sequence
1022 			 * number for overlapping data.
1023 			 */
1024 			goto dropafterack_ratelim;
1025 		} else {
1026 			tcps = TCP_STAT_GETREF();
1027 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1028 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1029 			TCP_STAT_PUTREF();
1030 		}
1031 
1032 //		tcp_new_dsack(tp, th->th_seq, todrop);
1033 //		hdroptlen += todrop;	/*drop from head afterwards*/
1034 
1035 		th->th_seq += todrop;
1036 		tlen -= todrop;
1037 		tcp_urp_drop(th, todrop, &tiflags);
1038 	}
1039 
1040 	/*
1041 	 * If new data are received on a connection after the
1042 	 * user processes are gone, then RST the other end.
1043 	 */
1044 	if (tlen) {
1045 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1046 		goto dropwithreset;
1047 	}
1048 
1049 	/*
1050 	 * If segment ends after window, drop trailing data
1051 	 * (and PUSH and FIN); if nothing left, just ACK.
1052 	 */
1053 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1054 
1055 	if (todrop > 0) {
1056 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1057 		if (todrop >= tlen) {
1058 			/*
1059 			 * The segment actually starts after the window.
1060 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1061 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1062 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1063 			 */
1064 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1065 
1066 			/*
1067 			 * If a new connection request is received
1068 			 * while in TIME_WAIT, drop the old connection
1069 			 * and start over if the sequence numbers
1070 			 * are above the previous ones.
1071 			 */
1072 			if ((tiflags & TH_SYN) &&
1073 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1074 				/*
1075 				 * We only support this in the !NOFDREF case, which
1076 				 * is to say: not here.
1077 				 */
1078 				goto dropwithreset;
1079 			}
1080 
1081 			/*
1082 			 * If window is closed can only take segments at
1083 			 * window edge, and have to drop data and PUSH from
1084 			 * incoming segments.  Continue processing, but
1085 			 * remember to ack.  Otherwise, drop segment
1086 			 * and (if not RST) ack.
1087 			 */
1088 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1089 				t_flags |= TF_ACKNOW;
1090 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1091 			} else {
1092 				goto dropafterack;
1093 			}
1094 		} else {
1095 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1096 		}
1097 		m_adj(m, -todrop);
1098 		tlen -= todrop;
1099 		tiflags &= ~(TH_PUSH|TH_FIN);
1100 	}
1101 
1102 	if (tiflags & TH_RST) {
1103 		if (th->th_seq != vp->rcv_nxt)
1104 			goto dropafterack_ratelim;
1105 
1106 		vtw_del(vp->ctl, vp->vtw);
1107 		goto drop;
1108 	}
1109 
1110 	/*
1111 	 * If the ACK bit is off we drop the segment and return.
1112 	 */
1113 	if ((tiflags & TH_ACK) == 0) {
1114 		if (t_flags & TF_ACKNOW)
1115 			goto dropafterack;
1116 		goto drop;
1117 	}
1118 
1119 	/*
1120 	 * In TIME_WAIT state the only thing that should arrive
1121 	 * is a retransmission of the remote FIN.  Acknowledge
1122 	 * it and restart the finack timer.
1123 	 */
1124 	vtw_restart(vp);
1125 	goto dropafterack;
1126 
1127 dropafterack:
1128 	/*
1129 	 * Generate an ACK dropping incoming segment if it occupies
1130 	 * sequence space, where the ACK reflects our state.
1131 	 */
1132 	if (tiflags & TH_RST)
1133 		goto drop;
1134 	goto dropafterack2;
1135 
1136 dropafterack_ratelim:
1137 	/*
1138 	 * We may want to rate-limit ACKs against SYN/RST attack.
1139 	 */
1140 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1141 	    tcp_ackdrop_ppslim) == 0) {
1142 		/* XXX stat */
1143 		goto drop;
1144 	}
1145 	/* ...fall into dropafterack2... */
1146 
1147 dropafterack2:
1148 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1149 	return;
1150 
1151 dropwithreset:
1152 	/*
1153 	 * Generate a RST, dropping incoming segment.
1154 	 * Make ACK acceptable to originator of segment.
1155 	 */
1156 	if (tiflags & TH_RST)
1157 		goto drop;
1158 
1159 	if (tiflags & TH_ACK) {
1160 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1161 	} else {
1162 		if (tiflags & TH_SYN)
1163 			++tlen;
1164 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1165 		    TH_RST|TH_ACK);
1166 	}
1167 	return;
1168 drop:
1169 	m_freem(m);
1170 }
1171 
1172 /*
1173  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1174  */
1175 void
1176 tcp_input(struct mbuf *m, int off, int proto)
1177 {
1178 	struct tcphdr *th;
1179 	struct ip *ip;
1180 	struct inpcb *inp;
1181 #ifdef INET6
1182 	struct ip6_hdr *ip6;
1183 	struct in6pcb *in6p;
1184 #endif
1185 	u_int8_t *optp = NULL;
1186 	int optlen = 0;
1187 	int len, tlen, hdroptlen = 0;
1188 	struct tcpcb *tp = NULL;
1189 	int tiflags;
1190 	struct socket *so = NULL;
1191 	int todrop, acked, ourfinisacked, needoutput = 0;
1192 	bool dupseg;
1193 #ifdef TCP_DEBUG
1194 	short ostate = 0;
1195 #endif
1196 	u_long tiwin;
1197 	struct tcp_opt_info opti;
1198 	int thlen, iphlen;
1199 	int af;		/* af on the wire */
1200 	struct mbuf *tcp_saveti = NULL;
1201 	uint32_t ts_rtt;
1202 	uint8_t iptos;
1203 	uint64_t *tcps;
1204 	vestigial_inpcb_t vestige;
1205 
1206 	vestige.valid = 0;
1207 
1208 	MCLAIM(m, &tcp_rx_mowner);
1209 
1210 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1211 
1212 	memset(&opti, 0, sizeof(opti));
1213 	opti.ts_present = 0;
1214 	opti.maxseg = 0;
1215 
1216 	/*
1217 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1218 	 *
1219 	 * TCP is, by definition, unicast, so we reject all
1220 	 * multicast outright.
1221 	 *
1222 	 * Note, there are additional src/dst address checks in
1223 	 * the AF-specific code below.
1224 	 */
1225 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1226 		/* XXX stat */
1227 		goto drop;
1228 	}
1229 #ifdef INET6
1230 	if (m->m_flags & M_ANYCAST6) {
1231 		/* XXX stat */
1232 		goto drop;
1233 	}
1234 #endif
1235 
1236 	M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
1237 	if (th == NULL) {
1238 		TCP_STATINC(TCP_STAT_RCVSHORT);
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * Get IP and TCP header.
1244 	 * Note: IP leaves IP header in first mbuf.
1245 	 */
1246 	ip = mtod(m, struct ip *);
1247 	switch (ip->ip_v) {
1248 	case 4:
1249 #ifdef INET6
1250 		ip6 = NULL;
1251 #endif
1252 		af = AF_INET;
1253 		iphlen = sizeof(struct ip);
1254 
1255 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1256 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1257 			goto drop;
1258 
1259 		/* We do the checksum after PCB lookup... */
1260 		len = ntohs(ip->ip_len);
1261 		tlen = len - off;
1262 		iptos = ip->ip_tos;
1263 		break;
1264 #ifdef INET6
1265 	case 6:
1266 		ip = NULL;
1267 		iphlen = sizeof(struct ip6_hdr);
1268 		af = AF_INET6;
1269 		ip6 = mtod(m, struct ip6_hdr *);
1270 
1271 		/*
1272 		 * Be proactive about unspecified IPv6 address in source.
1273 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1274 		 * unspecified IPv6 address can be used to confuse us.
1275 		 *
1276 		 * Note that packets with unspecified IPv6 destination is
1277 		 * already dropped in ip6_input.
1278 		 */
1279 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1280 			/* XXX stat */
1281 			goto drop;
1282 		}
1283 
1284 		/*
1285 		 * Make sure destination address is not multicast.
1286 		 * Source address checked in ip6_input().
1287 		 */
1288 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1289 			/* XXX stat */
1290 			goto drop;
1291 		}
1292 
1293 		/* We do the checksum after PCB lookup... */
1294 		len = m->m_pkthdr.len;
1295 		tlen = len - off;
1296 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1297 		break;
1298 #endif
1299 	default:
1300 		m_freem(m);
1301 		return;
1302 	}
1303 
1304 	/*
1305 	 * Enforce alignment requirements that are violated in
1306 	 * some cases, see kern/50766 for details.
1307 	 */
1308 	if (TCP_HDR_ALIGNED_P(th) == 0) {
1309 		m = m_copyup(m, off + sizeof(struct tcphdr), 0);
1310 		if (m == NULL) {
1311 			TCP_STATINC(TCP_STAT_RCVSHORT);
1312 			return;
1313 		}
1314 		ip = mtod(m, struct ip *);
1315 #ifdef INET6
1316 		ip6 = mtod(m, struct ip6_hdr *);
1317 #endif
1318 		th = (struct tcphdr *)(mtod(m, char *) + off);
1319 	}
1320 	KASSERT(TCP_HDR_ALIGNED_P(th));
1321 
1322 	/*
1323 	 * Check that TCP offset makes sense, pull out TCP options and
1324 	 * adjust length.
1325 	 */
1326 	thlen = th->th_off << 2;
1327 	if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
1328 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1329 		goto drop;
1330 	}
1331 	tlen -= thlen;
1332 
1333 	if (thlen > sizeof(struct tcphdr)) {
1334 		M_REGION_GET(th, struct tcphdr *, m, off, thlen);
1335 		if (th == NULL) {
1336 			TCP_STATINC(TCP_STAT_RCVSHORT);
1337 			return;
1338 		}
1339 		KASSERT(TCP_HDR_ALIGNED_P(th));
1340 		optlen = thlen - sizeof(struct tcphdr);
1341 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1342 
1343 		/*
1344 		 * Do quick retrieval of timestamp options.
1345 		 *
1346 		 * If timestamp is the only option and it's formatted as
1347 		 * recommended in RFC 1323 appendix A, we quickly get the
1348 		 * values now and don't bother calling tcp_dooptions(),
1349 		 * etc.
1350 		 */
1351 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1352 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1353 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1354 		    be32dec(optp) == TCPOPT_TSTAMP_HDR &&
1355 		    (th->th_flags & TH_SYN) == 0) {
1356 			opti.ts_present = 1;
1357 			opti.ts_val = be32dec(optp + 4);
1358 			opti.ts_ecr = be32dec(optp + 8);
1359 			optp = NULL;	/* we've parsed the options */
1360 		}
1361 	}
1362 	tiflags = th->th_flags;
1363 
1364 	/*
1365 	 * Checksum extended TCP header and data
1366 	 */
1367 	if (tcp_input_checksum(af, m, th, off, thlen, tlen))
1368 		goto badcsum;
1369 
1370 	/*
1371 	 * Locate pcb for segment.
1372 	 */
1373 findpcb:
1374 	inp = NULL;
1375 #ifdef INET6
1376 	in6p = NULL;
1377 #endif
1378 	switch (af) {
1379 	case AF_INET:
1380 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1381 		    ip->ip_dst, th->th_dport, &vestige);
1382 		if (inp == NULL && !vestige.valid) {
1383 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1384 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1385 			    th->th_dport);
1386 		}
1387 #ifdef INET6
1388 		if (inp == NULL && !vestige.valid) {
1389 			struct in6_addr s, d;
1390 
1391 			/* mapped addr case */
1392 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1393 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1394 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1395 			    th->th_sport, &d, th->th_dport, 0, &vestige);
1396 			if (in6p == 0 && !vestige.valid) {
1397 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1398 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1399 				    th->th_dport, 0);
1400 			}
1401 		}
1402 #endif
1403 #ifndef INET6
1404 		if (inp == NULL && !vestige.valid)
1405 #else
1406 		if (inp == NULL && in6p == NULL && !vestige.valid)
1407 #endif
1408 		{
1409 			TCP_STATINC(TCP_STAT_NOPORT);
1410 			if (tcp_log_refused &&
1411 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1412 				tcp4_log_refused(ip, th);
1413 			}
1414 			tcp_fields_to_host(th);
1415 			goto dropwithreset_ratelim;
1416 		}
1417 #if defined(IPSEC)
1418 		if (ipsec_used) {
1419 			if (inp && ipsec_in_reject(m, inp)) {
1420 				goto drop;
1421 			}
1422 #ifdef INET6
1423 			else if (in6p && ipsec_in_reject(m, in6p)) {
1424 				goto drop;
1425 			}
1426 #endif
1427 		}
1428 #endif /*IPSEC*/
1429 		break;
1430 #ifdef INET6
1431 	case AF_INET6:
1432 	    {
1433 		int faith;
1434 
1435 #if defined(NFAITH) && NFAITH > 0
1436 		faith = faithprefix(&ip6->ip6_dst);
1437 #else
1438 		faith = 0;
1439 #endif
1440 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1441 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1442 		if (!in6p && !vestige.valid) {
1443 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1444 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1445 			    th->th_dport, faith);
1446 		}
1447 		if (!in6p && !vestige.valid) {
1448 			TCP_STATINC(TCP_STAT_NOPORT);
1449 			if (tcp_log_refused &&
1450 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1451 				tcp6_log_refused(ip6, th);
1452 			}
1453 			tcp_fields_to_host(th);
1454 			goto dropwithreset_ratelim;
1455 		}
1456 #if defined(IPSEC)
1457 		if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1458 			goto drop;
1459 		}
1460 #endif
1461 		break;
1462 	    }
1463 #endif
1464 	}
1465 
1466 	tcp_fields_to_host(th);
1467 
1468 	/*
1469 	 * If the state is CLOSED (i.e., TCB does not exist) then
1470 	 * all data in the incoming segment is discarded.
1471 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1472 	 * but should either do a listen or a connect soon.
1473 	 */
1474 	tp = NULL;
1475 	so = NULL;
1476 	if (inp) {
1477 		/* Check the minimum TTL for socket. */
1478 		if (ip->ip_ttl < inp->inp_ip_minttl)
1479 			goto drop;
1480 
1481 		tp = intotcpcb(inp);
1482 		so = inp->inp_socket;
1483 	}
1484 #ifdef INET6
1485 	else if (in6p) {
1486 		tp = in6totcpcb(in6p);
1487 		so = in6p->in6p_socket;
1488 	}
1489 #endif
1490 	else if (vestige.valid) {
1491 		/* We do not support the resurrection of vtw tcpcps. */
1492 		tcp_vtw_input(th, &vestige, m, tlen);
1493 		m = NULL;
1494 		goto drop;
1495 	}
1496 
1497 	if (tp == NULL)
1498 		goto dropwithreset_ratelim;
1499 	if (tp->t_state == TCPS_CLOSED)
1500 		goto drop;
1501 
1502 	KASSERT(so->so_lock == softnet_lock);
1503 	KASSERT(solocked(so));
1504 
1505 	/* Unscale the window into a 32-bit value. */
1506 	if ((tiflags & TH_SYN) == 0)
1507 		tiwin = th->th_win << tp->snd_scale;
1508 	else
1509 		tiwin = th->th_win;
1510 
1511 #ifdef INET6
1512 	/* save packet options if user wanted */
1513 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1514 		if (in6p->in6p_options) {
1515 			m_freem(in6p->in6p_options);
1516 			in6p->in6p_options = NULL;
1517 		}
1518 		KASSERT(ip6 != NULL);
1519 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1520 	}
1521 #endif
1522 
1523 	if (so->so_options & SO_DEBUG) {
1524 #ifdef TCP_DEBUG
1525 		ostate = tp->t_state;
1526 #endif
1527 
1528 		tcp_saveti = NULL;
1529 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
1530 			goto nosave;
1531 
1532 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1533 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1534 			if (tcp_saveti == NULL)
1535 				goto nosave;
1536 		} else {
1537 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1538 			if (tcp_saveti == NULL)
1539 				goto nosave;
1540 			MCLAIM(m, &tcp_mowner);
1541 			tcp_saveti->m_len = iphlen;
1542 			m_copydata(m, 0, iphlen,
1543 			    mtod(tcp_saveti, void *));
1544 		}
1545 
1546 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1547 			m_freem(tcp_saveti);
1548 			tcp_saveti = NULL;
1549 		} else {
1550 			tcp_saveti->m_len += sizeof(struct tcphdr);
1551 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1552 			    sizeof(struct tcphdr));
1553 		}
1554 nosave:;
1555 	}
1556 
1557 	if (so->so_options & SO_ACCEPTCONN) {
1558 		union syn_cache_sa src;
1559 		union syn_cache_sa dst;
1560 
1561 		KASSERT(tp->t_state == TCPS_LISTEN);
1562 
1563 		memset(&src, 0, sizeof(src));
1564 		memset(&dst, 0, sizeof(dst));
1565 		switch (af) {
1566 		case AF_INET:
1567 			src.sin.sin_len = sizeof(struct sockaddr_in);
1568 			src.sin.sin_family = AF_INET;
1569 			src.sin.sin_addr = ip->ip_src;
1570 			src.sin.sin_port = th->th_sport;
1571 
1572 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1573 			dst.sin.sin_family = AF_INET;
1574 			dst.sin.sin_addr = ip->ip_dst;
1575 			dst.sin.sin_port = th->th_dport;
1576 			break;
1577 #ifdef INET6
1578 		case AF_INET6:
1579 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1580 			src.sin6.sin6_family = AF_INET6;
1581 			src.sin6.sin6_addr = ip6->ip6_src;
1582 			src.sin6.sin6_port = th->th_sport;
1583 
1584 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1585 			dst.sin6.sin6_family = AF_INET6;
1586 			dst.sin6.sin6_addr = ip6->ip6_dst;
1587 			dst.sin6.sin6_port = th->th_dport;
1588 			break;
1589 #endif
1590 		}
1591 
1592 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1593 			if (tiflags & TH_RST) {
1594 				syn_cache_reset(&src.sa, &dst.sa, th);
1595 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1596 			    (TH_ACK|TH_SYN)) {
1597 				/*
1598 				 * Received a SYN,ACK. This should never
1599 				 * happen while we are in LISTEN. Send an RST.
1600 				 */
1601 				goto badsyn;
1602 			} else if (tiflags & TH_ACK) {
1603 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1604 				if (so == NULL) {
1605 					/*
1606 					 * We don't have a SYN for this ACK;
1607 					 * send an RST.
1608 					 */
1609 					goto badsyn;
1610 				} else if (so == (struct socket *)(-1)) {
1611 					/*
1612 					 * We were unable to create the
1613 					 * connection. If the 3-way handshake
1614 					 * was completed, and RST has been
1615 					 * sent to the peer. Since the mbuf
1616 					 * might be in use for the reply, do
1617 					 * not free it.
1618 					 */
1619 					m = NULL;
1620 				} else {
1621 					/*
1622 					 * We have created a full-blown
1623 					 * connection.
1624 					 */
1625 					tp = NULL;
1626 					inp = NULL;
1627 #ifdef INET6
1628 					in6p = NULL;
1629 #endif
1630 					switch (so->so_proto->pr_domain->dom_family) {
1631 					case AF_INET:
1632 						inp = sotoinpcb(so);
1633 						tp = intotcpcb(inp);
1634 						break;
1635 #ifdef INET6
1636 					case AF_INET6:
1637 						in6p = sotoin6pcb(so);
1638 						tp = in6totcpcb(in6p);
1639 						break;
1640 #endif
1641 					}
1642 					if (tp == NULL)
1643 						goto badsyn;	/*XXX*/
1644 					tiwin <<= tp->snd_scale;
1645 					goto after_listen;
1646 				}
1647 			} else {
1648 				/*
1649 				 * None of RST, SYN or ACK was set.
1650 				 * This is an invalid packet for a
1651 				 * TCB in LISTEN state.  Send a RST.
1652 				 */
1653 				goto badsyn;
1654 			}
1655 		} else {
1656 			/*
1657 			 * Received a SYN.
1658 			 */
1659 
1660 #ifdef INET6
1661 			/*
1662 			 * If deprecated address is forbidden, we do
1663 			 * not accept SYN to deprecated interface
1664 			 * address to prevent any new inbound
1665 			 * connection from getting established.
1666 			 * When we do not accept SYN, we send a TCP
1667 			 * RST, with deprecated source address (instead
1668 			 * of dropping it).  We compromise it as it is
1669 			 * much better for peer to send a RST, and
1670 			 * RST will be the final packet for the
1671 			 * exchange.
1672 			 *
1673 			 * If we do not forbid deprecated addresses, we
1674 			 * accept the SYN packet.  RFC2462 does not
1675 			 * suggest dropping SYN in this case.
1676 			 * If we decipher RFC2462 5.5.4, it says like
1677 			 * this:
1678 			 * 1. use of deprecated addr with existing
1679 			 *    communication is okay - "SHOULD continue
1680 			 *    to be used"
1681 			 * 2. use of it with new communication:
1682 			 *   (2a) "SHOULD NOT be used if alternate
1683 			 *        address with sufficient scope is
1684 			 *        available"
1685 			 *   (2b) nothing mentioned otherwise.
1686 			 * Here we fall into (2b) case as we have no
1687 			 * choice in our source address selection - we
1688 			 * must obey the peer.
1689 			 *
1690 			 * The wording in RFC2462 is confusing, and
1691 			 * there are multiple description text for
1692 			 * deprecated address handling - worse, they
1693 			 * are not exactly the same.  I believe 5.5.4
1694 			 * is the best one, so we follow 5.5.4.
1695 			 */
1696 			if (af == AF_INET6 && !ip6_use_deprecated) {
1697 				struct in6_ifaddr *ia6;
1698 				int s;
1699 				struct ifnet *rcvif = m_get_rcvif(m, &s);
1700 				if (rcvif == NULL)
1701 					goto dropwithreset; /* XXX */
1702 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1703 				    &ip6->ip6_dst)) &&
1704 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1705 					tp = NULL;
1706 					m_put_rcvif(rcvif, &s);
1707 					goto dropwithreset;
1708 				}
1709 				m_put_rcvif(rcvif, &s);
1710 			}
1711 #endif
1712 
1713 			/*
1714 			 * LISTEN socket received a SYN from itself? This
1715 			 * can't possibly be valid; drop the packet.
1716 			 */
1717 			if (th->th_sport == th->th_dport) {
1718 				int eq = 0;
1719 
1720 				switch (af) {
1721 				case AF_INET:
1722 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
1723 					break;
1724 #ifdef INET6
1725 				case AF_INET6:
1726 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1727 					    &ip6->ip6_dst);
1728 					break;
1729 #endif
1730 				}
1731 				if (eq) {
1732 					TCP_STATINC(TCP_STAT_BADSYN);
1733 					goto drop;
1734 				}
1735 			}
1736 
1737 			/*
1738 			 * SYN looks ok; create compressed TCP
1739 			 * state for it.
1740 			 */
1741 			if (so->so_qlen <= so->so_qlimit &&
1742 			    syn_cache_add(&src.sa, &dst.sa, th, off,
1743 			    so, m, optp, optlen, &opti))
1744 				m = NULL;
1745 		}
1746 
1747 		goto drop;
1748 	}
1749 
1750 after_listen:
1751 	/*
1752 	 * From here on, we're dealing with !LISTEN.
1753 	 */
1754 	KASSERT(tp->t_state != TCPS_LISTEN);
1755 
1756 	/*
1757 	 * Segment received on connection.
1758 	 * Reset idle time and keep-alive timer.
1759 	 */
1760 	tp->t_rcvtime = tcp_now;
1761 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1762 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1763 
1764 	/*
1765 	 * Process options.
1766 	 */
1767 #ifdef TCP_SIGNATURE
1768 	if (optp || (tp->t_flags & TF_SIGNATURE))
1769 #else
1770 	if (optp)
1771 #endif
1772 		if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
1773 			goto drop;
1774 
1775 	if (TCP_SACK_ENABLED(tp)) {
1776 		tcp_del_sackholes(tp, th);
1777 	}
1778 
1779 	if (TCP_ECN_ALLOWED(tp)) {
1780 		if (tiflags & TH_CWR) {
1781 			tp->t_flags &= ~TF_ECN_SND_ECE;
1782 		}
1783 		switch (iptos & IPTOS_ECN_MASK) {
1784 		case IPTOS_ECN_CE:
1785 			tp->t_flags |= TF_ECN_SND_ECE;
1786 			TCP_STATINC(TCP_STAT_ECN_CE);
1787 			break;
1788 		case IPTOS_ECN_ECT0:
1789 			TCP_STATINC(TCP_STAT_ECN_ECT);
1790 			break;
1791 		case IPTOS_ECN_ECT1:
1792 			/* XXX: ignore for now -- rpaulo */
1793 			break;
1794 		}
1795 		/*
1796 		 * Congestion experienced.
1797 		 * Ignore if we are already trying to recover.
1798 		 */
1799 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1800 			tp->t_congctl->cong_exp(tp);
1801 	}
1802 
1803 	if (opti.ts_present && opti.ts_ecr) {
1804 		/*
1805 		 * Calculate the RTT from the returned time stamp and the
1806 		 * connection's time base.  If the time stamp is later than
1807 		 * the current time, or is extremely old, fall back to non-1323
1808 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1809 		 * at the same time.
1810 		 *
1811 		 * Note that ts_rtt is in units of slow ticks (500
1812 		 * ms).  Since most earthbound RTTs are < 500 ms,
1813 		 * observed values will have large quantization noise.
1814 		 * Our smoothed RTT is then the fraction of observed
1815 		 * samples that are 1 tick instead of 0 (times 500
1816 		 * ms).
1817 		 *
1818 		 * ts_rtt is increased by 1 to denote a valid sample,
1819 		 * with 0 indicating an invalid measurement.  This
1820 		 * extra 1 must be removed when ts_rtt is used, or
1821 		 * else an erroneous extra 500 ms will result.
1822 		 */
1823 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1824 		if (ts_rtt > TCP_PAWS_IDLE)
1825 			ts_rtt = 0;
1826 	} else {
1827 		ts_rtt = 0;
1828 	}
1829 
1830 	/*
1831 	 * Fast path: check for the two common cases of a uni-directional
1832 	 * data transfer. If:
1833 	 *    o We are in the ESTABLISHED state, and
1834 	 *    o The packet has no control flags, and
1835 	 *    o The packet is in-sequence, and
1836 	 *    o The window didn't change, and
1837 	 *    o We are not retransmitting
1838 	 * It's a candidate.
1839 	 *
1840 	 * If the length (tlen) is zero and the ack moved forward, we're
1841 	 * the sender side of the transfer. Just free the data acked and
1842 	 * wake any higher level process that was blocked waiting for
1843 	 * space.
1844 	 *
1845 	 * If the length is non-zero and the ack didn't move, we're the
1846 	 * receiver side. If we're getting packets in-order (the reassembly
1847 	 * queue is empty), add the data to the socket buffer and note
1848 	 * that we need a delayed ack.
1849 	 */
1850 	if (tp->t_state == TCPS_ESTABLISHED &&
1851 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1852 	        == TH_ACK &&
1853 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1854 	    th->th_seq == tp->rcv_nxt &&
1855 	    tiwin && tiwin == tp->snd_wnd &&
1856 	    tp->snd_nxt == tp->snd_max) {
1857 
1858 		/*
1859 		 * If last ACK falls within this segment's sequence numbers,
1860 		 * record the timestamp.
1861 		 * NOTE that the test is modified according to the latest
1862 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1863 		 *
1864 		 * note that we already know
1865 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1866 		 */
1867 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1868 			tp->ts_recent_age = tcp_now;
1869 			tp->ts_recent = opti.ts_val;
1870 		}
1871 
1872 		if (tlen == 0) {
1873 			/* Ack prediction. */
1874 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1875 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1876 			    tp->snd_cwnd >= tp->snd_wnd &&
1877 			    tp->t_partialacks < 0) {
1878 				/*
1879 				 * this is a pure ack for outstanding data.
1880 				 */
1881 				if (ts_rtt)
1882 					tcp_xmit_timer(tp, ts_rtt - 1);
1883 				else if (tp->t_rtttime &&
1884 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1885 					tcp_xmit_timer(tp,
1886 					  tcp_now - tp->t_rtttime);
1887 				acked = th->th_ack - tp->snd_una;
1888 				tcps = TCP_STAT_GETREF();
1889 				tcps[TCP_STAT_PREDACK]++;
1890 				tcps[TCP_STAT_RCVACKPACK]++;
1891 				tcps[TCP_STAT_RCVACKBYTE] += acked;
1892 				TCP_STAT_PUTREF();
1893 				nd6_hint(tp);
1894 
1895 				if (acked > (tp->t_lastoff - tp->t_inoff))
1896 					tp->t_lastm = NULL;
1897 				sbdrop(&so->so_snd, acked);
1898 				tp->t_lastoff -= acked;
1899 
1900 				icmp_check(tp, th, acked);
1901 
1902 				tp->snd_una = th->th_ack;
1903 				tp->snd_fack = tp->snd_una;
1904 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1905 					tp->snd_high = tp->snd_una;
1906 				m_freem(m);
1907 
1908 				/*
1909 				 * If all outstanding data are acked, stop
1910 				 * retransmit timer, otherwise restart timer
1911 				 * using current (possibly backed-off) value.
1912 				 * If process is waiting for space,
1913 				 * wakeup/selnotify/signal.  If data
1914 				 * are ready to send, let tcp_output
1915 				 * decide between more output or persist.
1916 				 */
1917 				if (tp->snd_una == tp->snd_max)
1918 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1919 				else if (TCP_TIMER_ISARMED(tp,
1920 				    TCPT_PERSIST) == 0)
1921 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1922 					    tp->t_rxtcur);
1923 
1924 				sowwakeup(so);
1925 				if (so->so_snd.sb_cc) {
1926 					KERNEL_LOCK(1, NULL);
1927 					(void)tcp_output(tp);
1928 					KERNEL_UNLOCK_ONE(NULL);
1929 				}
1930 				if (tcp_saveti)
1931 					m_freem(tcp_saveti);
1932 				return;
1933 			}
1934 		} else if (th->th_ack == tp->snd_una &&
1935 		    TAILQ_FIRST(&tp->segq) == NULL &&
1936 		    tlen <= sbspace(&so->so_rcv)) {
1937 			int newsize = 0;
1938 
1939 			/*
1940 			 * this is a pure, in-sequence data packet
1941 			 * with nothing on the reassembly queue and
1942 			 * we have enough buffer space to take it.
1943 			 */
1944 			tp->rcv_nxt += tlen;
1945 			tcps = TCP_STAT_GETREF();
1946 			tcps[TCP_STAT_PREDDAT]++;
1947 			tcps[TCP_STAT_RCVPACK]++;
1948 			tcps[TCP_STAT_RCVBYTE] += tlen;
1949 			TCP_STAT_PUTREF();
1950 			nd6_hint(tp);
1951 
1952 		/*
1953 		 * Automatic sizing enables the performance of large buffers
1954 		 * and most of the efficiency of small ones by only allocating
1955 		 * space when it is needed.
1956 		 *
1957 		 * On the receive side the socket buffer memory is only rarely
1958 		 * used to any significant extent.  This allows us to be much
1959 		 * more aggressive in scaling the receive socket buffer.  For
1960 		 * the case that the buffer space is actually used to a large
1961 		 * extent and we run out of kernel memory we can simply drop
1962 		 * the new segments; TCP on the sender will just retransmit it
1963 		 * later.  Setting the buffer size too big may only consume too
1964 		 * much kernel memory if the application doesn't read() from
1965 		 * the socket or packet loss or reordering makes use of the
1966 		 * reassembly queue.
1967 		 *
1968 		 * The criteria to step up the receive buffer one notch are:
1969 		 *  1. the number of bytes received during the time it takes
1970 		 *     one timestamp to be reflected back to us (the RTT);
1971 		 *  2. received bytes per RTT is within seven eighth of the
1972 		 *     current socket buffer size;
1973 		 *  3. receive buffer size has not hit maximal automatic size;
1974 		 *
1975 		 * This algorithm does one step per RTT at most and only if
1976 		 * we receive a bulk stream w/o packet losses or reorderings.
1977 		 * Shrinking the buffer during idle times is not necessary as
1978 		 * it doesn't consume any memory when idle.
1979 		 *
1980 		 * TODO: Only step up if the application is actually serving
1981 		 * the buffer to better manage the socket buffer resources.
1982 		 */
1983 			if (tcp_do_autorcvbuf &&
1984 			    opti.ts_ecr &&
1985 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1986 				if (opti.ts_ecr > tp->rfbuf_ts &&
1987 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1988 					if (tp->rfbuf_cnt >
1989 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1990 					    so->so_rcv.sb_hiwat <
1991 					    tcp_autorcvbuf_max) {
1992 						newsize =
1993 						    uimin(so->so_rcv.sb_hiwat +
1994 						    tcp_autorcvbuf_inc,
1995 						    tcp_autorcvbuf_max);
1996 					}
1997 					/* Start over with next RTT. */
1998 					tp->rfbuf_ts = 0;
1999 					tp->rfbuf_cnt = 0;
2000 				} else
2001 					tp->rfbuf_cnt += tlen;	/* add up */
2002 			}
2003 
2004 			/*
2005 			 * Drop TCP, IP headers and TCP options then add data
2006 			 * to socket buffer.
2007 			 */
2008 			if (so->so_state & SS_CANTRCVMORE) {
2009 				m_freem(m);
2010 			} else {
2011 				/*
2012 				 * Set new socket buffer size.
2013 				 * Give up when limit is reached.
2014 				 */
2015 				if (newsize)
2016 					if (!sbreserve(&so->so_rcv,
2017 					    newsize, so))
2018 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2019 				m_adj(m, off + thlen);
2020 				sbappendstream(&so->so_rcv, m);
2021 			}
2022 			sorwakeup(so);
2023 			tcp_setup_ack(tp, th);
2024 			if (tp->t_flags & TF_ACKNOW) {
2025 				KERNEL_LOCK(1, NULL);
2026 				(void)tcp_output(tp);
2027 				KERNEL_UNLOCK_ONE(NULL);
2028 			}
2029 			if (tcp_saveti)
2030 				m_freem(tcp_saveti);
2031 			return;
2032 		}
2033 	}
2034 
2035 	/*
2036 	 * Compute mbuf offset to TCP data segment.
2037 	 */
2038 	hdroptlen = off + thlen;
2039 
2040 	/*
2041 	 * Calculate amount of space in receive window. Receive window is
2042 	 * amount of space in rcv queue, but not less than advertised
2043 	 * window.
2044 	 */
2045 	{
2046 		int win;
2047 		win = sbspace(&so->so_rcv);
2048 		if (win < 0)
2049 			win = 0;
2050 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2051 	}
2052 
2053 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2054 	tp->rfbuf_ts = 0;
2055 	tp->rfbuf_cnt = 0;
2056 
2057 	switch (tp->t_state) {
2058 	/*
2059 	 * If the state is SYN_SENT:
2060 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2061 	 *	if seg contains a RST, then drop the connection.
2062 	 *	if seg does not contain SYN, then drop it.
2063 	 * Otherwise this is an acceptable SYN segment
2064 	 *	initialize tp->rcv_nxt and tp->irs
2065 	 *	if seg contains ack then advance tp->snd_una
2066 	 *	if seg contains a ECE and ECN support is enabled, the stream
2067 	 *	    is ECN capable.
2068 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2069 	 *	arrange for segment to be acked (eventually)
2070 	 *	continue processing rest of data/controls, beginning with URG
2071 	 */
2072 	case TCPS_SYN_SENT:
2073 		if ((tiflags & TH_ACK) &&
2074 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2075 		     SEQ_GT(th->th_ack, tp->snd_max)))
2076 			goto dropwithreset;
2077 		if (tiflags & TH_RST) {
2078 			if (tiflags & TH_ACK)
2079 				tp = tcp_drop(tp, ECONNREFUSED);
2080 			goto drop;
2081 		}
2082 		if ((tiflags & TH_SYN) == 0)
2083 			goto drop;
2084 		if (tiflags & TH_ACK) {
2085 			tp->snd_una = th->th_ack;
2086 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2087 				tp->snd_nxt = tp->snd_una;
2088 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2089 				tp->snd_high = tp->snd_una;
2090 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2091 
2092 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2093 				tp->t_flags |= TF_ECN_PERMIT;
2094 				TCP_STATINC(TCP_STAT_ECN_SHS);
2095 			}
2096 		}
2097 		tp->irs = th->th_seq;
2098 		tcp_rcvseqinit(tp);
2099 		tp->t_flags |= TF_ACKNOW;
2100 		tcp_mss_from_peer(tp, opti.maxseg);
2101 
2102 		/*
2103 		 * Initialize the initial congestion window.  If we
2104 		 * had to retransmit the SYN, we must initialize cwnd
2105 		 * to 1 segment (i.e. the Loss Window).
2106 		 */
2107 		if (tp->t_flags & TF_SYN_REXMT)
2108 			tp->snd_cwnd = tp->t_peermss;
2109 		else {
2110 			int ss = tcp_init_win;
2111 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2112 				ss = tcp_init_win_local;
2113 #ifdef INET6
2114 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2115 				ss = tcp_init_win_local;
2116 #endif
2117 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2118 		}
2119 
2120 		tcp_rmx_rtt(tp);
2121 		if (tiflags & TH_ACK) {
2122 			TCP_STATINC(TCP_STAT_CONNECTS);
2123 			/*
2124 			 * move tcp_established before soisconnected
2125 			 * because upcall handler can drive tcp_output
2126 			 * functionality.
2127 			 * XXX we might call soisconnected at the end of
2128 			 * all processing
2129 			 */
2130 			tcp_established(tp);
2131 			soisconnected(so);
2132 			/* Do window scaling on this connection? */
2133 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2134 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2135 				tp->snd_scale = tp->requested_s_scale;
2136 				tp->rcv_scale = tp->request_r_scale;
2137 			}
2138 			TCP_REASS_LOCK(tp);
2139 			(void)tcp_reass(tp, NULL, NULL, tlen);
2140 			/*
2141 			 * if we didn't have to retransmit the SYN,
2142 			 * use its rtt as our initial srtt & rtt var.
2143 			 */
2144 			if (tp->t_rtttime)
2145 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2146 		} else {
2147 			tp->t_state = TCPS_SYN_RECEIVED;
2148 		}
2149 
2150 		/*
2151 		 * Advance th->th_seq to correspond to first data byte.
2152 		 * If data, trim to stay within window,
2153 		 * dropping FIN if necessary.
2154 		 */
2155 		th->th_seq++;
2156 		if (tlen > tp->rcv_wnd) {
2157 			todrop = tlen - tp->rcv_wnd;
2158 			m_adj(m, -todrop);
2159 			tlen = tp->rcv_wnd;
2160 			tiflags &= ~TH_FIN;
2161 			tcps = TCP_STAT_GETREF();
2162 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2163 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2164 			TCP_STAT_PUTREF();
2165 		}
2166 		tp->snd_wl1 = th->th_seq - 1;
2167 		tp->rcv_up = th->th_seq;
2168 		goto step6;
2169 
2170 	/*
2171 	 * If the state is SYN_RECEIVED:
2172 	 *	If seg contains an ACK, but not for our SYN, drop the input
2173 	 *	and generate an RST.  See page 36, rfc793
2174 	 */
2175 	case TCPS_SYN_RECEIVED:
2176 		if ((tiflags & TH_ACK) &&
2177 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2178 		     SEQ_GT(th->th_ack, tp->snd_max)))
2179 			goto dropwithreset;
2180 		break;
2181 	}
2182 
2183 	/*
2184 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2185 	 */
2186 	KASSERT(tp->t_state != TCPS_LISTEN &&
2187 	    tp->t_state != TCPS_SYN_SENT);
2188 
2189 	/*
2190 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2191 	 * it's less than ts_recent, drop it.
2192 	 */
2193 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2194 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2195 		/* Check to see if ts_recent is over 24 days old.  */
2196 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2197 			/*
2198 			 * Invalidate ts_recent.  If this segment updates
2199 			 * ts_recent, the age will be reset later and ts_recent
2200 			 * will get a valid value.  If it does not, setting
2201 			 * ts_recent to zero will at least satisfy the
2202 			 * requirement that zero be placed in the timestamp
2203 			 * echo reply when ts_recent isn't valid.  The
2204 			 * age isn't reset until we get a valid ts_recent
2205 			 * because we don't want out-of-order segments to be
2206 			 * dropped when ts_recent is old.
2207 			 */
2208 			tp->ts_recent = 0;
2209 		} else {
2210 			tcps = TCP_STAT_GETREF();
2211 			tcps[TCP_STAT_RCVDUPPACK]++;
2212 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2213 			tcps[TCP_STAT_PAWSDROP]++;
2214 			TCP_STAT_PUTREF();
2215 			tcp_new_dsack(tp, th->th_seq, tlen);
2216 			goto dropafterack;
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * Check that at least some bytes of the segment are within the
2222 	 * receive window. If segment begins before rcv_nxt, drop leading
2223 	 * data (and SYN); if nothing left, just ack.
2224 	 */
2225 	todrop = tp->rcv_nxt - th->th_seq;
2226 	dupseg = false;
2227 	if (todrop > 0) {
2228 		if (tiflags & TH_SYN) {
2229 			tiflags &= ~TH_SYN;
2230 			th->th_seq++;
2231 			tcp_urp_drop(th, 1, &tiflags);
2232 			todrop--;
2233 		}
2234 		if (todrop > tlen ||
2235 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2236 			/*
2237 			 * Any valid FIN or RST must be to the left of the
2238 			 * window.  At this point the FIN or RST must be a
2239 			 * duplicate or out of sequence; drop it.
2240 			 */
2241 			if (tiflags & TH_RST)
2242 				goto drop;
2243 			tiflags &= ~(TH_FIN|TH_RST);
2244 
2245 			/*
2246 			 * Send an ACK to resynchronize and drop any data.
2247 			 * But keep on processing for RST or ACK.
2248 			 */
2249 			tp->t_flags |= TF_ACKNOW;
2250 			todrop = tlen;
2251 			dupseg = true;
2252 			tcps = TCP_STAT_GETREF();
2253 			tcps[TCP_STAT_RCVDUPPACK]++;
2254 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2255 			TCP_STAT_PUTREF();
2256 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2257 			/*
2258 			 * Test for reset before adjusting the sequence
2259 			 * number for overlapping data.
2260 			 */
2261 			goto dropafterack_ratelim;
2262 		} else {
2263 			tcps = TCP_STAT_GETREF();
2264 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2265 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2266 			TCP_STAT_PUTREF();
2267 		}
2268 		tcp_new_dsack(tp, th->th_seq, todrop);
2269 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
2270 		th->th_seq += todrop;
2271 		tlen -= todrop;
2272 		tcp_urp_drop(th, todrop, &tiflags);
2273 	}
2274 
2275 	/*
2276 	 * If new data is received on a connection after the user processes
2277 	 * are gone, then RST the other end.
2278 	 */
2279 	if ((so->so_state & SS_NOFDREF) &&
2280 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2281 		tp = tcp_close(tp);
2282 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2283 		goto dropwithreset;
2284 	}
2285 
2286 	/*
2287 	 * If the segment ends after the window, drop trailing data (and
2288 	 * PUSH and FIN); if nothing left, just ACK.
2289 	 */
2290 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2291 	if (todrop > 0) {
2292 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2293 		if (todrop >= tlen) {
2294 			/*
2295 			 * The segment actually starts after the window.
2296 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2297 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2298 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2299 			 */
2300 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2301 
2302 			/*
2303 			 * If a new connection request is received while in
2304 			 * TIME_WAIT, drop the old connection and start over
2305 			 * if the sequence numbers are above the previous
2306 			 * ones.
2307 			 *
2308 			 * NOTE: We need to put the header fields back into
2309 			 * network order.
2310 			 */
2311 			if ((tiflags & TH_SYN) &&
2312 			    tp->t_state == TCPS_TIME_WAIT &&
2313 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2314 				tp = tcp_close(tp);
2315 				tcp_fields_to_net(th);
2316 				m_freem(tcp_saveti);
2317 				tcp_saveti = NULL;
2318 				goto findpcb;
2319 			}
2320 
2321 			/*
2322 			 * If window is closed can only take segments at
2323 			 * window edge, and have to drop data and PUSH from
2324 			 * incoming segments.  Continue processing, but
2325 			 * remember to ack.  Otherwise, drop segment
2326 			 * and (if not RST) ack.
2327 			 */
2328 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2329 				KASSERT(todrop == tlen);
2330 				tp->t_flags |= TF_ACKNOW;
2331 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2332 			} else {
2333 				goto dropafterack;
2334 			}
2335 		} else {
2336 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2337 		}
2338 		m_adj(m, -todrop);
2339 		tlen -= todrop;
2340 		tiflags &= ~(TH_PUSH|TH_FIN);
2341 	}
2342 
2343 	/*
2344 	 * If last ACK falls within this segment's sequence numbers,
2345 	 *  record the timestamp.
2346 	 * NOTE:
2347 	 * 1) That the test incorporates suggestions from the latest
2348 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2349 	 * 2) That updating only on newer timestamps interferes with
2350 	 *    our earlier PAWS tests, so this check should be solely
2351 	 *    predicated on the sequence space of this segment.
2352 	 * 3) That we modify the segment boundary check to be
2353 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2354 	 *    instead of RFC1323's
2355 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2356 	 *    This modified check allows us to overcome RFC1323's
2357 	 *    limitations as described in Stevens TCP/IP Illustrated
2358 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2359 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2360 	 */
2361 	if (opti.ts_present &&
2362 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2363 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2364 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2365 		tp->ts_recent_age = tcp_now;
2366 		tp->ts_recent = opti.ts_val;
2367 	}
2368 
2369 	/*
2370 	 * If the RST bit is set examine the state:
2371 	 *    RECEIVED state:
2372 	 *        If passive open, return to LISTEN state.
2373 	 *        If active open, inform user that connection was refused.
2374 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2375 	 *        Inform user that connection was reset, and close tcb.
2376 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
2377 	 *        Close the tcb.
2378 	 */
2379 	if (tiflags & TH_RST) {
2380 		if (th->th_seq != tp->rcv_nxt)
2381 			goto dropafterack_ratelim;
2382 
2383 		switch (tp->t_state) {
2384 		case TCPS_SYN_RECEIVED:
2385 			so->so_error = ECONNREFUSED;
2386 			goto close;
2387 
2388 		case TCPS_ESTABLISHED:
2389 		case TCPS_FIN_WAIT_1:
2390 		case TCPS_FIN_WAIT_2:
2391 		case TCPS_CLOSE_WAIT:
2392 			so->so_error = ECONNRESET;
2393 		close:
2394 			tp->t_state = TCPS_CLOSED;
2395 			TCP_STATINC(TCP_STAT_DROPS);
2396 			tp = tcp_close(tp);
2397 			goto drop;
2398 
2399 		case TCPS_CLOSING:
2400 		case TCPS_LAST_ACK:
2401 		case TCPS_TIME_WAIT:
2402 			tp = tcp_close(tp);
2403 			goto drop;
2404 		}
2405 	}
2406 
2407 	/*
2408 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2409 	 * we must be in a synchronized state.  RFC793 states (under Reset
2410 	 * Generation) that any unacceptable segment (an out-of-order SYN
2411 	 * qualifies) received in a synchronized state must elicit only an
2412 	 * empty acknowledgment segment ... and the connection remains in
2413 	 * the same state.
2414 	 */
2415 	if (tiflags & TH_SYN) {
2416 		if (tp->rcv_nxt == th->th_seq) {
2417 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2418 			    TH_ACK);
2419 			if (tcp_saveti)
2420 				m_freem(tcp_saveti);
2421 			return;
2422 		}
2423 
2424 		goto dropafterack_ratelim;
2425 	}
2426 
2427 	/*
2428 	 * If the ACK bit is off we drop the segment and return.
2429 	 */
2430 	if ((tiflags & TH_ACK) == 0) {
2431 		if (tp->t_flags & TF_ACKNOW)
2432 			goto dropafterack;
2433 		goto drop;
2434 	}
2435 
2436 	/*
2437 	 * From here on, we're doing ACK processing.
2438 	 */
2439 
2440 	switch (tp->t_state) {
2441 	/*
2442 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2443 	 * ESTABLISHED state and continue processing, otherwise
2444 	 * send an RST.
2445 	 */
2446 	case TCPS_SYN_RECEIVED:
2447 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2448 		    SEQ_GT(th->th_ack, tp->snd_max))
2449 			goto dropwithreset;
2450 		TCP_STATINC(TCP_STAT_CONNECTS);
2451 		soisconnected(so);
2452 		tcp_established(tp);
2453 		/* Do window scaling? */
2454 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2455 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2456 			tp->snd_scale = tp->requested_s_scale;
2457 			tp->rcv_scale = tp->request_r_scale;
2458 		}
2459 		TCP_REASS_LOCK(tp);
2460 		(void)tcp_reass(tp, NULL, NULL, tlen);
2461 		tp->snd_wl1 = th->th_seq - 1;
2462 		/* FALLTHROUGH */
2463 
2464 	/*
2465 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2466 	 * ACKs.  If the ack is in the range
2467 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2468 	 * then advance tp->snd_una to th->th_ack and drop
2469 	 * data from the retransmission queue.  If this ACK reflects
2470 	 * more up to date window information we update our window information.
2471 	 */
2472 	case TCPS_ESTABLISHED:
2473 	case TCPS_FIN_WAIT_1:
2474 	case TCPS_FIN_WAIT_2:
2475 	case TCPS_CLOSE_WAIT:
2476 	case TCPS_CLOSING:
2477 	case TCPS_LAST_ACK:
2478 	case TCPS_TIME_WAIT:
2479 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2480 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2481 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2482 				/*
2483 				 * If we have outstanding data (other than
2484 				 * a window probe), this is a completely
2485 				 * duplicate ack (ie, window info didn't
2486 				 * change), the ack is the biggest we've
2487 				 * seen and we've seen exactly our rexmt
2488 				 * threshhold of them, assume a packet
2489 				 * has been dropped and retransmit it.
2490 				 * Kludge snd_nxt & the congestion
2491 				 * window so we send only this one
2492 				 * packet.
2493 				 */
2494 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2495 				    th->th_ack != tp->snd_una)
2496 					tp->t_dupacks = 0;
2497 				else if (tp->t_partialacks < 0 &&
2498 				    (++tp->t_dupacks == tcprexmtthresh ||
2499 				     TCP_FACK_FASTRECOV(tp))) {
2500 					/*
2501 					 * Do the fast retransmit, and adjust
2502 					 * congestion control paramenters.
2503 					 */
2504 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2505 						/* False fast retransmit */
2506 						break;
2507 					}
2508 					goto drop;
2509 				} else if (tp->t_dupacks > tcprexmtthresh) {
2510 					tp->snd_cwnd += tp->t_segsz;
2511 					KERNEL_LOCK(1, NULL);
2512 					(void)tcp_output(tp);
2513 					KERNEL_UNLOCK_ONE(NULL);
2514 					goto drop;
2515 				}
2516 			} else {
2517 				/*
2518 				 * If the ack appears to be very old, only
2519 				 * allow data that is in-sequence.  This
2520 				 * makes it somewhat more difficult to insert
2521 				 * forged data by guessing sequence numbers.
2522 				 * Sent an ack to try to update the send
2523 				 * sequence number on the other side.
2524 				 */
2525 				if (tlen && th->th_seq != tp->rcv_nxt &&
2526 				    SEQ_LT(th->th_ack,
2527 				    tp->snd_una - tp->max_sndwnd))
2528 					goto dropafterack;
2529 			}
2530 			break;
2531 		}
2532 		/*
2533 		 * If the congestion window was inflated to account
2534 		 * for the other side's cached packets, retract it.
2535 		 */
2536 		tp->t_congctl->fast_retransmit_newack(tp, th);
2537 
2538 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2539 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2540 			goto dropafterack;
2541 		}
2542 		acked = th->th_ack - tp->snd_una;
2543 		tcps = TCP_STAT_GETREF();
2544 		tcps[TCP_STAT_RCVACKPACK]++;
2545 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2546 		TCP_STAT_PUTREF();
2547 
2548 		/*
2549 		 * If we have a timestamp reply, update smoothed
2550 		 * round trip time.  If no timestamp is present but
2551 		 * transmit timer is running and timed sequence
2552 		 * number was acked, update smoothed round trip time.
2553 		 * Since we now have an rtt measurement, cancel the
2554 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2555 		 * Recompute the initial retransmit timer.
2556 		 */
2557 		if (ts_rtt)
2558 			tcp_xmit_timer(tp, ts_rtt - 1);
2559 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2560 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2561 
2562 		/*
2563 		 * If all outstanding data is acked, stop retransmit
2564 		 * timer and remember to restart (more output or persist).
2565 		 * If there is more data to be acked, restart retransmit
2566 		 * timer, using current (possibly backed-off) value.
2567 		 */
2568 		if (th->th_ack == tp->snd_max) {
2569 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2570 			needoutput = 1;
2571 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2572 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2573 
2574 		/*
2575 		 * New data has been acked, adjust the congestion window.
2576 		 */
2577 		tp->t_congctl->newack(tp, th);
2578 
2579 		nd6_hint(tp);
2580 		if (acked > so->so_snd.sb_cc) {
2581 			tp->snd_wnd -= so->so_snd.sb_cc;
2582 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2583 			ourfinisacked = 1;
2584 		} else {
2585 			if (acked > (tp->t_lastoff - tp->t_inoff))
2586 				tp->t_lastm = NULL;
2587 			sbdrop(&so->so_snd, acked);
2588 			tp->t_lastoff -= acked;
2589 			if (tp->snd_wnd > acked)
2590 				tp->snd_wnd -= acked;
2591 			else
2592 				tp->snd_wnd = 0;
2593 			ourfinisacked = 0;
2594 		}
2595 		sowwakeup(so);
2596 
2597 		icmp_check(tp, th, acked);
2598 
2599 		tp->snd_una = th->th_ack;
2600 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2601 			tp->snd_fack = tp->snd_una;
2602 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2603 			tp->snd_nxt = tp->snd_una;
2604 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2605 			tp->snd_high = tp->snd_una;
2606 
2607 		switch (tp->t_state) {
2608 
2609 		/*
2610 		 * In FIN_WAIT_1 STATE in addition to the processing
2611 		 * for the ESTABLISHED state if our FIN is now acknowledged
2612 		 * then enter FIN_WAIT_2.
2613 		 */
2614 		case TCPS_FIN_WAIT_1:
2615 			if (ourfinisacked) {
2616 				/*
2617 				 * If we can't receive any more
2618 				 * data, then closing user can proceed.
2619 				 * Starting the timer is contrary to the
2620 				 * specification, but if we don't get a FIN
2621 				 * we'll hang forever.
2622 				 */
2623 				if (so->so_state & SS_CANTRCVMORE) {
2624 					soisdisconnected(so);
2625 					if (tp->t_maxidle > 0)
2626 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2627 						    tp->t_maxidle);
2628 				}
2629 				tp->t_state = TCPS_FIN_WAIT_2;
2630 			}
2631 			break;
2632 
2633 	 	/*
2634 		 * In CLOSING STATE in addition to the processing for
2635 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2636 		 * then enter the TIME-WAIT state, otherwise ignore
2637 		 * the segment.
2638 		 */
2639 		case TCPS_CLOSING:
2640 			if (ourfinisacked) {
2641 				tp->t_state = TCPS_TIME_WAIT;
2642 				tcp_canceltimers(tp);
2643 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2644 				soisdisconnected(so);
2645 			}
2646 			break;
2647 
2648 		/*
2649 		 * In LAST_ACK, we may still be waiting for data to drain
2650 		 * and/or to be acked, as well as for the ack of our FIN.
2651 		 * If our FIN is now acknowledged, delete the TCB,
2652 		 * enter the closed state and return.
2653 		 */
2654 		case TCPS_LAST_ACK:
2655 			if (ourfinisacked) {
2656 				tp = tcp_close(tp);
2657 				goto drop;
2658 			}
2659 			break;
2660 
2661 		/*
2662 		 * In TIME_WAIT state the only thing that should arrive
2663 		 * is a retransmission of the remote FIN.  Acknowledge
2664 		 * it and restart the finack timer.
2665 		 */
2666 		case TCPS_TIME_WAIT:
2667 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2668 			goto dropafterack;
2669 		}
2670 	}
2671 
2672 step6:
2673 	/*
2674 	 * Update window information.
2675 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2676 	 */
2677 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2678 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2679 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2680 		/* keep track of pure window updates */
2681 		if (tlen == 0 &&
2682 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2683 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2684 		tp->snd_wnd = tiwin;
2685 		tp->snd_wl1 = th->th_seq;
2686 		tp->snd_wl2 = th->th_ack;
2687 		if (tp->snd_wnd > tp->max_sndwnd)
2688 			tp->max_sndwnd = tp->snd_wnd;
2689 		needoutput = 1;
2690 	}
2691 
2692 	/*
2693 	 * Process segments with URG.
2694 	 */
2695 	if ((tiflags & TH_URG) && th->th_urp &&
2696 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2697 		/*
2698 		 * This is a kludge, but if we receive and accept
2699 		 * random urgent pointers, we'll crash in
2700 		 * soreceive.  It's hard to imagine someone
2701 		 * actually wanting to send this much urgent data.
2702 		 */
2703 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2704 			th->th_urp = 0;			/* XXX */
2705 			tiflags &= ~TH_URG;		/* XXX */
2706 			goto dodata;			/* XXX */
2707 		}
2708 
2709 		/*
2710 		 * If this segment advances the known urgent pointer,
2711 		 * then mark the data stream.  This should not happen
2712 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2713 		 * a FIN has been received from the remote side.
2714 		 * In these states we ignore the URG.
2715 		 *
2716 		 * According to RFC961 (Assigned Protocols),
2717 		 * the urgent pointer points to the last octet
2718 		 * of urgent data.  We continue, however,
2719 		 * to consider it to indicate the first octet
2720 		 * of data past the urgent section as the original
2721 		 * spec states (in one of two places).
2722 		 */
2723 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2724 			tp->rcv_up = th->th_seq + th->th_urp;
2725 			so->so_oobmark = so->so_rcv.sb_cc +
2726 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2727 			if (so->so_oobmark == 0)
2728 				so->so_state |= SS_RCVATMARK;
2729 			sohasoutofband(so);
2730 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2731 		}
2732 
2733 		/*
2734 		 * Remove out of band data so doesn't get presented to user.
2735 		 * This can happen independent of advancing the URG pointer,
2736 		 * but if two URG's are pending at once, some out-of-band
2737 		 * data may creep in... ick.
2738 		 */
2739 		if (th->th_urp <= (u_int16_t)tlen &&
2740 		    (so->so_options & SO_OOBINLINE) == 0)
2741 			tcp_pulloutofband(so, th, m, hdroptlen);
2742 	} else {
2743 		/*
2744 		 * If no out of band data is expected,
2745 		 * pull receive urgent pointer along
2746 		 * with the receive window.
2747 		 */
2748 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2749 			tp->rcv_up = tp->rcv_nxt;
2750 	}
2751 dodata:
2752 
2753 	/*
2754 	 * Process the segment text, merging it into the TCP sequencing queue,
2755 	 * and arranging for acknowledgement of receipt if necessary.
2756 	 * This process logically involves adjusting tp->rcv_wnd as data
2757 	 * is presented to the user (this happens in tcp_usrreq.c,
2758 	 * tcp_rcvd()).  If a FIN has already been received on this
2759 	 * connection then we just ignore the text.
2760 	 */
2761 	if ((tlen || (tiflags & TH_FIN)) &&
2762 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2763 		/*
2764 		 * Handle the common case:
2765 		 *  o Segment is the next to be received, and
2766 		 *  o The queue is empty, and
2767 		 *  o The connection is established
2768 		 * In this case, we avoid calling tcp_reass.
2769 		 *
2770 		 * tcp_setup_ack: set DELACK for segments received in order,
2771 		 * but ack immediately when segments are out of order (so that
2772 		 * fast retransmit can work).
2773 		 */
2774 		TCP_REASS_LOCK(tp);
2775 		if (th->th_seq == tp->rcv_nxt &&
2776 		    TAILQ_FIRST(&tp->segq) == NULL &&
2777 		    tp->t_state == TCPS_ESTABLISHED) {
2778 			tcp_setup_ack(tp, th);
2779 			tp->rcv_nxt += tlen;
2780 			tiflags = th->th_flags & TH_FIN;
2781 			tcps = TCP_STAT_GETREF();
2782 			tcps[TCP_STAT_RCVPACK]++;
2783 			tcps[TCP_STAT_RCVBYTE] += tlen;
2784 			TCP_STAT_PUTREF();
2785 			nd6_hint(tp);
2786 			if (so->so_state & SS_CANTRCVMORE) {
2787 				m_freem(m);
2788 			} else {
2789 				m_adj(m, hdroptlen);
2790 				sbappendstream(&(so)->so_rcv, m);
2791 			}
2792 			TCP_REASS_UNLOCK(tp);
2793 			sorwakeup(so);
2794 		} else {
2795 			m_adj(m, hdroptlen);
2796 			tiflags = tcp_reass(tp, th, m, tlen);
2797 			tp->t_flags |= TF_ACKNOW;
2798 		}
2799 
2800 		/*
2801 		 * Note the amount of data that peer has sent into
2802 		 * our window, in order to estimate the sender's
2803 		 * buffer size.
2804 		 */
2805 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2806 	} else {
2807 		m_freem(m);
2808 		m = NULL;
2809 		tiflags &= ~TH_FIN;
2810 	}
2811 
2812 	/*
2813 	 * If FIN is received ACK the FIN and let the user know
2814 	 * that the connection is closing.  Ignore a FIN received before
2815 	 * the connection is fully established.
2816 	 */
2817 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2818 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2819 			socantrcvmore(so);
2820 			tp->t_flags |= TF_ACKNOW;
2821 			tp->rcv_nxt++;
2822 		}
2823 		switch (tp->t_state) {
2824 
2825 	 	/*
2826 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2827 		 */
2828 		case TCPS_ESTABLISHED:
2829 			tp->t_state = TCPS_CLOSE_WAIT;
2830 			break;
2831 
2832 	 	/*
2833 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2834 		 * enter the CLOSING state.
2835 		 */
2836 		case TCPS_FIN_WAIT_1:
2837 			tp->t_state = TCPS_CLOSING;
2838 			break;
2839 
2840 	 	/*
2841 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2842 		 * starting the time-wait timer, turning off the other
2843 		 * standard timers.
2844 		 */
2845 		case TCPS_FIN_WAIT_2:
2846 			tp->t_state = TCPS_TIME_WAIT;
2847 			tcp_canceltimers(tp);
2848 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2849 			soisdisconnected(so);
2850 			break;
2851 
2852 		/*
2853 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2854 		 */
2855 		case TCPS_TIME_WAIT:
2856 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2857 			break;
2858 		}
2859 	}
2860 #ifdef TCP_DEBUG
2861 	if (so->so_options & SO_DEBUG)
2862 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2863 #endif
2864 
2865 	/*
2866 	 * Return any desired output.
2867 	 */
2868 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2869 		KERNEL_LOCK(1, NULL);
2870 		(void)tcp_output(tp);
2871 		KERNEL_UNLOCK_ONE(NULL);
2872 	}
2873 	if (tcp_saveti)
2874 		m_freem(tcp_saveti);
2875 
2876 	if (tp->t_state == TCPS_TIME_WAIT
2877 	    && (so->so_state & SS_NOFDREF)
2878 	    && (tp->t_inpcb || af != AF_INET)
2879 	    && (tp->t_in6pcb || af != AF_INET6)
2880 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2881 	    && TAILQ_EMPTY(&tp->segq)
2882 	    && vtw_add(af, tp)) {
2883 		;
2884 	}
2885 	return;
2886 
2887 badsyn:
2888 	/*
2889 	 * Received a bad SYN.  Increment counters and dropwithreset.
2890 	 */
2891 	TCP_STATINC(TCP_STAT_BADSYN);
2892 	tp = NULL;
2893 	goto dropwithreset;
2894 
2895 dropafterack:
2896 	/*
2897 	 * Generate an ACK dropping incoming segment if it occupies
2898 	 * sequence space, where the ACK reflects our state.
2899 	 */
2900 	if (tiflags & TH_RST)
2901 		goto drop;
2902 	goto dropafterack2;
2903 
2904 dropafterack_ratelim:
2905 	/*
2906 	 * We may want to rate-limit ACKs against SYN/RST attack.
2907 	 */
2908 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2909 	    tcp_ackdrop_ppslim) == 0) {
2910 		/* XXX stat */
2911 		goto drop;
2912 	}
2913 
2914 dropafterack2:
2915 	m_freem(m);
2916 	tp->t_flags |= TF_ACKNOW;
2917 	KERNEL_LOCK(1, NULL);
2918 	(void)tcp_output(tp);
2919 	KERNEL_UNLOCK_ONE(NULL);
2920 	if (tcp_saveti)
2921 		m_freem(tcp_saveti);
2922 	return;
2923 
2924 dropwithreset_ratelim:
2925 	/*
2926 	 * We may want to rate-limit RSTs in certain situations,
2927 	 * particularly if we are sending an RST in response to
2928 	 * an attempt to connect to or otherwise communicate with
2929 	 * a port for which we have no socket.
2930 	 */
2931 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2932 	    tcp_rst_ppslim) == 0) {
2933 		/* XXX stat */
2934 		goto drop;
2935 	}
2936 
2937 dropwithreset:
2938 	/*
2939 	 * Generate a RST, dropping incoming segment.
2940 	 * Make ACK acceptable to originator of segment.
2941 	 */
2942 	if (tiflags & TH_RST)
2943 		goto drop;
2944 	if (tiflags & TH_ACK) {
2945 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2946 	} else {
2947 		if (tiflags & TH_SYN)
2948 			tlen++;
2949 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2950 		    TH_RST|TH_ACK);
2951 	}
2952 	if (tcp_saveti)
2953 		m_freem(tcp_saveti);
2954 	return;
2955 
2956 badcsum:
2957 drop:
2958 	/*
2959 	 * Drop space held by incoming segment and return.
2960 	 */
2961 	if (tp) {
2962 		if (tp->t_inpcb)
2963 			so = tp->t_inpcb->inp_socket;
2964 #ifdef INET6
2965 		else if (tp->t_in6pcb)
2966 			so = tp->t_in6pcb->in6p_socket;
2967 #endif
2968 		else
2969 			so = NULL;
2970 #ifdef TCP_DEBUG
2971 		if (so && (so->so_options & SO_DEBUG) != 0)
2972 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2973 #endif
2974 	}
2975 	if (tcp_saveti)
2976 		m_freem(tcp_saveti);
2977 	m_freem(m);
2978 	return;
2979 }
2980 
2981 #ifdef TCP_SIGNATURE
2982 int
2983 tcp_signature_apply(void *fstate, void *data, u_int len)
2984 {
2985 
2986 	MD5Update(fstate, (u_char *)data, len);
2987 	return (0);
2988 }
2989 
2990 struct secasvar *
2991 tcp_signature_getsav(struct mbuf *m)
2992 {
2993 	struct ip *ip;
2994 	struct ip6_hdr *ip6;
2995 
2996 	ip = mtod(m, struct ip *);
2997 	switch (ip->ip_v) {
2998 	case 4:
2999 		ip = mtod(m, struct ip *);
3000 		ip6 = NULL;
3001 		break;
3002 	case 6:
3003 		ip = NULL;
3004 		ip6 = mtod(m, struct ip6_hdr *);
3005 		break;
3006 	default:
3007 		return (NULL);
3008 	}
3009 
3010 #ifdef IPSEC
3011 	union sockaddr_union dst;
3012 
3013 	/* Extract the destination from the IP header in the mbuf. */
3014 	memset(&dst, 0, sizeof(union sockaddr_union));
3015 	if (ip != NULL) {
3016 		dst.sa.sa_len = sizeof(struct sockaddr_in);
3017 		dst.sa.sa_family = AF_INET;
3018 		dst.sin.sin_addr = ip->ip_dst;
3019 	} else {
3020 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
3021 		dst.sa.sa_family = AF_INET6;
3022 		dst.sin6.sin6_addr = ip6->ip6_dst;
3023 	}
3024 
3025 	/*
3026 	 * Look up an SADB entry which matches the address of the peer.
3027 	 */
3028 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3029 #else
3030 	return NULL;
3031 #endif
3032 }
3033 
3034 int
3035 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3036     struct secasvar *sav, char *sig)
3037 {
3038 	MD5_CTX ctx;
3039 	struct ip *ip;
3040 	struct ipovly *ipovly;
3041 #ifdef INET6
3042 	struct ip6_hdr *ip6;
3043 	struct ip6_hdr_pseudo ip6pseudo;
3044 #endif
3045 	struct ippseudo ippseudo;
3046 	struct tcphdr th0;
3047 	int l, tcphdrlen;
3048 
3049 	if (sav == NULL)
3050 		return (-1);
3051 
3052 	tcphdrlen = th->th_off * 4;
3053 
3054 	switch (mtod(m, struct ip *)->ip_v) {
3055 	case 4:
3056 		MD5Init(&ctx);
3057 		ip = mtod(m, struct ip *);
3058 		memset(&ippseudo, 0, sizeof(ippseudo));
3059 		ipovly = (struct ipovly *)ip;
3060 		ippseudo.ippseudo_src = ipovly->ih_src;
3061 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3062 		ippseudo.ippseudo_pad = 0;
3063 		ippseudo.ippseudo_p = IPPROTO_TCP;
3064 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3065 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3066 		break;
3067 #if INET6
3068 	case 6:
3069 		MD5Init(&ctx);
3070 		ip6 = mtod(m, struct ip6_hdr *);
3071 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3072 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3073 		in6_clearscope(&ip6pseudo.ip6ph_src);
3074 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3075 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3076 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3077 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3078 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3079 		break;
3080 #endif
3081 	default:
3082 		return (-1);
3083 	}
3084 
3085 	th0 = *th;
3086 	th0.th_sum = 0;
3087 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3088 
3089 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3090 	if (l > 0)
3091 		m_apply(m, thoff + tcphdrlen,
3092 		    m->m_pkthdr.len - thoff - tcphdrlen,
3093 		    tcp_signature_apply, &ctx);
3094 
3095 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3096 	MD5Final(sig, &ctx);
3097 
3098 	return (0);
3099 }
3100 #endif
3101 
3102 /*
3103  * Parse and process tcp options.
3104  *
3105  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
3106  * Otherwise returns 0.
3107  */
3108 static int
3109 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3110     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3111 {
3112 	u_int16_t mss;
3113 	int opt, optlen = 0;
3114 #ifdef TCP_SIGNATURE
3115 	void *sigp = NULL;
3116 	char sigbuf[TCP_SIGLEN];
3117 	struct secasvar *sav = NULL;
3118 #endif
3119 
3120 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3121 		opt = cp[0];
3122 		if (opt == TCPOPT_EOL)
3123 			break;
3124 		if (opt == TCPOPT_NOP)
3125 			optlen = 1;
3126 		else {
3127 			if (cnt < 2)
3128 				break;
3129 			optlen = cp[1];
3130 			if (optlen < 2 || optlen > cnt)
3131 				break;
3132 		}
3133 		switch (opt) {
3134 
3135 		default:
3136 			continue;
3137 
3138 		case TCPOPT_MAXSEG:
3139 			if (optlen != TCPOLEN_MAXSEG)
3140 				continue;
3141 			if (!(th->th_flags & TH_SYN))
3142 				continue;
3143 			if (TCPS_HAVERCVDSYN(tp->t_state))
3144 				continue;
3145 			memcpy(&mss, cp + 2, sizeof(mss));
3146 			oi->maxseg = ntohs(mss);
3147 			break;
3148 
3149 		case TCPOPT_WINDOW:
3150 			if (optlen != TCPOLEN_WINDOW)
3151 				continue;
3152 			if (!(th->th_flags & TH_SYN))
3153 				continue;
3154 			if (TCPS_HAVERCVDSYN(tp->t_state))
3155 				continue;
3156 			tp->t_flags |= TF_RCVD_SCALE;
3157 			tp->requested_s_scale = cp[2];
3158 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3159 				char buf[INET6_ADDRSTRLEN];
3160 				struct ip *ip = mtod(m, struct ip *);
3161 #ifdef INET6
3162 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3163 #endif
3164 
3165 				switch (ip->ip_v) {
3166 				case 4:
3167 					in_print(buf, sizeof(buf),
3168 					    &ip->ip_src);
3169 					break;
3170 #ifdef INET6
3171 				case 6:
3172 					in6_print(buf, sizeof(buf),
3173 					    &ip6->ip6_src);
3174 					break;
3175 #endif
3176 				default:
3177 					strlcpy(buf, "(unknown)", sizeof(buf));
3178 					break;
3179 				}
3180 
3181 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3182 				    "assuming %d\n",
3183 				    tp->requested_s_scale, buf,
3184 				    TCP_MAX_WINSHIFT);
3185 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3186 			}
3187 			break;
3188 
3189 		case TCPOPT_TIMESTAMP:
3190 			if (optlen != TCPOLEN_TIMESTAMP)
3191 				continue;
3192 			oi->ts_present = 1;
3193 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3194 			NTOHL(oi->ts_val);
3195 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3196 			NTOHL(oi->ts_ecr);
3197 
3198 			if (!(th->th_flags & TH_SYN))
3199 				continue;
3200 			if (TCPS_HAVERCVDSYN(tp->t_state))
3201 				continue;
3202 			/*
3203 			 * A timestamp received in a SYN makes
3204 			 * it ok to send timestamp requests and replies.
3205 			 */
3206 			tp->t_flags |= TF_RCVD_TSTMP;
3207 			tp->ts_recent = oi->ts_val;
3208 			tp->ts_recent_age = tcp_now;
3209                         break;
3210 
3211 		case TCPOPT_SACK_PERMITTED:
3212 			if (optlen != TCPOLEN_SACK_PERMITTED)
3213 				continue;
3214 			if (!(th->th_flags & TH_SYN))
3215 				continue;
3216 			if (TCPS_HAVERCVDSYN(tp->t_state))
3217 				continue;
3218 			if (tcp_do_sack) {
3219 				tp->t_flags |= TF_SACK_PERMIT;
3220 				tp->t_flags |= TF_WILL_SACK;
3221 			}
3222 			break;
3223 
3224 		case TCPOPT_SACK:
3225 			tcp_sack_option(tp, th, cp, optlen);
3226 			break;
3227 #ifdef TCP_SIGNATURE
3228 		case TCPOPT_SIGNATURE:
3229 			if (optlen != TCPOLEN_SIGNATURE)
3230 				continue;
3231 			if (sigp &&
3232 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3233 				return (-1);
3234 
3235 			sigp = sigbuf;
3236 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3237 			tp->t_flags |= TF_SIGNATURE;
3238 			break;
3239 #endif
3240 		}
3241 	}
3242 
3243 #ifndef TCP_SIGNATURE
3244 	return 0;
3245 #else
3246 	if (tp->t_flags & TF_SIGNATURE) {
3247 		sav = tcp_signature_getsav(m);
3248 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3249 			return (-1);
3250 	}
3251 
3252 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3253 		goto out;
3254 
3255 	if (sigp) {
3256 		char sig[TCP_SIGLEN];
3257 
3258 		tcp_fields_to_net(th);
3259 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3260 			tcp_fields_to_host(th);
3261 			goto out;
3262 		}
3263 		tcp_fields_to_host(th);
3264 
3265 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3266 			TCP_STATINC(TCP_STAT_BADSIG);
3267 			goto out;
3268 		} else
3269 			TCP_STATINC(TCP_STAT_GOODSIG);
3270 
3271 		key_sa_recordxfer(sav, m);
3272 		KEY_SA_UNREF(&sav);
3273 	}
3274 	return 0;
3275 out:
3276 	if (sav != NULL)
3277 		KEY_SA_UNREF(&sav);
3278 	return -1;
3279 #endif
3280 }
3281 
3282 /*
3283  * Pull out of band byte out of a segment so
3284  * it doesn't appear in the user's data queue.
3285  * It is still reflected in the segment length for
3286  * sequencing purposes.
3287  */
3288 void
3289 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3290     struct mbuf *m, int off)
3291 {
3292 	int cnt = off + th->th_urp - 1;
3293 
3294 	while (cnt >= 0) {
3295 		if (m->m_len > cnt) {
3296 			char *cp = mtod(m, char *) + cnt;
3297 			struct tcpcb *tp = sototcpcb(so);
3298 
3299 			tp->t_iobc = *cp;
3300 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3301 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3302 			m->m_len--;
3303 			return;
3304 		}
3305 		cnt -= m->m_len;
3306 		m = m->m_next;
3307 		if (m == NULL)
3308 			break;
3309 	}
3310 	panic("tcp_pulloutofband");
3311 }
3312 
3313 /*
3314  * Collect new round-trip time estimate
3315  * and update averages and current timeout.
3316  *
3317  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3318  * difference of two timestamps.
3319  */
3320 void
3321 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3322 {
3323 	int32_t delta;
3324 
3325 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3326 	if (tp->t_srtt != 0) {
3327 		/*
3328 		 * Compute the amount to add to srtt for smoothing,
3329 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3330 		 * srtt is stored in 1/32 slow ticks, we conceptually
3331 		 * shift left 5 bits, subtract srtt to get the
3332 		 * diference, and then shift right by TCP_RTT_SHIFT
3333 		 * (3) to obtain 1/8 of the difference.
3334 		 */
3335 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3336 		/*
3337 		 * This can never happen, because delta's lowest
3338 		 * possible value is 1/8 of t_srtt.  But if it does,
3339 		 * set srtt to some reasonable value, here chosen
3340 		 * as 1/8 tick.
3341 		 */
3342 		if ((tp->t_srtt += delta) <= 0)
3343 			tp->t_srtt = 1 << 2;
3344 		/*
3345 		 * RFC2988 requires that rttvar be updated first.
3346 		 * This code is compliant because "delta" is the old
3347 		 * srtt minus the new observation (scaled).
3348 		 *
3349 		 * RFC2988 says:
3350 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3351 		 *
3352 		 * delta is in units of 1/32 ticks, and has then been
3353 		 * divided by 8.  This is equivalent to being in 1/16s
3354 		 * units and divided by 4.  Subtract from it 1/4 of
3355 		 * the existing rttvar to form the (signed) amount to
3356 		 * adjust.
3357 		 */
3358 		if (delta < 0)
3359 			delta = -delta;
3360 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3361 		/*
3362 		 * As with srtt, this should never happen.  There is
3363 		 * no support in RFC2988 for this operation.  But 1/4s
3364 		 * as rttvar when faced with something arguably wrong
3365 		 * is ok.
3366 		 */
3367 		if ((tp->t_rttvar += delta) <= 0)
3368 			tp->t_rttvar = 1 << 2;
3369 
3370 		/*
3371 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3372 		 * Problem is: it doesn't work.  Disabled by defaulting
3373 		 * tcp_rttlocal to 0; see corresponding code in
3374 		 * tcp_subr that selects local vs remote in a different way.
3375 		 *
3376 		 * The static branch prediction hint here should be removed
3377 		 * when the rtt estimator is fixed and the rtt_enable code
3378 		 * is turned back on.
3379 		 */
3380 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3381 		    && tp->t_srtt > tcp_msl_remote_threshold
3382 		    && tp->t_msl  < tcp_msl_remote) {
3383 			tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
3384 		}
3385 	} else {
3386 		/*
3387 		 * This is the first measurement.  Per RFC2988, 2.2,
3388 		 * set rtt=R and srtt=R/2.
3389 		 * For srtt, storage representation is 1/32 ticks,
3390 		 * so shift left by 5.
3391 		 * For rttvar, storage representation is 1/16 ticks,
3392 		 * So shift left by 4, but then right by 1 to halve.
3393 		 */
3394 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3395 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3396 	}
3397 	tp->t_rtttime = 0;
3398 	tp->t_rxtshift = 0;
3399 
3400 	/*
3401 	 * the retransmit should happen at rtt + 4 * rttvar.
3402 	 * Because of the way we do the smoothing, srtt and rttvar
3403 	 * will each average +1/2 tick of bias.  When we compute
3404 	 * the retransmit timer, we want 1/2 tick of rounding and
3405 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3406 	 * firing of the timer.  The bias will give us exactly the
3407 	 * 1.5 tick we need.  But, because the bias is
3408 	 * statistical, we have to test that we don't drop below
3409 	 * the minimum feasible timer (which is 2 ticks).
3410 	 */
3411 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3412 	    uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3413 
3414 	/*
3415 	 * We received an ack for a packet that wasn't retransmitted;
3416 	 * it is probably safe to discard any error indications we've
3417 	 * received recently.  This isn't quite right, but close enough
3418 	 * for now (a route might have failed after we sent a segment,
3419 	 * and the return path might not be symmetrical).
3420 	 */
3421 	tp->t_softerror = 0;
3422 }
3423 
3424 
3425 /*
3426  * TCP compressed state engine.  Currently used to hold compressed
3427  * state for SYN_RECEIVED.
3428  */
3429 
3430 u_long	syn_cache_count;
3431 u_int32_t syn_hash1, syn_hash2;
3432 
3433 #define SYN_HASH(sa, sp, dp) \
3434 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3435 				     ((u_int32_t)(sp)))^syn_hash2)))
3436 #ifndef INET6
3437 #define	SYN_HASHALL(hash, src, dst) \
3438 do {									\
3439 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3440 		((const struct sockaddr_in *)(src))->sin_port,		\
3441 		((const struct sockaddr_in *)(dst))->sin_port);		\
3442 } while (/*CONSTCOND*/ 0)
3443 #else
3444 #define SYN_HASH6(sa, sp, dp) \
3445 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3446 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3447 	 & 0x7fffffff)
3448 
3449 #define SYN_HASHALL(hash, src, dst) \
3450 do {									\
3451 	switch ((src)->sa_family) {					\
3452 	case AF_INET:							\
3453 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3454 			((const struct sockaddr_in *)(src))->sin_port,	\
3455 			((const struct sockaddr_in *)(dst))->sin_port);	\
3456 		break;							\
3457 	case AF_INET6:							\
3458 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3459 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3460 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3461 		break;							\
3462 	default:							\
3463 		hash = 0;						\
3464 	}								\
3465 } while (/*CONSTCOND*/0)
3466 #endif /* INET6 */
3467 
3468 static struct pool syn_cache_pool;
3469 
3470 /*
3471  * We don't estimate RTT with SYNs, so each packet starts with the default
3472  * RTT and each timer step has a fixed timeout value.
3473  */
3474 static inline void
3475 syn_cache_timer_arm(struct syn_cache *sc)
3476 {
3477 
3478 	TCPT_RANGESET(sc->sc_rxtcur,
3479 	    TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3480 	    TCPTV_REXMTMAX);
3481 	callout_reset(&sc->sc_timer,
3482 	    sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3483 }
3484 
3485 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3486 
3487 static inline void
3488 syn_cache_rm(struct syn_cache *sc)
3489 {
3490 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3491 	    sc, sc_bucketq);
3492 	sc->sc_tp = NULL;
3493 	LIST_REMOVE(sc, sc_tpq);
3494 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3495 	callout_stop(&sc->sc_timer);
3496 	syn_cache_count--;
3497 }
3498 
3499 static inline void
3500 syn_cache_put(struct syn_cache *sc)
3501 {
3502 	if (sc->sc_ipopts)
3503 		(void) m_free(sc->sc_ipopts);
3504 	rtcache_free(&sc->sc_route);
3505 	sc->sc_flags |= SCF_DEAD;
3506 	if (!callout_invoking(&sc->sc_timer))
3507 		callout_schedule(&(sc)->sc_timer, 1);
3508 }
3509 
3510 void
3511 syn_cache_init(void)
3512 {
3513 	int i;
3514 
3515 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3516 	    "synpl", NULL, IPL_SOFTNET);
3517 
3518 	/* Initialize the hash buckets. */
3519 	for (i = 0; i < tcp_syn_cache_size; i++)
3520 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3521 }
3522 
3523 void
3524 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3525 {
3526 	struct syn_cache_head *scp;
3527 	struct syn_cache *sc2;
3528 	int s;
3529 
3530 	/*
3531 	 * If there are no entries in the hash table, reinitialize
3532 	 * the hash secrets.
3533 	 */
3534 	if (syn_cache_count == 0) {
3535 		syn_hash1 = cprng_fast32();
3536 		syn_hash2 = cprng_fast32();
3537 	}
3538 
3539 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3540 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3541 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3542 
3543 	/*
3544 	 * Make sure that we don't overflow the per-bucket
3545 	 * limit or the total cache size limit.
3546 	 */
3547 	s = splsoftnet();
3548 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3549 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3550 		/*
3551 		 * The bucket is full.  Toss the oldest element in the
3552 		 * bucket.  This will be the first entry in the bucket.
3553 		 */
3554 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3555 #ifdef DIAGNOSTIC
3556 		/*
3557 		 * This should never happen; we should always find an
3558 		 * entry in our bucket.
3559 		 */
3560 		if (sc2 == NULL)
3561 			panic("syn_cache_insert: bucketoverflow: impossible");
3562 #endif
3563 		syn_cache_rm(sc2);
3564 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3565 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3566 		struct syn_cache_head *scp2, *sce;
3567 
3568 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3569 		/*
3570 		 * The cache is full.  Toss the oldest entry in the
3571 		 * first non-empty bucket we can find.
3572 		 *
3573 		 * XXX We would really like to toss the oldest
3574 		 * entry in the cache, but we hope that this
3575 		 * condition doesn't happen very often.
3576 		 */
3577 		scp2 = scp;
3578 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3579 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3580 			for (++scp2; scp2 != scp; scp2++) {
3581 				if (scp2 >= sce)
3582 					scp2 = &tcp_syn_cache[0];
3583 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3584 					break;
3585 			}
3586 #ifdef DIAGNOSTIC
3587 			/*
3588 			 * This should never happen; we should always find a
3589 			 * non-empty bucket.
3590 			 */
3591 			if (scp2 == scp)
3592 				panic("syn_cache_insert: cacheoverflow: "
3593 				    "impossible");
3594 #endif
3595 		}
3596 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3597 		syn_cache_rm(sc2);
3598 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3599 	}
3600 
3601 	/*
3602 	 * Initialize the entry's timer.
3603 	 */
3604 	sc->sc_rxttot = 0;
3605 	sc->sc_rxtshift = 0;
3606 	syn_cache_timer_arm(sc);
3607 
3608 	/* Link it from tcpcb entry */
3609 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3610 
3611 	/* Put it into the bucket. */
3612 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3613 	scp->sch_length++;
3614 	syn_cache_count++;
3615 
3616 	TCP_STATINC(TCP_STAT_SC_ADDED);
3617 	splx(s);
3618 }
3619 
3620 /*
3621  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3622  * If we have retransmitted an entry the maximum number of times, expire
3623  * that entry.
3624  */
3625 static void
3626 syn_cache_timer(void *arg)
3627 {
3628 	struct syn_cache *sc = arg;
3629 
3630 	mutex_enter(softnet_lock);
3631 	KERNEL_LOCK(1, NULL);
3632 
3633 	callout_ack(&sc->sc_timer);
3634 
3635 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3636 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3637 		goto free;
3638 	}
3639 
3640 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3641 		/* Drop it -- too many retransmissions. */
3642 		goto dropit;
3643 	}
3644 
3645 	/*
3646 	 * Compute the total amount of time this entry has
3647 	 * been on a queue.  If this entry has been on longer
3648 	 * than the keep alive timer would allow, expire it.
3649 	 */
3650 	sc->sc_rxttot += sc->sc_rxtcur;
3651 	if (sc->sc_rxttot >= MIN(tcp_keepinit, TCP_TIMER_MAXTICKS))
3652 		goto dropit;
3653 
3654 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3655 	(void)syn_cache_respond(sc);
3656 
3657 	/* Advance the timer back-off. */
3658 	sc->sc_rxtshift++;
3659 	syn_cache_timer_arm(sc);
3660 
3661 	goto out;
3662 
3663  dropit:
3664 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3665 	syn_cache_rm(sc);
3666 	if (sc->sc_ipopts)
3667 		(void) m_free(sc->sc_ipopts);
3668 	rtcache_free(&sc->sc_route);
3669 
3670  free:
3671 	callout_destroy(&sc->sc_timer);
3672 	pool_put(&syn_cache_pool, sc);
3673 
3674  out:
3675 	KERNEL_UNLOCK_ONE(NULL);
3676 	mutex_exit(softnet_lock);
3677 }
3678 
3679 /*
3680  * Remove syn cache created by the specified tcb entry,
3681  * because this does not make sense to keep them
3682  * (if there's no tcb entry, syn cache entry will never be used)
3683  */
3684 void
3685 syn_cache_cleanup(struct tcpcb *tp)
3686 {
3687 	struct syn_cache *sc, *nsc;
3688 	int s;
3689 
3690 	s = splsoftnet();
3691 
3692 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3693 		nsc = LIST_NEXT(sc, sc_tpq);
3694 
3695 #ifdef DIAGNOSTIC
3696 		if (sc->sc_tp != tp)
3697 			panic("invalid sc_tp in syn_cache_cleanup");
3698 #endif
3699 		syn_cache_rm(sc);
3700 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3701 	}
3702 	/* just for safety */
3703 	LIST_INIT(&tp->t_sc);
3704 
3705 	splx(s);
3706 }
3707 
3708 /*
3709  * Find an entry in the syn cache.
3710  */
3711 struct syn_cache *
3712 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3713     struct syn_cache_head **headp)
3714 {
3715 	struct syn_cache *sc;
3716 	struct syn_cache_head *scp;
3717 	u_int32_t hash;
3718 	int s;
3719 
3720 	SYN_HASHALL(hash, src, dst);
3721 
3722 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3723 	*headp = scp;
3724 	s = splsoftnet();
3725 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3726 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3727 		if (sc->sc_hash != hash)
3728 			continue;
3729 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3730 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3731 			splx(s);
3732 			return (sc);
3733 		}
3734 	}
3735 	splx(s);
3736 	return (NULL);
3737 }
3738 
3739 /*
3740  * This function gets called when we receive an ACK for a socket in the
3741  * LISTEN state. We look up the connection in the syn cache, and if it's
3742  * there, we pull it out of the cache and turn it into a full-blown
3743  * connection in the SYN-RECEIVED state.
3744  *
3745  * The return values may not be immediately obvious, and their effects
3746  * can be subtle, so here they are:
3747  *
3748  *	NULL	SYN was not found in cache; caller should drop the
3749  *		packet and send an RST.
3750  *
3751  *	-1	We were unable to create the new connection, and are
3752  *		aborting it.  An ACK,RST is being sent to the peer
3753  *		(unless we got screwey sequence numbers; see below),
3754  *		because the 3-way handshake has been completed.  Caller
3755  *		should not free the mbuf, since we may be using it.  If
3756  *		we are not, we will free it.
3757  *
3758  *	Otherwise, the return value is a pointer to the new socket
3759  *	associated with the connection.
3760  */
3761 struct socket *
3762 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3763     struct tcphdr *th, struct socket *so, struct mbuf *m)
3764 {
3765 	struct syn_cache *sc;
3766 	struct syn_cache_head *scp;
3767 	struct inpcb *inp = NULL;
3768 #ifdef INET6
3769 	struct in6pcb *in6p = NULL;
3770 #endif
3771 	struct tcpcb *tp;
3772 	int s;
3773 	struct socket *oso;
3774 
3775 	s = splsoftnet();
3776 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3777 		splx(s);
3778 		return NULL;
3779 	}
3780 
3781 	/*
3782 	 * Verify the sequence and ack numbers.  Try getting the correct
3783 	 * response again.
3784 	 */
3785 	if ((th->th_ack != sc->sc_iss + 1) ||
3786 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3787 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3788 		m_freem(m);
3789 		(void)syn_cache_respond(sc);
3790 		splx(s);
3791 		return ((struct socket *)(-1));
3792 	}
3793 
3794 	/* Remove this cache entry */
3795 	syn_cache_rm(sc);
3796 	splx(s);
3797 
3798 	/*
3799 	 * Ok, create the full blown connection, and set things up
3800 	 * as they would have been set up if we had created the
3801 	 * connection when the SYN arrived.  If we can't create
3802 	 * the connection, abort it.
3803 	 */
3804 	/*
3805 	 * inp still has the OLD in_pcb stuff, set the
3806 	 * v6-related flags on the new guy, too.   This is
3807 	 * done particularly for the case where an AF_INET6
3808 	 * socket is bound only to a port, and a v4 connection
3809 	 * comes in on that port.
3810 	 * we also copy the flowinfo from the original pcb
3811 	 * to the new one.
3812 	 */
3813 	oso = so;
3814 	so = sonewconn(so, true);
3815 	if (so == NULL)
3816 		goto resetandabort;
3817 
3818 	switch (so->so_proto->pr_domain->dom_family) {
3819 	case AF_INET:
3820 		inp = sotoinpcb(so);
3821 		break;
3822 #ifdef INET6
3823 	case AF_INET6:
3824 		in6p = sotoin6pcb(so);
3825 		break;
3826 #endif
3827 	}
3828 
3829 	switch (src->sa_family) {
3830 	case AF_INET:
3831 		if (inp) {
3832 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3833 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3834 			inp->inp_options = ip_srcroute(m);
3835 			in_pcbstate(inp, INP_BOUND);
3836 			if (inp->inp_options == NULL) {
3837 				inp->inp_options = sc->sc_ipopts;
3838 				sc->sc_ipopts = NULL;
3839 			}
3840 		}
3841 #ifdef INET6
3842 		else if (in6p) {
3843 			/* IPv4 packet to AF_INET6 socket */
3844 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3845 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3846 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3847 				&in6p->in6p_laddr.s6_addr32[3],
3848 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3849 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3850 			in6totcpcb(in6p)->t_family = AF_INET;
3851 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3852 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3853 			else
3854 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3855 			in6_pcbstate(in6p, IN6P_BOUND);
3856 		}
3857 #endif
3858 		break;
3859 #ifdef INET6
3860 	case AF_INET6:
3861 		if (in6p) {
3862 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3863 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3864 			in6_pcbstate(in6p, IN6P_BOUND);
3865 		}
3866 		break;
3867 #endif
3868 	}
3869 
3870 #ifdef INET6
3871 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3872 		struct in6pcb *oin6p = sotoin6pcb(oso);
3873 		/* inherit socket options from the listening socket */
3874 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3875 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3876 			m_freem(in6p->in6p_options);
3877 			in6p->in6p_options = NULL;
3878 		}
3879 		ip6_savecontrol(in6p, &in6p->in6p_options,
3880 		    mtod(m, struct ip6_hdr *), m);
3881 	}
3882 #endif
3883 
3884 	/*
3885 	 * Give the new socket our cached route reference.
3886 	 */
3887 	if (inp) {
3888 		rtcache_copy(&inp->inp_route, &sc->sc_route);
3889 		rtcache_free(&sc->sc_route);
3890 	}
3891 #ifdef INET6
3892 	else {
3893 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3894 		rtcache_free(&sc->sc_route);
3895 	}
3896 #endif
3897 
3898 	if (inp) {
3899 		struct sockaddr_in sin;
3900 		memcpy(&sin, src, src->sa_len);
3901 		if (in_pcbconnect(inp, &sin, &lwp0)) {
3902 			goto resetandabort;
3903 		}
3904 	}
3905 #ifdef INET6
3906 	else if (in6p) {
3907 		struct sockaddr_in6 sin6;
3908 		memcpy(&sin6, src, src->sa_len);
3909 		if (src->sa_family == AF_INET) {
3910 			/* IPv4 packet to AF_INET6 socket */
3911 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
3912 		}
3913 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
3914 			goto resetandabort;
3915 		}
3916 	}
3917 #endif
3918 	else {
3919 		goto resetandabort;
3920 	}
3921 
3922 	if (inp)
3923 		tp = intotcpcb(inp);
3924 #ifdef INET6
3925 	else if (in6p)
3926 		tp = in6totcpcb(in6p);
3927 #endif
3928 	else
3929 		tp = NULL;
3930 
3931 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3932 	if (sc->sc_request_r_scale != 15) {
3933 		tp->requested_s_scale = sc->sc_requested_s_scale;
3934 		tp->request_r_scale = sc->sc_request_r_scale;
3935 		tp->snd_scale = sc->sc_requested_s_scale;
3936 		tp->rcv_scale = sc->sc_request_r_scale;
3937 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3938 	}
3939 	if (sc->sc_flags & SCF_TIMESTAMP)
3940 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3941 	tp->ts_timebase = sc->sc_timebase;
3942 
3943 	tp->t_template = tcp_template(tp);
3944 	if (tp->t_template == 0) {
3945 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3946 		so = NULL;
3947 		m_freem(m);
3948 		goto abort;
3949 	}
3950 
3951 	tp->iss = sc->sc_iss;
3952 	tp->irs = sc->sc_irs;
3953 	tcp_sendseqinit(tp);
3954 	tcp_rcvseqinit(tp);
3955 	tp->t_state = TCPS_SYN_RECEIVED;
3956 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3957 	TCP_STATINC(TCP_STAT_ACCEPTS);
3958 
3959 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3960 		tp->t_flags |= TF_WILL_SACK;
3961 
3962 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3963 		tp->t_flags |= TF_ECN_PERMIT;
3964 
3965 #ifdef TCP_SIGNATURE
3966 	if (sc->sc_flags & SCF_SIGNATURE)
3967 		tp->t_flags |= TF_SIGNATURE;
3968 #endif
3969 
3970 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3971 	tp->t_ourmss = sc->sc_ourmaxseg;
3972 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3973 
3974 	/*
3975 	 * Initialize the initial congestion window.  If we
3976 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3977 	 * to 1 segment (i.e. the Loss Window).
3978 	 */
3979 	if (sc->sc_rxtshift)
3980 		tp->snd_cwnd = tp->t_peermss;
3981 	else {
3982 		int ss = tcp_init_win;
3983 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3984 			ss = tcp_init_win_local;
3985 #ifdef INET6
3986 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3987 			ss = tcp_init_win_local;
3988 #endif
3989 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3990 	}
3991 
3992 	tcp_rmx_rtt(tp);
3993 	tp->snd_wl1 = sc->sc_irs;
3994 	tp->rcv_up = sc->sc_irs + 1;
3995 
3996 	/*
3997 	 * This is what whould have happened in tcp_output() when
3998 	 * the SYN,ACK was sent.
3999 	 */
4000 	tp->snd_up = tp->snd_una;
4001 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4002 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4003 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4004 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4005 	tp->last_ack_sent = tp->rcv_nxt;
4006 	tp->t_partialacks = -1;
4007 	tp->t_dupacks = 0;
4008 
4009 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4010 	s = splsoftnet();
4011 	syn_cache_put(sc);
4012 	splx(s);
4013 	return so;
4014 
4015 resetandabort:
4016 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4017 abort:
4018 	if (so != NULL) {
4019 		(void) soqremque(so, 1);
4020 		(void) soabort(so);
4021 		mutex_enter(softnet_lock);
4022 	}
4023 	s = splsoftnet();
4024 	syn_cache_put(sc);
4025 	splx(s);
4026 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4027 	return ((struct socket *)(-1));
4028 }
4029 
4030 /*
4031  * This function is called when we get a RST for a
4032  * non-existent connection, so that we can see if the
4033  * connection is in the syn cache.  If it is, zap it.
4034  */
4035 
4036 void
4037 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4038 {
4039 	struct syn_cache *sc;
4040 	struct syn_cache_head *scp;
4041 	int s = splsoftnet();
4042 
4043 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4044 		splx(s);
4045 		return;
4046 	}
4047 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4048 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4049 		splx(s);
4050 		return;
4051 	}
4052 	syn_cache_rm(sc);
4053 	TCP_STATINC(TCP_STAT_SC_RESET);
4054 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4055 	splx(s);
4056 }
4057 
4058 void
4059 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4060     struct tcphdr *th)
4061 {
4062 	struct syn_cache *sc;
4063 	struct syn_cache_head *scp;
4064 	int s;
4065 
4066 	s = splsoftnet();
4067 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4068 		splx(s);
4069 		return;
4070 	}
4071 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4072 	if (ntohl(th->th_seq) != sc->sc_iss) {
4073 		splx(s);
4074 		return;
4075 	}
4076 
4077 	/*
4078 	 * If we've retransmitted 3 times and this is our second error,
4079 	 * we remove the entry.  Otherwise, we allow it to continue on.
4080 	 * This prevents us from incorrectly nuking an entry during a
4081 	 * spurious network outage.
4082 	 *
4083 	 * See tcp_notify().
4084 	 */
4085 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4086 		sc->sc_flags |= SCF_UNREACH;
4087 		splx(s);
4088 		return;
4089 	}
4090 
4091 	syn_cache_rm(sc);
4092 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4093 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4094 	splx(s);
4095 }
4096 
4097 /*
4098  * Given a LISTEN socket and an inbound SYN request, add this to the syn
4099  * cache, and send back a segment:
4100  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4101  * to the source.
4102  *
4103  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4104  * Doing so would require that we hold onto the data and deliver it
4105  * to the application.  However, if we are the target of a SYN-flood
4106  * DoS attack, an attacker could send data which would eventually
4107  * consume all available buffer space if it were ACKed.  By not ACKing
4108  * the data, we avoid this DoS scenario.
4109  */
4110 int
4111 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4112     unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
4113     int optlen, struct tcp_opt_info *oi)
4114 {
4115 	struct tcpcb tb, *tp;
4116 	long win;
4117 	struct syn_cache *sc;
4118 	struct syn_cache_head *scp;
4119 	struct mbuf *ipopts;
4120 	int s;
4121 
4122 	tp = sototcpcb(so);
4123 
4124 	/*
4125 	 * Initialize some local state.
4126 	 */
4127 	win = sbspace(&so->so_rcv);
4128 	if (win > TCP_MAXWIN)
4129 		win = TCP_MAXWIN;
4130 
4131 #ifdef TCP_SIGNATURE
4132 	if (optp || (tp->t_flags & TF_SIGNATURE))
4133 #else
4134 	if (optp)
4135 #endif
4136 	{
4137 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4138 #ifdef TCP_SIGNATURE
4139 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4140 #endif
4141 		tb.t_state = TCPS_LISTEN;
4142 		if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
4143 			return 0;
4144 	} else
4145 		tb.t_flags = 0;
4146 
4147 	switch (src->sa_family) {
4148 	case AF_INET:
4149 		/* Remember the IP options, if any. */
4150 		ipopts = ip_srcroute(m);
4151 		break;
4152 	default:
4153 		ipopts = NULL;
4154 	}
4155 
4156 	/*
4157 	 * See if we already have an entry for this connection.
4158 	 * If we do, resend the SYN,ACK.  We do not count this
4159 	 * as a retransmission (XXX though maybe we should).
4160 	 */
4161 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4162 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4163 		if (ipopts) {
4164 			/*
4165 			 * If we were remembering a previous source route,
4166 			 * forget it and use the new one we've been given.
4167 			 */
4168 			if (sc->sc_ipopts)
4169 				(void)m_free(sc->sc_ipopts);
4170 			sc->sc_ipopts = ipopts;
4171 		}
4172 		sc->sc_timestamp = tb.ts_recent;
4173 		m_freem(m);
4174 		if (syn_cache_respond(sc) == 0) {
4175 			uint64_t *tcps = TCP_STAT_GETREF();
4176 			tcps[TCP_STAT_SNDACKS]++;
4177 			tcps[TCP_STAT_SNDTOTAL]++;
4178 			TCP_STAT_PUTREF();
4179 		}
4180 		return 1;
4181 	}
4182 
4183 	s = splsoftnet();
4184 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4185 	splx(s);
4186 	if (sc == NULL) {
4187 		if (ipopts)
4188 			(void)m_free(ipopts);
4189 		return 0;
4190 	}
4191 
4192 	/*
4193 	 * Fill in the cache, and put the necessary IP and TCP
4194 	 * options into the reply.
4195 	 */
4196 	memset(sc, 0, sizeof(struct syn_cache));
4197 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4198 	memcpy(&sc->sc_src, src, src->sa_len);
4199 	memcpy(&sc->sc_dst, dst, dst->sa_len);
4200 	sc->sc_flags = 0;
4201 	sc->sc_ipopts = ipopts;
4202 	sc->sc_irs = th->th_seq;
4203 	switch (src->sa_family) {
4204 	case AF_INET:
4205 	    {
4206 		struct sockaddr_in *srcin = (void *)src;
4207 		struct sockaddr_in *dstin = (void *)dst;
4208 
4209 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4210 		    &srcin->sin_addr, dstin->sin_port,
4211 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4212 		break;
4213 	    }
4214 #ifdef INET6
4215 	case AF_INET6:
4216 	    {
4217 		struct sockaddr_in6 *srcin6 = (void *)src;
4218 		struct sockaddr_in6 *dstin6 = (void *)dst;
4219 
4220 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4221 		    &srcin6->sin6_addr, dstin6->sin6_port,
4222 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4223 		break;
4224 	    }
4225 #endif
4226 	}
4227 	sc->sc_peermaxseg = oi->maxseg;
4228 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4229 	    m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
4230 	sc->sc_win = win;
4231 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4232 	sc->sc_timestamp = tb.ts_recent;
4233 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4234 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4235 		sc->sc_flags |= SCF_TIMESTAMP;
4236 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4237 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4238 		sc->sc_requested_s_scale = tb.requested_s_scale;
4239 		sc->sc_request_r_scale = 0;
4240 		/*
4241 		 * Pick the smallest possible scaling factor that
4242 		 * will still allow us to scale up to sb_max.
4243 		 *
4244 		 * We do this because there are broken firewalls that
4245 		 * will corrupt the window scale option, leading to
4246 		 * the other endpoint believing that our advertised
4247 		 * window is unscaled.  At scale factors larger than
4248 		 * 5 the unscaled window will drop below 1500 bytes,
4249 		 * leading to serious problems when traversing these
4250 		 * broken firewalls.
4251 		 *
4252 		 * With the default sbmax of 256K, a scale factor
4253 		 * of 3 will be chosen by this algorithm.  Those who
4254 		 * choose a larger sbmax should watch out
4255 		 * for the compatiblity problems mentioned above.
4256 		 *
4257 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4258 		 * or <SYN,ACK>) segment itself is never scaled.
4259 		 */
4260 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4261 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4262 			sc->sc_request_r_scale++;
4263 	} else {
4264 		sc->sc_requested_s_scale = 15;
4265 		sc->sc_request_r_scale = 15;
4266 	}
4267 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4268 		sc->sc_flags |= SCF_SACK_PERMIT;
4269 
4270 	/*
4271 	 * ECN setup packet received.
4272 	 */
4273 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4274 		sc->sc_flags |= SCF_ECN_PERMIT;
4275 
4276 #ifdef TCP_SIGNATURE
4277 	if (tb.t_flags & TF_SIGNATURE)
4278 		sc->sc_flags |= SCF_SIGNATURE;
4279 #endif
4280 	sc->sc_tp = tp;
4281 	m_freem(m);
4282 	if (syn_cache_respond(sc) == 0) {
4283 		uint64_t *tcps = TCP_STAT_GETREF();
4284 		tcps[TCP_STAT_SNDACKS]++;
4285 		tcps[TCP_STAT_SNDTOTAL]++;
4286 		TCP_STAT_PUTREF();
4287 		syn_cache_insert(sc, tp);
4288 	} else {
4289 		s = splsoftnet();
4290 		/*
4291 		 * syn_cache_put() will try to schedule the timer, so
4292 		 * we need to initialize it
4293 		 */
4294 		syn_cache_timer_arm(sc);
4295 		syn_cache_put(sc);
4296 		splx(s);
4297 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4298 	}
4299 	return 1;
4300 }
4301 
4302 /*
4303  * syn_cache_respond: (re)send SYN+ACK.
4304  *
4305  * Returns 0 on success.
4306  */
4307 
4308 int
4309 syn_cache_respond(struct syn_cache *sc)
4310 {
4311 #ifdef INET6
4312 	struct rtentry *rt = NULL;
4313 #endif
4314 	struct route *ro;
4315 	u_int8_t *optp;
4316 	int optlen, error;
4317 	u_int16_t tlen;
4318 	struct ip *ip = NULL;
4319 #ifdef INET6
4320 	struct ip6_hdr *ip6 = NULL;
4321 #endif
4322 	struct tcpcb *tp;
4323 	struct tcphdr *th;
4324 	struct mbuf *m;
4325 	u_int hlen;
4326 #ifdef TCP_SIGNATURE
4327 	struct secasvar *sav = NULL;
4328 	u_int8_t *sigp = NULL;
4329 #endif
4330 
4331 	ro = &sc->sc_route;
4332 	switch (sc->sc_src.sa.sa_family) {
4333 	case AF_INET:
4334 		hlen = sizeof(struct ip);
4335 		break;
4336 #ifdef INET6
4337 	case AF_INET6:
4338 		hlen = sizeof(struct ip6_hdr);
4339 		break;
4340 #endif
4341 	default:
4342 		return EAFNOSUPPORT;
4343 	}
4344 
4345 	/* Worst case scanario, since we don't know the option size yet. */
4346 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4347 	KASSERT(max_linkhdr + tlen <= MCLBYTES);
4348 
4349 	/*
4350 	 * Create the IP+TCP header from scratch.
4351 	 */
4352 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4353 	if (m && (max_linkhdr + tlen) > MHLEN) {
4354 		MCLGET(m, M_DONTWAIT);
4355 		if ((m->m_flags & M_EXT) == 0) {
4356 			m_freem(m);
4357 			m = NULL;
4358 		}
4359 	}
4360 	if (m == NULL)
4361 		return ENOBUFS;
4362 	MCLAIM(m, &tcp_tx_mowner);
4363 
4364 	tp = sc->sc_tp;
4365 
4366 	/* Fixup the mbuf. */
4367 	m->m_data += max_linkhdr;
4368 	m_reset_rcvif(m);
4369 	memset(mtod(m, void *), 0, tlen);
4370 
4371 	switch (sc->sc_src.sa.sa_family) {
4372 	case AF_INET:
4373 		ip = mtod(m, struct ip *);
4374 		ip->ip_v = 4;
4375 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4376 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4377 		ip->ip_p = IPPROTO_TCP;
4378 		th = (struct tcphdr *)(ip + 1);
4379 		th->th_dport = sc->sc_src.sin.sin_port;
4380 		th->th_sport = sc->sc_dst.sin.sin_port;
4381 		break;
4382 #ifdef INET6
4383 	case AF_INET6:
4384 		ip6 = mtod(m, struct ip6_hdr *);
4385 		ip6->ip6_vfc = IPV6_VERSION;
4386 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4387 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4388 		ip6->ip6_nxt = IPPROTO_TCP;
4389 		/* ip6_plen will be updated in ip6_output() */
4390 		th = (struct tcphdr *)(ip6 + 1);
4391 		th->th_dport = sc->sc_src.sin6.sin6_port;
4392 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4393 		break;
4394 #endif
4395 	default:
4396 		panic("%s: impossible (1)", __func__);
4397 	}
4398 
4399 	th->th_seq = htonl(sc->sc_iss);
4400 	th->th_ack = htonl(sc->sc_irs + 1);
4401 	th->th_flags = TH_SYN|TH_ACK;
4402 	th->th_win = htons(sc->sc_win);
4403 	/* th_x2, th_sum, th_urp already 0 from memset */
4404 
4405 	/* Tack on the TCP options. */
4406 	optp = (u_int8_t *)(th + 1);
4407 	optlen = 0;
4408 	*optp++ = TCPOPT_MAXSEG;
4409 	*optp++ = TCPOLEN_MAXSEG;
4410 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4411 	*optp++ = sc->sc_ourmaxseg & 0xff;
4412 	optlen += TCPOLEN_MAXSEG;
4413 
4414 	if (sc->sc_request_r_scale != 15) {
4415 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4416 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4417 		    sc->sc_request_r_scale);
4418 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4419 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4420 	}
4421 
4422 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4423 		/* Let the peer know that we will SACK. */
4424 		*optp++ = TCPOPT_SACK_PERMITTED;
4425 		*optp++ = TCPOLEN_SACK_PERMITTED;
4426 		optlen += TCPOLEN_SACK_PERMITTED;
4427 	}
4428 
4429 	if (sc->sc_flags & SCF_TIMESTAMP) {
4430 		while (optlen % 4 != 2) {
4431 			optlen += TCPOLEN_NOP;
4432 			*optp++ = TCPOPT_NOP;
4433 		}
4434 		*optp++ = TCPOPT_TIMESTAMP;
4435 		*optp++ = TCPOLEN_TIMESTAMP;
4436 		u_int32_t *lp = (u_int32_t *)(optp);
4437 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4438 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4439 		*lp   = htonl(sc->sc_timestamp);
4440 		optp += TCPOLEN_TIMESTAMP - 2;
4441 		optlen += TCPOLEN_TIMESTAMP;
4442 	}
4443 
4444 #ifdef TCP_SIGNATURE
4445 	if (sc->sc_flags & SCF_SIGNATURE) {
4446 		sav = tcp_signature_getsav(m);
4447 		if (sav == NULL) {
4448 			m_freem(m);
4449 			return EPERM;
4450 		}
4451 
4452 		*optp++ = TCPOPT_SIGNATURE;
4453 		*optp++ = TCPOLEN_SIGNATURE;
4454 		sigp = optp;
4455 		memset(optp, 0, TCP_SIGLEN);
4456 		optp += TCP_SIGLEN;
4457 		optlen += TCPOLEN_SIGNATURE;
4458 	}
4459 #endif
4460 
4461 	/*
4462 	 * Terminate and pad TCP options to a 4 byte boundary.
4463 	 *
4464 	 * According to RFC793: "The content of the header beyond the
4465 	 * End-of-Option option must be header padding (i.e., zero)."
4466 	 * And later: "The padding is composed of zeros."
4467 	 */
4468 	if (optlen % 4) {
4469 		optlen += TCPOLEN_EOL;
4470 		*optp++ = TCPOPT_EOL;
4471 	}
4472 	while (optlen % 4) {
4473 		optlen += TCPOLEN_PAD;
4474 		*optp++ = TCPOPT_PAD;
4475 	}
4476 
4477 	/* Compute the actual values now that we've added the options. */
4478 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4479 	m->m_len = m->m_pkthdr.len = tlen;
4480 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4481 
4482 #ifdef TCP_SIGNATURE
4483 	if (sav) {
4484 		(void)tcp_signature(m, th, hlen, sav, sigp);
4485 		key_sa_recordxfer(sav, m);
4486 		KEY_SA_UNREF(&sav);
4487 	}
4488 #endif
4489 
4490 	/*
4491 	 * Send ECN SYN-ACK setup packet.
4492 	 * Routes can be asymetric, so, even if we receive a packet
4493 	 * with ECE and CWR set, we must not assume no one will block
4494 	 * the ECE packet we are about to send.
4495 	 */
4496 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4497 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4498 		th->th_flags |= TH_ECE;
4499 		TCP_STATINC(TCP_STAT_ECN_SHS);
4500 
4501 		/*
4502 		 * draft-ietf-tcpm-ecnsyn-00.txt
4503 		 *
4504 		 * "[...] a TCP node MAY respond to an ECN-setup
4505 		 * SYN packet by setting ECT in the responding
4506 		 * ECN-setup SYN/ACK packet, indicating to routers
4507 		 * that the SYN/ACK packet is ECN-Capable.
4508 		 * This allows a congested router along the path
4509 		 * to mark the packet instead of dropping the
4510 		 * packet as an indication of congestion."
4511 		 *
4512 		 * "[...] There can be a great benefit in setting
4513 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4514 		 * Congestion is  most likely to occur in
4515 		 * the server-to-client direction.  As a result,
4516 		 * setting an ECN-capable codepoint in SYN/ACK
4517 		 * packets can reduce the occurence of three-second
4518 		 * retransmit timeouts resulting from the drop
4519 		 * of SYN/ACK packets."
4520 		 *
4521 		 * Page 4 and 6, January 2006.
4522 		 */
4523 
4524 		switch (sc->sc_src.sa.sa_family) {
4525 		case AF_INET:
4526 			ip->ip_tos |= IPTOS_ECN_ECT0;
4527 			break;
4528 #ifdef INET6
4529 		case AF_INET6:
4530 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4531 			break;
4532 #endif
4533 		}
4534 		TCP_STATINC(TCP_STAT_ECN_ECT);
4535 	}
4536 
4537 
4538 	/*
4539 	 * Compute the packet's checksum.
4540 	 *
4541 	 * Fill in some straggling IP bits.  Note the stack expects
4542 	 * ip_len to be in host order, for convenience.
4543 	 */
4544 	switch (sc->sc_src.sa.sa_family) {
4545 	case AF_INET:
4546 		ip->ip_len = htons(tlen - hlen);
4547 		th->th_sum = 0;
4548 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4549 		ip->ip_len = htons(tlen);
4550 		ip->ip_ttl = ip_defttl;
4551 		/* XXX tos? */
4552 		break;
4553 #ifdef INET6
4554 	case AF_INET6:
4555 		ip6->ip6_plen = htons(tlen - hlen);
4556 		th->th_sum = 0;
4557 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4558 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4559 		ip6->ip6_vfc |= IPV6_VERSION;
4560 		ip6->ip6_plen = htons(tlen - hlen);
4561 		/* ip6_hlim will be initialized afterwards */
4562 		/* XXX flowlabel? */
4563 		break;
4564 #endif
4565 	}
4566 
4567 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4568 	tp = sc->sc_tp;
4569 
4570 	switch (sc->sc_src.sa.sa_family) {
4571 	case AF_INET:
4572 		error = ip_output(m, sc->sc_ipopts, ro,
4573 		    (ip_mtudisc ? IP_MTUDISC : 0),
4574 		    NULL, tp ? tp->t_inpcb : NULL);
4575 		break;
4576 #ifdef INET6
4577 	case AF_INET6:
4578 		ip6->ip6_hlim = in6_selecthlim(NULL,
4579 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4580 		rtcache_unref(rt, ro);
4581 
4582 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4583 		    tp ? tp->t_in6pcb : NULL, NULL);
4584 		break;
4585 #endif
4586 	default:
4587 		panic("%s: impossible (2)", __func__);
4588 	}
4589 
4590 	return error;
4591 }
4592