xref: /netbsd-src/sys/netinet/tcp_input.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: tcp_input.c,v 1.344 2015/08/24 22:21:26 pooka Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.344 2015/08/24 22:21:26 pooka Exp $");
152 
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177 
178 #include <net/if.h>
179 #include <net/if_types.h>
180 
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188 
189 #ifdef INET6
190 #ifndef INET
191 #include <netinet/in.h>
192 #endif
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204 
205 #ifndef INET6
206 /* always need ip6.h for IP6_EXTHDR_GET */
207 #include <netinet/ip6.h>
208 #endif
209 
210 #include <netinet/tcp.h>
211 #include <netinet/tcp_fsm.h>
212 #include <netinet/tcp_seq.h>
213 #include <netinet/tcp_timer.h>
214 #include <netinet/tcp_var.h>
215 #include <netinet/tcp_private.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219 
220 #ifdef INET6
221 #include "faith.h"
222 #if defined(NFAITH) && NFAITH > 0
223 #include <net/if_faith.h>
224 #endif
225 #endif	/* INET6 */
226 
227 #ifdef IPSEC
228 #include <netipsec/ipsec.h>
229 #include <netipsec/ipsec_var.h>
230 #include <netipsec/ipsec_private.h>
231 #include <netipsec/key.h>
232 #ifdef INET6
233 #include <netipsec/ipsec6.h>
234 #endif
235 #endif	/* IPSEC*/
236 
237 #include <netinet/tcp_vtw.h>
238 
239 int	tcprexmtthresh = 3;
240 int	tcp_log_refused;
241 
242 int	tcp_do_autorcvbuf = 1;
243 int	tcp_autorcvbuf_inc = 16 * 1024;
244 int	tcp_autorcvbuf_max = 256 * 1024;
245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246 
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251 
252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
253 
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
257 
258 /*
259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260  */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 	struct rtentry *rt;
266 
267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 		nd6_nud_hint(rt);
270 }
271 #else
272 static inline void
273 nd6_hint(struct tcpcb *tp)
274 {
275 }
276 #endif
277 
278 /*
279  * Compute ACK transmission behavior.  Delay the ACK unless
280  * we have already delayed an ACK (must send an ACK every two segments).
281  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
282  * option is enabled.
283  */
284 static void
285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
286 {
287 
288 	if (tp->t_flags & TF_DELACK ||
289 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
290 		tp->t_flags |= TF_ACKNOW;
291 	else
292 		TCP_SET_DELACK(tp);
293 }
294 
295 static void
296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
297 {
298 
299 	/*
300 	 * If we had a pending ICMP message that refers to data that have
301 	 * just been acknowledged, disregard the recorded ICMP message.
302 	 */
303 	if ((tp->t_flags & TF_PMTUD_PEND) &&
304 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
305 		tp->t_flags &= ~TF_PMTUD_PEND;
306 
307 	/*
308 	 * Keep track of the largest chunk of data
309 	 * acknowledged since last PMTU update
310 	 */
311 	if (tp->t_pmtud_mss_acked < acked)
312 		tp->t_pmtud_mss_acked = acked;
313 }
314 
315 /*
316  * Convert TCP protocol fields to host order for easier processing.
317  */
318 static void
319 tcp_fields_to_host(struct tcphdr *th)
320 {
321 
322 	NTOHL(th->th_seq);
323 	NTOHL(th->th_ack);
324 	NTOHS(th->th_win);
325 	NTOHS(th->th_urp);
326 }
327 
328 /*
329  * ... and reverse the above.
330  */
331 static void
332 tcp_fields_to_net(struct tcphdr *th)
333 {
334 
335 	HTONL(th->th_seq);
336 	HTONL(th->th_ack);
337 	HTONS(th->th_win);
338 	HTONS(th->th_urp);
339 }
340 
341 #ifdef TCP_CSUM_COUNTERS
342 #include <sys/device.h>
343 
344 #if defined(INET)
345 extern struct evcnt tcp_hwcsum_ok;
346 extern struct evcnt tcp_hwcsum_bad;
347 extern struct evcnt tcp_hwcsum_data;
348 extern struct evcnt tcp_swcsum;
349 #endif /* defined(INET) */
350 #if defined(INET6)
351 extern struct evcnt tcp6_hwcsum_ok;
352 extern struct evcnt tcp6_hwcsum_bad;
353 extern struct evcnt tcp6_hwcsum_data;
354 extern struct evcnt tcp6_swcsum;
355 #endif /* defined(INET6) */
356 
357 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
358 
359 #else
360 
361 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
362 
363 #endif /* TCP_CSUM_COUNTERS */
364 
365 #ifdef TCP_REASS_COUNTERS
366 #include <sys/device.h>
367 
368 extern struct evcnt tcp_reass_;
369 extern struct evcnt tcp_reass_empty;
370 extern struct evcnt tcp_reass_iteration[8];
371 extern struct evcnt tcp_reass_prependfirst;
372 extern struct evcnt tcp_reass_prepend;
373 extern struct evcnt tcp_reass_insert;
374 extern struct evcnt tcp_reass_inserttail;
375 extern struct evcnt tcp_reass_append;
376 extern struct evcnt tcp_reass_appendtail;
377 extern struct evcnt tcp_reass_overlaptail;
378 extern struct evcnt tcp_reass_overlapfront;
379 extern struct evcnt tcp_reass_segdup;
380 extern struct evcnt tcp_reass_fragdup;
381 
382 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
383 
384 #else
385 
386 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
387 
388 #endif /* TCP_REASS_COUNTERS */
389 
390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
391     int *);
392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
393     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
394 
395 #ifdef INET
396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
397 #endif
398 #ifdef INET6
399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
400 #endif
401 
402 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
403 
404 #if defined(MBUFTRACE)
405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
406 #endif /* defined(MBUFTRACE) */
407 
408 static struct pool tcpipqent_pool;
409 
410 void
411 tcpipqent_init(void)
412 {
413 
414 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
415 	    NULL, IPL_VM);
416 }
417 
418 struct ipqent *
419 tcpipqent_alloc(void)
420 {
421 	struct ipqent *ipqe;
422 	int s;
423 
424 	s = splvm();
425 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
426 	splx(s);
427 
428 	return ipqe;
429 }
430 
431 void
432 tcpipqent_free(struct ipqent *ipqe)
433 {
434 	int s;
435 
436 	s = splvm();
437 	pool_put(&tcpipqent_pool, ipqe);
438 	splx(s);
439 }
440 
441 static int
442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
443 {
444 	struct ipqent *p, *q, *nq, *tiqe = NULL;
445 	struct socket *so = NULL;
446 	int pkt_flags;
447 	tcp_seq pkt_seq;
448 	unsigned pkt_len;
449 	u_long rcvpartdupbyte = 0;
450 	u_long rcvoobyte;
451 #ifdef TCP_REASS_COUNTERS
452 	u_int count = 0;
453 #endif
454 	uint64_t *tcps;
455 
456 	if (tp->t_inpcb)
457 		so = tp->t_inpcb->inp_socket;
458 #ifdef INET6
459 	else if (tp->t_in6pcb)
460 		so = tp->t_in6pcb->in6p_socket;
461 #endif
462 
463 	TCP_REASS_LOCK_CHECK(tp);
464 
465 	/*
466 	 * Call with th==0 after become established to
467 	 * force pre-ESTABLISHED data up to user socket.
468 	 */
469 	if (th == 0)
470 		goto present;
471 
472 	m_claimm(m, &tcp_reass_mowner);
473 
474 	rcvoobyte = *tlen;
475 	/*
476 	 * Copy these to local variables because the tcpiphdr
477 	 * gets munged while we are collapsing mbufs.
478 	 */
479 	pkt_seq = th->th_seq;
480 	pkt_len = *tlen;
481 	pkt_flags = th->th_flags;
482 
483 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
484 
485 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
486 		/*
487 		 * When we miss a packet, the vast majority of time we get
488 		 * packets that follow it in order.  So optimize for that.
489 		 */
490 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
491 			p->ipqe_len += pkt_len;
492 			p->ipqe_flags |= pkt_flags;
493 			m_cat(p->ipre_mlast, m);
494 			TRAVERSE(p->ipre_mlast);
495 			m = NULL;
496 			tiqe = p;
497 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
498 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
499 			goto skip_replacement;
500 		}
501 		/*
502 		 * While we're here, if the pkt is completely beyond
503 		 * anything we have, just insert it at the tail.
504 		 */
505 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
506 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
507 			goto insert_it;
508 		}
509 	}
510 
511 	q = TAILQ_FIRST(&tp->segq);
512 
513 	if (q != NULL) {
514 		/*
515 		 * If this segment immediately precedes the first out-of-order
516 		 * block, simply slap the segment in front of it and (mostly)
517 		 * skip the complicated logic.
518 		 */
519 		if (pkt_seq + pkt_len == q->ipqe_seq) {
520 			q->ipqe_seq = pkt_seq;
521 			q->ipqe_len += pkt_len;
522 			q->ipqe_flags |= pkt_flags;
523 			m_cat(m, q->ipqe_m);
524 			q->ipqe_m = m;
525 			q->ipre_mlast = m; /* last mbuf may have changed */
526 			TRAVERSE(q->ipre_mlast);
527 			tiqe = q;
528 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
529 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
530 			goto skip_replacement;
531 		}
532 	} else {
533 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
534 	}
535 
536 	/*
537 	 * Find a segment which begins after this one does.
538 	 */
539 	for (p = NULL; q != NULL; q = nq) {
540 		nq = TAILQ_NEXT(q, ipqe_q);
541 #ifdef TCP_REASS_COUNTERS
542 		count++;
543 #endif
544 		/*
545 		 * If the received segment is just right after this
546 		 * fragment, merge the two together and then check
547 		 * for further overlaps.
548 		 */
549 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
550 #ifdef TCPREASS_DEBUG
551 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
552 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
553 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
554 #endif
555 			pkt_len += q->ipqe_len;
556 			pkt_flags |= q->ipqe_flags;
557 			pkt_seq = q->ipqe_seq;
558 			m_cat(q->ipre_mlast, m);
559 			TRAVERSE(q->ipre_mlast);
560 			m = q->ipqe_m;
561 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
562 			goto free_ipqe;
563 		}
564 		/*
565 		 * If the received segment is completely past this
566 		 * fragment, we need to go the next fragment.
567 		 */
568 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
569 			p = q;
570 			continue;
571 		}
572 		/*
573 		 * If the fragment is past the received segment,
574 		 * it (or any following) can't be concatenated.
575 		 */
576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 			break;
579 		}
580 
581 		/*
582 		 * We've received all the data in this segment before.
583 		 * mark it as a duplicate and return.
584 		 */
585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 			tcps = TCP_STAT_GETREF();
588 			tcps[TCP_STAT_RCVDUPPACK]++;
589 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 			TCP_STAT_PUTREF();
591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
592 			m_freem(m);
593 			if (tiqe != NULL) {
594 				tcpipqent_free(tiqe);
595 			}
596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 			goto out;
598 		}
599 		/*
600 		 * Received segment completely overlaps this fragment
601 		 * so we drop the fragment (this keeps the temporal
602 		 * ordering of segments correct).
603 		 */
604 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
605 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
606 			rcvpartdupbyte += q->ipqe_len;
607 			m_freem(q->ipqe_m);
608 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
609 			goto free_ipqe;
610 		}
611 		/*
612 		 * RX'ed segment extends past the end of the
613 		 * fragment.  Drop the overlapping bytes.  Then
614 		 * merge the fragment and segment then treat as
615 		 * a longer received packet.
616 		 */
617 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
618 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
619 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
620 #ifdef TCPREASS_DEBUG
621 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
622 			       tp, overlap,
623 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
624 #endif
625 			m_adj(m, overlap);
626 			rcvpartdupbyte += overlap;
627 			m_cat(q->ipre_mlast, m);
628 			TRAVERSE(q->ipre_mlast);
629 			m = q->ipqe_m;
630 			pkt_seq = q->ipqe_seq;
631 			pkt_len += q->ipqe_len - overlap;
632 			rcvoobyte -= overlap;
633 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
634 			goto free_ipqe;
635 		}
636 		/*
637 		 * RX'ed segment extends past the front of the
638 		 * fragment.  Drop the overlapping bytes on the
639 		 * received packet.  The packet will then be
640 		 * contatentated with this fragment a bit later.
641 		 */
642 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
643 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
644 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
645 #ifdef TCPREASS_DEBUG
646 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
647 			       tp, overlap,
648 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
649 #endif
650 			m_adj(m, -overlap);
651 			pkt_len -= overlap;
652 			rcvpartdupbyte += overlap;
653 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
654 			rcvoobyte -= overlap;
655 		}
656 		/*
657 		 * If the received segment immediates precedes this
658 		 * fragment then tack the fragment onto this segment
659 		 * and reinsert the data.
660 		 */
661 		if (q->ipqe_seq == pkt_seq + pkt_len) {
662 #ifdef TCPREASS_DEBUG
663 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
664 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
665 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
666 #endif
667 			pkt_len += q->ipqe_len;
668 			pkt_flags |= q->ipqe_flags;
669 			m_cat(m, q->ipqe_m);
670 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
671 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
672 			tp->t_segqlen--;
673 			KASSERT(tp->t_segqlen >= 0);
674 			KASSERT(tp->t_segqlen != 0 ||
675 			    (TAILQ_EMPTY(&tp->segq) &&
676 			    TAILQ_EMPTY(&tp->timeq)));
677 			if (tiqe == NULL) {
678 				tiqe = q;
679 			} else {
680 				tcpipqent_free(q);
681 			}
682 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
683 			break;
684 		}
685 		/*
686 		 * If the fragment is before the segment, remember it.
687 		 * When this loop is terminated, p will contain the
688 		 * pointer to fragment that is right before the received
689 		 * segment.
690 		 */
691 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
692 			p = q;
693 
694 		continue;
695 
696 		/*
697 		 * This is a common operation.  It also will allow
698 		 * to save doing a malloc/free in most instances.
699 		 */
700 	  free_ipqe:
701 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
702 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
703 		tp->t_segqlen--;
704 		KASSERT(tp->t_segqlen >= 0);
705 		KASSERT(tp->t_segqlen != 0 ||
706 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
707 		if (tiqe == NULL) {
708 			tiqe = q;
709 		} else {
710 			tcpipqent_free(q);
711 		}
712 	}
713 
714 #ifdef TCP_REASS_COUNTERS
715 	if (count > 7)
716 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
717 	else if (count > 0)
718 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
719 #endif
720 
721     insert_it:
722 
723 	/*
724 	 * Allocate a new queue entry since the received segment did not
725 	 * collapse onto any other out-of-order block; thus we are allocating
726 	 * a new block.  If it had collapsed, tiqe would not be NULL and
727 	 * we would be reusing it.
728 	 * XXX If we can't, just drop the packet.  XXX
729 	 */
730 	if (tiqe == NULL) {
731 		tiqe = tcpipqent_alloc();
732 		if (tiqe == NULL) {
733 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
734 			m_freem(m);
735 			goto out;
736 		}
737 	}
738 
739 	/*
740 	 * Update the counters.
741 	 */
742 	tp->t_rcvoopack++;
743 	tcps = TCP_STAT_GETREF();
744 	tcps[TCP_STAT_RCVOOPACK]++;
745 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
746 	if (rcvpartdupbyte) {
747 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
748 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
749 	}
750 	TCP_STAT_PUTREF();
751 
752 	/*
753 	 * Insert the new fragment queue entry into both queues.
754 	 */
755 	tiqe->ipqe_m = m;
756 	tiqe->ipre_mlast = m;
757 	tiqe->ipqe_seq = pkt_seq;
758 	tiqe->ipqe_len = pkt_len;
759 	tiqe->ipqe_flags = pkt_flags;
760 	if (p == NULL) {
761 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
762 #ifdef TCPREASS_DEBUG
763 		if (tiqe->ipqe_seq != tp->rcv_nxt)
764 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
765 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
766 #endif
767 	} else {
768 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
769 #ifdef TCPREASS_DEBUG
770 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
771 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
772 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
773 #endif
774 	}
775 	tp->t_segqlen++;
776 
777 skip_replacement:
778 
779 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
780 
781 present:
782 	/*
783 	 * Present data to user, advancing rcv_nxt through
784 	 * completed sequence space.
785 	 */
786 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
787 		goto out;
788 	q = TAILQ_FIRST(&tp->segq);
789 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
790 		goto out;
791 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
792 		goto out;
793 
794 	tp->rcv_nxt += q->ipqe_len;
795 	pkt_flags = q->ipqe_flags & TH_FIN;
796 	nd6_hint(tp);
797 
798 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
799 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
800 	tp->t_segqlen--;
801 	KASSERT(tp->t_segqlen >= 0);
802 	KASSERT(tp->t_segqlen != 0 ||
803 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
804 	if (so->so_state & SS_CANTRCVMORE)
805 		m_freem(q->ipqe_m);
806 	else
807 		sbappendstream(&so->so_rcv, q->ipqe_m);
808 	tcpipqent_free(q);
809 	TCP_REASS_UNLOCK(tp);
810 	sorwakeup(so);
811 	return (pkt_flags);
812 out:
813 	TCP_REASS_UNLOCK(tp);
814 	return (0);
815 }
816 
817 #ifdef INET6
818 int
819 tcp6_input(struct mbuf **mp, int *offp, int proto)
820 {
821 	struct mbuf *m = *mp;
822 
823 	/*
824 	 * draft-itojun-ipv6-tcp-to-anycast
825 	 * better place to put this in?
826 	 */
827 	if (m->m_flags & M_ANYCAST6) {
828 		struct ip6_hdr *ip6;
829 		if (m->m_len < sizeof(struct ip6_hdr)) {
830 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
831 				TCP_STATINC(TCP_STAT_RCVSHORT);
832 				return IPPROTO_DONE;
833 			}
834 		}
835 		ip6 = mtod(m, struct ip6_hdr *);
836 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
837 		    (char *)&ip6->ip6_dst - (char *)ip6);
838 		return IPPROTO_DONE;
839 	}
840 
841 	tcp_input(m, *offp, proto);
842 	return IPPROTO_DONE;
843 }
844 #endif
845 
846 #ifdef INET
847 static void
848 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
849 {
850 	char src[INET_ADDRSTRLEN];
851 	char dst[INET_ADDRSTRLEN];
852 
853 	if (ip) {
854 		in_print(src, sizeof(src), &ip->ip_src);
855 		in_print(dst, sizeof(dst), &ip->ip_dst);
856 	}
857 	else {
858 		strlcpy(src, "(unknown)", sizeof(src));
859 		strlcpy(dst, "(unknown)", sizeof(dst));
860 	}
861 	log(LOG_INFO,
862 	    "Connection attempt to TCP %s:%d from %s:%d\n",
863 	    dst, ntohs(th->th_dport),
864 	    src, ntohs(th->th_sport));
865 }
866 #endif
867 
868 #ifdef INET6
869 static void
870 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
871 {
872 	char src[INET6_ADDRSTRLEN];
873 	char dst[INET6_ADDRSTRLEN];
874 
875 	if (ip6) {
876 		in6_print(src, sizeof(src), &ip6->ip6_src);
877 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
878 	}
879 	else {
880 		strlcpy(src, "(unknown v6)", sizeof(src));
881 		strlcpy(dst, "(unknown v6)", sizeof(dst));
882 	}
883 	log(LOG_INFO,
884 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
885 	    dst, ntohs(th->th_dport),
886 	    src, ntohs(th->th_sport));
887 }
888 #endif
889 
890 /*
891  * Checksum extended TCP header and data.
892  */
893 int
894 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
895     int toff, int off, int tlen)
896 {
897 
898 	/*
899 	 * XXX it's better to record and check if this mbuf is
900 	 * already checked.
901 	 */
902 
903 	switch (af) {
904 #ifdef INET
905 	case AF_INET:
906 		switch (m->m_pkthdr.csum_flags &
907 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
908 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
909 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
910 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
911 			goto badcsum;
912 
913 		case M_CSUM_TCPv4|M_CSUM_DATA: {
914 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
915 
916 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
917 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
918 				const struct ip *ip =
919 				    mtod(m, const struct ip *);
920 
921 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
922 				    ip->ip_dst.s_addr,
923 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
924 			}
925 			if ((hw_csum ^ 0xffff) != 0)
926 				goto badcsum;
927 			break;
928 		}
929 
930 		case M_CSUM_TCPv4:
931 			/* Checksum was okay. */
932 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
933 			break;
934 
935 		default:
936 			/*
937 			 * Must compute it ourselves.  Maybe skip checksum
938 			 * on loopback interfaces.
939 			 */
940 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
941 					     IFF_LOOPBACK) ||
942 					   tcp_do_loopback_cksum)) {
943 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
944 				if (in4_cksum(m, IPPROTO_TCP, toff,
945 					      tlen + off) != 0)
946 					goto badcsum;
947 			}
948 			break;
949 		}
950 		break;
951 #endif /* INET4 */
952 
953 #ifdef INET6
954 	case AF_INET6:
955 		switch (m->m_pkthdr.csum_flags &
956 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
957 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
958 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
959 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
960 			goto badcsum;
961 
962 #if 0 /* notyet */
963 		case M_CSUM_TCPv6|M_CSUM_DATA:
964 #endif
965 
966 		case M_CSUM_TCPv6:
967 			/* Checksum was okay. */
968 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
969 			break;
970 
971 		default:
972 			/*
973 			 * Must compute it ourselves.  Maybe skip checksum
974 			 * on loopback interfaces.
975 			 */
976 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
977 			    tcp_do_loopback_cksum)) {
978 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
979 				if (in6_cksum(m, IPPROTO_TCP, toff,
980 				    tlen + off) != 0)
981 					goto badcsum;
982 			}
983 		}
984 		break;
985 #endif /* INET6 */
986 	}
987 
988 	return 0;
989 
990 badcsum:
991 	TCP_STATINC(TCP_STAT_RCVBADSUM);
992 	return -1;
993 }
994 
995 /* When a packet arrives addressed to a vestigial tcpbp, we
996  * nevertheless have to respond to it per the spec.
997  */
998 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
999 			  struct mbuf *m, int tlen, int multicast)
1000 {
1001 	int		tiflags;
1002 	int		todrop;
1003 	uint32_t	t_flags = 0;
1004 	uint64_t	*tcps;
1005 
1006 	tiflags = th->th_flags;
1007 	todrop  = vp->rcv_nxt - th->th_seq;
1008 
1009 	if (todrop > 0) {
1010 		if (tiflags & TH_SYN) {
1011 			tiflags &= ~TH_SYN;
1012 			++th->th_seq;
1013 			if (th->th_urp > 1)
1014 				--th->th_urp;
1015 			else {
1016 				tiflags &= ~TH_URG;
1017 				th->th_urp = 0;
1018 			}
1019 			--todrop;
1020 		}
1021 		if (todrop > tlen ||
1022 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1023 			/*
1024 			 * Any valid FIN or RST must be to the left of the
1025 			 * window.  At this point the FIN or RST must be a
1026 			 * duplicate or out of sequence; drop it.
1027 			 */
1028 			if (tiflags & TH_RST)
1029 				goto drop;
1030 			tiflags &= ~(TH_FIN|TH_RST);
1031 			/*
1032 			 * Send an ACK to resynchronize and drop any data.
1033 			 * But keep on processing for RST or ACK.
1034 			 */
1035 			t_flags |= TF_ACKNOW;
1036 			todrop = tlen;
1037 			tcps = TCP_STAT_GETREF();
1038 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1039 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1040 			TCP_STAT_PUTREF();
1041 		} else if ((tiflags & TH_RST)
1042 			   && th->th_seq != vp->rcv_nxt) {
1043 			/*
1044 			 * Test for reset before adjusting the sequence
1045 			 * number for overlapping data.
1046 			 */
1047 			goto dropafterack_ratelim;
1048 		} else {
1049 			tcps = TCP_STAT_GETREF();
1050 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1051 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1052 			TCP_STAT_PUTREF();
1053 		}
1054 
1055 //		tcp_new_dsack(tp, th->th_seq, todrop);
1056 //		hdroptlen += todrop;	/*drop from head afterwards*/
1057 
1058 		th->th_seq += todrop;
1059 		tlen -= todrop;
1060 
1061 		if (th->th_urp > todrop)
1062 			th->th_urp -= todrop;
1063 		else {
1064 			tiflags &= ~TH_URG;
1065 			th->th_urp = 0;
1066 		}
1067 	}
1068 
1069 	/*
1070 	 * If new data are received on a connection after the
1071 	 * user processes are gone, then RST the other end.
1072 	 */
1073 	if (tlen) {
1074 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1075 		goto dropwithreset;
1076 	}
1077 
1078 	/*
1079 	 * If segment ends after window, drop trailing data
1080 	 * (and PUSH and FIN); if nothing left, just ACK.
1081 	 */
1082 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1083 
1084 	if (todrop > 0) {
1085 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1086 		if (todrop >= tlen) {
1087 			/*
1088 			 * The segment actually starts after the window.
1089 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1090 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1091 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1092 			 */
1093 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1094 			/*
1095 			 * If a new connection request is received
1096 			 * while in TIME_WAIT, drop the old connection
1097 			 * and start over if the sequence numbers
1098 			 * are above the previous ones.
1099 			 */
1100 			if ((tiflags & TH_SYN)
1101 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1102 				/* We only support this in the !NOFDREF case, which
1103 				 * is to say: not here.
1104 				 */
1105 				goto dropwithreset;
1106 			}
1107 			/*
1108 			 * If window is closed can only take segments at
1109 			 * window edge, and have to drop data and PUSH from
1110 			 * incoming segments.  Continue processing, but
1111 			 * remember to ack.  Otherwise, drop segment
1112 			 * and (if not RST) ack.
1113 			 */
1114 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1115 				t_flags |= TF_ACKNOW;
1116 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1117 			} else
1118 				goto dropafterack;
1119 		} else
1120 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1121 		m_adj(m, -todrop);
1122 		tlen -= todrop;
1123 		tiflags &= ~(TH_PUSH|TH_FIN);
1124 	}
1125 
1126 	if (tiflags & TH_RST) {
1127 		if (th->th_seq != vp->rcv_nxt)
1128 			goto dropafterack_ratelim;
1129 
1130 		vtw_del(vp->ctl, vp->vtw);
1131 		goto drop;
1132 	}
1133 
1134 	/*
1135 	 * If the ACK bit is off we drop the segment and return.
1136 	 */
1137 	if ((tiflags & TH_ACK) == 0) {
1138 		if (t_flags & TF_ACKNOW)
1139 			goto dropafterack;
1140 		else
1141 			goto drop;
1142 	}
1143 
1144 	/*
1145 	 * In TIME_WAIT state the only thing that should arrive
1146 	 * is a retransmission of the remote FIN.  Acknowledge
1147 	 * it and restart the finack timer.
1148 	 */
1149 	vtw_restart(vp);
1150 	goto dropafterack;
1151 
1152 dropafterack:
1153 	/*
1154 	 * Generate an ACK dropping incoming segment if it occupies
1155 	 * sequence space, where the ACK reflects our state.
1156 	 */
1157 	if (tiflags & TH_RST)
1158 		goto drop;
1159 	goto dropafterack2;
1160 
1161 dropafterack_ratelim:
1162 	/*
1163 	 * We may want to rate-limit ACKs against SYN/RST attack.
1164 	 */
1165 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1166 			 tcp_ackdrop_ppslim) == 0) {
1167 		/* XXX stat */
1168 		goto drop;
1169 	}
1170 	/* ...fall into dropafterack2... */
1171 
1172 dropafterack2:
1173 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1174 			  TH_ACK);
1175 	return;
1176 
1177 dropwithreset:
1178 	/*
1179 	 * Generate a RST, dropping incoming segment.
1180 	 * Make ACK acceptable to originator of segment.
1181 	 */
1182 	if (tiflags & TH_RST)
1183 		goto drop;
1184 
1185 	if (tiflags & TH_ACK)
1186 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1187 	else {
1188 		if (tiflags & TH_SYN)
1189 			++tlen;
1190 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1191 				  TH_RST|TH_ACK);
1192 	}
1193 	return;
1194 drop:
1195 	m_freem(m);
1196 }
1197 
1198 /*
1199  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1200  */
1201 void
1202 tcp_input(struct mbuf *m, ...)
1203 {
1204 	struct tcphdr *th;
1205 	struct ip *ip;
1206 	struct inpcb *inp;
1207 #ifdef INET6
1208 	struct ip6_hdr *ip6;
1209 	struct in6pcb *in6p;
1210 #endif
1211 	u_int8_t *optp = NULL;
1212 	int optlen = 0;
1213 	int len, tlen, toff, hdroptlen = 0;
1214 	struct tcpcb *tp = 0;
1215 	int tiflags;
1216 	struct socket *so = NULL;
1217 	int todrop, acked, ourfinisacked, needoutput = 0;
1218 	bool dupseg;
1219 #ifdef TCP_DEBUG
1220 	short ostate = 0;
1221 #endif
1222 	u_long tiwin;
1223 	struct tcp_opt_info opti;
1224 	int off, iphlen;
1225 	va_list ap;
1226 	int af;		/* af on the wire */
1227 	struct mbuf *tcp_saveti = NULL;
1228 	uint32_t ts_rtt;
1229 	uint8_t iptos;
1230 	uint64_t *tcps;
1231 	vestigial_inpcb_t vestige;
1232 
1233 	vestige.valid = 0;
1234 
1235 	MCLAIM(m, &tcp_rx_mowner);
1236 	va_start(ap, m);
1237 	toff = va_arg(ap, int);
1238 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1239 	va_end(ap);
1240 
1241 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1242 
1243 	memset(&opti, 0, sizeof(opti));
1244 	opti.ts_present = 0;
1245 	opti.maxseg = 0;
1246 
1247 	/*
1248 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1249 	 *
1250 	 * TCP is, by definition, unicast, so we reject all
1251 	 * multicast outright.
1252 	 *
1253 	 * Note, there are additional src/dst address checks in
1254 	 * the AF-specific code below.
1255 	 */
1256 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1257 		/* XXX stat */
1258 		goto drop;
1259 	}
1260 #ifdef INET6
1261 	if (m->m_flags & M_ANYCAST6) {
1262 		/* XXX stat */
1263 		goto drop;
1264 	}
1265 #endif
1266 
1267 	/*
1268 	 * Get IP and TCP header.
1269 	 * Note: IP leaves IP header in first mbuf.
1270 	 */
1271 	ip = mtod(m, struct ip *);
1272 	switch (ip->ip_v) {
1273 #ifdef INET
1274 	case 4:
1275 #ifdef INET6
1276 		ip6 = NULL;
1277 #endif
1278 		af = AF_INET;
1279 		iphlen = sizeof(struct ip);
1280 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1281 			sizeof(struct tcphdr));
1282 		if (th == NULL) {
1283 			TCP_STATINC(TCP_STAT_RCVSHORT);
1284 			return;
1285 		}
1286 		/* We do the checksum after PCB lookup... */
1287 		len = ntohs(ip->ip_len);
1288 		tlen = len - toff;
1289 		iptos = ip->ip_tos;
1290 		break;
1291 #endif
1292 #ifdef INET6
1293 	case 6:
1294 		ip = NULL;
1295 		iphlen = sizeof(struct ip6_hdr);
1296 		af = AF_INET6;
1297 		ip6 = mtod(m, struct ip6_hdr *);
1298 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1299 			sizeof(struct tcphdr));
1300 		if (th == NULL) {
1301 			TCP_STATINC(TCP_STAT_RCVSHORT);
1302 			return;
1303 		}
1304 
1305 		/* Be proactive about malicious use of IPv4 mapped address */
1306 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1307 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1308 			/* XXX stat */
1309 			goto drop;
1310 		}
1311 
1312 		/*
1313 		 * Be proactive about unspecified IPv6 address in source.
1314 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1315 		 * unspecified IPv6 address can be used to confuse us.
1316 		 *
1317 		 * Note that packets with unspecified IPv6 destination is
1318 		 * already dropped in ip6_input.
1319 		 */
1320 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1321 			/* XXX stat */
1322 			goto drop;
1323 		}
1324 
1325 		/*
1326 		 * Make sure destination address is not multicast.
1327 		 * Source address checked in ip6_input().
1328 		 */
1329 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1330 			/* XXX stat */
1331 			goto drop;
1332 		}
1333 
1334 		/* We do the checksum after PCB lookup... */
1335 		len = m->m_pkthdr.len;
1336 		tlen = len - toff;
1337 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1338 		break;
1339 #endif
1340 	default:
1341 		m_freem(m);
1342 		return;
1343 	}
1344 
1345 	KASSERT(TCP_HDR_ALIGNED_P(th));
1346 
1347 	/*
1348 	 * Check that TCP offset makes sense,
1349 	 * pull out TCP options and adjust length.		XXX
1350 	 */
1351 	off = th->th_off << 2;
1352 	if (off < sizeof (struct tcphdr) || off > tlen) {
1353 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1354 		goto drop;
1355 	}
1356 	tlen -= off;
1357 
1358 	/*
1359 	 * tcp_input() has been modified to use tlen to mean the TCP data
1360 	 * length throughout the function.  Other functions can use
1361 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1362 	 * rja
1363 	 */
1364 
1365 	if (off > sizeof (struct tcphdr)) {
1366 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1367 		if (th == NULL) {
1368 			TCP_STATINC(TCP_STAT_RCVSHORT);
1369 			return;
1370 		}
1371 		/*
1372 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1373 		 * (as they're before toff) and we don't need to update those.
1374 		 */
1375 		KASSERT(TCP_HDR_ALIGNED_P(th));
1376 		optlen = off - sizeof (struct tcphdr);
1377 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1378 		/*
1379 		 * Do quick retrieval of timestamp options ("options
1380 		 * prediction?").  If timestamp is the only option and it's
1381 		 * formatted as recommended in RFC 1323 appendix A, we
1382 		 * quickly get the values now and not bother calling
1383 		 * tcp_dooptions(), etc.
1384 		 */
1385 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1386 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1387 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1388 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1389 		     (th->th_flags & TH_SYN) == 0) {
1390 			opti.ts_present = 1;
1391 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1392 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1393 			optp = NULL;	/* we've parsed the options */
1394 		}
1395 	}
1396 	tiflags = th->th_flags;
1397 
1398 	/*
1399 	 * Checksum extended TCP header and data
1400 	 */
1401 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1402 		goto badcsum;
1403 
1404 	/*
1405 	 * Locate pcb for segment.
1406 	 */
1407 findpcb:
1408 	inp = NULL;
1409 #ifdef INET6
1410 	in6p = NULL;
1411 #endif
1412 	switch (af) {
1413 #ifdef INET
1414 	case AF_INET:
1415 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1416 					   ip->ip_dst, th->th_dport,
1417 					   &vestige);
1418 		if (inp == 0 && !vestige.valid) {
1419 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1420 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1421 		}
1422 #ifdef INET6
1423 		if (inp == 0 && !vestige.valid) {
1424 			struct in6_addr s, d;
1425 
1426 			/* mapped addr case */
1427 			memset(&s, 0, sizeof(s));
1428 			s.s6_addr16[5] = htons(0xffff);
1429 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1430 			memset(&d, 0, sizeof(d));
1431 			d.s6_addr16[5] = htons(0xffff);
1432 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1433 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1434 						     th->th_sport, &d, th->th_dport,
1435 						     0, &vestige);
1436 			if (in6p == 0 && !vestige.valid) {
1437 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1438 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1439 				    th->th_dport, 0);
1440 			}
1441 		}
1442 #endif
1443 #ifndef INET6
1444 		if (inp == 0 && !vestige.valid)
1445 #else
1446 		if (inp == 0 && in6p == 0 && !vestige.valid)
1447 #endif
1448 		{
1449 			TCP_STATINC(TCP_STAT_NOPORT);
1450 			if (tcp_log_refused &&
1451 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1452 				tcp4_log_refused(ip, th);
1453 			}
1454 			tcp_fields_to_host(th);
1455 			goto dropwithreset_ratelim;
1456 		}
1457 #if defined(IPSEC)
1458 		if (ipsec_used) {
1459 			if (inp &&
1460 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
1461 			    && ipsec4_in_reject(m, inp)) {
1462 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1463 				goto drop;
1464 			}
1465 #ifdef INET6
1466 			else if (in6p &&
1467 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1468 			    && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1469 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1470 				goto drop;
1471 			}
1472 #endif
1473 		}
1474 #endif /*IPSEC*/
1475 		break;
1476 #endif /*INET*/
1477 #ifdef INET6
1478 	case AF_INET6:
1479 	    {
1480 		int faith;
1481 
1482 #if defined(NFAITH) && NFAITH > 0
1483 		faith = faithprefix(&ip6->ip6_dst);
1484 #else
1485 		faith = 0;
1486 #endif
1487 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1488 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1489 		if (!in6p && !vestige.valid) {
1490 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1491 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1492 				th->th_dport, faith);
1493 		}
1494 		if (!in6p && !vestige.valid) {
1495 			TCP_STATINC(TCP_STAT_NOPORT);
1496 			if (tcp_log_refused &&
1497 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1498 				tcp6_log_refused(ip6, th);
1499 			}
1500 			tcp_fields_to_host(th);
1501 			goto dropwithreset_ratelim;
1502 		}
1503 #if defined(IPSEC)
1504 		if (ipsec_used && in6p
1505 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1506 		    && ipsec6_in_reject(m, in6p)) {
1507 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1508 			goto drop;
1509 		}
1510 #endif /*IPSEC*/
1511 		break;
1512 	    }
1513 #endif
1514 	}
1515 
1516 	/*
1517 	 * If the state is CLOSED (i.e., TCB does not exist) then
1518 	 * all data in the incoming segment is discarded.
1519 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1520 	 * but should either do a listen or a connect soon.
1521 	 */
1522 	tp = NULL;
1523 	so = NULL;
1524 	if (inp) {
1525 		/* Check the minimum TTL for socket. */
1526 		if (ip->ip_ttl < inp->inp_ip_minttl)
1527 			goto drop;
1528 
1529 		tp = intotcpcb(inp);
1530 		so = inp->inp_socket;
1531 	}
1532 #ifdef INET6
1533 	else if (in6p) {
1534 		tp = in6totcpcb(in6p);
1535 		so = in6p->in6p_socket;
1536 	}
1537 #endif
1538 	else if (vestige.valid) {
1539 		int mc = 0;
1540 
1541 		/* We do not support the resurrection of vtw tcpcps.
1542 		 */
1543 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
1544 			goto badcsum;
1545 
1546 		switch (af) {
1547 #ifdef INET6
1548 		case AF_INET6:
1549 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1550 			break;
1551 #endif
1552 
1553 		case AF_INET:
1554 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1555 			      || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
1556 			break;
1557 		}
1558 
1559 		tcp_fields_to_host(th);
1560 		tcp_vtw_input(th, &vestige, m, tlen, mc);
1561 		m = 0;
1562 		goto drop;
1563 	}
1564 
1565 	if (tp == 0) {
1566 		tcp_fields_to_host(th);
1567 		goto dropwithreset_ratelim;
1568 	}
1569 	if (tp->t_state == TCPS_CLOSED)
1570 		goto drop;
1571 
1572 	KASSERT(so->so_lock == softnet_lock);
1573 	KASSERT(solocked(so));
1574 
1575 	tcp_fields_to_host(th);
1576 
1577 	/* Unscale the window into a 32-bit value. */
1578 	if ((tiflags & TH_SYN) == 0)
1579 		tiwin = th->th_win << tp->snd_scale;
1580 	else
1581 		tiwin = th->th_win;
1582 
1583 #ifdef INET6
1584 	/* save packet options if user wanted */
1585 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1586 		if (in6p->in6p_options) {
1587 			m_freem(in6p->in6p_options);
1588 			in6p->in6p_options = 0;
1589 		}
1590 		KASSERT(ip6 != NULL);
1591 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1592 	}
1593 #endif
1594 
1595 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1596 		union syn_cache_sa src;
1597 		union syn_cache_sa dst;
1598 
1599 		memset(&src, 0, sizeof(src));
1600 		memset(&dst, 0, sizeof(dst));
1601 		switch (af) {
1602 #ifdef INET
1603 		case AF_INET:
1604 			src.sin.sin_len = sizeof(struct sockaddr_in);
1605 			src.sin.sin_family = AF_INET;
1606 			src.sin.sin_addr = ip->ip_src;
1607 			src.sin.sin_port = th->th_sport;
1608 
1609 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1610 			dst.sin.sin_family = AF_INET;
1611 			dst.sin.sin_addr = ip->ip_dst;
1612 			dst.sin.sin_port = th->th_dport;
1613 			break;
1614 #endif
1615 #ifdef INET6
1616 		case AF_INET6:
1617 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1618 			src.sin6.sin6_family = AF_INET6;
1619 			src.sin6.sin6_addr = ip6->ip6_src;
1620 			src.sin6.sin6_port = th->th_sport;
1621 
1622 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1623 			dst.sin6.sin6_family = AF_INET6;
1624 			dst.sin6.sin6_addr = ip6->ip6_dst;
1625 			dst.sin6.sin6_port = th->th_dport;
1626 			break;
1627 #endif /* INET6 */
1628 		default:
1629 			goto badsyn;	/*sanity*/
1630 		}
1631 
1632 		if (so->so_options & SO_DEBUG) {
1633 #ifdef TCP_DEBUG
1634 			ostate = tp->t_state;
1635 #endif
1636 
1637 			tcp_saveti = NULL;
1638 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1639 				goto nosave;
1640 
1641 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1642 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1643 				if (!tcp_saveti)
1644 					goto nosave;
1645 			} else {
1646 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1647 				if (!tcp_saveti)
1648 					goto nosave;
1649 				MCLAIM(m, &tcp_mowner);
1650 				tcp_saveti->m_len = iphlen;
1651 				m_copydata(m, 0, iphlen,
1652 				    mtod(tcp_saveti, void *));
1653 			}
1654 
1655 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1656 				m_freem(tcp_saveti);
1657 				tcp_saveti = NULL;
1658 			} else {
1659 				tcp_saveti->m_len += sizeof(struct tcphdr);
1660 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1661 				    sizeof(struct tcphdr));
1662 			}
1663 	nosave:;
1664 		}
1665 		if (so->so_options & SO_ACCEPTCONN) {
1666 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1667 				if (tiflags & TH_RST) {
1668 					syn_cache_reset(&src.sa, &dst.sa, th);
1669 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1670 				    (TH_ACK|TH_SYN)) {
1671 					/*
1672 					 * Received a SYN,ACK.  This should
1673 					 * never happen while we are in
1674 					 * LISTEN.  Send an RST.
1675 					 */
1676 					goto badsyn;
1677 				} else if (tiflags & TH_ACK) {
1678 					so = syn_cache_get(&src.sa, &dst.sa,
1679 						th, toff, tlen, so, m);
1680 					if (so == NULL) {
1681 						/*
1682 						 * We don't have a SYN for
1683 						 * this ACK; send an RST.
1684 						 */
1685 						goto badsyn;
1686 					} else if (so ==
1687 					    (struct socket *)(-1)) {
1688 						/*
1689 						 * We were unable to create
1690 						 * the connection.  If the
1691 						 * 3-way handshake was
1692 						 * completed, and RST has
1693 						 * been sent to the peer.
1694 						 * Since the mbuf might be
1695 						 * in use for the reply,
1696 						 * do not free it.
1697 						 */
1698 						m = NULL;
1699 					} else {
1700 						/*
1701 						 * We have created a
1702 						 * full-blown connection.
1703 						 */
1704 						tp = NULL;
1705 						inp = NULL;
1706 #ifdef INET6
1707 						in6p = NULL;
1708 #endif
1709 						switch (so->so_proto->pr_domain->dom_family) {
1710 #ifdef INET
1711 						case AF_INET:
1712 							inp = sotoinpcb(so);
1713 							tp = intotcpcb(inp);
1714 							break;
1715 #endif
1716 #ifdef INET6
1717 						case AF_INET6:
1718 							in6p = sotoin6pcb(so);
1719 							tp = in6totcpcb(in6p);
1720 							break;
1721 #endif
1722 						}
1723 						if (tp == NULL)
1724 							goto badsyn;	/*XXX*/
1725 						tiwin <<= tp->snd_scale;
1726 						goto after_listen;
1727 					}
1728 				} else {
1729 					/*
1730 					 * None of RST, SYN or ACK was set.
1731 					 * This is an invalid packet for a
1732 					 * TCB in LISTEN state.  Send a RST.
1733 					 */
1734 					goto badsyn;
1735 				}
1736 			} else {
1737 				/*
1738 				 * Received a SYN.
1739 				 *
1740 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1741 				 */
1742 				if (m->m_flags & (M_BCAST|M_MCAST))
1743 					goto drop;
1744 
1745 				switch (af) {
1746 #ifdef INET6
1747 				case AF_INET6:
1748 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1749 						goto drop;
1750 					break;
1751 #endif /* INET6 */
1752 				case AF_INET:
1753 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1754 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1755 						goto drop;
1756 				break;
1757 				}
1758 
1759 #ifdef INET6
1760 				/*
1761 				 * If deprecated address is forbidden, we do
1762 				 * not accept SYN to deprecated interface
1763 				 * address to prevent any new inbound
1764 				 * connection from getting established.
1765 				 * When we do not accept SYN, we send a TCP
1766 				 * RST, with deprecated source address (instead
1767 				 * of dropping it).  We compromise it as it is
1768 				 * much better for peer to send a RST, and
1769 				 * RST will be the final packet for the
1770 				 * exchange.
1771 				 *
1772 				 * If we do not forbid deprecated addresses, we
1773 				 * accept the SYN packet.  RFC2462 does not
1774 				 * suggest dropping SYN in this case.
1775 				 * If we decipher RFC2462 5.5.4, it says like
1776 				 * this:
1777 				 * 1. use of deprecated addr with existing
1778 				 *    communication is okay - "SHOULD continue
1779 				 *    to be used"
1780 				 * 2. use of it with new communication:
1781 				 *   (2a) "SHOULD NOT be used if alternate
1782 				 *        address with sufficient scope is
1783 				 *        available"
1784 				 *   (2b) nothing mentioned otherwise.
1785 				 * Here we fall into (2b) case as we have no
1786 				 * choice in our source address selection - we
1787 				 * must obey the peer.
1788 				 *
1789 				 * The wording in RFC2462 is confusing, and
1790 				 * there are multiple description text for
1791 				 * deprecated address handling - worse, they
1792 				 * are not exactly the same.  I believe 5.5.4
1793 				 * is the best one, so we follow 5.5.4.
1794 				 */
1795 				if (af == AF_INET6 && !ip6_use_deprecated) {
1796 					struct in6_ifaddr *ia6;
1797 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1798 					    &ip6->ip6_dst)) &&
1799 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1800 						tp = NULL;
1801 						goto dropwithreset;
1802 					}
1803 				}
1804 #endif
1805 
1806 #if defined(IPSEC)
1807 				if (ipsec_used) {
1808 					switch (af) {
1809 #ifdef INET
1810 					case AF_INET:
1811 						if (!ipsec4_in_reject_so(m, so))
1812 							break;
1813 						IPSEC_STATINC(
1814 						    IPSEC_STAT_IN_POLVIO);
1815 						tp = NULL;
1816 						goto dropwithreset;
1817 #endif
1818 #ifdef INET6
1819 					case AF_INET6:
1820 						if (!ipsec6_in_reject_so(m, so))
1821 							break;
1822 						IPSEC6_STATINC(
1823 						    IPSEC_STAT_IN_POLVIO);
1824 						tp = NULL;
1825 						goto dropwithreset;
1826 #endif /*INET6*/
1827 					}
1828 				}
1829 #endif /*IPSEC*/
1830 
1831 				/*
1832 				 * LISTEN socket received a SYN
1833 				 * from itself?  This can't possibly
1834 				 * be valid; drop the packet.
1835 				 */
1836 				if (th->th_sport == th->th_dport) {
1837 					int i;
1838 
1839 					switch (af) {
1840 #ifdef INET
1841 					case AF_INET:
1842 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1843 						break;
1844 #endif
1845 #ifdef INET6
1846 					case AF_INET6:
1847 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1848 						break;
1849 #endif
1850 					default:
1851 						i = 1;
1852 					}
1853 					if (i) {
1854 						TCP_STATINC(TCP_STAT_BADSYN);
1855 						goto drop;
1856 					}
1857 				}
1858 
1859 				/*
1860 				 * SYN looks ok; create compressed TCP
1861 				 * state for it.
1862 				 */
1863 				if (so->so_qlen <= so->so_qlimit &&
1864 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1865 						so, m, optp, optlen, &opti))
1866 					m = NULL;
1867 			}
1868 			goto drop;
1869 		}
1870 	}
1871 
1872 after_listen:
1873 #ifdef DIAGNOSTIC
1874 	/*
1875 	 * Should not happen now that all embryonic connections
1876 	 * are handled with compressed state.
1877 	 */
1878 	if (tp->t_state == TCPS_LISTEN)
1879 		panic("tcp_input: TCPS_LISTEN");
1880 #endif
1881 
1882 	/*
1883 	 * Segment received on connection.
1884 	 * Reset idle time and keep-alive timer.
1885 	 */
1886 	tp->t_rcvtime = tcp_now;
1887 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1888 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1889 
1890 	/*
1891 	 * Process options.
1892 	 */
1893 #ifdef TCP_SIGNATURE
1894 	if (optp || (tp->t_flags & TF_SIGNATURE))
1895 #else
1896 	if (optp)
1897 #endif
1898 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1899 			goto drop;
1900 
1901 	if (TCP_SACK_ENABLED(tp)) {
1902 		tcp_del_sackholes(tp, th);
1903 	}
1904 
1905 	if (TCP_ECN_ALLOWED(tp)) {
1906 		if (tiflags & TH_CWR) {
1907 			tp->t_flags &= ~TF_ECN_SND_ECE;
1908 		}
1909 		switch (iptos & IPTOS_ECN_MASK) {
1910 		case IPTOS_ECN_CE:
1911 			tp->t_flags |= TF_ECN_SND_ECE;
1912 			TCP_STATINC(TCP_STAT_ECN_CE);
1913 			break;
1914 		case IPTOS_ECN_ECT0:
1915 			TCP_STATINC(TCP_STAT_ECN_ECT);
1916 			break;
1917 		case IPTOS_ECN_ECT1:
1918 			/* XXX: ignore for now -- rpaulo */
1919 			break;
1920 		}
1921 		/*
1922 		 * Congestion experienced.
1923 		 * Ignore if we are already trying to recover.
1924 		 */
1925 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1926 			tp->t_congctl->cong_exp(tp);
1927 	}
1928 
1929 	if (opti.ts_present && opti.ts_ecr) {
1930 		/*
1931 		 * Calculate the RTT from the returned time stamp and the
1932 		 * connection's time base.  If the time stamp is later than
1933 		 * the current time, or is extremely old, fall back to non-1323
1934 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1935 		 * at the same time.
1936 		 *
1937 		 * Note that ts_rtt is in units of slow ticks (500
1938 		 * ms).  Since most earthbound RTTs are < 500 ms,
1939 		 * observed values will have large quantization noise.
1940 		 * Our smoothed RTT is then the fraction of observed
1941 		 * samples that are 1 tick instead of 0 (times 500
1942 		 * ms).
1943 		 *
1944 		 * ts_rtt is increased by 1 to denote a valid sample,
1945 		 * with 0 indicating an invalid measurement.  This
1946 		 * extra 1 must be removed when ts_rtt is used, or
1947 		 * else an an erroneous extra 500 ms will result.
1948 		 */
1949 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1950 		if (ts_rtt > TCP_PAWS_IDLE)
1951 			ts_rtt = 0;
1952 	} else {
1953 		ts_rtt = 0;
1954 	}
1955 
1956 	/*
1957 	 * Header prediction: check for the two common cases
1958 	 * of a uni-directional data xfer.  If the packet has
1959 	 * no control flags, is in-sequence, the window didn't
1960 	 * change and we're not retransmitting, it's a
1961 	 * candidate.  If the length is zero and the ack moved
1962 	 * forward, we're the sender side of the xfer.  Just
1963 	 * free the data acked & wake any higher level process
1964 	 * that was blocked waiting for space.  If the length
1965 	 * is non-zero and the ack didn't move, we're the
1966 	 * receiver side.  If we're getting packets in-order
1967 	 * (the reassembly queue is empty), add the data to
1968 	 * the socket buffer and note that we need a delayed ack.
1969 	 */
1970 	if (tp->t_state == TCPS_ESTABLISHED &&
1971 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1972 	        == TH_ACK &&
1973 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1974 	    th->th_seq == tp->rcv_nxt &&
1975 	    tiwin && tiwin == tp->snd_wnd &&
1976 	    tp->snd_nxt == tp->snd_max) {
1977 
1978 		/*
1979 		 * If last ACK falls within this segment's sequence numbers,
1980 		 * record the timestamp.
1981 		 * NOTE that the test is modified according to the latest
1982 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1983 		 *
1984 		 * note that we already know
1985 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1986 		 */
1987 		if (opti.ts_present &&
1988 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1989 			tp->ts_recent_age = tcp_now;
1990 			tp->ts_recent = opti.ts_val;
1991 		}
1992 
1993 		if (tlen == 0) {
1994 			/* Ack prediction. */
1995 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1996 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1997 			    tp->snd_cwnd >= tp->snd_wnd &&
1998 			    tp->t_partialacks < 0) {
1999 				/*
2000 				 * this is a pure ack for outstanding data.
2001 				 */
2002 				if (ts_rtt)
2003 					tcp_xmit_timer(tp, ts_rtt - 1);
2004 				else if (tp->t_rtttime &&
2005 				    SEQ_GT(th->th_ack, tp->t_rtseq))
2006 					tcp_xmit_timer(tp,
2007 					  tcp_now - tp->t_rtttime);
2008 				acked = th->th_ack - tp->snd_una;
2009 				tcps = TCP_STAT_GETREF();
2010 				tcps[TCP_STAT_PREDACK]++;
2011 				tcps[TCP_STAT_RCVACKPACK]++;
2012 				tcps[TCP_STAT_RCVACKBYTE] += acked;
2013 				TCP_STAT_PUTREF();
2014 				nd6_hint(tp);
2015 
2016 				if (acked > (tp->t_lastoff - tp->t_inoff))
2017 					tp->t_lastm = NULL;
2018 				sbdrop(&so->so_snd, acked);
2019 				tp->t_lastoff -= acked;
2020 
2021 				icmp_check(tp, th, acked);
2022 
2023 				tp->snd_una = th->th_ack;
2024 				tp->snd_fack = tp->snd_una;
2025 				if (SEQ_LT(tp->snd_high, tp->snd_una))
2026 					tp->snd_high = tp->snd_una;
2027 				m_freem(m);
2028 
2029 				/*
2030 				 * If all outstanding data are acked, stop
2031 				 * retransmit timer, otherwise restart timer
2032 				 * using current (possibly backed-off) value.
2033 				 * If process is waiting for space,
2034 				 * wakeup/selnotify/signal.  If data
2035 				 * are ready to send, let tcp_output
2036 				 * decide between more output or persist.
2037 				 */
2038 				if (tp->snd_una == tp->snd_max)
2039 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2040 				else if (TCP_TIMER_ISARMED(tp,
2041 				    TCPT_PERSIST) == 0)
2042 					TCP_TIMER_ARM(tp, TCPT_REXMT,
2043 					    tp->t_rxtcur);
2044 
2045 				sowwakeup(so);
2046 				if (so->so_snd.sb_cc) {
2047 					KERNEL_LOCK(1, NULL);
2048 					(void) tcp_output(tp);
2049 					KERNEL_UNLOCK_ONE(NULL);
2050 				}
2051 				if (tcp_saveti)
2052 					m_freem(tcp_saveti);
2053 				return;
2054 			}
2055 		} else if (th->th_ack == tp->snd_una &&
2056 		    TAILQ_FIRST(&tp->segq) == NULL &&
2057 		    tlen <= sbspace(&so->so_rcv)) {
2058 			int newsize = 0;	/* automatic sockbuf scaling */
2059 
2060 			/*
2061 			 * this is a pure, in-sequence data packet
2062 			 * with nothing on the reassembly queue and
2063 			 * we have enough buffer space to take it.
2064 			 */
2065 			tp->rcv_nxt += tlen;
2066 			tcps = TCP_STAT_GETREF();
2067 			tcps[TCP_STAT_PREDDAT]++;
2068 			tcps[TCP_STAT_RCVPACK]++;
2069 			tcps[TCP_STAT_RCVBYTE] += tlen;
2070 			TCP_STAT_PUTREF();
2071 			nd6_hint(tp);
2072 
2073 		/*
2074 		 * Automatic sizing enables the performance of large buffers
2075 		 * and most of the efficiency of small ones by only allocating
2076 		 * space when it is needed.
2077 		 *
2078 		 * On the receive side the socket buffer memory is only rarely
2079 		 * used to any significant extent.  This allows us to be much
2080 		 * more aggressive in scaling the receive socket buffer.  For
2081 		 * the case that the buffer space is actually used to a large
2082 		 * extent and we run out of kernel memory we can simply drop
2083 		 * the new segments; TCP on the sender will just retransmit it
2084 		 * later.  Setting the buffer size too big may only consume too
2085 		 * much kernel memory if the application doesn't read() from
2086 		 * the socket or packet loss or reordering makes use of the
2087 		 * reassembly queue.
2088 		 *
2089 		 * The criteria to step up the receive buffer one notch are:
2090 		 *  1. the number of bytes received during the time it takes
2091 		 *     one timestamp to be reflected back to us (the RTT);
2092 		 *  2. received bytes per RTT is within seven eighth of the
2093 		 *     current socket buffer size;
2094 		 *  3. receive buffer size has not hit maximal automatic size;
2095 		 *
2096 		 * This algorithm does one step per RTT at most and only if
2097 		 * we receive a bulk stream w/o packet losses or reorderings.
2098 		 * Shrinking the buffer during idle times is not necessary as
2099 		 * it doesn't consume any memory when idle.
2100 		 *
2101 		 * TODO: Only step up if the application is actually serving
2102 		 * the buffer to better manage the socket buffer resources.
2103 		 */
2104 			if (tcp_do_autorcvbuf &&
2105 			    opti.ts_ecr &&
2106 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2107 				if (opti.ts_ecr > tp->rfbuf_ts &&
2108 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2109 					if (tp->rfbuf_cnt >
2110 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
2111 					    so->so_rcv.sb_hiwat <
2112 					    tcp_autorcvbuf_max) {
2113 						newsize =
2114 						    min(so->so_rcv.sb_hiwat +
2115 						    tcp_autorcvbuf_inc,
2116 						    tcp_autorcvbuf_max);
2117 					}
2118 					/* Start over with next RTT. */
2119 					tp->rfbuf_ts = 0;
2120 					tp->rfbuf_cnt = 0;
2121 				} else
2122 					tp->rfbuf_cnt += tlen;	/* add up */
2123 			}
2124 
2125 			/*
2126 			 * Drop TCP, IP headers and TCP options then add data
2127 			 * to socket buffer.
2128 			 */
2129 			if (so->so_state & SS_CANTRCVMORE)
2130 				m_freem(m);
2131 			else {
2132 				/*
2133 				 * Set new socket buffer size.
2134 				 * Give up when limit is reached.
2135 				 */
2136 				if (newsize)
2137 					if (!sbreserve(&so->so_rcv,
2138 					    newsize, so))
2139 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2140 				m_adj(m, toff + off);
2141 				sbappendstream(&so->so_rcv, m);
2142 			}
2143 			sorwakeup(so);
2144 			tcp_setup_ack(tp, th);
2145 			if (tp->t_flags & TF_ACKNOW) {
2146 				KERNEL_LOCK(1, NULL);
2147 				(void) tcp_output(tp);
2148 				KERNEL_UNLOCK_ONE(NULL);
2149 			}
2150 			if (tcp_saveti)
2151 				m_freem(tcp_saveti);
2152 			return;
2153 		}
2154 	}
2155 
2156 	/*
2157 	 * Compute mbuf offset to TCP data segment.
2158 	 */
2159 	hdroptlen = toff + off;
2160 
2161 	/*
2162 	 * Calculate amount of space in receive window,
2163 	 * and then do TCP input processing.
2164 	 * Receive window is amount of space in rcv queue,
2165 	 * but not less than advertised window.
2166 	 */
2167 	{ int win;
2168 
2169 	win = sbspace(&so->so_rcv);
2170 	if (win < 0)
2171 		win = 0;
2172 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2173 	}
2174 
2175 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2176 	tp->rfbuf_ts = 0;
2177 	tp->rfbuf_cnt = 0;
2178 
2179 	switch (tp->t_state) {
2180 	/*
2181 	 * If the state is SYN_SENT:
2182 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2183 	 *	if seg contains a RST, then drop the connection.
2184 	 *	if seg does not contain SYN, then drop it.
2185 	 * Otherwise this is an acceptable SYN segment
2186 	 *	initialize tp->rcv_nxt and tp->irs
2187 	 *	if seg contains ack then advance tp->snd_una
2188 	 *	if seg contains a ECE and ECN support is enabled, the stream
2189 	 *	    is ECN capable.
2190 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2191 	 *	arrange for segment to be acked (eventually)
2192 	 *	continue processing rest of data/controls, beginning with URG
2193 	 */
2194 	case TCPS_SYN_SENT:
2195 		if ((tiflags & TH_ACK) &&
2196 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2197 		     SEQ_GT(th->th_ack, tp->snd_max)))
2198 			goto dropwithreset;
2199 		if (tiflags & TH_RST) {
2200 			if (tiflags & TH_ACK)
2201 				tp = tcp_drop(tp, ECONNREFUSED);
2202 			goto drop;
2203 		}
2204 		if ((tiflags & TH_SYN) == 0)
2205 			goto drop;
2206 		if (tiflags & TH_ACK) {
2207 			tp->snd_una = th->th_ack;
2208 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2209 				tp->snd_nxt = tp->snd_una;
2210 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2211 				tp->snd_high = tp->snd_una;
2212 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2213 
2214 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2215 				tp->t_flags |= TF_ECN_PERMIT;
2216 				TCP_STATINC(TCP_STAT_ECN_SHS);
2217 			}
2218 
2219 		}
2220 		tp->irs = th->th_seq;
2221 		tcp_rcvseqinit(tp);
2222 		tp->t_flags |= TF_ACKNOW;
2223 		tcp_mss_from_peer(tp, opti.maxseg);
2224 
2225 		/*
2226 		 * Initialize the initial congestion window.  If we
2227 		 * had to retransmit the SYN, we must initialize cwnd
2228 		 * to 1 segment (i.e. the Loss Window).
2229 		 */
2230 		if (tp->t_flags & TF_SYN_REXMT)
2231 			tp->snd_cwnd = tp->t_peermss;
2232 		else {
2233 			int ss = tcp_init_win;
2234 #ifdef INET
2235 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2236 				ss = tcp_init_win_local;
2237 #endif
2238 #ifdef INET6
2239 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2240 				ss = tcp_init_win_local;
2241 #endif
2242 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2243 		}
2244 
2245 		tcp_rmx_rtt(tp);
2246 		if (tiflags & TH_ACK) {
2247 			TCP_STATINC(TCP_STAT_CONNECTS);
2248 			/*
2249 			 * move tcp_established before soisconnected
2250 			 * because upcall handler can drive tcp_output
2251 			 * functionality.
2252 			 * XXX we might call soisconnected at the end of
2253 			 * all processing
2254 			 */
2255 			tcp_established(tp);
2256 			soisconnected(so);
2257 			/* Do window scaling on this connection? */
2258 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2259 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2260 				tp->snd_scale = tp->requested_s_scale;
2261 				tp->rcv_scale = tp->request_r_scale;
2262 			}
2263 			TCP_REASS_LOCK(tp);
2264 			(void) tcp_reass(tp, NULL, NULL, &tlen);
2265 			/*
2266 			 * if we didn't have to retransmit the SYN,
2267 			 * use its rtt as our initial srtt & rtt var.
2268 			 */
2269 			if (tp->t_rtttime)
2270 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2271 		} else
2272 			tp->t_state = TCPS_SYN_RECEIVED;
2273 
2274 		/*
2275 		 * Advance th->th_seq to correspond to first data byte.
2276 		 * If data, trim to stay within window,
2277 		 * dropping FIN if necessary.
2278 		 */
2279 		th->th_seq++;
2280 		if (tlen > tp->rcv_wnd) {
2281 			todrop = tlen - tp->rcv_wnd;
2282 			m_adj(m, -todrop);
2283 			tlen = tp->rcv_wnd;
2284 			tiflags &= ~TH_FIN;
2285 			tcps = TCP_STAT_GETREF();
2286 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2287 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2288 			TCP_STAT_PUTREF();
2289 		}
2290 		tp->snd_wl1 = th->th_seq - 1;
2291 		tp->rcv_up = th->th_seq;
2292 		goto step6;
2293 
2294 	/*
2295 	 * If the state is SYN_RECEIVED:
2296 	 *	If seg contains an ACK, but not for our SYN, drop the input
2297 	 *	and generate an RST.  See page 36, rfc793
2298 	 */
2299 	case TCPS_SYN_RECEIVED:
2300 		if ((tiflags & TH_ACK) &&
2301 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2302 		     SEQ_GT(th->th_ack, tp->snd_max)))
2303 			goto dropwithreset;
2304 		break;
2305 	}
2306 
2307 	/*
2308 	 * States other than LISTEN or SYN_SENT.
2309 	 * First check timestamp, if present.
2310 	 * Then check that at least some bytes of segment are within
2311 	 * receive window.  If segment begins before rcv_nxt,
2312 	 * drop leading data (and SYN); if nothing left, just ack.
2313 	 *
2314 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2315 	 * and it's less than ts_recent, drop it.
2316 	 */
2317 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2318 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2319 
2320 		/* Check to see if ts_recent is over 24 days old.  */
2321 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2322 			/*
2323 			 * Invalidate ts_recent.  If this segment updates
2324 			 * ts_recent, the age will be reset later and ts_recent
2325 			 * will get a valid value.  If it does not, setting
2326 			 * ts_recent to zero will at least satisfy the
2327 			 * requirement that zero be placed in the timestamp
2328 			 * echo reply when ts_recent isn't valid.  The
2329 			 * age isn't reset until we get a valid ts_recent
2330 			 * because we don't want out-of-order segments to be
2331 			 * dropped when ts_recent is old.
2332 			 */
2333 			tp->ts_recent = 0;
2334 		} else {
2335 			tcps = TCP_STAT_GETREF();
2336 			tcps[TCP_STAT_RCVDUPPACK]++;
2337 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2338 			tcps[TCP_STAT_PAWSDROP]++;
2339 			TCP_STAT_PUTREF();
2340 			tcp_new_dsack(tp, th->th_seq, tlen);
2341 			goto dropafterack;
2342 		}
2343 	}
2344 
2345 	todrop = tp->rcv_nxt - th->th_seq;
2346 	dupseg = false;
2347 	if (todrop > 0) {
2348 		if (tiflags & TH_SYN) {
2349 			tiflags &= ~TH_SYN;
2350 			th->th_seq++;
2351 			if (th->th_urp > 1)
2352 				th->th_urp--;
2353 			else {
2354 				tiflags &= ~TH_URG;
2355 				th->th_urp = 0;
2356 			}
2357 			todrop--;
2358 		}
2359 		if (todrop > tlen ||
2360 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2361 			/*
2362 			 * Any valid FIN or RST must be to the left of the
2363 			 * window.  At this point the FIN or RST must be a
2364 			 * duplicate or out of sequence; drop it.
2365 			 */
2366 			if (tiflags & TH_RST)
2367 				goto drop;
2368 			tiflags &= ~(TH_FIN|TH_RST);
2369 			/*
2370 			 * Send an ACK to resynchronize and drop any data.
2371 			 * But keep on processing for RST or ACK.
2372 			 */
2373 			tp->t_flags |= TF_ACKNOW;
2374 			todrop = tlen;
2375 			dupseg = true;
2376 			tcps = TCP_STAT_GETREF();
2377 			tcps[TCP_STAT_RCVDUPPACK]++;
2378 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2379 			TCP_STAT_PUTREF();
2380 		} else if ((tiflags & TH_RST) &&
2381 			   th->th_seq != tp->rcv_nxt) {
2382 			/*
2383 			 * Test for reset before adjusting the sequence
2384 			 * number for overlapping data.
2385 			 */
2386 			goto dropafterack_ratelim;
2387 		} else {
2388 			tcps = TCP_STAT_GETREF();
2389 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2390 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2391 			TCP_STAT_PUTREF();
2392 		}
2393 		tcp_new_dsack(tp, th->th_seq, todrop);
2394 		hdroptlen += todrop;	/*drop from head afterwards*/
2395 		th->th_seq += todrop;
2396 		tlen -= todrop;
2397 		if (th->th_urp > todrop)
2398 			th->th_urp -= todrop;
2399 		else {
2400 			tiflags &= ~TH_URG;
2401 			th->th_urp = 0;
2402 		}
2403 	}
2404 
2405 	/*
2406 	 * If new data are received on a connection after the
2407 	 * user processes are gone, then RST the other end.
2408 	 */
2409 	if ((so->so_state & SS_NOFDREF) &&
2410 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2411 		tp = tcp_close(tp);
2412 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2413 		goto dropwithreset;
2414 	}
2415 
2416 	/*
2417 	 * If segment ends after window, drop trailing data
2418 	 * (and PUSH and FIN); if nothing left, just ACK.
2419 	 */
2420 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2421 	if (todrop > 0) {
2422 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2423 		if (todrop >= tlen) {
2424 			/*
2425 			 * The segment actually starts after the window.
2426 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2427 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2428 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2429 			 */
2430 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2431 			/*
2432 			 * If a new connection request is received
2433 			 * while in TIME_WAIT, drop the old connection
2434 			 * and start over if the sequence numbers
2435 			 * are above the previous ones.
2436 			 *
2437 			 * NOTE: We will checksum the packet again, and
2438 			 * so we need to put the header fields back into
2439 			 * network order!
2440 			 * XXX This kind of sucks, but we don't expect
2441 			 * XXX this to happen very often, so maybe it
2442 			 * XXX doesn't matter so much.
2443 			 */
2444 			if (tiflags & TH_SYN &&
2445 			    tp->t_state == TCPS_TIME_WAIT &&
2446 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2447 				tp = tcp_close(tp);
2448 				tcp_fields_to_net(th);
2449 				goto findpcb;
2450 			}
2451 			/*
2452 			 * If window is closed can only take segments at
2453 			 * window edge, and have to drop data and PUSH from
2454 			 * incoming segments.  Continue processing, but
2455 			 * remember to ack.  Otherwise, drop segment
2456 			 * and (if not RST) ack.
2457 			 */
2458 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2459 				tp->t_flags |= TF_ACKNOW;
2460 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2461 			} else
2462 				goto dropafterack;
2463 		} else
2464 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2465 		m_adj(m, -todrop);
2466 		tlen -= todrop;
2467 		tiflags &= ~(TH_PUSH|TH_FIN);
2468 	}
2469 
2470 	/*
2471 	 * If last ACK falls within this segment's sequence numbers,
2472 	 *  record the timestamp.
2473 	 * NOTE:
2474 	 * 1) That the test incorporates suggestions from the latest
2475 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2476 	 * 2) That updating only on newer timestamps interferes with
2477 	 *    our earlier PAWS tests, so this check should be solely
2478 	 *    predicated on the sequence space of this segment.
2479 	 * 3) That we modify the segment boundary check to be
2480 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2481 	 *    instead of RFC1323's
2482 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2483 	 *    This modified check allows us to overcome RFC1323's
2484 	 *    limitations as described in Stevens TCP/IP Illustrated
2485 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2486 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2487 	 */
2488 	if (opti.ts_present &&
2489 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2490 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2491 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2492 		tp->ts_recent_age = tcp_now;
2493 		tp->ts_recent = opti.ts_val;
2494 	}
2495 
2496 	/*
2497 	 * If the RST bit is set examine the state:
2498 	 *    SYN_RECEIVED STATE:
2499 	 *	If passive open, return to LISTEN state.
2500 	 *	If active open, inform user that connection was refused.
2501 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2502 	 *	Inform user that connection was reset, and close tcb.
2503 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2504 	 *	Close the tcb.
2505 	 */
2506 	if (tiflags & TH_RST) {
2507 		if (th->th_seq != tp->rcv_nxt)
2508 			goto dropafterack_ratelim;
2509 
2510 		switch (tp->t_state) {
2511 		case TCPS_SYN_RECEIVED:
2512 			so->so_error = ECONNREFUSED;
2513 			goto close;
2514 
2515 		case TCPS_ESTABLISHED:
2516 		case TCPS_FIN_WAIT_1:
2517 		case TCPS_FIN_WAIT_2:
2518 		case TCPS_CLOSE_WAIT:
2519 			so->so_error = ECONNRESET;
2520 		close:
2521 			tp->t_state = TCPS_CLOSED;
2522 			TCP_STATINC(TCP_STAT_DROPS);
2523 			tp = tcp_close(tp);
2524 			goto drop;
2525 
2526 		case TCPS_CLOSING:
2527 		case TCPS_LAST_ACK:
2528 		case TCPS_TIME_WAIT:
2529 			tp = tcp_close(tp);
2530 			goto drop;
2531 		}
2532 	}
2533 
2534 	/*
2535 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2536 	 * we must be in a synchronized state.  RFC791 states (under RST
2537 	 * generation) that any unacceptable segment (an out-of-order SYN
2538 	 * qualifies) received in a synchronized state must elicit only an
2539 	 * empty acknowledgment segment ... and the connection remains in
2540 	 * the same state.
2541 	 */
2542 	if (tiflags & TH_SYN) {
2543 		if (tp->rcv_nxt == th->th_seq) {
2544 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2545 			    TH_ACK);
2546 			if (tcp_saveti)
2547 				m_freem(tcp_saveti);
2548 			return;
2549 		}
2550 
2551 		goto dropafterack_ratelim;
2552 	}
2553 
2554 	/*
2555 	 * If the ACK bit is off we drop the segment and return.
2556 	 */
2557 	if ((tiflags & TH_ACK) == 0) {
2558 		if (tp->t_flags & TF_ACKNOW)
2559 			goto dropafterack;
2560 		else
2561 			goto drop;
2562 	}
2563 
2564 	/*
2565 	 * Ack processing.
2566 	 */
2567 	switch (tp->t_state) {
2568 
2569 	/*
2570 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2571 	 * ESTABLISHED state and continue processing, otherwise
2572 	 * send an RST.
2573 	 */
2574 	case TCPS_SYN_RECEIVED:
2575 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2576 		    SEQ_GT(th->th_ack, tp->snd_max))
2577 			goto dropwithreset;
2578 		TCP_STATINC(TCP_STAT_CONNECTS);
2579 		soisconnected(so);
2580 		tcp_established(tp);
2581 		/* Do window scaling? */
2582 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2583 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2584 			tp->snd_scale = tp->requested_s_scale;
2585 			tp->rcv_scale = tp->request_r_scale;
2586 		}
2587 		TCP_REASS_LOCK(tp);
2588 		(void) tcp_reass(tp, NULL, NULL, &tlen);
2589 		tp->snd_wl1 = th->th_seq - 1;
2590 		/* fall into ... */
2591 
2592 	/*
2593 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2594 	 * ACKs.  If the ack is in the range
2595 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2596 	 * then advance tp->snd_una to th->th_ack and drop
2597 	 * data from the retransmission queue.  If this ACK reflects
2598 	 * more up to date window information we update our window information.
2599 	 */
2600 	case TCPS_ESTABLISHED:
2601 	case TCPS_FIN_WAIT_1:
2602 	case TCPS_FIN_WAIT_2:
2603 	case TCPS_CLOSE_WAIT:
2604 	case TCPS_CLOSING:
2605 	case TCPS_LAST_ACK:
2606 	case TCPS_TIME_WAIT:
2607 
2608 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2609 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2610 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2611 				/*
2612 				 * If we have outstanding data (other than
2613 				 * a window probe), this is a completely
2614 				 * duplicate ack (ie, window info didn't
2615 				 * change), the ack is the biggest we've
2616 				 * seen and we've seen exactly our rexmt
2617 				 * threshhold of them, assume a packet
2618 				 * has been dropped and retransmit it.
2619 				 * Kludge snd_nxt & the congestion
2620 				 * window so we send only this one
2621 				 * packet.
2622 				 */
2623 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2624 				    th->th_ack != tp->snd_una)
2625 					tp->t_dupacks = 0;
2626 				else if (tp->t_partialacks < 0 &&
2627 					 (++tp->t_dupacks == tcprexmtthresh ||
2628 					 TCP_FACK_FASTRECOV(tp))) {
2629 					/*
2630 					 * Do the fast retransmit, and adjust
2631 					 * congestion control paramenters.
2632 					 */
2633 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2634 						/* False fast retransmit */
2635 						break;
2636 					} else
2637 						goto drop;
2638 				} else if (tp->t_dupacks > tcprexmtthresh) {
2639 					tp->snd_cwnd += tp->t_segsz;
2640 					KERNEL_LOCK(1, NULL);
2641 					(void) tcp_output(tp);
2642 					KERNEL_UNLOCK_ONE(NULL);
2643 					goto drop;
2644 				}
2645 			} else {
2646 				/*
2647 				 * If the ack appears to be very old, only
2648 				 * allow data that is in-sequence.  This
2649 				 * makes it somewhat more difficult to insert
2650 				 * forged data by guessing sequence numbers.
2651 				 * Sent an ack to try to update the send
2652 				 * sequence number on the other side.
2653 				 */
2654 				if (tlen && th->th_seq != tp->rcv_nxt &&
2655 				    SEQ_LT(th->th_ack,
2656 				    tp->snd_una - tp->max_sndwnd))
2657 					goto dropafterack;
2658 			}
2659 			break;
2660 		}
2661 		/*
2662 		 * If the congestion window was inflated to account
2663 		 * for the other side's cached packets, retract it.
2664 		 */
2665 		tp->t_congctl->fast_retransmit_newack(tp, th);
2666 
2667 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2668 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2669 			goto dropafterack;
2670 		}
2671 		acked = th->th_ack - tp->snd_una;
2672 		tcps = TCP_STAT_GETREF();
2673 		tcps[TCP_STAT_RCVACKPACK]++;
2674 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2675 		TCP_STAT_PUTREF();
2676 
2677 		/*
2678 		 * If we have a timestamp reply, update smoothed
2679 		 * round trip time.  If no timestamp is present but
2680 		 * transmit timer is running and timed sequence
2681 		 * number was acked, update smoothed round trip time.
2682 		 * Since we now have an rtt measurement, cancel the
2683 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2684 		 * Recompute the initial retransmit timer.
2685 		 */
2686 		if (ts_rtt)
2687 			tcp_xmit_timer(tp, ts_rtt - 1);
2688 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2689 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2690 
2691 		/*
2692 		 * If all outstanding data is acked, stop retransmit
2693 		 * timer and remember to restart (more output or persist).
2694 		 * If there is more data to be acked, restart retransmit
2695 		 * timer, using current (possibly backed-off) value.
2696 		 */
2697 		if (th->th_ack == tp->snd_max) {
2698 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2699 			needoutput = 1;
2700 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2701 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2702 
2703 		/*
2704 		 * New data has been acked, adjust the congestion window.
2705 		 */
2706 		tp->t_congctl->newack(tp, th);
2707 
2708 		nd6_hint(tp);
2709 		if (acked > so->so_snd.sb_cc) {
2710 			tp->snd_wnd -= so->so_snd.sb_cc;
2711 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2712 			ourfinisacked = 1;
2713 		} else {
2714 			if (acked > (tp->t_lastoff - tp->t_inoff))
2715 				tp->t_lastm = NULL;
2716 			sbdrop(&so->so_snd, acked);
2717 			tp->t_lastoff -= acked;
2718 			if (tp->snd_wnd > acked)
2719 				tp->snd_wnd -= acked;
2720 			else
2721 				tp->snd_wnd = 0;
2722 			ourfinisacked = 0;
2723 		}
2724 		sowwakeup(so);
2725 
2726 		icmp_check(tp, th, acked);
2727 
2728 		tp->snd_una = th->th_ack;
2729 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2730 			tp->snd_fack = tp->snd_una;
2731 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2732 			tp->snd_nxt = tp->snd_una;
2733 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2734 			tp->snd_high = tp->snd_una;
2735 
2736 		switch (tp->t_state) {
2737 
2738 		/*
2739 		 * In FIN_WAIT_1 STATE in addition to the processing
2740 		 * for the ESTABLISHED state if our FIN is now acknowledged
2741 		 * then enter FIN_WAIT_2.
2742 		 */
2743 		case TCPS_FIN_WAIT_1:
2744 			if (ourfinisacked) {
2745 				/*
2746 				 * If we can't receive any more
2747 				 * data, then closing user can proceed.
2748 				 * Starting the timer is contrary to the
2749 				 * specification, but if we don't get a FIN
2750 				 * we'll hang forever.
2751 				 */
2752 				if (so->so_state & SS_CANTRCVMORE) {
2753 					soisdisconnected(so);
2754 					if (tp->t_maxidle > 0)
2755 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2756 						    tp->t_maxidle);
2757 				}
2758 				tp->t_state = TCPS_FIN_WAIT_2;
2759 			}
2760 			break;
2761 
2762 	 	/*
2763 		 * In CLOSING STATE in addition to the processing for
2764 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2765 		 * then enter the TIME-WAIT state, otherwise ignore
2766 		 * the segment.
2767 		 */
2768 		case TCPS_CLOSING:
2769 			if (ourfinisacked) {
2770 				tp->t_state = TCPS_TIME_WAIT;
2771 				tcp_canceltimers(tp);
2772 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2773 				soisdisconnected(so);
2774 			}
2775 			break;
2776 
2777 		/*
2778 		 * In LAST_ACK, we may still be waiting for data to drain
2779 		 * and/or to be acked, as well as for the ack of our FIN.
2780 		 * If our FIN is now acknowledged, delete the TCB,
2781 		 * enter the closed state and return.
2782 		 */
2783 		case TCPS_LAST_ACK:
2784 			if (ourfinisacked) {
2785 				tp = tcp_close(tp);
2786 				goto drop;
2787 			}
2788 			break;
2789 
2790 		/*
2791 		 * In TIME_WAIT state the only thing that should arrive
2792 		 * is a retransmission of the remote FIN.  Acknowledge
2793 		 * it and restart the finack timer.
2794 		 */
2795 		case TCPS_TIME_WAIT:
2796 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2797 			goto dropafterack;
2798 		}
2799 	}
2800 
2801 step6:
2802 	/*
2803 	 * Update window information.
2804 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2805 	 */
2806 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2807 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2808 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2809 		/* keep track of pure window updates */
2810 		if (tlen == 0 &&
2811 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2812 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2813 		tp->snd_wnd = tiwin;
2814 		tp->snd_wl1 = th->th_seq;
2815 		tp->snd_wl2 = th->th_ack;
2816 		if (tp->snd_wnd > tp->max_sndwnd)
2817 			tp->max_sndwnd = tp->snd_wnd;
2818 		needoutput = 1;
2819 	}
2820 
2821 	/*
2822 	 * Process segments with URG.
2823 	 */
2824 	if ((tiflags & TH_URG) && th->th_urp &&
2825 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2826 		/*
2827 		 * This is a kludge, but if we receive and accept
2828 		 * random urgent pointers, we'll crash in
2829 		 * soreceive.  It's hard to imagine someone
2830 		 * actually wanting to send this much urgent data.
2831 		 */
2832 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2833 			th->th_urp = 0;			/* XXX */
2834 			tiflags &= ~TH_URG;		/* XXX */
2835 			goto dodata;			/* XXX */
2836 		}
2837 		/*
2838 		 * If this segment advances the known urgent pointer,
2839 		 * then mark the data stream.  This should not happen
2840 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2841 		 * a FIN has been received from the remote side.
2842 		 * In these states we ignore the URG.
2843 		 *
2844 		 * According to RFC961 (Assigned Protocols),
2845 		 * the urgent pointer points to the last octet
2846 		 * of urgent data.  We continue, however,
2847 		 * to consider it to indicate the first octet
2848 		 * of data past the urgent section as the original
2849 		 * spec states (in one of two places).
2850 		 */
2851 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2852 			tp->rcv_up = th->th_seq + th->th_urp;
2853 			so->so_oobmark = so->so_rcv.sb_cc +
2854 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2855 			if (so->so_oobmark == 0)
2856 				so->so_state |= SS_RCVATMARK;
2857 			sohasoutofband(so);
2858 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2859 		}
2860 		/*
2861 		 * Remove out of band data so doesn't get presented to user.
2862 		 * This can happen independent of advancing the URG pointer,
2863 		 * but if two URG's are pending at once, some out-of-band
2864 		 * data may creep in... ick.
2865 		 */
2866 		if (th->th_urp <= (u_int16_t) tlen
2867 #ifdef SO_OOBINLINE
2868 		     && (so->so_options & SO_OOBINLINE) == 0
2869 #endif
2870 		     )
2871 			tcp_pulloutofband(so, th, m, hdroptlen);
2872 	} else
2873 		/*
2874 		 * If no out of band data is expected,
2875 		 * pull receive urgent pointer along
2876 		 * with the receive window.
2877 		 */
2878 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2879 			tp->rcv_up = tp->rcv_nxt;
2880 dodata:							/* XXX */
2881 
2882 	/*
2883 	 * Process the segment text, merging it into the TCP sequencing queue,
2884 	 * and arranging for acknowledgement of receipt if necessary.
2885 	 * This process logically involves adjusting tp->rcv_wnd as data
2886 	 * is presented to the user (this happens in tcp_usrreq.c,
2887 	 * tcp_rcvd()).  If a FIN has already been received on this
2888 	 * connection then we just ignore the text.
2889 	 */
2890 	if ((tlen || (tiflags & TH_FIN)) &&
2891 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2892 		/*
2893 		 * Insert segment ti into reassembly queue of tcp with
2894 		 * control block tp.  Return TH_FIN if reassembly now includes
2895 		 * a segment with FIN.  The macro form does the common case
2896 		 * inline (segment is the next to be received on an
2897 		 * established connection, and the queue is empty),
2898 		 * avoiding linkage into and removal from the queue and
2899 		 * repetition of various conversions.
2900 		 * Set DELACK for segments received in order, but ack
2901 		 * immediately when segments are out of order
2902 		 * (so fast retransmit can work).
2903 		 */
2904 		/* NOTE: this was TCP_REASS() macro, but used only once */
2905 		TCP_REASS_LOCK(tp);
2906 		if (th->th_seq == tp->rcv_nxt &&
2907 		    TAILQ_FIRST(&tp->segq) == NULL &&
2908 		    tp->t_state == TCPS_ESTABLISHED) {
2909 			tcp_setup_ack(tp, th);
2910 			tp->rcv_nxt += tlen;
2911 			tiflags = th->th_flags & TH_FIN;
2912 			tcps = TCP_STAT_GETREF();
2913 			tcps[TCP_STAT_RCVPACK]++;
2914 			tcps[TCP_STAT_RCVBYTE] += tlen;
2915 			TCP_STAT_PUTREF();
2916 			nd6_hint(tp);
2917 			if (so->so_state & SS_CANTRCVMORE)
2918 				m_freem(m);
2919 			else {
2920 				m_adj(m, hdroptlen);
2921 				sbappendstream(&(so)->so_rcv, m);
2922 			}
2923 			TCP_REASS_UNLOCK(tp);
2924 			sorwakeup(so);
2925 		} else {
2926 			m_adj(m, hdroptlen);
2927 			tiflags = tcp_reass(tp, th, m, &tlen);
2928 			tp->t_flags |= TF_ACKNOW;
2929 		}
2930 
2931 		/*
2932 		 * Note the amount of data that peer has sent into
2933 		 * our window, in order to estimate the sender's
2934 		 * buffer size.
2935 		 */
2936 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2937 	} else {
2938 		m_freem(m);
2939 		m = NULL;
2940 		tiflags &= ~TH_FIN;
2941 	}
2942 
2943 	/*
2944 	 * If FIN is received ACK the FIN and let the user know
2945 	 * that the connection is closing.  Ignore a FIN received before
2946 	 * the connection is fully established.
2947 	 */
2948 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2949 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2950 			socantrcvmore(so);
2951 			tp->t_flags |= TF_ACKNOW;
2952 			tp->rcv_nxt++;
2953 		}
2954 		switch (tp->t_state) {
2955 
2956 	 	/*
2957 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2958 		 */
2959 		case TCPS_ESTABLISHED:
2960 			tp->t_state = TCPS_CLOSE_WAIT;
2961 			break;
2962 
2963 	 	/*
2964 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2965 		 * enter the CLOSING state.
2966 		 */
2967 		case TCPS_FIN_WAIT_1:
2968 			tp->t_state = TCPS_CLOSING;
2969 			break;
2970 
2971 	 	/*
2972 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2973 		 * starting the time-wait timer, turning off the other
2974 		 * standard timers.
2975 		 */
2976 		case TCPS_FIN_WAIT_2:
2977 			tp->t_state = TCPS_TIME_WAIT;
2978 			tcp_canceltimers(tp);
2979 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2980 			soisdisconnected(so);
2981 			break;
2982 
2983 		/*
2984 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2985 		 */
2986 		case TCPS_TIME_WAIT:
2987 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2988 			break;
2989 		}
2990 	}
2991 #ifdef TCP_DEBUG
2992 	if (so->so_options & SO_DEBUG)
2993 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2994 #endif
2995 
2996 	/*
2997 	 * Return any desired output.
2998 	 */
2999 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3000 		KERNEL_LOCK(1, NULL);
3001 		(void) tcp_output(tp);
3002 		KERNEL_UNLOCK_ONE(NULL);
3003 	}
3004 	if (tcp_saveti)
3005 		m_freem(tcp_saveti);
3006 
3007 	if (tp->t_state == TCPS_TIME_WAIT
3008 	    && (so->so_state & SS_NOFDREF)
3009 	    && (tp->t_inpcb || af != AF_INET)
3010 	    && (tp->t_in6pcb || af != AF_INET6)
3011 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3012 	    && TAILQ_EMPTY(&tp->segq)
3013 	    && vtw_add(af, tp)) {
3014 		;
3015 	}
3016 	return;
3017 
3018 badsyn:
3019 	/*
3020 	 * Received a bad SYN.  Increment counters and dropwithreset.
3021 	 */
3022 	TCP_STATINC(TCP_STAT_BADSYN);
3023 	tp = NULL;
3024 	goto dropwithreset;
3025 
3026 dropafterack:
3027 	/*
3028 	 * Generate an ACK dropping incoming segment if it occupies
3029 	 * sequence space, where the ACK reflects our state.
3030 	 */
3031 	if (tiflags & TH_RST)
3032 		goto drop;
3033 	goto dropafterack2;
3034 
3035 dropafterack_ratelim:
3036 	/*
3037 	 * We may want to rate-limit ACKs against SYN/RST attack.
3038 	 */
3039 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3040 	    tcp_ackdrop_ppslim) == 0) {
3041 		/* XXX stat */
3042 		goto drop;
3043 	}
3044 	/* ...fall into dropafterack2... */
3045 
3046 dropafterack2:
3047 	m_freem(m);
3048 	tp->t_flags |= TF_ACKNOW;
3049 	KERNEL_LOCK(1, NULL);
3050 	(void) tcp_output(tp);
3051 	KERNEL_UNLOCK_ONE(NULL);
3052 	if (tcp_saveti)
3053 		m_freem(tcp_saveti);
3054 	return;
3055 
3056 dropwithreset_ratelim:
3057 	/*
3058 	 * We may want to rate-limit RSTs in certain situations,
3059 	 * particularly if we are sending an RST in response to
3060 	 * an attempt to connect to or otherwise communicate with
3061 	 * a port for which we have no socket.
3062 	 */
3063 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3064 	    tcp_rst_ppslim) == 0) {
3065 		/* XXX stat */
3066 		goto drop;
3067 	}
3068 	/* ...fall into dropwithreset... */
3069 
3070 dropwithreset:
3071 	/*
3072 	 * Generate a RST, dropping incoming segment.
3073 	 * Make ACK acceptable to originator of segment.
3074 	 */
3075 	if (tiflags & TH_RST)
3076 		goto drop;
3077 
3078 	switch (af) {
3079 #ifdef INET6
3080 	case AF_INET6:
3081 		/* For following calls to tcp_respond */
3082 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3083 			goto drop;
3084 		break;
3085 #endif /* INET6 */
3086 	case AF_INET:
3087 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3088 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3089 			goto drop;
3090 	}
3091 
3092 	if (tiflags & TH_ACK)
3093 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3094 	else {
3095 		if (tiflags & TH_SYN)
3096 			tlen++;
3097 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3098 		    TH_RST|TH_ACK);
3099 	}
3100 	if (tcp_saveti)
3101 		m_freem(tcp_saveti);
3102 	return;
3103 
3104 badcsum:
3105 drop:
3106 	/*
3107 	 * Drop space held by incoming segment and return.
3108 	 */
3109 	if (tp) {
3110 		if (tp->t_inpcb)
3111 			so = tp->t_inpcb->inp_socket;
3112 #ifdef INET6
3113 		else if (tp->t_in6pcb)
3114 			so = tp->t_in6pcb->in6p_socket;
3115 #endif
3116 		else
3117 			so = NULL;
3118 #ifdef TCP_DEBUG
3119 		if (so && (so->so_options & SO_DEBUG) != 0)
3120 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3121 #endif
3122 	}
3123 	if (tcp_saveti)
3124 		m_freem(tcp_saveti);
3125 	m_freem(m);
3126 	return;
3127 }
3128 
3129 #ifdef TCP_SIGNATURE
3130 int
3131 tcp_signature_apply(void *fstate, void *data, u_int len)
3132 {
3133 
3134 	MD5Update(fstate, (u_char *)data, len);
3135 	return (0);
3136 }
3137 
3138 struct secasvar *
3139 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3140 {
3141 	struct ip *ip;
3142 	struct ip6_hdr *ip6;
3143 
3144 	ip = mtod(m, struct ip *);
3145 	switch (ip->ip_v) {
3146 	case 4:
3147 		ip = mtod(m, struct ip *);
3148 		ip6 = NULL;
3149 		break;
3150 	case 6:
3151 		ip = NULL;
3152 		ip6 = mtod(m, struct ip6_hdr *);
3153 		break;
3154 	default:
3155 		return (NULL);
3156 	}
3157 
3158 #ifdef IPSEC
3159 	if (ipsec_used) {
3160 		union sockaddr_union dst;
3161 		/* Extract the destination from the IP header in the mbuf. */
3162 		memset(&dst, 0, sizeof(union sockaddr_union));
3163 		if (ip != NULL) {
3164 			dst.sa.sa_len = sizeof(struct sockaddr_in);
3165 			dst.sa.sa_family = AF_INET;
3166 			dst.sin.sin_addr = ip->ip_dst;
3167 		} else {
3168 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
3169 			dst.sa.sa_family = AF_INET6;
3170 			dst.sin6.sin6_addr = ip6->ip6_dst;
3171 		}
3172 
3173 		/*
3174 		 * Look up an SADB entry which matches the address of the peer.
3175 		 */
3176 		return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3177 	}
3178 	return NULL;
3179 #else
3180 	if (ip)
3181 		return key_allocsa(AF_INET, (void *)&ip->ip_src,
3182 		    (void *)&ip->ip_dst, IPPROTO_TCP,
3183 		    htonl(TCP_SIG_SPI), 0, 0);
3184 	else
3185 		return key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
3186 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
3187 		    htonl(TCP_SIG_SPI), 0, 0);
3188 #endif
3189 }
3190 
3191 int
3192 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3193     struct secasvar *sav, char *sig)
3194 {
3195 	MD5_CTX ctx;
3196 	struct ip *ip;
3197 	struct ipovly *ipovly;
3198 #ifdef INET6
3199 	struct ip6_hdr *ip6;
3200 	struct ip6_hdr_pseudo ip6pseudo;
3201 #endif /* INET6 */
3202 	struct ippseudo ippseudo;
3203 	struct tcphdr th0;
3204 	int l, tcphdrlen;
3205 
3206 	if (sav == NULL)
3207 		return (-1);
3208 
3209 	tcphdrlen = th->th_off * 4;
3210 
3211 	switch (mtod(m, struct ip *)->ip_v) {
3212 	case 4:
3213 		MD5Init(&ctx);
3214 		ip = mtod(m, struct ip *);
3215 		memset(&ippseudo, 0, sizeof(ippseudo));
3216 		ipovly = (struct ipovly *)ip;
3217 		ippseudo.ippseudo_src = ipovly->ih_src;
3218 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3219 		ippseudo.ippseudo_pad = 0;
3220 		ippseudo.ippseudo_p = IPPROTO_TCP;
3221 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3222 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3223 		break;
3224 #if INET6
3225 	case 6:
3226 		MD5Init(&ctx);
3227 		ip6 = mtod(m, struct ip6_hdr *);
3228 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3229 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3230 		in6_clearscope(&ip6pseudo.ip6ph_src);
3231 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3232 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3233 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3234 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3235 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3236 		break;
3237 #endif /* INET6 */
3238 	default:
3239 		return (-1);
3240 	}
3241 
3242 	th0 = *th;
3243 	th0.th_sum = 0;
3244 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3245 
3246 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3247 	if (l > 0)
3248 		m_apply(m, thoff + tcphdrlen,
3249 		    m->m_pkthdr.len - thoff - tcphdrlen,
3250 		    tcp_signature_apply, &ctx);
3251 
3252 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3253 	MD5Final(sig, &ctx);
3254 
3255 	return (0);
3256 }
3257 #endif
3258 
3259 /*
3260  * tcp_dooptions: parse and process tcp options.
3261  *
3262  * returns -1 if this segment should be dropped.  (eg. wrong signature)
3263  * otherwise returns 0.
3264  */
3265 
3266 static int
3267 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3268     struct tcphdr *th,
3269     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3270 {
3271 	u_int16_t mss;
3272 	int opt, optlen = 0;
3273 #ifdef TCP_SIGNATURE
3274 	void *sigp = NULL;
3275 	char sigbuf[TCP_SIGLEN];
3276 	struct secasvar *sav = NULL;
3277 #endif
3278 
3279 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3280 		opt = cp[0];
3281 		if (opt == TCPOPT_EOL)
3282 			break;
3283 		if (opt == TCPOPT_NOP)
3284 			optlen = 1;
3285 		else {
3286 			if (cnt < 2)
3287 				break;
3288 			optlen = cp[1];
3289 			if (optlen < 2 || optlen > cnt)
3290 				break;
3291 		}
3292 		switch (opt) {
3293 
3294 		default:
3295 			continue;
3296 
3297 		case TCPOPT_MAXSEG:
3298 			if (optlen != TCPOLEN_MAXSEG)
3299 				continue;
3300 			if (!(th->th_flags & TH_SYN))
3301 				continue;
3302 			if (TCPS_HAVERCVDSYN(tp->t_state))
3303 				continue;
3304 			bcopy(cp + 2, &mss, sizeof(mss));
3305 			oi->maxseg = ntohs(mss);
3306 			break;
3307 
3308 		case TCPOPT_WINDOW:
3309 			if (optlen != TCPOLEN_WINDOW)
3310 				continue;
3311 			if (!(th->th_flags & TH_SYN))
3312 				continue;
3313 			if (TCPS_HAVERCVDSYN(tp->t_state))
3314 				continue;
3315 			tp->t_flags |= TF_RCVD_SCALE;
3316 			tp->requested_s_scale = cp[2];
3317 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3318 				char buf[INET6_ADDRSTRLEN];
3319 				struct ip *ip = mtod(m, struct ip *);
3320 #ifdef INET6
3321 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3322 #endif
3323 				if (ip)
3324 					in_print(buf, sizeof(buf),
3325 					    &ip->ip_src);
3326 #ifdef INET6
3327 				else if (ip6)
3328 					in6_print(buf, sizeof(buf),
3329 					    &ip6->ip6_src);
3330 #endif
3331 				else
3332 					strlcpy(buf, "(unknown)", sizeof(buf));
3333 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3334 				    "assuming %d\n",
3335 				    tp->requested_s_scale, buf,
3336 				    TCP_MAX_WINSHIFT);
3337 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3338 			}
3339 			break;
3340 
3341 		case TCPOPT_TIMESTAMP:
3342 			if (optlen != TCPOLEN_TIMESTAMP)
3343 				continue;
3344 			oi->ts_present = 1;
3345 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3346 			NTOHL(oi->ts_val);
3347 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3348 			NTOHL(oi->ts_ecr);
3349 
3350 			if (!(th->th_flags & TH_SYN))
3351 				continue;
3352 			if (TCPS_HAVERCVDSYN(tp->t_state))
3353 				continue;
3354 			/*
3355 			 * A timestamp received in a SYN makes
3356 			 * it ok to send timestamp requests and replies.
3357 			 */
3358 			tp->t_flags |= TF_RCVD_TSTMP;
3359 			tp->ts_recent = oi->ts_val;
3360 			tp->ts_recent_age = tcp_now;
3361                         break;
3362 
3363 		case TCPOPT_SACK_PERMITTED:
3364 			if (optlen != TCPOLEN_SACK_PERMITTED)
3365 				continue;
3366 			if (!(th->th_flags & TH_SYN))
3367 				continue;
3368 			if (TCPS_HAVERCVDSYN(tp->t_state))
3369 				continue;
3370 			if (tcp_do_sack) {
3371 				tp->t_flags |= TF_SACK_PERMIT;
3372 				tp->t_flags |= TF_WILL_SACK;
3373 			}
3374 			break;
3375 
3376 		case TCPOPT_SACK:
3377 			tcp_sack_option(tp, th, cp, optlen);
3378 			break;
3379 #ifdef TCP_SIGNATURE
3380 		case TCPOPT_SIGNATURE:
3381 			if (optlen != TCPOLEN_SIGNATURE)
3382 				continue;
3383 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3384 				return (-1);
3385 
3386 			sigp = sigbuf;
3387 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3388 			tp->t_flags |= TF_SIGNATURE;
3389 			break;
3390 #endif
3391 		}
3392 	}
3393 
3394 #ifndef TCP_SIGNATURE
3395 	return 0;
3396 #else
3397 	if (tp->t_flags & TF_SIGNATURE) {
3398 
3399 		sav = tcp_signature_getsav(m, th);
3400 
3401 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3402 			return (-1);
3403 	}
3404 
3405 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3406 		goto out;
3407 
3408 	if (sigp) {
3409 		char sig[TCP_SIGLEN];
3410 
3411 		tcp_fields_to_net(th);
3412 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3413 			tcp_fields_to_host(th);
3414 			goto out;
3415 		}
3416 		tcp_fields_to_host(th);
3417 
3418 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
3419 			TCP_STATINC(TCP_STAT_BADSIG);
3420 			goto out;
3421 		} else
3422 			TCP_STATINC(TCP_STAT_GOODSIG);
3423 
3424 		key_sa_recordxfer(sav, m);
3425 		KEY_FREESAV(&sav);
3426 	}
3427 	return 0;
3428 out:
3429 	if (sav != NULL)
3430 		KEY_FREESAV(&sav);
3431 	return -1;
3432 #endif
3433 }
3434 
3435 /*
3436  * Pull out of band byte out of a segment so
3437  * it doesn't appear in the user's data queue.
3438  * It is still reflected in the segment length for
3439  * sequencing purposes.
3440  */
3441 void
3442 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3443     struct mbuf *m, int off)
3444 {
3445 	int cnt = off + th->th_urp - 1;
3446 
3447 	while (cnt >= 0) {
3448 		if (m->m_len > cnt) {
3449 			char *cp = mtod(m, char *) + cnt;
3450 			struct tcpcb *tp = sototcpcb(so);
3451 
3452 			tp->t_iobc = *cp;
3453 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3454 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3455 			m->m_len--;
3456 			return;
3457 		}
3458 		cnt -= m->m_len;
3459 		m = m->m_next;
3460 		if (m == 0)
3461 			break;
3462 	}
3463 	panic("tcp_pulloutofband");
3464 }
3465 
3466 /*
3467  * Collect new round-trip time estimate
3468  * and update averages and current timeout.
3469  *
3470  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3471  * difference of two timestamps.
3472  */
3473 void
3474 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3475 {
3476 	int32_t delta;
3477 
3478 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3479 	if (tp->t_srtt != 0) {
3480 		/*
3481 		 * Compute the amount to add to srtt for smoothing,
3482 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3483 		 * srtt is stored in 1/32 slow ticks, we conceptually
3484 		 * shift left 5 bits, subtract srtt to get the
3485 		 * diference, and then shift right by TCP_RTT_SHIFT
3486 		 * (3) to obtain 1/8 of the difference.
3487 		 */
3488 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3489 		/*
3490 		 * This can never happen, because delta's lowest
3491 		 * possible value is 1/8 of t_srtt.  But if it does,
3492 		 * set srtt to some reasonable value, here chosen
3493 		 * as 1/8 tick.
3494 		 */
3495 		if ((tp->t_srtt += delta) <= 0)
3496 			tp->t_srtt = 1 << 2;
3497 		/*
3498 		 * RFC2988 requires that rttvar be updated first.
3499 		 * This code is compliant because "delta" is the old
3500 		 * srtt minus the new observation (scaled).
3501 		 *
3502 		 * RFC2988 says:
3503 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3504 		 *
3505 		 * delta is in units of 1/32 ticks, and has then been
3506 		 * divided by 8.  This is equivalent to being in 1/16s
3507 		 * units and divided by 4.  Subtract from it 1/4 of
3508 		 * the existing rttvar to form the (signed) amount to
3509 		 * adjust.
3510 		 */
3511 		if (delta < 0)
3512 			delta = -delta;
3513 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3514 		/*
3515 		 * As with srtt, this should never happen.  There is
3516 		 * no support in RFC2988 for this operation.  But 1/4s
3517 		 * as rttvar when faced with something arguably wrong
3518 		 * is ok.
3519 		 */
3520 		if ((tp->t_rttvar += delta) <= 0)
3521 			tp->t_rttvar = 1 << 2;
3522 
3523 		/*
3524 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3525 		 * Problem is: it doesn't work.  Disabled by defaulting
3526 		 * tcp_rttlocal to 0; see corresponding code in
3527 		 * tcp_subr that selects local vs remote in a different way.
3528 		 *
3529 		 * The static branch prediction hint here should be removed
3530 		 * when the rtt estimator is fixed and the rtt_enable code
3531 		 * is turned back on.
3532 		 */
3533 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3534 		    && tp->t_srtt > tcp_msl_remote_threshold
3535 		    && tp->t_msl  < tcp_msl_remote) {
3536 			tp->t_msl = tcp_msl_remote;
3537 		}
3538 	} else {
3539 		/*
3540 		 * This is the first measurement.  Per RFC2988, 2.2,
3541 		 * set rtt=R and srtt=R/2.
3542 		 * For srtt, storage representation is 1/32 ticks,
3543 		 * so shift left by 5.
3544 		 * For rttvar, storage representation is 1/16 ticks,
3545 		 * So shift left by 4, but then right by 1 to halve.
3546 		 */
3547 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3548 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3549 	}
3550 	tp->t_rtttime = 0;
3551 	tp->t_rxtshift = 0;
3552 
3553 	/*
3554 	 * the retransmit should happen at rtt + 4 * rttvar.
3555 	 * Because of the way we do the smoothing, srtt and rttvar
3556 	 * will each average +1/2 tick of bias.  When we compute
3557 	 * the retransmit timer, we want 1/2 tick of rounding and
3558 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3559 	 * firing of the timer.  The bias will give us exactly the
3560 	 * 1.5 tick we need.  But, because the bias is
3561 	 * statistical, we have to test that we don't drop below
3562 	 * the minimum feasible timer (which is 2 ticks).
3563 	 */
3564 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3565 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3566 
3567 	/*
3568 	 * We received an ack for a packet that wasn't retransmitted;
3569 	 * it is probably safe to discard any error indications we've
3570 	 * received recently.  This isn't quite right, but close enough
3571 	 * for now (a route might have failed after we sent a segment,
3572 	 * and the return path might not be symmetrical).
3573 	 */
3574 	tp->t_softerror = 0;
3575 }
3576 
3577 
3578 /*
3579  * TCP compressed state engine.  Currently used to hold compressed
3580  * state for SYN_RECEIVED.
3581  */
3582 
3583 u_long	syn_cache_count;
3584 u_int32_t syn_hash1, syn_hash2;
3585 
3586 #define SYN_HASH(sa, sp, dp) \
3587 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3588 				     ((u_int32_t)(sp)))^syn_hash2)))
3589 #ifndef INET6
3590 #define	SYN_HASHALL(hash, src, dst) \
3591 do {									\
3592 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3593 		((const struct sockaddr_in *)(src))->sin_port,		\
3594 		((const struct sockaddr_in *)(dst))->sin_port);		\
3595 } while (/*CONSTCOND*/ 0)
3596 #else
3597 #define SYN_HASH6(sa, sp, dp) \
3598 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3599 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3600 	 & 0x7fffffff)
3601 
3602 #define SYN_HASHALL(hash, src, dst) \
3603 do {									\
3604 	switch ((src)->sa_family) {					\
3605 	case AF_INET:							\
3606 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3607 			((const struct sockaddr_in *)(src))->sin_port,	\
3608 			((const struct sockaddr_in *)(dst))->sin_port);	\
3609 		break;							\
3610 	case AF_INET6:							\
3611 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3612 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3613 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3614 		break;							\
3615 	default:							\
3616 		hash = 0;						\
3617 	}								\
3618 } while (/*CONSTCOND*/0)
3619 #endif /* INET6 */
3620 
3621 static struct pool syn_cache_pool;
3622 
3623 /*
3624  * We don't estimate RTT with SYNs, so each packet starts with the default
3625  * RTT and each timer step has a fixed timeout value.
3626  */
3627 #define	SYN_CACHE_TIMER_ARM(sc)						\
3628 do {									\
3629 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3630 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3631 	    TCPTV_REXMTMAX);						\
3632 	callout_reset(&(sc)->sc_timer,					\
3633 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3634 } while (/*CONSTCOND*/0)
3635 
3636 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3637 
3638 static inline void
3639 syn_cache_rm(struct syn_cache *sc)
3640 {
3641 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3642 	    sc, sc_bucketq);
3643 	sc->sc_tp = NULL;
3644 	LIST_REMOVE(sc, sc_tpq);
3645 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3646 	callout_stop(&sc->sc_timer);
3647 	syn_cache_count--;
3648 }
3649 
3650 static inline void
3651 syn_cache_put(struct syn_cache *sc)
3652 {
3653 	if (sc->sc_ipopts)
3654 		(void) m_free(sc->sc_ipopts);
3655 	rtcache_free(&sc->sc_route);
3656 	sc->sc_flags |= SCF_DEAD;
3657 	if (!callout_invoking(&sc->sc_timer))
3658 		callout_schedule(&(sc)->sc_timer, 1);
3659 }
3660 
3661 void
3662 syn_cache_init(void)
3663 {
3664 	int i;
3665 
3666 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3667 	    "synpl", NULL, IPL_SOFTNET);
3668 
3669 	/* Initialize the hash buckets. */
3670 	for (i = 0; i < tcp_syn_cache_size; i++)
3671 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3672 }
3673 
3674 void
3675 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3676 {
3677 	struct syn_cache_head *scp;
3678 	struct syn_cache *sc2;
3679 	int s;
3680 
3681 	/*
3682 	 * If there are no entries in the hash table, reinitialize
3683 	 * the hash secrets.
3684 	 */
3685 	if (syn_cache_count == 0) {
3686 		syn_hash1 = cprng_fast32();
3687 		syn_hash2 = cprng_fast32();
3688 	}
3689 
3690 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3691 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3692 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3693 
3694 	/*
3695 	 * Make sure that we don't overflow the per-bucket
3696 	 * limit or the total cache size limit.
3697 	 */
3698 	s = splsoftnet();
3699 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3700 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3701 		/*
3702 		 * The bucket is full.  Toss the oldest element in the
3703 		 * bucket.  This will be the first entry in the bucket.
3704 		 */
3705 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3706 #ifdef DIAGNOSTIC
3707 		/*
3708 		 * This should never happen; we should always find an
3709 		 * entry in our bucket.
3710 		 */
3711 		if (sc2 == NULL)
3712 			panic("syn_cache_insert: bucketoverflow: impossible");
3713 #endif
3714 		syn_cache_rm(sc2);
3715 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3716 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3717 		struct syn_cache_head *scp2, *sce;
3718 
3719 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3720 		/*
3721 		 * The cache is full.  Toss the oldest entry in the
3722 		 * first non-empty bucket we can find.
3723 		 *
3724 		 * XXX We would really like to toss the oldest
3725 		 * entry in the cache, but we hope that this
3726 		 * condition doesn't happen very often.
3727 		 */
3728 		scp2 = scp;
3729 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3730 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3731 			for (++scp2; scp2 != scp; scp2++) {
3732 				if (scp2 >= sce)
3733 					scp2 = &tcp_syn_cache[0];
3734 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3735 					break;
3736 			}
3737 #ifdef DIAGNOSTIC
3738 			/*
3739 			 * This should never happen; we should always find a
3740 			 * non-empty bucket.
3741 			 */
3742 			if (scp2 == scp)
3743 				panic("syn_cache_insert: cacheoverflow: "
3744 				    "impossible");
3745 #endif
3746 		}
3747 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3748 		syn_cache_rm(sc2);
3749 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3750 	}
3751 
3752 	/*
3753 	 * Initialize the entry's timer.
3754 	 */
3755 	sc->sc_rxttot = 0;
3756 	sc->sc_rxtshift = 0;
3757 	SYN_CACHE_TIMER_ARM(sc);
3758 
3759 	/* Link it from tcpcb entry */
3760 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3761 
3762 	/* Put it into the bucket. */
3763 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3764 	scp->sch_length++;
3765 	syn_cache_count++;
3766 
3767 	TCP_STATINC(TCP_STAT_SC_ADDED);
3768 	splx(s);
3769 }
3770 
3771 /*
3772  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3773  * If we have retransmitted an entry the maximum number of times, expire
3774  * that entry.
3775  */
3776 void
3777 syn_cache_timer(void *arg)
3778 {
3779 	struct syn_cache *sc = arg;
3780 
3781 	mutex_enter(softnet_lock);
3782 	KERNEL_LOCK(1, NULL);
3783 	callout_ack(&sc->sc_timer);
3784 
3785 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3786 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3787 		callout_destroy(&sc->sc_timer);
3788 		pool_put(&syn_cache_pool, sc);
3789 		KERNEL_UNLOCK_ONE(NULL);
3790 		mutex_exit(softnet_lock);
3791 		return;
3792 	}
3793 
3794 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3795 		/* Drop it -- too many retransmissions. */
3796 		goto dropit;
3797 	}
3798 
3799 	/*
3800 	 * Compute the total amount of time this entry has
3801 	 * been on a queue.  If this entry has been on longer
3802 	 * than the keep alive timer would allow, expire it.
3803 	 */
3804 	sc->sc_rxttot += sc->sc_rxtcur;
3805 	if (sc->sc_rxttot >= tcp_keepinit)
3806 		goto dropit;
3807 
3808 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3809 	(void) syn_cache_respond(sc, NULL);
3810 
3811 	/* Advance the timer back-off. */
3812 	sc->sc_rxtshift++;
3813 	SYN_CACHE_TIMER_ARM(sc);
3814 
3815 	KERNEL_UNLOCK_ONE(NULL);
3816 	mutex_exit(softnet_lock);
3817 	return;
3818 
3819  dropit:
3820 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3821 	syn_cache_rm(sc);
3822 	if (sc->sc_ipopts)
3823 		(void) m_free(sc->sc_ipopts);
3824 	rtcache_free(&sc->sc_route);
3825 	callout_destroy(&sc->sc_timer);
3826 	pool_put(&syn_cache_pool, sc);
3827 	KERNEL_UNLOCK_ONE(NULL);
3828 	mutex_exit(softnet_lock);
3829 }
3830 
3831 /*
3832  * Remove syn cache created by the specified tcb entry,
3833  * because this does not make sense to keep them
3834  * (if there's no tcb entry, syn cache entry will never be used)
3835  */
3836 void
3837 syn_cache_cleanup(struct tcpcb *tp)
3838 {
3839 	struct syn_cache *sc, *nsc;
3840 	int s;
3841 
3842 	s = splsoftnet();
3843 
3844 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3845 		nsc = LIST_NEXT(sc, sc_tpq);
3846 
3847 #ifdef DIAGNOSTIC
3848 		if (sc->sc_tp != tp)
3849 			panic("invalid sc_tp in syn_cache_cleanup");
3850 #endif
3851 		syn_cache_rm(sc);
3852 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3853 	}
3854 	/* just for safety */
3855 	LIST_INIT(&tp->t_sc);
3856 
3857 	splx(s);
3858 }
3859 
3860 /*
3861  * Find an entry in the syn cache.
3862  */
3863 struct syn_cache *
3864 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3865     struct syn_cache_head **headp)
3866 {
3867 	struct syn_cache *sc;
3868 	struct syn_cache_head *scp;
3869 	u_int32_t hash;
3870 	int s;
3871 
3872 	SYN_HASHALL(hash, src, dst);
3873 
3874 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3875 	*headp = scp;
3876 	s = splsoftnet();
3877 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3878 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3879 		if (sc->sc_hash != hash)
3880 			continue;
3881 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3882 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3883 			splx(s);
3884 			return (sc);
3885 		}
3886 	}
3887 	splx(s);
3888 	return (NULL);
3889 }
3890 
3891 /*
3892  * This function gets called when we receive an ACK for a
3893  * socket in the LISTEN state.  We look up the connection
3894  * in the syn cache, and if its there, we pull it out of
3895  * the cache and turn it into a full-blown connection in
3896  * the SYN-RECEIVED state.
3897  *
3898  * The return values may not be immediately obvious, and their effects
3899  * can be subtle, so here they are:
3900  *
3901  *	NULL	SYN was not found in cache; caller should drop the
3902  *		packet and send an RST.
3903  *
3904  *	-1	We were unable to create the new connection, and are
3905  *		aborting it.  An ACK,RST is being sent to the peer
3906  *		(unless we got screwey sequence numbners; see below),
3907  *		because the 3-way handshake has been completed.  Caller
3908  *		should not free the mbuf, since we may be using it.  If
3909  *		we are not, we will free it.
3910  *
3911  *	Otherwise, the return value is a pointer to the new socket
3912  *	associated with the connection.
3913  */
3914 struct socket *
3915 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3916     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3917     struct socket *so, struct mbuf *m)
3918 {
3919 	struct syn_cache *sc;
3920 	struct syn_cache_head *scp;
3921 	struct inpcb *inp = NULL;
3922 #ifdef INET6
3923 	struct in6pcb *in6p = NULL;
3924 #endif
3925 	struct tcpcb *tp = 0;
3926 	int s;
3927 	struct socket *oso;
3928 
3929 	s = splsoftnet();
3930 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3931 		splx(s);
3932 		return (NULL);
3933 	}
3934 
3935 	/*
3936 	 * Verify the sequence and ack numbers.  Try getting the correct
3937 	 * response again.
3938 	 */
3939 	if ((th->th_ack != sc->sc_iss + 1) ||
3940 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3941 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3942 		(void) syn_cache_respond(sc, m);
3943 		splx(s);
3944 		return ((struct socket *)(-1));
3945 	}
3946 
3947 	/* Remove this cache entry */
3948 	syn_cache_rm(sc);
3949 	splx(s);
3950 
3951 	/*
3952 	 * Ok, create the full blown connection, and set things up
3953 	 * as they would have been set up if we had created the
3954 	 * connection when the SYN arrived.  If we can't create
3955 	 * the connection, abort it.
3956 	 */
3957 	/*
3958 	 * inp still has the OLD in_pcb stuff, set the
3959 	 * v6-related flags on the new guy, too.   This is
3960 	 * done particularly for the case where an AF_INET6
3961 	 * socket is bound only to a port, and a v4 connection
3962 	 * comes in on that port.
3963 	 * we also copy the flowinfo from the original pcb
3964 	 * to the new one.
3965 	 */
3966 	oso = so;
3967 	so = sonewconn(so, true);
3968 	if (so == NULL)
3969 		goto resetandabort;
3970 
3971 	switch (so->so_proto->pr_domain->dom_family) {
3972 #ifdef INET
3973 	case AF_INET:
3974 		inp = sotoinpcb(so);
3975 		break;
3976 #endif
3977 #ifdef INET6
3978 	case AF_INET6:
3979 		in6p = sotoin6pcb(so);
3980 		break;
3981 #endif
3982 	}
3983 	switch (src->sa_family) {
3984 #ifdef INET
3985 	case AF_INET:
3986 		if (inp) {
3987 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3988 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3989 			inp->inp_options = ip_srcroute();
3990 			in_pcbstate(inp, INP_BOUND);
3991 			if (inp->inp_options == NULL) {
3992 				inp->inp_options = sc->sc_ipopts;
3993 				sc->sc_ipopts = NULL;
3994 			}
3995 		}
3996 #ifdef INET6
3997 		else if (in6p) {
3998 			/* IPv4 packet to AF_INET6 socket */
3999 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
4000 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
4001 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
4002 				&in6p->in6p_laddr.s6_addr32[3],
4003 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
4004 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4005 			in6totcpcb(in6p)->t_family = AF_INET;
4006 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4007 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4008 			else
4009 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4010 			in6_pcbstate(in6p, IN6P_BOUND);
4011 		}
4012 #endif
4013 		break;
4014 #endif
4015 #ifdef INET6
4016 	case AF_INET6:
4017 		if (in6p) {
4018 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4019 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4020 			in6_pcbstate(in6p, IN6P_BOUND);
4021 		}
4022 		break;
4023 #endif
4024 	}
4025 #ifdef INET6
4026 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4027 		struct in6pcb *oin6p = sotoin6pcb(oso);
4028 		/* inherit socket options from the listening socket */
4029 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4030 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4031 			m_freem(in6p->in6p_options);
4032 			in6p->in6p_options = 0;
4033 		}
4034 		ip6_savecontrol(in6p, &in6p->in6p_options,
4035 			mtod(m, struct ip6_hdr *), m);
4036 	}
4037 #endif
4038 
4039 #if defined(IPSEC)
4040 	if (ipsec_used) {
4041 		/*
4042 		 * we make a copy of policy, instead of sharing the policy, for
4043 		 * better behavior in terms of SA lookup and dead SA removal.
4044 		 */
4045 		if (inp) {
4046 			/* copy old policy into new socket's */
4047 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
4048 			    inp->inp_sp))
4049 				printf("tcp_input: could not copy policy\n");
4050 		}
4051 #ifdef INET6
4052 		else if (in6p) {
4053 			/* copy old policy into new socket's */
4054 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4055 			    in6p->in6p_sp))
4056 				printf("tcp_input: could not copy policy\n");
4057 		}
4058 #endif
4059 	}
4060 #endif
4061 
4062 	/*
4063 	 * Give the new socket our cached route reference.
4064 	 */
4065 	if (inp) {
4066 		rtcache_copy(&inp->inp_route, &sc->sc_route);
4067 		rtcache_free(&sc->sc_route);
4068 	}
4069 #ifdef INET6
4070 	else {
4071 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4072 		rtcache_free(&sc->sc_route);
4073 	}
4074 #endif
4075 
4076 	if (inp) {
4077 		struct sockaddr_in sin;
4078 		memcpy(&sin, src, src->sa_len);
4079 		if (in_pcbconnect(inp, &sin, &lwp0)) {
4080 			goto resetandabort;
4081 		}
4082 	}
4083 #ifdef INET6
4084 	else if (in6p) {
4085 		struct sockaddr_in6 sin6;
4086 		memcpy(&sin6, src, src->sa_len);
4087 		if (src->sa_family == AF_INET) {
4088 			/* IPv4 packet to AF_INET6 socket */
4089 			memset(&sin6, 0, sizeof(sin6));
4090 			sin6.sin6_family = AF_INET6;
4091 			sin6.sin6_len = sizeof(sin6);
4092 			sin6.sin6_port = ((struct sockaddr_in *)src)->sin_port;
4093 			sin6.sin6_addr.s6_addr16[5] = htons(0xffff);
4094 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
4095 				&sin6.sin6_addr.s6_addr32[3],
4096 				sizeof(sin6.sin6_addr.s6_addr32[3]));
4097 		}
4098 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
4099 			goto resetandabort;
4100 		}
4101 	}
4102 #endif
4103 	else {
4104 		goto resetandabort;
4105 	}
4106 
4107 	if (inp)
4108 		tp = intotcpcb(inp);
4109 #ifdef INET6
4110 	else if (in6p)
4111 		tp = in6totcpcb(in6p);
4112 #endif
4113 	else
4114 		tp = NULL;
4115 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4116 	if (sc->sc_request_r_scale != 15) {
4117 		tp->requested_s_scale = sc->sc_requested_s_scale;
4118 		tp->request_r_scale = sc->sc_request_r_scale;
4119 		tp->snd_scale = sc->sc_requested_s_scale;
4120 		tp->rcv_scale = sc->sc_request_r_scale;
4121 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4122 	}
4123 	if (sc->sc_flags & SCF_TIMESTAMP)
4124 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4125 	tp->ts_timebase = sc->sc_timebase;
4126 
4127 	tp->t_template = tcp_template(tp);
4128 	if (tp->t_template == 0) {
4129 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
4130 		so = NULL;
4131 		m_freem(m);
4132 		goto abort;
4133 	}
4134 
4135 	tp->iss = sc->sc_iss;
4136 	tp->irs = sc->sc_irs;
4137 	tcp_sendseqinit(tp);
4138 	tcp_rcvseqinit(tp);
4139 	tp->t_state = TCPS_SYN_RECEIVED;
4140 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4141 	TCP_STATINC(TCP_STAT_ACCEPTS);
4142 
4143 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4144 		tp->t_flags |= TF_WILL_SACK;
4145 
4146 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4147 		tp->t_flags |= TF_ECN_PERMIT;
4148 
4149 #ifdef TCP_SIGNATURE
4150 	if (sc->sc_flags & SCF_SIGNATURE)
4151 		tp->t_flags |= TF_SIGNATURE;
4152 #endif
4153 
4154 	/* Initialize tp->t_ourmss before we deal with the peer's! */
4155 	tp->t_ourmss = sc->sc_ourmaxseg;
4156 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4157 
4158 	/*
4159 	 * Initialize the initial congestion window.  If we
4160 	 * had to retransmit the SYN,ACK, we must initialize cwnd
4161 	 * to 1 segment (i.e. the Loss Window).
4162 	 */
4163 	if (sc->sc_rxtshift)
4164 		tp->snd_cwnd = tp->t_peermss;
4165 	else {
4166 		int ss = tcp_init_win;
4167 #ifdef INET
4168 		if (inp != NULL && in_localaddr(inp->inp_faddr))
4169 			ss = tcp_init_win_local;
4170 #endif
4171 #ifdef INET6
4172 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4173 			ss = tcp_init_win_local;
4174 #endif
4175 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4176 	}
4177 
4178 	tcp_rmx_rtt(tp);
4179 	tp->snd_wl1 = sc->sc_irs;
4180 	tp->rcv_up = sc->sc_irs + 1;
4181 
4182 	/*
4183 	 * This is what whould have happened in tcp_output() when
4184 	 * the SYN,ACK was sent.
4185 	 */
4186 	tp->snd_up = tp->snd_una;
4187 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4188 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4189 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4190 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4191 	tp->last_ack_sent = tp->rcv_nxt;
4192 	tp->t_partialacks = -1;
4193 	tp->t_dupacks = 0;
4194 
4195 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4196 	s = splsoftnet();
4197 	syn_cache_put(sc);
4198 	splx(s);
4199 	return (so);
4200 
4201 resetandabort:
4202 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4203 abort:
4204 	if (so != NULL) {
4205 		(void) soqremque(so, 1);
4206 		(void) soabort(so);
4207 		mutex_enter(softnet_lock);
4208 	}
4209 	s = splsoftnet();
4210 	syn_cache_put(sc);
4211 	splx(s);
4212 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4213 	return ((struct socket *)(-1));
4214 }
4215 
4216 /*
4217  * This function is called when we get a RST for a
4218  * non-existent connection, so that we can see if the
4219  * connection is in the syn cache.  If it is, zap it.
4220  */
4221 
4222 void
4223 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4224 {
4225 	struct syn_cache *sc;
4226 	struct syn_cache_head *scp;
4227 	int s = splsoftnet();
4228 
4229 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4230 		splx(s);
4231 		return;
4232 	}
4233 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4234 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4235 		splx(s);
4236 		return;
4237 	}
4238 	syn_cache_rm(sc);
4239 	TCP_STATINC(TCP_STAT_SC_RESET);
4240 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4241 	splx(s);
4242 }
4243 
4244 void
4245 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4246     struct tcphdr *th)
4247 {
4248 	struct syn_cache *sc;
4249 	struct syn_cache_head *scp;
4250 	int s;
4251 
4252 	s = splsoftnet();
4253 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4254 		splx(s);
4255 		return;
4256 	}
4257 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4258 	if (ntohl (th->th_seq) != sc->sc_iss) {
4259 		splx(s);
4260 		return;
4261 	}
4262 
4263 	/*
4264 	 * If we've retransmitted 3 times and this is our second error,
4265 	 * we remove the entry.  Otherwise, we allow it to continue on.
4266 	 * This prevents us from incorrectly nuking an entry during a
4267 	 * spurious network outage.
4268 	 *
4269 	 * See tcp_notify().
4270 	 */
4271 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4272 		sc->sc_flags |= SCF_UNREACH;
4273 		splx(s);
4274 		return;
4275 	}
4276 
4277 	syn_cache_rm(sc);
4278 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4279 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4280 	splx(s);
4281 }
4282 
4283 /*
4284  * Given a LISTEN socket and an inbound SYN request, add
4285  * this to the syn cache, and send back a segment:
4286  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4287  * to the source.
4288  *
4289  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4290  * Doing so would require that we hold onto the data and deliver it
4291  * to the application.  However, if we are the target of a SYN-flood
4292  * DoS attack, an attacker could send data which would eventually
4293  * consume all available buffer space if it were ACKed.  By not ACKing
4294  * the data, we avoid this DoS scenario.
4295  */
4296 
4297 int
4298 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4299     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4300     int optlen, struct tcp_opt_info *oi)
4301 {
4302 	struct tcpcb tb, *tp;
4303 	long win;
4304 	struct syn_cache *sc;
4305 	struct syn_cache_head *scp;
4306 	struct mbuf *ipopts;
4307 	struct tcp_opt_info opti;
4308 	int s;
4309 
4310 	tp = sototcpcb(so);
4311 
4312 	memset(&opti, 0, sizeof(opti));
4313 
4314 	/*
4315 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4316 	 *
4317 	 * Note this check is performed in tcp_input() very early on.
4318 	 */
4319 
4320 	/*
4321 	 * Initialize some local state.
4322 	 */
4323 	win = sbspace(&so->so_rcv);
4324 	if (win > TCP_MAXWIN)
4325 		win = TCP_MAXWIN;
4326 
4327 	switch (src->sa_family) {
4328 #ifdef INET
4329 	case AF_INET:
4330 		/*
4331 		 * Remember the IP options, if any.
4332 		 */
4333 		ipopts = ip_srcroute();
4334 		break;
4335 #endif
4336 	default:
4337 		ipopts = NULL;
4338 	}
4339 
4340 #ifdef TCP_SIGNATURE
4341 	if (optp || (tp->t_flags & TF_SIGNATURE))
4342 #else
4343 	if (optp)
4344 #endif
4345 	{
4346 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4347 #ifdef TCP_SIGNATURE
4348 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4349 #endif
4350 		tb.t_state = TCPS_LISTEN;
4351 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4352 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4353 			return (0);
4354 	} else
4355 		tb.t_flags = 0;
4356 
4357 	/*
4358 	 * See if we already have an entry for this connection.
4359 	 * If we do, resend the SYN,ACK.  We do not count this
4360 	 * as a retransmission (XXX though maybe we should).
4361 	 */
4362 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4363 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4364 		if (ipopts) {
4365 			/*
4366 			 * If we were remembering a previous source route,
4367 			 * forget it and use the new one we've been given.
4368 			 */
4369 			if (sc->sc_ipopts)
4370 				(void) m_free(sc->sc_ipopts);
4371 			sc->sc_ipopts = ipopts;
4372 		}
4373 		sc->sc_timestamp = tb.ts_recent;
4374 		if (syn_cache_respond(sc, m) == 0) {
4375 			uint64_t *tcps = TCP_STAT_GETREF();
4376 			tcps[TCP_STAT_SNDACKS]++;
4377 			tcps[TCP_STAT_SNDTOTAL]++;
4378 			TCP_STAT_PUTREF();
4379 		}
4380 		return (1);
4381 	}
4382 
4383 	s = splsoftnet();
4384 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4385 	splx(s);
4386 	if (sc == NULL) {
4387 		if (ipopts)
4388 			(void) m_free(ipopts);
4389 		return (0);
4390 	}
4391 
4392 	/*
4393 	 * Fill in the cache, and put the necessary IP and TCP
4394 	 * options into the reply.
4395 	 */
4396 	memset(sc, 0, sizeof(struct syn_cache));
4397 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4398 	bcopy(src, &sc->sc_src, src->sa_len);
4399 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4400 	sc->sc_flags = 0;
4401 	sc->sc_ipopts = ipopts;
4402 	sc->sc_irs = th->th_seq;
4403 	switch (src->sa_family) {
4404 #ifdef INET
4405 	case AF_INET:
4406 	    {
4407 		struct sockaddr_in *srcin = (void *) src;
4408 		struct sockaddr_in *dstin = (void *) dst;
4409 
4410 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4411 		    &srcin->sin_addr, dstin->sin_port,
4412 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4413 		break;
4414 	    }
4415 #endif /* INET */
4416 #ifdef INET6
4417 	case AF_INET6:
4418 	    {
4419 		struct sockaddr_in6 *srcin6 = (void *) src;
4420 		struct sockaddr_in6 *dstin6 = (void *) dst;
4421 
4422 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4423 		    &srcin6->sin6_addr, dstin6->sin6_port,
4424 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4425 		break;
4426 	    }
4427 #endif /* INET6 */
4428 	}
4429 	sc->sc_peermaxseg = oi->maxseg;
4430 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4431 						m->m_pkthdr.rcvif : NULL,
4432 						sc->sc_src.sa.sa_family);
4433 	sc->sc_win = win;
4434 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4435 	sc->sc_timestamp = tb.ts_recent;
4436 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4437 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4438 		sc->sc_flags |= SCF_TIMESTAMP;
4439 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4440 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4441 		sc->sc_requested_s_scale = tb.requested_s_scale;
4442 		sc->sc_request_r_scale = 0;
4443 		/*
4444 		 * Pick the smallest possible scaling factor that
4445 		 * will still allow us to scale up to sb_max.
4446 		 *
4447 		 * We do this because there are broken firewalls that
4448 		 * will corrupt the window scale option, leading to
4449 		 * the other endpoint believing that our advertised
4450 		 * window is unscaled.  At scale factors larger than
4451 		 * 5 the unscaled window will drop below 1500 bytes,
4452 		 * leading to serious problems when traversing these
4453 		 * broken firewalls.
4454 		 *
4455 		 * With the default sbmax of 256K, a scale factor
4456 		 * of 3 will be chosen by this algorithm.  Those who
4457 		 * choose a larger sbmax should watch out
4458 		 * for the compatiblity problems mentioned above.
4459 		 *
4460 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4461 		 * or <SYN,ACK>) segment itself is never scaled.
4462 		 */
4463 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4464 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4465 			sc->sc_request_r_scale++;
4466 	} else {
4467 		sc->sc_requested_s_scale = 15;
4468 		sc->sc_request_r_scale = 15;
4469 	}
4470 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4471 		sc->sc_flags |= SCF_SACK_PERMIT;
4472 
4473 	/*
4474 	 * ECN setup packet recieved.
4475 	 */
4476 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4477 		sc->sc_flags |= SCF_ECN_PERMIT;
4478 
4479 #ifdef TCP_SIGNATURE
4480 	if (tb.t_flags & TF_SIGNATURE)
4481 		sc->sc_flags |= SCF_SIGNATURE;
4482 #endif
4483 	sc->sc_tp = tp;
4484 	if (syn_cache_respond(sc, m) == 0) {
4485 		uint64_t *tcps = TCP_STAT_GETREF();
4486 		tcps[TCP_STAT_SNDACKS]++;
4487 		tcps[TCP_STAT_SNDTOTAL]++;
4488 		TCP_STAT_PUTREF();
4489 		syn_cache_insert(sc, tp);
4490 	} else {
4491 		s = splsoftnet();
4492 		/*
4493 		 * syn_cache_put() will try to schedule the timer, so
4494 		 * we need to initialize it
4495 		 */
4496 		SYN_CACHE_TIMER_ARM(sc);
4497 		syn_cache_put(sc);
4498 		splx(s);
4499 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4500 	}
4501 	return (1);
4502 }
4503 
4504 /*
4505  * syn_cache_respond: (re)send SYN+ACK.
4506  *
4507  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
4508  */
4509 
4510 int
4511 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4512 {
4513 #ifdef INET6
4514 	struct rtentry *rt;
4515 #endif
4516 	struct route *ro;
4517 	u_int8_t *optp;
4518 	int optlen, error;
4519 	u_int16_t tlen;
4520 	struct ip *ip = NULL;
4521 #ifdef INET6
4522 	struct ip6_hdr *ip6 = NULL;
4523 #endif
4524 	struct tcpcb *tp = NULL;
4525 	struct tcphdr *th;
4526 	u_int hlen;
4527 	struct socket *so;
4528 
4529 	ro = &sc->sc_route;
4530 	switch (sc->sc_src.sa.sa_family) {
4531 	case AF_INET:
4532 		hlen = sizeof(struct ip);
4533 		break;
4534 #ifdef INET6
4535 	case AF_INET6:
4536 		hlen = sizeof(struct ip6_hdr);
4537 		break;
4538 #endif
4539 	default:
4540 		if (m)
4541 			m_freem(m);
4542 		return (EAFNOSUPPORT);
4543 	}
4544 
4545 	/* Compute the size of the TCP options. */
4546 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4547 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4548 #ifdef TCP_SIGNATURE
4549 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4550 #endif
4551 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4552 
4553 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4554 
4555 	/*
4556 	 * Create the IP+TCP header from scratch.
4557 	 */
4558 	if (m)
4559 		m_freem(m);
4560 #ifdef DIAGNOSTIC
4561 	if (max_linkhdr + tlen > MCLBYTES)
4562 		return (ENOBUFS);
4563 #endif
4564 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4565 	if (m && (max_linkhdr + tlen) > MHLEN) {
4566 		MCLGET(m, M_DONTWAIT);
4567 		if ((m->m_flags & M_EXT) == 0) {
4568 			m_freem(m);
4569 			m = NULL;
4570 		}
4571 	}
4572 	if (m == NULL)
4573 		return (ENOBUFS);
4574 	MCLAIM(m, &tcp_tx_mowner);
4575 
4576 	/* Fixup the mbuf. */
4577 	m->m_data += max_linkhdr;
4578 	m->m_len = m->m_pkthdr.len = tlen;
4579 	if (sc->sc_tp) {
4580 		tp = sc->sc_tp;
4581 		if (tp->t_inpcb)
4582 			so = tp->t_inpcb->inp_socket;
4583 #ifdef INET6
4584 		else if (tp->t_in6pcb)
4585 			so = tp->t_in6pcb->in6p_socket;
4586 #endif
4587 		else
4588 			so = NULL;
4589 	} else
4590 		so = NULL;
4591 	m->m_pkthdr.rcvif = NULL;
4592 	memset(mtod(m, u_char *), 0, tlen);
4593 
4594 	switch (sc->sc_src.sa.sa_family) {
4595 	case AF_INET:
4596 		ip = mtod(m, struct ip *);
4597 		ip->ip_v = 4;
4598 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4599 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4600 		ip->ip_p = IPPROTO_TCP;
4601 		th = (struct tcphdr *)(ip + 1);
4602 		th->th_dport = sc->sc_src.sin.sin_port;
4603 		th->th_sport = sc->sc_dst.sin.sin_port;
4604 		break;
4605 #ifdef INET6
4606 	case AF_INET6:
4607 		ip6 = mtod(m, struct ip6_hdr *);
4608 		ip6->ip6_vfc = IPV6_VERSION;
4609 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4610 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4611 		ip6->ip6_nxt = IPPROTO_TCP;
4612 		/* ip6_plen will be updated in ip6_output() */
4613 		th = (struct tcphdr *)(ip6 + 1);
4614 		th->th_dport = sc->sc_src.sin6.sin6_port;
4615 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4616 		break;
4617 #endif
4618 	default:
4619 		th = NULL;
4620 	}
4621 
4622 	th->th_seq = htonl(sc->sc_iss);
4623 	th->th_ack = htonl(sc->sc_irs + 1);
4624 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4625 	th->th_flags = TH_SYN|TH_ACK;
4626 	th->th_win = htons(sc->sc_win);
4627 	/* th_sum already 0 */
4628 	/* th_urp already 0 */
4629 
4630 	/* Tack on the TCP options. */
4631 	optp = (u_int8_t *)(th + 1);
4632 	*optp++ = TCPOPT_MAXSEG;
4633 	*optp++ = 4;
4634 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4635 	*optp++ = sc->sc_ourmaxseg & 0xff;
4636 
4637 	if (sc->sc_request_r_scale != 15) {
4638 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4639 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4640 		    sc->sc_request_r_scale);
4641 		optp += 4;
4642 	}
4643 
4644 	if (sc->sc_flags & SCF_TIMESTAMP) {
4645 		u_int32_t *lp = (u_int32_t *)(optp);
4646 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4647 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4648 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4649 		*lp   = htonl(sc->sc_timestamp);
4650 		optp += TCPOLEN_TSTAMP_APPA;
4651 	}
4652 
4653 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4654 		u_int8_t *p = optp;
4655 
4656 		/* Let the peer know that we will SACK. */
4657 		p[0] = TCPOPT_SACK_PERMITTED;
4658 		p[1] = 2;
4659 		p[2] = TCPOPT_NOP;
4660 		p[3] = TCPOPT_NOP;
4661 		optp += 4;
4662 	}
4663 
4664 	/*
4665 	 * Send ECN SYN-ACK setup packet.
4666 	 * Routes can be asymetric, so, even if we receive a packet
4667 	 * with ECE and CWR set, we must not assume no one will block
4668 	 * the ECE packet we are about to send.
4669 	 */
4670 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4671 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4672 		th->th_flags |= TH_ECE;
4673 		TCP_STATINC(TCP_STAT_ECN_SHS);
4674 
4675 		/*
4676 		 * draft-ietf-tcpm-ecnsyn-00.txt
4677 		 *
4678 		 * "[...] a TCP node MAY respond to an ECN-setup
4679 		 * SYN packet by setting ECT in the responding
4680 		 * ECN-setup SYN/ACK packet, indicating to routers
4681 		 * that the SYN/ACK packet is ECN-Capable.
4682 		 * This allows a congested router along the path
4683 		 * to mark the packet instead of dropping the
4684 		 * packet as an indication of congestion."
4685 		 *
4686 		 * "[...] There can be a great benefit in setting
4687 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4688 		 * Congestion is  most likely to occur in
4689 		 * the server-to-client direction.  As a result,
4690 		 * setting an ECN-capable codepoint in SYN/ACK
4691 		 * packets can reduce the occurence of three-second
4692 		 * retransmit timeouts resulting from the drop
4693 		 * of SYN/ACK packets."
4694 		 *
4695 		 * Page 4 and 6, January 2006.
4696 		 */
4697 
4698 		switch (sc->sc_src.sa.sa_family) {
4699 #ifdef INET
4700 		case AF_INET:
4701 			ip->ip_tos |= IPTOS_ECN_ECT0;
4702 			break;
4703 #endif
4704 #ifdef INET6
4705 		case AF_INET6:
4706 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4707 			break;
4708 #endif
4709 		}
4710 		TCP_STATINC(TCP_STAT_ECN_ECT);
4711 	}
4712 
4713 #ifdef TCP_SIGNATURE
4714 	if (sc->sc_flags & SCF_SIGNATURE) {
4715 		struct secasvar *sav;
4716 		u_int8_t *sigp;
4717 
4718 		sav = tcp_signature_getsav(m, th);
4719 
4720 		if (sav == NULL) {
4721 			if (m)
4722 				m_freem(m);
4723 			return (EPERM);
4724 		}
4725 
4726 		*optp++ = TCPOPT_SIGNATURE;
4727 		*optp++ = TCPOLEN_SIGNATURE;
4728 		sigp = optp;
4729 		memset(optp, 0, TCP_SIGLEN);
4730 		optp += TCP_SIGLEN;
4731 		*optp++ = TCPOPT_NOP;
4732 		*optp++ = TCPOPT_EOL;
4733 
4734 		(void)tcp_signature(m, th, hlen, sav, sigp);
4735 
4736 		key_sa_recordxfer(sav, m);
4737 		KEY_FREESAV(&sav);
4738 	}
4739 #endif
4740 
4741 	/* Compute the packet's checksum. */
4742 	switch (sc->sc_src.sa.sa_family) {
4743 	case AF_INET:
4744 		ip->ip_len = htons(tlen - hlen);
4745 		th->th_sum = 0;
4746 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4747 		break;
4748 #ifdef INET6
4749 	case AF_INET6:
4750 		ip6->ip6_plen = htons(tlen - hlen);
4751 		th->th_sum = 0;
4752 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4753 		break;
4754 #endif
4755 	}
4756 
4757 	/*
4758 	 * Fill in some straggling IP bits.  Note the stack expects
4759 	 * ip_len to be in host order, for convenience.
4760 	 */
4761 	switch (sc->sc_src.sa.sa_family) {
4762 #ifdef INET
4763 	case AF_INET:
4764 		ip->ip_len = htons(tlen);
4765 		ip->ip_ttl = ip_defttl;
4766 		/* XXX tos? */
4767 		break;
4768 #endif
4769 #ifdef INET6
4770 	case AF_INET6:
4771 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4772 		ip6->ip6_vfc |= IPV6_VERSION;
4773 		ip6->ip6_plen = htons(tlen - hlen);
4774 		/* ip6_hlim will be initialized afterwards */
4775 		/* XXX flowlabel? */
4776 		break;
4777 #endif
4778 	}
4779 
4780 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4781 	tp = sc->sc_tp;
4782 
4783 	switch (sc->sc_src.sa.sa_family) {
4784 #ifdef INET
4785 	case AF_INET:
4786 		error = ip_output(m, sc->sc_ipopts, ro,
4787 		    (ip_mtudisc ? IP_MTUDISC : 0),
4788 		    NULL, so);
4789 		break;
4790 #endif
4791 #ifdef INET6
4792 	case AF_INET6:
4793 		ip6->ip6_hlim = in6_selecthlim(NULL,
4794 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4795 
4796 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4797 		break;
4798 #endif
4799 	default:
4800 		error = EAFNOSUPPORT;
4801 		break;
4802 	}
4803 	return (error);
4804 }
4805