xref: /netbsd-src/sys/netinet/tcp_input.c (revision 2e2322c9c07009df921d11b1268f8506affbb8ba)
1 /*	$NetBSD: tcp_input.c,v 1.350 2016/12/08 05:16:33 ozaki-r Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.350 2016/12/08 05:16:33 ozaki-r Exp $");
152 
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177 
178 #include <net/if.h>
179 #include <net/if_types.h>
180 
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188 
189 #ifdef INET6
190 #ifndef INET
191 #include <netinet/in.h>
192 #endif
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204 
205 #ifndef INET6
206 /* always need ip6.h for IP6_EXTHDR_GET */
207 #include <netinet/ip6.h>
208 #endif
209 
210 #include <netinet/tcp.h>
211 #include <netinet/tcp_fsm.h>
212 #include <netinet/tcp_seq.h>
213 #include <netinet/tcp_timer.h>
214 #include <netinet/tcp_var.h>
215 #include <netinet/tcp_private.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219 
220 #ifdef INET6
221 #include "faith.h"
222 #if defined(NFAITH) && NFAITH > 0
223 #include <net/if_faith.h>
224 #endif
225 #endif	/* INET6 */
226 
227 #ifdef IPSEC
228 #include <netipsec/ipsec.h>
229 #include <netipsec/ipsec_var.h>
230 #include <netipsec/ipsec_private.h>
231 #include <netipsec/key.h>
232 #ifdef INET6
233 #include <netipsec/ipsec6.h>
234 #endif
235 #endif	/* IPSEC*/
236 
237 #include <netinet/tcp_vtw.h>
238 
239 int	tcprexmtthresh = 3;
240 int	tcp_log_refused;
241 
242 int	tcp_do_autorcvbuf = 1;
243 int	tcp_autorcvbuf_inc = 16 * 1024;
244 int	tcp_autorcvbuf_max = 256 * 1024;
245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246 
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251 
252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
253 
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
257 
258 /*
259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260  */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 	struct rtentry *rt = NULL;
266 
267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 		nd6_nud_hint(rt);
270 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
271 }
272 #else
273 static inline void
274 nd6_hint(struct tcpcb *tp)
275 {
276 }
277 #endif
278 
279 /*
280  * Compute ACK transmission behavior.  Delay the ACK unless
281  * we have already delayed an ACK (must send an ACK every two segments).
282  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
283  * option is enabled.
284  */
285 static void
286 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
287 {
288 
289 	if (tp->t_flags & TF_DELACK ||
290 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
291 		tp->t_flags |= TF_ACKNOW;
292 	else
293 		TCP_SET_DELACK(tp);
294 }
295 
296 static void
297 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
298 {
299 
300 	/*
301 	 * If we had a pending ICMP message that refers to data that have
302 	 * just been acknowledged, disregard the recorded ICMP message.
303 	 */
304 	if ((tp->t_flags & TF_PMTUD_PEND) &&
305 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
306 		tp->t_flags &= ~TF_PMTUD_PEND;
307 
308 	/*
309 	 * Keep track of the largest chunk of data
310 	 * acknowledged since last PMTU update
311 	 */
312 	if (tp->t_pmtud_mss_acked < acked)
313 		tp->t_pmtud_mss_acked = acked;
314 }
315 
316 /*
317  * Convert TCP protocol fields to host order for easier processing.
318  */
319 static void
320 tcp_fields_to_host(struct tcphdr *th)
321 {
322 
323 	NTOHL(th->th_seq);
324 	NTOHL(th->th_ack);
325 	NTOHS(th->th_win);
326 	NTOHS(th->th_urp);
327 }
328 
329 /*
330  * ... and reverse the above.
331  */
332 static void
333 tcp_fields_to_net(struct tcphdr *th)
334 {
335 
336 	HTONL(th->th_seq);
337 	HTONL(th->th_ack);
338 	HTONS(th->th_win);
339 	HTONS(th->th_urp);
340 }
341 
342 #ifdef TCP_CSUM_COUNTERS
343 #include <sys/device.h>
344 
345 #if defined(INET)
346 extern struct evcnt tcp_hwcsum_ok;
347 extern struct evcnt tcp_hwcsum_bad;
348 extern struct evcnt tcp_hwcsum_data;
349 extern struct evcnt tcp_swcsum;
350 #endif /* defined(INET) */
351 #if defined(INET6)
352 extern struct evcnt tcp6_hwcsum_ok;
353 extern struct evcnt tcp6_hwcsum_bad;
354 extern struct evcnt tcp6_hwcsum_data;
355 extern struct evcnt tcp6_swcsum;
356 #endif /* defined(INET6) */
357 
358 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
359 
360 #else
361 
362 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
363 
364 #endif /* TCP_CSUM_COUNTERS */
365 
366 #ifdef TCP_REASS_COUNTERS
367 #include <sys/device.h>
368 
369 extern struct evcnt tcp_reass_;
370 extern struct evcnt tcp_reass_empty;
371 extern struct evcnt tcp_reass_iteration[8];
372 extern struct evcnt tcp_reass_prependfirst;
373 extern struct evcnt tcp_reass_prepend;
374 extern struct evcnt tcp_reass_insert;
375 extern struct evcnt tcp_reass_inserttail;
376 extern struct evcnt tcp_reass_append;
377 extern struct evcnt tcp_reass_appendtail;
378 extern struct evcnt tcp_reass_overlaptail;
379 extern struct evcnt tcp_reass_overlapfront;
380 extern struct evcnt tcp_reass_segdup;
381 extern struct evcnt tcp_reass_fragdup;
382 
383 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
384 
385 #else
386 
387 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
388 
389 #endif /* TCP_REASS_COUNTERS */
390 
391 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
392     int *);
393 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
394     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
395 
396 #ifdef INET
397 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
398 #endif
399 #ifdef INET6
400 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
401 #endif
402 
403 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
404 
405 #if defined(MBUFTRACE)
406 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
407 #endif /* defined(MBUFTRACE) */
408 
409 static struct pool tcpipqent_pool;
410 
411 void
412 tcpipqent_init(void)
413 {
414 
415 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
416 	    NULL, IPL_VM);
417 }
418 
419 struct ipqent *
420 tcpipqent_alloc(void)
421 {
422 	struct ipqent *ipqe;
423 	int s;
424 
425 	s = splvm();
426 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
427 	splx(s);
428 
429 	return ipqe;
430 }
431 
432 void
433 tcpipqent_free(struct ipqent *ipqe)
434 {
435 	int s;
436 
437 	s = splvm();
438 	pool_put(&tcpipqent_pool, ipqe);
439 	splx(s);
440 }
441 
442 static int
443 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
444 {
445 	struct ipqent *p, *q, *nq, *tiqe = NULL;
446 	struct socket *so = NULL;
447 	int pkt_flags;
448 	tcp_seq pkt_seq;
449 	unsigned pkt_len;
450 	u_long rcvpartdupbyte = 0;
451 	u_long rcvoobyte;
452 #ifdef TCP_REASS_COUNTERS
453 	u_int count = 0;
454 #endif
455 	uint64_t *tcps;
456 
457 	if (tp->t_inpcb)
458 		so = tp->t_inpcb->inp_socket;
459 #ifdef INET6
460 	else if (tp->t_in6pcb)
461 		so = tp->t_in6pcb->in6p_socket;
462 #endif
463 
464 	TCP_REASS_LOCK_CHECK(tp);
465 
466 	/*
467 	 * Call with th==0 after become established to
468 	 * force pre-ESTABLISHED data up to user socket.
469 	 */
470 	if (th == 0)
471 		goto present;
472 
473 	m_claimm(m, &tcp_reass_mowner);
474 
475 	rcvoobyte = *tlen;
476 	/*
477 	 * Copy these to local variables because the tcpiphdr
478 	 * gets munged while we are collapsing mbufs.
479 	 */
480 	pkt_seq = th->th_seq;
481 	pkt_len = *tlen;
482 	pkt_flags = th->th_flags;
483 
484 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
485 
486 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
487 		/*
488 		 * When we miss a packet, the vast majority of time we get
489 		 * packets that follow it in order.  So optimize for that.
490 		 */
491 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
492 			p->ipqe_len += pkt_len;
493 			p->ipqe_flags |= pkt_flags;
494 			m_cat(p->ipre_mlast, m);
495 			TRAVERSE(p->ipre_mlast);
496 			m = NULL;
497 			tiqe = p;
498 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
499 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
500 			goto skip_replacement;
501 		}
502 		/*
503 		 * While we're here, if the pkt is completely beyond
504 		 * anything we have, just insert it at the tail.
505 		 */
506 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
507 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
508 			goto insert_it;
509 		}
510 	}
511 
512 	q = TAILQ_FIRST(&tp->segq);
513 
514 	if (q != NULL) {
515 		/*
516 		 * If this segment immediately precedes the first out-of-order
517 		 * block, simply slap the segment in front of it and (mostly)
518 		 * skip the complicated logic.
519 		 */
520 		if (pkt_seq + pkt_len == q->ipqe_seq) {
521 			q->ipqe_seq = pkt_seq;
522 			q->ipqe_len += pkt_len;
523 			q->ipqe_flags |= pkt_flags;
524 			m_cat(m, q->ipqe_m);
525 			q->ipqe_m = m;
526 			q->ipre_mlast = m; /* last mbuf may have changed */
527 			TRAVERSE(q->ipre_mlast);
528 			tiqe = q;
529 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
530 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
531 			goto skip_replacement;
532 		}
533 	} else {
534 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
535 	}
536 
537 	/*
538 	 * Find a segment which begins after this one does.
539 	 */
540 	for (p = NULL; q != NULL; q = nq) {
541 		nq = TAILQ_NEXT(q, ipqe_q);
542 #ifdef TCP_REASS_COUNTERS
543 		count++;
544 #endif
545 		/*
546 		 * If the received segment is just right after this
547 		 * fragment, merge the two together and then check
548 		 * for further overlaps.
549 		 */
550 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
551 #ifdef TCPREASS_DEBUG
552 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
553 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
554 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
555 #endif
556 			pkt_len += q->ipqe_len;
557 			pkt_flags |= q->ipqe_flags;
558 			pkt_seq = q->ipqe_seq;
559 			m_cat(q->ipre_mlast, m);
560 			TRAVERSE(q->ipre_mlast);
561 			m = q->ipqe_m;
562 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
563 			goto free_ipqe;
564 		}
565 		/*
566 		 * If the received segment is completely past this
567 		 * fragment, we need to go the next fragment.
568 		 */
569 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
570 			p = q;
571 			continue;
572 		}
573 		/*
574 		 * If the fragment is past the received segment,
575 		 * it (or any following) can't be concatenated.
576 		 */
577 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
578 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
579 			break;
580 		}
581 
582 		/*
583 		 * We've received all the data in this segment before.
584 		 * mark it as a duplicate and return.
585 		 */
586 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
587 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
588 			tcps = TCP_STAT_GETREF();
589 			tcps[TCP_STAT_RCVDUPPACK]++;
590 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
591 			TCP_STAT_PUTREF();
592 			tcp_new_dsack(tp, pkt_seq, pkt_len);
593 			m_freem(m);
594 			if (tiqe != NULL) {
595 				tcpipqent_free(tiqe);
596 			}
597 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
598 			goto out;
599 		}
600 		/*
601 		 * Received segment completely overlaps this fragment
602 		 * so we drop the fragment (this keeps the temporal
603 		 * ordering of segments correct).
604 		 */
605 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
606 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
607 			rcvpartdupbyte += q->ipqe_len;
608 			m_freem(q->ipqe_m);
609 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
610 			goto free_ipqe;
611 		}
612 		/*
613 		 * RX'ed segment extends past the end of the
614 		 * fragment.  Drop the overlapping bytes.  Then
615 		 * merge the fragment and segment then treat as
616 		 * a longer received packet.
617 		 */
618 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
619 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
620 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
621 #ifdef TCPREASS_DEBUG
622 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
623 			       tp, overlap,
624 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
625 #endif
626 			m_adj(m, overlap);
627 			rcvpartdupbyte += overlap;
628 			m_cat(q->ipre_mlast, m);
629 			TRAVERSE(q->ipre_mlast);
630 			m = q->ipqe_m;
631 			pkt_seq = q->ipqe_seq;
632 			pkt_len += q->ipqe_len - overlap;
633 			rcvoobyte -= overlap;
634 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
635 			goto free_ipqe;
636 		}
637 		/*
638 		 * RX'ed segment extends past the front of the
639 		 * fragment.  Drop the overlapping bytes on the
640 		 * received packet.  The packet will then be
641 		 * contatentated with this fragment a bit later.
642 		 */
643 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
644 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
645 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
646 #ifdef TCPREASS_DEBUG
647 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
648 			       tp, overlap,
649 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
650 #endif
651 			m_adj(m, -overlap);
652 			pkt_len -= overlap;
653 			rcvpartdupbyte += overlap;
654 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
655 			rcvoobyte -= overlap;
656 		}
657 		/*
658 		 * If the received segment immediates precedes this
659 		 * fragment then tack the fragment onto this segment
660 		 * and reinsert the data.
661 		 */
662 		if (q->ipqe_seq == pkt_seq + pkt_len) {
663 #ifdef TCPREASS_DEBUG
664 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
665 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
666 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
667 #endif
668 			pkt_len += q->ipqe_len;
669 			pkt_flags |= q->ipqe_flags;
670 			m_cat(m, q->ipqe_m);
671 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
672 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
673 			tp->t_segqlen--;
674 			KASSERT(tp->t_segqlen >= 0);
675 			KASSERT(tp->t_segqlen != 0 ||
676 			    (TAILQ_EMPTY(&tp->segq) &&
677 			    TAILQ_EMPTY(&tp->timeq)));
678 			if (tiqe == NULL) {
679 				tiqe = q;
680 			} else {
681 				tcpipqent_free(q);
682 			}
683 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
684 			break;
685 		}
686 		/*
687 		 * If the fragment is before the segment, remember it.
688 		 * When this loop is terminated, p will contain the
689 		 * pointer to fragment that is right before the received
690 		 * segment.
691 		 */
692 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
693 			p = q;
694 
695 		continue;
696 
697 		/*
698 		 * This is a common operation.  It also will allow
699 		 * to save doing a malloc/free in most instances.
700 		 */
701 	  free_ipqe:
702 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
703 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
704 		tp->t_segqlen--;
705 		KASSERT(tp->t_segqlen >= 0);
706 		KASSERT(tp->t_segqlen != 0 ||
707 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
708 		if (tiqe == NULL) {
709 			tiqe = q;
710 		} else {
711 			tcpipqent_free(q);
712 		}
713 	}
714 
715 #ifdef TCP_REASS_COUNTERS
716 	if (count > 7)
717 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
718 	else if (count > 0)
719 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
720 #endif
721 
722     insert_it:
723 
724 	/*
725 	 * Allocate a new queue entry since the received segment did not
726 	 * collapse onto any other out-of-order block; thus we are allocating
727 	 * a new block.  If it had collapsed, tiqe would not be NULL and
728 	 * we would be reusing it.
729 	 * XXX If we can't, just drop the packet.  XXX
730 	 */
731 	if (tiqe == NULL) {
732 		tiqe = tcpipqent_alloc();
733 		if (tiqe == NULL) {
734 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
735 			m_freem(m);
736 			goto out;
737 		}
738 	}
739 
740 	/*
741 	 * Update the counters.
742 	 */
743 	tp->t_rcvoopack++;
744 	tcps = TCP_STAT_GETREF();
745 	tcps[TCP_STAT_RCVOOPACK]++;
746 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
747 	if (rcvpartdupbyte) {
748 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
749 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
750 	}
751 	TCP_STAT_PUTREF();
752 
753 	/*
754 	 * Insert the new fragment queue entry into both queues.
755 	 */
756 	tiqe->ipqe_m = m;
757 	tiqe->ipre_mlast = m;
758 	tiqe->ipqe_seq = pkt_seq;
759 	tiqe->ipqe_len = pkt_len;
760 	tiqe->ipqe_flags = pkt_flags;
761 	if (p == NULL) {
762 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
763 #ifdef TCPREASS_DEBUG
764 		if (tiqe->ipqe_seq != tp->rcv_nxt)
765 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
766 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
767 #endif
768 	} else {
769 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
770 #ifdef TCPREASS_DEBUG
771 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
772 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
773 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
774 #endif
775 	}
776 	tp->t_segqlen++;
777 
778 skip_replacement:
779 
780 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
781 
782 present:
783 	/*
784 	 * Present data to user, advancing rcv_nxt through
785 	 * completed sequence space.
786 	 */
787 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
788 		goto out;
789 	q = TAILQ_FIRST(&tp->segq);
790 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
791 		goto out;
792 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
793 		goto out;
794 
795 	tp->rcv_nxt += q->ipqe_len;
796 	pkt_flags = q->ipqe_flags & TH_FIN;
797 	nd6_hint(tp);
798 
799 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
800 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
801 	tp->t_segqlen--;
802 	KASSERT(tp->t_segqlen >= 0);
803 	KASSERT(tp->t_segqlen != 0 ||
804 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
805 	if (so->so_state & SS_CANTRCVMORE)
806 		m_freem(q->ipqe_m);
807 	else
808 		sbappendstream(&so->so_rcv, q->ipqe_m);
809 	tcpipqent_free(q);
810 	TCP_REASS_UNLOCK(tp);
811 	sorwakeup(so);
812 	return (pkt_flags);
813 out:
814 	TCP_REASS_UNLOCK(tp);
815 	return (0);
816 }
817 
818 #ifdef INET6
819 int
820 tcp6_input(struct mbuf **mp, int *offp, int proto)
821 {
822 	struct mbuf *m = *mp;
823 
824 	/*
825 	 * draft-itojun-ipv6-tcp-to-anycast
826 	 * better place to put this in?
827 	 */
828 	if (m->m_flags & M_ANYCAST6) {
829 		struct ip6_hdr *ip6;
830 		if (m->m_len < sizeof(struct ip6_hdr)) {
831 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
832 				TCP_STATINC(TCP_STAT_RCVSHORT);
833 				return IPPROTO_DONE;
834 			}
835 		}
836 		ip6 = mtod(m, struct ip6_hdr *);
837 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
838 		    (char *)&ip6->ip6_dst - (char *)ip6);
839 		return IPPROTO_DONE;
840 	}
841 
842 	tcp_input(m, *offp, proto);
843 	return IPPROTO_DONE;
844 }
845 #endif
846 
847 #ifdef INET
848 static void
849 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
850 {
851 	char src[INET_ADDRSTRLEN];
852 	char dst[INET_ADDRSTRLEN];
853 
854 	if (ip) {
855 		in_print(src, sizeof(src), &ip->ip_src);
856 		in_print(dst, sizeof(dst), &ip->ip_dst);
857 	}
858 	else {
859 		strlcpy(src, "(unknown)", sizeof(src));
860 		strlcpy(dst, "(unknown)", sizeof(dst));
861 	}
862 	log(LOG_INFO,
863 	    "Connection attempt to TCP %s:%d from %s:%d\n",
864 	    dst, ntohs(th->th_dport),
865 	    src, ntohs(th->th_sport));
866 }
867 #endif
868 
869 #ifdef INET6
870 static void
871 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
872 {
873 	char src[INET6_ADDRSTRLEN];
874 	char dst[INET6_ADDRSTRLEN];
875 
876 	if (ip6) {
877 		in6_print(src, sizeof(src), &ip6->ip6_src);
878 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
879 	}
880 	else {
881 		strlcpy(src, "(unknown v6)", sizeof(src));
882 		strlcpy(dst, "(unknown v6)", sizeof(dst));
883 	}
884 	log(LOG_INFO,
885 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
886 	    dst, ntohs(th->th_dport),
887 	    src, ntohs(th->th_sport));
888 }
889 #endif
890 
891 /*
892  * Checksum extended TCP header and data.
893  */
894 int
895 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
896     int toff, int off, int tlen)
897 {
898 	struct ifnet *rcvif;
899 	int s;
900 
901 	/*
902 	 * XXX it's better to record and check if this mbuf is
903 	 * already checked.
904 	 */
905 
906 	rcvif = m_get_rcvif(m, &s);
907 
908 	switch (af) {
909 #ifdef INET
910 	case AF_INET:
911 		switch (m->m_pkthdr.csum_flags &
912 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
913 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
914 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
915 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
916 			goto badcsum;
917 
918 		case M_CSUM_TCPv4|M_CSUM_DATA: {
919 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
920 
921 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
922 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
923 				const struct ip *ip =
924 				    mtod(m, const struct ip *);
925 
926 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
927 				    ip->ip_dst.s_addr,
928 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
929 			}
930 			if ((hw_csum ^ 0xffff) != 0)
931 				goto badcsum;
932 			break;
933 		}
934 
935 		case M_CSUM_TCPv4:
936 			/* Checksum was okay. */
937 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
938 			break;
939 
940 		default:
941 			/*
942 			 * Must compute it ourselves.  Maybe skip checksum
943 			 * on loopback interfaces.
944 			 */
945 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
946 					   tcp_do_loopback_cksum)) {
947 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
948 				if (in4_cksum(m, IPPROTO_TCP, toff,
949 					      tlen + off) != 0)
950 					goto badcsum;
951 			}
952 			break;
953 		}
954 		break;
955 #endif /* INET4 */
956 
957 #ifdef INET6
958 	case AF_INET6:
959 		switch (m->m_pkthdr.csum_flags &
960 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
961 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
962 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
963 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
964 			goto badcsum;
965 
966 #if 0 /* notyet */
967 		case M_CSUM_TCPv6|M_CSUM_DATA:
968 #endif
969 
970 		case M_CSUM_TCPv6:
971 			/* Checksum was okay. */
972 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
973 			break;
974 
975 		default:
976 			/*
977 			 * Must compute it ourselves.  Maybe skip checksum
978 			 * on loopback interfaces.
979 			 */
980 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
981 			    tcp_do_loopback_cksum)) {
982 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
983 				if (in6_cksum(m, IPPROTO_TCP, toff,
984 				    tlen + off) != 0)
985 					goto badcsum;
986 			}
987 		}
988 		break;
989 #endif /* INET6 */
990 	}
991 	m_put_rcvif(rcvif, &s);
992 
993 	return 0;
994 
995 badcsum:
996 	m_put_rcvif(rcvif, &s);
997 	TCP_STATINC(TCP_STAT_RCVBADSUM);
998 	return -1;
999 }
1000 
1001 /* When a packet arrives addressed to a vestigial tcpbp, we
1002  * nevertheless have to respond to it per the spec.
1003  */
1004 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1005 			  struct mbuf *m, int tlen, int multicast)
1006 {
1007 	int		tiflags;
1008 	int		todrop;
1009 	uint32_t	t_flags = 0;
1010 	uint64_t	*tcps;
1011 
1012 	tiflags = th->th_flags;
1013 	todrop  = vp->rcv_nxt - th->th_seq;
1014 
1015 	if (todrop > 0) {
1016 		if (tiflags & TH_SYN) {
1017 			tiflags &= ~TH_SYN;
1018 			++th->th_seq;
1019 			if (th->th_urp > 1)
1020 				--th->th_urp;
1021 			else {
1022 				tiflags &= ~TH_URG;
1023 				th->th_urp = 0;
1024 			}
1025 			--todrop;
1026 		}
1027 		if (todrop > tlen ||
1028 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1029 			/*
1030 			 * Any valid FIN or RST must be to the left of the
1031 			 * window.  At this point the FIN or RST must be a
1032 			 * duplicate or out of sequence; drop it.
1033 			 */
1034 			if (tiflags & TH_RST)
1035 				goto drop;
1036 			tiflags &= ~(TH_FIN|TH_RST);
1037 			/*
1038 			 * Send an ACK to resynchronize and drop any data.
1039 			 * But keep on processing for RST or ACK.
1040 			 */
1041 			t_flags |= TF_ACKNOW;
1042 			todrop = tlen;
1043 			tcps = TCP_STAT_GETREF();
1044 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1045 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1046 			TCP_STAT_PUTREF();
1047 		} else if ((tiflags & TH_RST)
1048 			   && th->th_seq != vp->rcv_nxt) {
1049 			/*
1050 			 * Test for reset before adjusting the sequence
1051 			 * number for overlapping data.
1052 			 */
1053 			goto dropafterack_ratelim;
1054 		} else {
1055 			tcps = TCP_STAT_GETREF();
1056 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1057 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1058 			TCP_STAT_PUTREF();
1059 		}
1060 
1061 //		tcp_new_dsack(tp, th->th_seq, todrop);
1062 //		hdroptlen += todrop;	/*drop from head afterwards*/
1063 
1064 		th->th_seq += todrop;
1065 		tlen -= todrop;
1066 
1067 		if (th->th_urp > todrop)
1068 			th->th_urp -= todrop;
1069 		else {
1070 			tiflags &= ~TH_URG;
1071 			th->th_urp = 0;
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * If new data are received on a connection after the
1077 	 * user processes are gone, then RST the other end.
1078 	 */
1079 	if (tlen) {
1080 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1081 		goto dropwithreset;
1082 	}
1083 
1084 	/*
1085 	 * If segment ends after window, drop trailing data
1086 	 * (and PUSH and FIN); if nothing left, just ACK.
1087 	 */
1088 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1089 
1090 	if (todrop > 0) {
1091 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1092 		if (todrop >= tlen) {
1093 			/*
1094 			 * The segment actually starts after the window.
1095 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1096 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1097 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1098 			 */
1099 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1100 			/*
1101 			 * If a new connection request is received
1102 			 * while in TIME_WAIT, drop the old connection
1103 			 * and start over if the sequence numbers
1104 			 * are above the previous ones.
1105 			 */
1106 			if ((tiflags & TH_SYN)
1107 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1108 				/* We only support this in the !NOFDREF case, which
1109 				 * is to say: not here.
1110 				 */
1111 				goto dropwithreset;
1112 			}
1113 			/*
1114 			 * If window is closed can only take segments at
1115 			 * window edge, and have to drop data and PUSH from
1116 			 * incoming segments.  Continue processing, but
1117 			 * remember to ack.  Otherwise, drop segment
1118 			 * and (if not RST) ack.
1119 			 */
1120 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1121 				t_flags |= TF_ACKNOW;
1122 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1123 			} else
1124 				goto dropafterack;
1125 		} else
1126 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1127 		m_adj(m, -todrop);
1128 		tlen -= todrop;
1129 		tiflags &= ~(TH_PUSH|TH_FIN);
1130 	}
1131 
1132 	if (tiflags & TH_RST) {
1133 		if (th->th_seq != vp->rcv_nxt)
1134 			goto dropafterack_ratelim;
1135 
1136 		vtw_del(vp->ctl, vp->vtw);
1137 		goto drop;
1138 	}
1139 
1140 	/*
1141 	 * If the ACK bit is off we drop the segment and return.
1142 	 */
1143 	if ((tiflags & TH_ACK) == 0) {
1144 		if (t_flags & TF_ACKNOW)
1145 			goto dropafterack;
1146 		else
1147 			goto drop;
1148 	}
1149 
1150 	/*
1151 	 * In TIME_WAIT state the only thing that should arrive
1152 	 * is a retransmission of the remote FIN.  Acknowledge
1153 	 * it and restart the finack timer.
1154 	 */
1155 	vtw_restart(vp);
1156 	goto dropafterack;
1157 
1158 dropafterack:
1159 	/*
1160 	 * Generate an ACK dropping incoming segment if it occupies
1161 	 * sequence space, where the ACK reflects our state.
1162 	 */
1163 	if (tiflags & TH_RST)
1164 		goto drop;
1165 	goto dropafterack2;
1166 
1167 dropafterack_ratelim:
1168 	/*
1169 	 * We may want to rate-limit ACKs against SYN/RST attack.
1170 	 */
1171 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1172 			 tcp_ackdrop_ppslim) == 0) {
1173 		/* XXX stat */
1174 		goto drop;
1175 	}
1176 	/* ...fall into dropafterack2... */
1177 
1178 dropafterack2:
1179 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1180 			  TH_ACK);
1181 	return;
1182 
1183 dropwithreset:
1184 	/*
1185 	 * Generate a RST, dropping incoming segment.
1186 	 * Make ACK acceptable to originator of segment.
1187 	 */
1188 	if (tiflags & TH_RST)
1189 		goto drop;
1190 
1191 	if (tiflags & TH_ACK)
1192 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1193 	else {
1194 		if (tiflags & TH_SYN)
1195 			++tlen;
1196 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1197 				  TH_RST|TH_ACK);
1198 	}
1199 	return;
1200 drop:
1201 	m_freem(m);
1202 }
1203 
1204 /*
1205  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1206  */
1207 void
1208 tcp_input(struct mbuf *m, ...)
1209 {
1210 	struct tcphdr *th;
1211 	struct ip *ip;
1212 	struct inpcb *inp;
1213 #ifdef INET6
1214 	struct ip6_hdr *ip6;
1215 	struct in6pcb *in6p;
1216 #endif
1217 	u_int8_t *optp = NULL;
1218 	int optlen = 0;
1219 	int len, tlen, toff, hdroptlen = 0;
1220 	struct tcpcb *tp = 0;
1221 	int tiflags;
1222 	struct socket *so = NULL;
1223 	int todrop, acked, ourfinisacked, needoutput = 0;
1224 	bool dupseg;
1225 #ifdef TCP_DEBUG
1226 	short ostate = 0;
1227 #endif
1228 	u_long tiwin;
1229 	struct tcp_opt_info opti;
1230 	int off, iphlen;
1231 	va_list ap;
1232 	int af;		/* af on the wire */
1233 	struct mbuf *tcp_saveti = NULL;
1234 	uint32_t ts_rtt;
1235 	uint8_t iptos;
1236 	uint64_t *tcps;
1237 	vestigial_inpcb_t vestige;
1238 
1239 	vestige.valid = 0;
1240 
1241 	MCLAIM(m, &tcp_rx_mowner);
1242 	va_start(ap, m);
1243 	toff = va_arg(ap, int);
1244 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1245 	va_end(ap);
1246 
1247 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1248 
1249 	memset(&opti, 0, sizeof(opti));
1250 	opti.ts_present = 0;
1251 	opti.maxseg = 0;
1252 
1253 	/*
1254 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1255 	 *
1256 	 * TCP is, by definition, unicast, so we reject all
1257 	 * multicast outright.
1258 	 *
1259 	 * Note, there are additional src/dst address checks in
1260 	 * the AF-specific code below.
1261 	 */
1262 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1263 		/* XXX stat */
1264 		goto drop;
1265 	}
1266 #ifdef INET6
1267 	if (m->m_flags & M_ANYCAST6) {
1268 		/* XXX stat */
1269 		goto drop;
1270 	}
1271 #endif
1272 
1273 	/*
1274 	 * Get IP and TCP header.
1275 	 * Note: IP leaves IP header in first mbuf.
1276 	 */
1277 	ip = mtod(m, struct ip *);
1278 	switch (ip->ip_v) {
1279 #ifdef INET
1280 	case 4:
1281 #ifdef INET6
1282 		ip6 = NULL;
1283 #endif
1284 		af = AF_INET;
1285 		iphlen = sizeof(struct ip);
1286 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1287 			sizeof(struct tcphdr));
1288 		if (th == NULL) {
1289 			TCP_STATINC(TCP_STAT_RCVSHORT);
1290 			return;
1291 		}
1292 		/* We do the checksum after PCB lookup... */
1293 		len = ntohs(ip->ip_len);
1294 		tlen = len - toff;
1295 		iptos = ip->ip_tos;
1296 		break;
1297 #endif
1298 #ifdef INET6
1299 	case 6:
1300 		ip = NULL;
1301 		iphlen = sizeof(struct ip6_hdr);
1302 		af = AF_INET6;
1303 		ip6 = mtod(m, struct ip6_hdr *);
1304 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1305 			sizeof(struct tcphdr));
1306 		if (th == NULL) {
1307 			TCP_STATINC(TCP_STAT_RCVSHORT);
1308 			return;
1309 		}
1310 
1311 		/* Be proactive about malicious use of IPv4 mapped address */
1312 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1313 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1314 			/* XXX stat */
1315 			goto drop;
1316 		}
1317 
1318 		/*
1319 		 * Be proactive about unspecified IPv6 address in source.
1320 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1321 		 * unspecified IPv6 address can be used to confuse us.
1322 		 *
1323 		 * Note that packets with unspecified IPv6 destination is
1324 		 * already dropped in ip6_input.
1325 		 */
1326 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1327 			/* XXX stat */
1328 			goto drop;
1329 		}
1330 
1331 		/*
1332 		 * Make sure destination address is not multicast.
1333 		 * Source address checked in ip6_input().
1334 		 */
1335 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1336 			/* XXX stat */
1337 			goto drop;
1338 		}
1339 
1340 		/* We do the checksum after PCB lookup... */
1341 		len = m->m_pkthdr.len;
1342 		tlen = len - toff;
1343 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1344 		break;
1345 #endif
1346 	default:
1347 		m_freem(m);
1348 		return;
1349 	}
1350 	/*
1351          * Enforce alignment requirements that are violated in
1352 	 * some cases, see kern/50766 for details.
1353 	 */
1354 	if (TCP_HDR_ALIGNED_P(th) == 0) {
1355 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1356 		if (m == NULL) {
1357 			TCP_STATINC(TCP_STAT_RCVSHORT);
1358 			return;
1359 		}
1360 		ip = mtod(m, struct ip *);
1361 #ifdef INET6
1362 		ip6 = mtod(m, struct ip6_hdr *);
1363 #endif
1364 		th = (struct tcphdr *)(mtod(m, char *) + toff);
1365 	}
1366 	KASSERT(TCP_HDR_ALIGNED_P(th));
1367 
1368 	/*
1369 	 * Check that TCP offset makes sense,
1370 	 * pull out TCP options and adjust length.		XXX
1371 	 */
1372 	off = th->th_off << 2;
1373 	if (off < sizeof (struct tcphdr) || off > tlen) {
1374 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1375 		goto drop;
1376 	}
1377 	tlen -= off;
1378 
1379 	/*
1380 	 * tcp_input() has been modified to use tlen to mean the TCP data
1381 	 * length throughout the function.  Other functions can use
1382 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1383 	 * rja
1384 	 */
1385 
1386 	if (off > sizeof (struct tcphdr)) {
1387 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1388 		if (th == NULL) {
1389 			TCP_STATINC(TCP_STAT_RCVSHORT);
1390 			return;
1391 		}
1392 		/*
1393 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1394 		 * (as they're before toff) and we don't need to update those.
1395 		 */
1396 		KASSERT(TCP_HDR_ALIGNED_P(th));
1397 		optlen = off - sizeof (struct tcphdr);
1398 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1399 		/*
1400 		 * Do quick retrieval of timestamp options ("options
1401 		 * prediction?").  If timestamp is the only option and it's
1402 		 * formatted as recommended in RFC 1323 appendix A, we
1403 		 * quickly get the values now and not bother calling
1404 		 * tcp_dooptions(), etc.
1405 		 */
1406 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1407 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1408 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1409 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1410 		     (th->th_flags & TH_SYN) == 0) {
1411 			opti.ts_present = 1;
1412 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1413 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1414 			optp = NULL;	/* we've parsed the options */
1415 		}
1416 	}
1417 	tiflags = th->th_flags;
1418 
1419 	/*
1420 	 * Checksum extended TCP header and data
1421 	 */
1422 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1423 		goto badcsum;
1424 
1425 	/*
1426 	 * Locate pcb for segment.
1427 	 */
1428 findpcb:
1429 	inp = NULL;
1430 #ifdef INET6
1431 	in6p = NULL;
1432 #endif
1433 	switch (af) {
1434 #ifdef INET
1435 	case AF_INET:
1436 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1437 					   ip->ip_dst, th->th_dport,
1438 					   &vestige);
1439 		if (inp == 0 && !vestige.valid) {
1440 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1441 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1442 		}
1443 #ifdef INET6
1444 		if (inp == 0 && !vestige.valid) {
1445 			struct in6_addr s, d;
1446 
1447 			/* mapped addr case */
1448 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1449 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1450 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1451 						     th->th_sport, &d, th->th_dport,
1452 						     0, &vestige);
1453 			if (in6p == 0 && !vestige.valid) {
1454 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1455 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1456 				    th->th_dport, 0);
1457 			}
1458 		}
1459 #endif
1460 #ifndef INET6
1461 		if (inp == 0 && !vestige.valid)
1462 #else
1463 		if (inp == 0 && in6p == 0 && !vestige.valid)
1464 #endif
1465 		{
1466 			TCP_STATINC(TCP_STAT_NOPORT);
1467 			if (tcp_log_refused &&
1468 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1469 				tcp4_log_refused(ip, th);
1470 			}
1471 			tcp_fields_to_host(th);
1472 			goto dropwithreset_ratelim;
1473 		}
1474 #if defined(IPSEC)
1475 		if (ipsec_used) {
1476 			if (inp &&
1477 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
1478 			    && ipsec4_in_reject(m, inp)) {
1479 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1480 				goto drop;
1481 			}
1482 #ifdef INET6
1483 			else if (in6p &&
1484 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1485 			    && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1486 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1487 				goto drop;
1488 			}
1489 #endif
1490 		}
1491 #endif /*IPSEC*/
1492 		break;
1493 #endif /*INET*/
1494 #ifdef INET6
1495 	case AF_INET6:
1496 	    {
1497 		int faith;
1498 
1499 #if defined(NFAITH) && NFAITH > 0
1500 		faith = faithprefix(&ip6->ip6_dst);
1501 #else
1502 		faith = 0;
1503 #endif
1504 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1505 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1506 		if (!in6p && !vestige.valid) {
1507 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1508 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1509 				th->th_dport, faith);
1510 		}
1511 		if (!in6p && !vestige.valid) {
1512 			TCP_STATINC(TCP_STAT_NOPORT);
1513 			if (tcp_log_refused &&
1514 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1515 				tcp6_log_refused(ip6, th);
1516 			}
1517 			tcp_fields_to_host(th);
1518 			goto dropwithreset_ratelim;
1519 		}
1520 #if defined(IPSEC)
1521 		if (ipsec_used && in6p
1522 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1523 		    && ipsec6_in_reject(m, in6p)) {
1524 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1525 			goto drop;
1526 		}
1527 #endif /*IPSEC*/
1528 		break;
1529 	    }
1530 #endif
1531 	}
1532 
1533 	/*
1534 	 * If the state is CLOSED (i.e., TCB does not exist) then
1535 	 * all data in the incoming segment is discarded.
1536 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1537 	 * but should either do a listen or a connect soon.
1538 	 */
1539 	tp = NULL;
1540 	so = NULL;
1541 	if (inp) {
1542 		/* Check the minimum TTL for socket. */
1543 		if (ip->ip_ttl < inp->inp_ip_minttl)
1544 			goto drop;
1545 
1546 		tp = intotcpcb(inp);
1547 		so = inp->inp_socket;
1548 	}
1549 #ifdef INET6
1550 	else if (in6p) {
1551 		tp = in6totcpcb(in6p);
1552 		so = in6p->in6p_socket;
1553 	}
1554 #endif
1555 	else if (vestige.valid) {
1556 		int mc = 0;
1557 
1558 		/* We do not support the resurrection of vtw tcpcps.
1559 		 */
1560 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
1561 			goto badcsum;
1562 
1563 		switch (af) {
1564 #ifdef INET6
1565 		case AF_INET6:
1566 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1567 			break;
1568 #endif
1569 
1570 		case AF_INET:
1571 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1572 			      || in_broadcast(ip->ip_dst,
1573 			                      m_get_rcvif_NOMPSAFE(m)));
1574 			break;
1575 		}
1576 
1577 		tcp_fields_to_host(th);
1578 		tcp_vtw_input(th, &vestige, m, tlen, mc);
1579 		m = 0;
1580 		goto drop;
1581 	}
1582 
1583 	if (tp == 0) {
1584 		tcp_fields_to_host(th);
1585 		goto dropwithreset_ratelim;
1586 	}
1587 	if (tp->t_state == TCPS_CLOSED)
1588 		goto drop;
1589 
1590 	KASSERT(so->so_lock == softnet_lock);
1591 	KASSERT(solocked(so));
1592 
1593 	tcp_fields_to_host(th);
1594 
1595 	/* Unscale the window into a 32-bit value. */
1596 	if ((tiflags & TH_SYN) == 0)
1597 		tiwin = th->th_win << tp->snd_scale;
1598 	else
1599 		tiwin = th->th_win;
1600 
1601 #ifdef INET6
1602 	/* save packet options if user wanted */
1603 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1604 		if (in6p->in6p_options) {
1605 			m_freem(in6p->in6p_options);
1606 			in6p->in6p_options = 0;
1607 		}
1608 		KASSERT(ip6 != NULL);
1609 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1610 	}
1611 #endif
1612 
1613 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1614 		union syn_cache_sa src;
1615 		union syn_cache_sa dst;
1616 
1617 		memset(&src, 0, sizeof(src));
1618 		memset(&dst, 0, sizeof(dst));
1619 		switch (af) {
1620 #ifdef INET
1621 		case AF_INET:
1622 			src.sin.sin_len = sizeof(struct sockaddr_in);
1623 			src.sin.sin_family = AF_INET;
1624 			src.sin.sin_addr = ip->ip_src;
1625 			src.sin.sin_port = th->th_sport;
1626 
1627 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1628 			dst.sin.sin_family = AF_INET;
1629 			dst.sin.sin_addr = ip->ip_dst;
1630 			dst.sin.sin_port = th->th_dport;
1631 			break;
1632 #endif
1633 #ifdef INET6
1634 		case AF_INET6:
1635 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1636 			src.sin6.sin6_family = AF_INET6;
1637 			src.sin6.sin6_addr = ip6->ip6_src;
1638 			src.sin6.sin6_port = th->th_sport;
1639 
1640 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1641 			dst.sin6.sin6_family = AF_INET6;
1642 			dst.sin6.sin6_addr = ip6->ip6_dst;
1643 			dst.sin6.sin6_port = th->th_dport;
1644 			break;
1645 #endif /* INET6 */
1646 		default:
1647 			goto badsyn;	/*sanity*/
1648 		}
1649 
1650 		if (so->so_options & SO_DEBUG) {
1651 #ifdef TCP_DEBUG
1652 			ostate = tp->t_state;
1653 #endif
1654 
1655 			tcp_saveti = NULL;
1656 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1657 				goto nosave;
1658 
1659 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1660 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1661 				if (!tcp_saveti)
1662 					goto nosave;
1663 			} else {
1664 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1665 				if (!tcp_saveti)
1666 					goto nosave;
1667 				MCLAIM(m, &tcp_mowner);
1668 				tcp_saveti->m_len = iphlen;
1669 				m_copydata(m, 0, iphlen,
1670 				    mtod(tcp_saveti, void *));
1671 			}
1672 
1673 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1674 				m_freem(tcp_saveti);
1675 				tcp_saveti = NULL;
1676 			} else {
1677 				tcp_saveti->m_len += sizeof(struct tcphdr);
1678 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1679 				    sizeof(struct tcphdr));
1680 			}
1681 	nosave:;
1682 		}
1683 		if (so->so_options & SO_ACCEPTCONN) {
1684 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1685 				if (tiflags & TH_RST) {
1686 					syn_cache_reset(&src.sa, &dst.sa, th);
1687 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1688 				    (TH_ACK|TH_SYN)) {
1689 					/*
1690 					 * Received a SYN,ACK.  This should
1691 					 * never happen while we are in
1692 					 * LISTEN.  Send an RST.
1693 					 */
1694 					goto badsyn;
1695 				} else if (tiflags & TH_ACK) {
1696 					so = syn_cache_get(&src.sa, &dst.sa,
1697 						th, toff, tlen, so, m);
1698 					if (so == NULL) {
1699 						/*
1700 						 * We don't have a SYN for
1701 						 * this ACK; send an RST.
1702 						 */
1703 						goto badsyn;
1704 					} else if (so ==
1705 					    (struct socket *)(-1)) {
1706 						/*
1707 						 * We were unable to create
1708 						 * the connection.  If the
1709 						 * 3-way handshake was
1710 						 * completed, and RST has
1711 						 * been sent to the peer.
1712 						 * Since the mbuf might be
1713 						 * in use for the reply,
1714 						 * do not free it.
1715 						 */
1716 						m = NULL;
1717 					} else {
1718 						/*
1719 						 * We have created a
1720 						 * full-blown connection.
1721 						 */
1722 						tp = NULL;
1723 						inp = NULL;
1724 #ifdef INET6
1725 						in6p = NULL;
1726 #endif
1727 						switch (so->so_proto->pr_domain->dom_family) {
1728 #ifdef INET
1729 						case AF_INET:
1730 							inp = sotoinpcb(so);
1731 							tp = intotcpcb(inp);
1732 							break;
1733 #endif
1734 #ifdef INET6
1735 						case AF_INET6:
1736 							in6p = sotoin6pcb(so);
1737 							tp = in6totcpcb(in6p);
1738 							break;
1739 #endif
1740 						}
1741 						if (tp == NULL)
1742 							goto badsyn;	/*XXX*/
1743 						tiwin <<= tp->snd_scale;
1744 						goto after_listen;
1745 					}
1746 				} else {
1747 					/*
1748 					 * None of RST, SYN or ACK was set.
1749 					 * This is an invalid packet for a
1750 					 * TCB in LISTEN state.  Send a RST.
1751 					 */
1752 					goto badsyn;
1753 				}
1754 			} else {
1755 				/*
1756 				 * Received a SYN.
1757 				 *
1758 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1759 				 */
1760 				if (m->m_flags & (M_BCAST|M_MCAST))
1761 					goto drop;
1762 
1763 				switch (af) {
1764 #ifdef INET6
1765 				case AF_INET6:
1766 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1767 						goto drop;
1768 					break;
1769 #endif /* INET6 */
1770 				case AF_INET:
1771 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1772 					    in_broadcast(ip->ip_dst,
1773 					                 m_get_rcvif_NOMPSAFE(m)))
1774 						goto drop;
1775 				break;
1776 				}
1777 
1778 #ifdef INET6
1779 				/*
1780 				 * If deprecated address is forbidden, we do
1781 				 * not accept SYN to deprecated interface
1782 				 * address to prevent any new inbound
1783 				 * connection from getting established.
1784 				 * When we do not accept SYN, we send a TCP
1785 				 * RST, with deprecated source address (instead
1786 				 * of dropping it).  We compromise it as it is
1787 				 * much better for peer to send a RST, and
1788 				 * RST will be the final packet for the
1789 				 * exchange.
1790 				 *
1791 				 * If we do not forbid deprecated addresses, we
1792 				 * accept the SYN packet.  RFC2462 does not
1793 				 * suggest dropping SYN in this case.
1794 				 * If we decipher RFC2462 5.5.4, it says like
1795 				 * this:
1796 				 * 1. use of deprecated addr with existing
1797 				 *    communication is okay - "SHOULD continue
1798 				 *    to be used"
1799 				 * 2. use of it with new communication:
1800 				 *   (2a) "SHOULD NOT be used if alternate
1801 				 *        address with sufficient scope is
1802 				 *        available"
1803 				 *   (2b) nothing mentioned otherwise.
1804 				 * Here we fall into (2b) case as we have no
1805 				 * choice in our source address selection - we
1806 				 * must obey the peer.
1807 				 *
1808 				 * The wording in RFC2462 is confusing, and
1809 				 * there are multiple description text for
1810 				 * deprecated address handling - worse, they
1811 				 * are not exactly the same.  I believe 5.5.4
1812 				 * is the best one, so we follow 5.5.4.
1813 				 */
1814 				if (af == AF_INET6 && !ip6_use_deprecated) {
1815 					struct in6_ifaddr *ia6;
1816 					int s;
1817 					struct ifnet *rcvif = m_get_rcvif(m, &s);
1818 					if (rcvif == NULL)
1819 						goto dropwithreset; /* XXX */
1820 					if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1821 					    &ip6->ip6_dst)) &&
1822 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1823 						tp = NULL;
1824 						m_put_rcvif(rcvif, &s);
1825 						goto dropwithreset;
1826 					}
1827 					m_put_rcvif(rcvif, &s);
1828 				}
1829 #endif
1830 
1831 #if defined(IPSEC)
1832 				if (ipsec_used) {
1833 					switch (af) {
1834 #ifdef INET
1835 					case AF_INET:
1836 						if (!ipsec4_in_reject_so(m, so))
1837 							break;
1838 						IPSEC_STATINC(
1839 						    IPSEC_STAT_IN_POLVIO);
1840 						tp = NULL;
1841 						goto dropwithreset;
1842 #endif
1843 #ifdef INET6
1844 					case AF_INET6:
1845 						if (!ipsec6_in_reject_so(m, so))
1846 							break;
1847 						IPSEC6_STATINC(
1848 						    IPSEC_STAT_IN_POLVIO);
1849 						tp = NULL;
1850 						goto dropwithreset;
1851 #endif /*INET6*/
1852 					}
1853 				}
1854 #endif /*IPSEC*/
1855 
1856 				/*
1857 				 * LISTEN socket received a SYN
1858 				 * from itself?  This can't possibly
1859 				 * be valid; drop the packet.
1860 				 */
1861 				if (th->th_sport == th->th_dport) {
1862 					int i;
1863 
1864 					switch (af) {
1865 #ifdef INET
1866 					case AF_INET:
1867 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1868 						break;
1869 #endif
1870 #ifdef INET6
1871 					case AF_INET6:
1872 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1873 						break;
1874 #endif
1875 					default:
1876 						i = 1;
1877 					}
1878 					if (i) {
1879 						TCP_STATINC(TCP_STAT_BADSYN);
1880 						goto drop;
1881 					}
1882 				}
1883 
1884 				/*
1885 				 * SYN looks ok; create compressed TCP
1886 				 * state for it.
1887 				 */
1888 				if (so->so_qlen <= so->so_qlimit &&
1889 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1890 						so, m, optp, optlen, &opti))
1891 					m = NULL;
1892 			}
1893 			goto drop;
1894 		}
1895 	}
1896 
1897 after_listen:
1898 #ifdef DIAGNOSTIC
1899 	/*
1900 	 * Should not happen now that all embryonic connections
1901 	 * are handled with compressed state.
1902 	 */
1903 	if (tp->t_state == TCPS_LISTEN)
1904 		panic("tcp_input: TCPS_LISTEN");
1905 #endif
1906 
1907 	/*
1908 	 * Segment received on connection.
1909 	 * Reset idle time and keep-alive timer.
1910 	 */
1911 	tp->t_rcvtime = tcp_now;
1912 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1913 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1914 
1915 	/*
1916 	 * Process options.
1917 	 */
1918 #ifdef TCP_SIGNATURE
1919 	if (optp || (tp->t_flags & TF_SIGNATURE))
1920 #else
1921 	if (optp)
1922 #endif
1923 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1924 			goto drop;
1925 
1926 	if (TCP_SACK_ENABLED(tp)) {
1927 		tcp_del_sackholes(tp, th);
1928 	}
1929 
1930 	if (TCP_ECN_ALLOWED(tp)) {
1931 		if (tiflags & TH_CWR) {
1932 			tp->t_flags &= ~TF_ECN_SND_ECE;
1933 		}
1934 		switch (iptos & IPTOS_ECN_MASK) {
1935 		case IPTOS_ECN_CE:
1936 			tp->t_flags |= TF_ECN_SND_ECE;
1937 			TCP_STATINC(TCP_STAT_ECN_CE);
1938 			break;
1939 		case IPTOS_ECN_ECT0:
1940 			TCP_STATINC(TCP_STAT_ECN_ECT);
1941 			break;
1942 		case IPTOS_ECN_ECT1:
1943 			/* XXX: ignore for now -- rpaulo */
1944 			break;
1945 		}
1946 		/*
1947 		 * Congestion experienced.
1948 		 * Ignore if we are already trying to recover.
1949 		 */
1950 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1951 			tp->t_congctl->cong_exp(tp);
1952 	}
1953 
1954 	if (opti.ts_present && opti.ts_ecr) {
1955 		/*
1956 		 * Calculate the RTT from the returned time stamp and the
1957 		 * connection's time base.  If the time stamp is later than
1958 		 * the current time, or is extremely old, fall back to non-1323
1959 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1960 		 * at the same time.
1961 		 *
1962 		 * Note that ts_rtt is in units of slow ticks (500
1963 		 * ms).  Since most earthbound RTTs are < 500 ms,
1964 		 * observed values will have large quantization noise.
1965 		 * Our smoothed RTT is then the fraction of observed
1966 		 * samples that are 1 tick instead of 0 (times 500
1967 		 * ms).
1968 		 *
1969 		 * ts_rtt is increased by 1 to denote a valid sample,
1970 		 * with 0 indicating an invalid measurement.  This
1971 		 * extra 1 must be removed when ts_rtt is used, or
1972 		 * else an an erroneous extra 500 ms will result.
1973 		 */
1974 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1975 		if (ts_rtt > TCP_PAWS_IDLE)
1976 			ts_rtt = 0;
1977 	} else {
1978 		ts_rtt = 0;
1979 	}
1980 
1981 	/*
1982 	 * Header prediction: check for the two common cases
1983 	 * of a uni-directional data xfer.  If the packet has
1984 	 * no control flags, is in-sequence, the window didn't
1985 	 * change and we're not retransmitting, it's a
1986 	 * candidate.  If the length is zero and the ack moved
1987 	 * forward, we're the sender side of the xfer.  Just
1988 	 * free the data acked & wake any higher level process
1989 	 * that was blocked waiting for space.  If the length
1990 	 * is non-zero and the ack didn't move, we're the
1991 	 * receiver side.  If we're getting packets in-order
1992 	 * (the reassembly queue is empty), add the data to
1993 	 * the socket buffer and note that we need a delayed ack.
1994 	 */
1995 	if (tp->t_state == TCPS_ESTABLISHED &&
1996 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1997 	        == TH_ACK &&
1998 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1999 	    th->th_seq == tp->rcv_nxt &&
2000 	    tiwin && tiwin == tp->snd_wnd &&
2001 	    tp->snd_nxt == tp->snd_max) {
2002 
2003 		/*
2004 		 * If last ACK falls within this segment's sequence numbers,
2005 		 * record the timestamp.
2006 		 * NOTE that the test is modified according to the latest
2007 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2008 		 *
2009 		 * note that we already know
2010 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
2011 		 */
2012 		if (opti.ts_present &&
2013 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2014 			tp->ts_recent_age = tcp_now;
2015 			tp->ts_recent = opti.ts_val;
2016 		}
2017 
2018 		if (tlen == 0) {
2019 			/* Ack prediction. */
2020 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
2021 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
2022 			    tp->snd_cwnd >= tp->snd_wnd &&
2023 			    tp->t_partialacks < 0) {
2024 				/*
2025 				 * this is a pure ack for outstanding data.
2026 				 */
2027 				if (ts_rtt)
2028 					tcp_xmit_timer(tp, ts_rtt - 1);
2029 				else if (tp->t_rtttime &&
2030 				    SEQ_GT(th->th_ack, tp->t_rtseq))
2031 					tcp_xmit_timer(tp,
2032 					  tcp_now - tp->t_rtttime);
2033 				acked = th->th_ack - tp->snd_una;
2034 				tcps = TCP_STAT_GETREF();
2035 				tcps[TCP_STAT_PREDACK]++;
2036 				tcps[TCP_STAT_RCVACKPACK]++;
2037 				tcps[TCP_STAT_RCVACKBYTE] += acked;
2038 				TCP_STAT_PUTREF();
2039 				nd6_hint(tp);
2040 
2041 				if (acked > (tp->t_lastoff - tp->t_inoff))
2042 					tp->t_lastm = NULL;
2043 				sbdrop(&so->so_snd, acked);
2044 				tp->t_lastoff -= acked;
2045 
2046 				icmp_check(tp, th, acked);
2047 
2048 				tp->snd_una = th->th_ack;
2049 				tp->snd_fack = tp->snd_una;
2050 				if (SEQ_LT(tp->snd_high, tp->snd_una))
2051 					tp->snd_high = tp->snd_una;
2052 				m_freem(m);
2053 
2054 				/*
2055 				 * If all outstanding data are acked, stop
2056 				 * retransmit timer, otherwise restart timer
2057 				 * using current (possibly backed-off) value.
2058 				 * If process is waiting for space,
2059 				 * wakeup/selnotify/signal.  If data
2060 				 * are ready to send, let tcp_output
2061 				 * decide between more output or persist.
2062 				 */
2063 				if (tp->snd_una == tp->snd_max)
2064 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2065 				else if (TCP_TIMER_ISARMED(tp,
2066 				    TCPT_PERSIST) == 0)
2067 					TCP_TIMER_ARM(tp, TCPT_REXMT,
2068 					    tp->t_rxtcur);
2069 
2070 				sowwakeup(so);
2071 				if (so->so_snd.sb_cc) {
2072 					KERNEL_LOCK(1, NULL);
2073 					(void) tcp_output(tp);
2074 					KERNEL_UNLOCK_ONE(NULL);
2075 				}
2076 				if (tcp_saveti)
2077 					m_freem(tcp_saveti);
2078 				return;
2079 			}
2080 		} else if (th->th_ack == tp->snd_una &&
2081 		    TAILQ_FIRST(&tp->segq) == NULL &&
2082 		    tlen <= sbspace(&so->so_rcv)) {
2083 			int newsize = 0;	/* automatic sockbuf scaling */
2084 
2085 			/*
2086 			 * this is a pure, in-sequence data packet
2087 			 * with nothing on the reassembly queue and
2088 			 * we have enough buffer space to take it.
2089 			 */
2090 			tp->rcv_nxt += tlen;
2091 			tcps = TCP_STAT_GETREF();
2092 			tcps[TCP_STAT_PREDDAT]++;
2093 			tcps[TCP_STAT_RCVPACK]++;
2094 			tcps[TCP_STAT_RCVBYTE] += tlen;
2095 			TCP_STAT_PUTREF();
2096 			nd6_hint(tp);
2097 
2098 		/*
2099 		 * Automatic sizing enables the performance of large buffers
2100 		 * and most of the efficiency of small ones by only allocating
2101 		 * space when it is needed.
2102 		 *
2103 		 * On the receive side the socket buffer memory is only rarely
2104 		 * used to any significant extent.  This allows us to be much
2105 		 * more aggressive in scaling the receive socket buffer.  For
2106 		 * the case that the buffer space is actually used to a large
2107 		 * extent and we run out of kernel memory we can simply drop
2108 		 * the new segments; TCP on the sender will just retransmit it
2109 		 * later.  Setting the buffer size too big may only consume too
2110 		 * much kernel memory if the application doesn't read() from
2111 		 * the socket or packet loss or reordering makes use of the
2112 		 * reassembly queue.
2113 		 *
2114 		 * The criteria to step up the receive buffer one notch are:
2115 		 *  1. the number of bytes received during the time it takes
2116 		 *     one timestamp to be reflected back to us (the RTT);
2117 		 *  2. received bytes per RTT is within seven eighth of the
2118 		 *     current socket buffer size;
2119 		 *  3. receive buffer size has not hit maximal automatic size;
2120 		 *
2121 		 * This algorithm does one step per RTT at most and only if
2122 		 * we receive a bulk stream w/o packet losses or reorderings.
2123 		 * Shrinking the buffer during idle times is not necessary as
2124 		 * it doesn't consume any memory when idle.
2125 		 *
2126 		 * TODO: Only step up if the application is actually serving
2127 		 * the buffer to better manage the socket buffer resources.
2128 		 */
2129 			if (tcp_do_autorcvbuf &&
2130 			    opti.ts_ecr &&
2131 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2132 				if (opti.ts_ecr > tp->rfbuf_ts &&
2133 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2134 					if (tp->rfbuf_cnt >
2135 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
2136 					    so->so_rcv.sb_hiwat <
2137 					    tcp_autorcvbuf_max) {
2138 						newsize =
2139 						    min(so->so_rcv.sb_hiwat +
2140 						    tcp_autorcvbuf_inc,
2141 						    tcp_autorcvbuf_max);
2142 					}
2143 					/* Start over with next RTT. */
2144 					tp->rfbuf_ts = 0;
2145 					tp->rfbuf_cnt = 0;
2146 				} else
2147 					tp->rfbuf_cnt += tlen;	/* add up */
2148 			}
2149 
2150 			/*
2151 			 * Drop TCP, IP headers and TCP options then add data
2152 			 * to socket buffer.
2153 			 */
2154 			if (so->so_state & SS_CANTRCVMORE)
2155 				m_freem(m);
2156 			else {
2157 				/*
2158 				 * Set new socket buffer size.
2159 				 * Give up when limit is reached.
2160 				 */
2161 				if (newsize)
2162 					if (!sbreserve(&so->so_rcv,
2163 					    newsize, so))
2164 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2165 				m_adj(m, toff + off);
2166 				sbappendstream(&so->so_rcv, m);
2167 			}
2168 			sorwakeup(so);
2169 			tcp_setup_ack(tp, th);
2170 			if (tp->t_flags & TF_ACKNOW) {
2171 				KERNEL_LOCK(1, NULL);
2172 				(void) tcp_output(tp);
2173 				KERNEL_UNLOCK_ONE(NULL);
2174 			}
2175 			if (tcp_saveti)
2176 				m_freem(tcp_saveti);
2177 			return;
2178 		}
2179 	}
2180 
2181 	/*
2182 	 * Compute mbuf offset to TCP data segment.
2183 	 */
2184 	hdroptlen = toff + off;
2185 
2186 	/*
2187 	 * Calculate amount of space in receive window,
2188 	 * and then do TCP input processing.
2189 	 * Receive window is amount of space in rcv queue,
2190 	 * but not less than advertised window.
2191 	 */
2192 	{ int win;
2193 
2194 	win = sbspace(&so->so_rcv);
2195 	if (win < 0)
2196 		win = 0;
2197 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2198 	}
2199 
2200 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2201 	tp->rfbuf_ts = 0;
2202 	tp->rfbuf_cnt = 0;
2203 
2204 	switch (tp->t_state) {
2205 	/*
2206 	 * If the state is SYN_SENT:
2207 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2208 	 *	if seg contains a RST, then drop the connection.
2209 	 *	if seg does not contain SYN, then drop it.
2210 	 * Otherwise this is an acceptable SYN segment
2211 	 *	initialize tp->rcv_nxt and tp->irs
2212 	 *	if seg contains ack then advance tp->snd_una
2213 	 *	if seg contains a ECE and ECN support is enabled, the stream
2214 	 *	    is ECN capable.
2215 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2216 	 *	arrange for segment to be acked (eventually)
2217 	 *	continue processing rest of data/controls, beginning with URG
2218 	 */
2219 	case TCPS_SYN_SENT:
2220 		if ((tiflags & TH_ACK) &&
2221 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2222 		     SEQ_GT(th->th_ack, tp->snd_max)))
2223 			goto dropwithreset;
2224 		if (tiflags & TH_RST) {
2225 			if (tiflags & TH_ACK)
2226 				tp = tcp_drop(tp, ECONNREFUSED);
2227 			goto drop;
2228 		}
2229 		if ((tiflags & TH_SYN) == 0)
2230 			goto drop;
2231 		if (tiflags & TH_ACK) {
2232 			tp->snd_una = th->th_ack;
2233 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2234 				tp->snd_nxt = tp->snd_una;
2235 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2236 				tp->snd_high = tp->snd_una;
2237 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2238 
2239 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2240 				tp->t_flags |= TF_ECN_PERMIT;
2241 				TCP_STATINC(TCP_STAT_ECN_SHS);
2242 			}
2243 
2244 		}
2245 		tp->irs = th->th_seq;
2246 		tcp_rcvseqinit(tp);
2247 		tp->t_flags |= TF_ACKNOW;
2248 		tcp_mss_from_peer(tp, opti.maxseg);
2249 
2250 		/*
2251 		 * Initialize the initial congestion window.  If we
2252 		 * had to retransmit the SYN, we must initialize cwnd
2253 		 * to 1 segment (i.e. the Loss Window).
2254 		 */
2255 		if (tp->t_flags & TF_SYN_REXMT)
2256 			tp->snd_cwnd = tp->t_peermss;
2257 		else {
2258 			int ss = tcp_init_win;
2259 #ifdef INET
2260 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2261 				ss = tcp_init_win_local;
2262 #endif
2263 #ifdef INET6
2264 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2265 				ss = tcp_init_win_local;
2266 #endif
2267 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2268 		}
2269 
2270 		tcp_rmx_rtt(tp);
2271 		if (tiflags & TH_ACK) {
2272 			TCP_STATINC(TCP_STAT_CONNECTS);
2273 			/*
2274 			 * move tcp_established before soisconnected
2275 			 * because upcall handler can drive tcp_output
2276 			 * functionality.
2277 			 * XXX we might call soisconnected at the end of
2278 			 * all processing
2279 			 */
2280 			tcp_established(tp);
2281 			soisconnected(so);
2282 			/* Do window scaling on this connection? */
2283 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2284 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2285 				tp->snd_scale = tp->requested_s_scale;
2286 				tp->rcv_scale = tp->request_r_scale;
2287 			}
2288 			TCP_REASS_LOCK(tp);
2289 			(void) tcp_reass(tp, NULL, NULL, &tlen);
2290 			/*
2291 			 * if we didn't have to retransmit the SYN,
2292 			 * use its rtt as our initial srtt & rtt var.
2293 			 */
2294 			if (tp->t_rtttime)
2295 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2296 		} else
2297 			tp->t_state = TCPS_SYN_RECEIVED;
2298 
2299 		/*
2300 		 * Advance th->th_seq to correspond to first data byte.
2301 		 * If data, trim to stay within window,
2302 		 * dropping FIN if necessary.
2303 		 */
2304 		th->th_seq++;
2305 		if (tlen > tp->rcv_wnd) {
2306 			todrop = tlen - tp->rcv_wnd;
2307 			m_adj(m, -todrop);
2308 			tlen = tp->rcv_wnd;
2309 			tiflags &= ~TH_FIN;
2310 			tcps = TCP_STAT_GETREF();
2311 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2312 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2313 			TCP_STAT_PUTREF();
2314 		}
2315 		tp->snd_wl1 = th->th_seq - 1;
2316 		tp->rcv_up = th->th_seq;
2317 		goto step6;
2318 
2319 	/*
2320 	 * If the state is SYN_RECEIVED:
2321 	 *	If seg contains an ACK, but not for our SYN, drop the input
2322 	 *	and generate an RST.  See page 36, rfc793
2323 	 */
2324 	case TCPS_SYN_RECEIVED:
2325 		if ((tiflags & TH_ACK) &&
2326 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2327 		     SEQ_GT(th->th_ack, tp->snd_max)))
2328 			goto dropwithreset;
2329 		break;
2330 	}
2331 
2332 	/*
2333 	 * States other than LISTEN or SYN_SENT.
2334 	 * First check timestamp, if present.
2335 	 * Then check that at least some bytes of segment are within
2336 	 * receive window.  If segment begins before rcv_nxt,
2337 	 * drop leading data (and SYN); if nothing left, just ack.
2338 	 *
2339 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2340 	 * and it's less than ts_recent, drop it.
2341 	 */
2342 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2343 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2344 
2345 		/* Check to see if ts_recent is over 24 days old.  */
2346 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2347 			/*
2348 			 * Invalidate ts_recent.  If this segment updates
2349 			 * ts_recent, the age will be reset later and ts_recent
2350 			 * will get a valid value.  If it does not, setting
2351 			 * ts_recent to zero will at least satisfy the
2352 			 * requirement that zero be placed in the timestamp
2353 			 * echo reply when ts_recent isn't valid.  The
2354 			 * age isn't reset until we get a valid ts_recent
2355 			 * because we don't want out-of-order segments to be
2356 			 * dropped when ts_recent is old.
2357 			 */
2358 			tp->ts_recent = 0;
2359 		} else {
2360 			tcps = TCP_STAT_GETREF();
2361 			tcps[TCP_STAT_RCVDUPPACK]++;
2362 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2363 			tcps[TCP_STAT_PAWSDROP]++;
2364 			TCP_STAT_PUTREF();
2365 			tcp_new_dsack(tp, th->th_seq, tlen);
2366 			goto dropafterack;
2367 		}
2368 	}
2369 
2370 	todrop = tp->rcv_nxt - th->th_seq;
2371 	dupseg = false;
2372 	if (todrop > 0) {
2373 		if (tiflags & TH_SYN) {
2374 			tiflags &= ~TH_SYN;
2375 			th->th_seq++;
2376 			if (th->th_urp > 1)
2377 				th->th_urp--;
2378 			else {
2379 				tiflags &= ~TH_URG;
2380 				th->th_urp = 0;
2381 			}
2382 			todrop--;
2383 		}
2384 		if (todrop > tlen ||
2385 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2386 			/*
2387 			 * Any valid FIN or RST must be to the left of the
2388 			 * window.  At this point the FIN or RST must be a
2389 			 * duplicate or out of sequence; drop it.
2390 			 */
2391 			if (tiflags & TH_RST)
2392 				goto drop;
2393 			tiflags &= ~(TH_FIN|TH_RST);
2394 			/*
2395 			 * Send an ACK to resynchronize and drop any data.
2396 			 * But keep on processing for RST or ACK.
2397 			 */
2398 			tp->t_flags |= TF_ACKNOW;
2399 			todrop = tlen;
2400 			dupseg = true;
2401 			tcps = TCP_STAT_GETREF();
2402 			tcps[TCP_STAT_RCVDUPPACK]++;
2403 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2404 			TCP_STAT_PUTREF();
2405 		} else if ((tiflags & TH_RST) &&
2406 			   th->th_seq != tp->rcv_nxt) {
2407 			/*
2408 			 * Test for reset before adjusting the sequence
2409 			 * number for overlapping data.
2410 			 */
2411 			goto dropafterack_ratelim;
2412 		} else {
2413 			tcps = TCP_STAT_GETREF();
2414 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2415 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2416 			TCP_STAT_PUTREF();
2417 		}
2418 		tcp_new_dsack(tp, th->th_seq, todrop);
2419 		hdroptlen += todrop;	/*drop from head afterwards*/
2420 		th->th_seq += todrop;
2421 		tlen -= todrop;
2422 		if (th->th_urp > todrop)
2423 			th->th_urp -= todrop;
2424 		else {
2425 			tiflags &= ~TH_URG;
2426 			th->th_urp = 0;
2427 		}
2428 	}
2429 
2430 	/*
2431 	 * If new data are received on a connection after the
2432 	 * user processes are gone, then RST the other end.
2433 	 */
2434 	if ((so->so_state & SS_NOFDREF) &&
2435 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2436 		tp = tcp_close(tp);
2437 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2438 		goto dropwithreset;
2439 	}
2440 
2441 	/*
2442 	 * If segment ends after window, drop trailing data
2443 	 * (and PUSH and FIN); if nothing left, just ACK.
2444 	 */
2445 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2446 	if (todrop > 0) {
2447 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2448 		if (todrop >= tlen) {
2449 			/*
2450 			 * The segment actually starts after the window.
2451 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2452 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2453 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2454 			 */
2455 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2456 			/*
2457 			 * If a new connection request is received
2458 			 * while in TIME_WAIT, drop the old connection
2459 			 * and start over if the sequence numbers
2460 			 * are above the previous ones.
2461 			 *
2462 			 * NOTE: We will checksum the packet again, and
2463 			 * so we need to put the header fields back into
2464 			 * network order!
2465 			 * XXX This kind of sucks, but we don't expect
2466 			 * XXX this to happen very often, so maybe it
2467 			 * XXX doesn't matter so much.
2468 			 */
2469 			if (tiflags & TH_SYN &&
2470 			    tp->t_state == TCPS_TIME_WAIT &&
2471 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2472 				tp = tcp_close(tp);
2473 				tcp_fields_to_net(th);
2474 				goto findpcb;
2475 			}
2476 			/*
2477 			 * If window is closed can only take segments at
2478 			 * window edge, and have to drop data and PUSH from
2479 			 * incoming segments.  Continue processing, but
2480 			 * remember to ack.  Otherwise, drop segment
2481 			 * and (if not RST) ack.
2482 			 */
2483 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2484 				tp->t_flags |= TF_ACKNOW;
2485 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2486 			} else
2487 				goto dropafterack;
2488 		} else
2489 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2490 		m_adj(m, -todrop);
2491 		tlen -= todrop;
2492 		tiflags &= ~(TH_PUSH|TH_FIN);
2493 	}
2494 
2495 	/*
2496 	 * If last ACK falls within this segment's sequence numbers,
2497 	 *  record the timestamp.
2498 	 * NOTE:
2499 	 * 1) That the test incorporates suggestions from the latest
2500 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2501 	 * 2) That updating only on newer timestamps interferes with
2502 	 *    our earlier PAWS tests, so this check should be solely
2503 	 *    predicated on the sequence space of this segment.
2504 	 * 3) That we modify the segment boundary check to be
2505 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2506 	 *    instead of RFC1323's
2507 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2508 	 *    This modified check allows us to overcome RFC1323's
2509 	 *    limitations as described in Stevens TCP/IP Illustrated
2510 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2511 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2512 	 */
2513 	if (opti.ts_present &&
2514 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2515 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2516 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2517 		tp->ts_recent_age = tcp_now;
2518 		tp->ts_recent = opti.ts_val;
2519 	}
2520 
2521 	/*
2522 	 * If the RST bit is set examine the state:
2523 	 *    SYN_RECEIVED STATE:
2524 	 *	If passive open, return to LISTEN state.
2525 	 *	If active open, inform user that connection was refused.
2526 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2527 	 *	Inform user that connection was reset, and close tcb.
2528 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2529 	 *	Close the tcb.
2530 	 */
2531 	if (tiflags & TH_RST) {
2532 		if (th->th_seq != tp->rcv_nxt)
2533 			goto dropafterack_ratelim;
2534 
2535 		switch (tp->t_state) {
2536 		case TCPS_SYN_RECEIVED:
2537 			so->so_error = ECONNREFUSED;
2538 			goto close;
2539 
2540 		case TCPS_ESTABLISHED:
2541 		case TCPS_FIN_WAIT_1:
2542 		case TCPS_FIN_WAIT_2:
2543 		case TCPS_CLOSE_WAIT:
2544 			so->so_error = ECONNRESET;
2545 		close:
2546 			tp->t_state = TCPS_CLOSED;
2547 			TCP_STATINC(TCP_STAT_DROPS);
2548 			tp = tcp_close(tp);
2549 			goto drop;
2550 
2551 		case TCPS_CLOSING:
2552 		case TCPS_LAST_ACK:
2553 		case TCPS_TIME_WAIT:
2554 			tp = tcp_close(tp);
2555 			goto drop;
2556 		}
2557 	}
2558 
2559 	/*
2560 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2561 	 * we must be in a synchronized state.  RFC791 states (under RST
2562 	 * generation) that any unacceptable segment (an out-of-order SYN
2563 	 * qualifies) received in a synchronized state must elicit only an
2564 	 * empty acknowledgment segment ... and the connection remains in
2565 	 * the same state.
2566 	 */
2567 	if (tiflags & TH_SYN) {
2568 		if (tp->rcv_nxt == th->th_seq) {
2569 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2570 			    TH_ACK);
2571 			if (tcp_saveti)
2572 				m_freem(tcp_saveti);
2573 			return;
2574 		}
2575 
2576 		goto dropafterack_ratelim;
2577 	}
2578 
2579 	/*
2580 	 * If the ACK bit is off we drop the segment and return.
2581 	 */
2582 	if ((tiflags & TH_ACK) == 0) {
2583 		if (tp->t_flags & TF_ACKNOW)
2584 			goto dropafterack;
2585 		else
2586 			goto drop;
2587 	}
2588 
2589 	/*
2590 	 * Ack processing.
2591 	 */
2592 	switch (tp->t_state) {
2593 
2594 	/*
2595 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2596 	 * ESTABLISHED state and continue processing, otherwise
2597 	 * send an RST.
2598 	 */
2599 	case TCPS_SYN_RECEIVED:
2600 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2601 		    SEQ_GT(th->th_ack, tp->snd_max))
2602 			goto dropwithreset;
2603 		TCP_STATINC(TCP_STAT_CONNECTS);
2604 		soisconnected(so);
2605 		tcp_established(tp);
2606 		/* Do window scaling? */
2607 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2608 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2609 			tp->snd_scale = tp->requested_s_scale;
2610 			tp->rcv_scale = tp->request_r_scale;
2611 		}
2612 		TCP_REASS_LOCK(tp);
2613 		(void) tcp_reass(tp, NULL, NULL, &tlen);
2614 		tp->snd_wl1 = th->th_seq - 1;
2615 		/* fall into ... */
2616 
2617 	/*
2618 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2619 	 * ACKs.  If the ack is in the range
2620 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2621 	 * then advance tp->snd_una to th->th_ack and drop
2622 	 * data from the retransmission queue.  If this ACK reflects
2623 	 * more up to date window information we update our window information.
2624 	 */
2625 	case TCPS_ESTABLISHED:
2626 	case TCPS_FIN_WAIT_1:
2627 	case TCPS_FIN_WAIT_2:
2628 	case TCPS_CLOSE_WAIT:
2629 	case TCPS_CLOSING:
2630 	case TCPS_LAST_ACK:
2631 	case TCPS_TIME_WAIT:
2632 
2633 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2634 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2635 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2636 				/*
2637 				 * If we have outstanding data (other than
2638 				 * a window probe), this is a completely
2639 				 * duplicate ack (ie, window info didn't
2640 				 * change), the ack is the biggest we've
2641 				 * seen and we've seen exactly our rexmt
2642 				 * threshhold of them, assume a packet
2643 				 * has been dropped and retransmit it.
2644 				 * Kludge snd_nxt & the congestion
2645 				 * window so we send only this one
2646 				 * packet.
2647 				 */
2648 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2649 				    th->th_ack != tp->snd_una)
2650 					tp->t_dupacks = 0;
2651 				else if (tp->t_partialacks < 0 &&
2652 					 (++tp->t_dupacks == tcprexmtthresh ||
2653 					 TCP_FACK_FASTRECOV(tp))) {
2654 					/*
2655 					 * Do the fast retransmit, and adjust
2656 					 * congestion control paramenters.
2657 					 */
2658 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2659 						/* False fast retransmit */
2660 						break;
2661 					} else
2662 						goto drop;
2663 				} else if (tp->t_dupacks > tcprexmtthresh) {
2664 					tp->snd_cwnd += tp->t_segsz;
2665 					KERNEL_LOCK(1, NULL);
2666 					(void) tcp_output(tp);
2667 					KERNEL_UNLOCK_ONE(NULL);
2668 					goto drop;
2669 				}
2670 			} else {
2671 				/*
2672 				 * If the ack appears to be very old, only
2673 				 * allow data that is in-sequence.  This
2674 				 * makes it somewhat more difficult to insert
2675 				 * forged data by guessing sequence numbers.
2676 				 * Sent an ack to try to update the send
2677 				 * sequence number on the other side.
2678 				 */
2679 				if (tlen && th->th_seq != tp->rcv_nxt &&
2680 				    SEQ_LT(th->th_ack,
2681 				    tp->snd_una - tp->max_sndwnd))
2682 					goto dropafterack;
2683 			}
2684 			break;
2685 		}
2686 		/*
2687 		 * If the congestion window was inflated to account
2688 		 * for the other side's cached packets, retract it.
2689 		 */
2690 		tp->t_congctl->fast_retransmit_newack(tp, th);
2691 
2692 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2693 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2694 			goto dropafterack;
2695 		}
2696 		acked = th->th_ack - tp->snd_una;
2697 		tcps = TCP_STAT_GETREF();
2698 		tcps[TCP_STAT_RCVACKPACK]++;
2699 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2700 		TCP_STAT_PUTREF();
2701 
2702 		/*
2703 		 * If we have a timestamp reply, update smoothed
2704 		 * round trip time.  If no timestamp is present but
2705 		 * transmit timer is running and timed sequence
2706 		 * number was acked, update smoothed round trip time.
2707 		 * Since we now have an rtt measurement, cancel the
2708 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2709 		 * Recompute the initial retransmit timer.
2710 		 */
2711 		if (ts_rtt)
2712 			tcp_xmit_timer(tp, ts_rtt - 1);
2713 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2714 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2715 
2716 		/*
2717 		 * If all outstanding data is acked, stop retransmit
2718 		 * timer and remember to restart (more output or persist).
2719 		 * If there is more data to be acked, restart retransmit
2720 		 * timer, using current (possibly backed-off) value.
2721 		 */
2722 		if (th->th_ack == tp->snd_max) {
2723 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2724 			needoutput = 1;
2725 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2726 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2727 
2728 		/*
2729 		 * New data has been acked, adjust the congestion window.
2730 		 */
2731 		tp->t_congctl->newack(tp, th);
2732 
2733 		nd6_hint(tp);
2734 		if (acked > so->so_snd.sb_cc) {
2735 			tp->snd_wnd -= so->so_snd.sb_cc;
2736 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2737 			ourfinisacked = 1;
2738 		} else {
2739 			if (acked > (tp->t_lastoff - tp->t_inoff))
2740 				tp->t_lastm = NULL;
2741 			sbdrop(&so->so_snd, acked);
2742 			tp->t_lastoff -= acked;
2743 			if (tp->snd_wnd > acked)
2744 				tp->snd_wnd -= acked;
2745 			else
2746 				tp->snd_wnd = 0;
2747 			ourfinisacked = 0;
2748 		}
2749 		sowwakeup(so);
2750 
2751 		icmp_check(tp, th, acked);
2752 
2753 		tp->snd_una = th->th_ack;
2754 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2755 			tp->snd_fack = tp->snd_una;
2756 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2757 			tp->snd_nxt = tp->snd_una;
2758 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2759 			tp->snd_high = tp->snd_una;
2760 
2761 		switch (tp->t_state) {
2762 
2763 		/*
2764 		 * In FIN_WAIT_1 STATE in addition to the processing
2765 		 * for the ESTABLISHED state if our FIN is now acknowledged
2766 		 * then enter FIN_WAIT_2.
2767 		 */
2768 		case TCPS_FIN_WAIT_1:
2769 			if (ourfinisacked) {
2770 				/*
2771 				 * If we can't receive any more
2772 				 * data, then closing user can proceed.
2773 				 * Starting the timer is contrary to the
2774 				 * specification, but if we don't get a FIN
2775 				 * we'll hang forever.
2776 				 */
2777 				if (so->so_state & SS_CANTRCVMORE) {
2778 					soisdisconnected(so);
2779 					if (tp->t_maxidle > 0)
2780 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2781 						    tp->t_maxidle);
2782 				}
2783 				tp->t_state = TCPS_FIN_WAIT_2;
2784 			}
2785 			break;
2786 
2787 	 	/*
2788 		 * In CLOSING STATE in addition to the processing for
2789 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2790 		 * then enter the TIME-WAIT state, otherwise ignore
2791 		 * the segment.
2792 		 */
2793 		case TCPS_CLOSING:
2794 			if (ourfinisacked) {
2795 				tp->t_state = TCPS_TIME_WAIT;
2796 				tcp_canceltimers(tp);
2797 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2798 				soisdisconnected(so);
2799 			}
2800 			break;
2801 
2802 		/*
2803 		 * In LAST_ACK, we may still be waiting for data to drain
2804 		 * and/or to be acked, as well as for the ack of our FIN.
2805 		 * If our FIN is now acknowledged, delete the TCB,
2806 		 * enter the closed state and return.
2807 		 */
2808 		case TCPS_LAST_ACK:
2809 			if (ourfinisacked) {
2810 				tp = tcp_close(tp);
2811 				goto drop;
2812 			}
2813 			break;
2814 
2815 		/*
2816 		 * In TIME_WAIT state the only thing that should arrive
2817 		 * is a retransmission of the remote FIN.  Acknowledge
2818 		 * it and restart the finack timer.
2819 		 */
2820 		case TCPS_TIME_WAIT:
2821 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2822 			goto dropafterack;
2823 		}
2824 	}
2825 
2826 step6:
2827 	/*
2828 	 * Update window information.
2829 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2830 	 */
2831 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2832 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2833 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2834 		/* keep track of pure window updates */
2835 		if (tlen == 0 &&
2836 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2837 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2838 		tp->snd_wnd = tiwin;
2839 		tp->snd_wl1 = th->th_seq;
2840 		tp->snd_wl2 = th->th_ack;
2841 		if (tp->snd_wnd > tp->max_sndwnd)
2842 			tp->max_sndwnd = tp->snd_wnd;
2843 		needoutput = 1;
2844 	}
2845 
2846 	/*
2847 	 * Process segments with URG.
2848 	 */
2849 	if ((tiflags & TH_URG) && th->th_urp &&
2850 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2851 		/*
2852 		 * This is a kludge, but if we receive and accept
2853 		 * random urgent pointers, we'll crash in
2854 		 * soreceive.  It's hard to imagine someone
2855 		 * actually wanting to send this much urgent data.
2856 		 */
2857 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2858 			th->th_urp = 0;			/* XXX */
2859 			tiflags &= ~TH_URG;		/* XXX */
2860 			goto dodata;			/* XXX */
2861 		}
2862 		/*
2863 		 * If this segment advances the known urgent pointer,
2864 		 * then mark the data stream.  This should not happen
2865 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2866 		 * a FIN has been received from the remote side.
2867 		 * In these states we ignore the URG.
2868 		 *
2869 		 * According to RFC961 (Assigned Protocols),
2870 		 * the urgent pointer points to the last octet
2871 		 * of urgent data.  We continue, however,
2872 		 * to consider it to indicate the first octet
2873 		 * of data past the urgent section as the original
2874 		 * spec states (in one of two places).
2875 		 */
2876 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2877 			tp->rcv_up = th->th_seq + th->th_urp;
2878 			so->so_oobmark = so->so_rcv.sb_cc +
2879 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2880 			if (so->so_oobmark == 0)
2881 				so->so_state |= SS_RCVATMARK;
2882 			sohasoutofband(so);
2883 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2884 		}
2885 		/*
2886 		 * Remove out of band data so doesn't get presented to user.
2887 		 * This can happen independent of advancing the URG pointer,
2888 		 * but if two URG's are pending at once, some out-of-band
2889 		 * data may creep in... ick.
2890 		 */
2891 		if (th->th_urp <= (u_int16_t) tlen
2892 #ifdef SO_OOBINLINE
2893 		     && (so->so_options & SO_OOBINLINE) == 0
2894 #endif
2895 		     )
2896 			tcp_pulloutofband(so, th, m, hdroptlen);
2897 	} else
2898 		/*
2899 		 * If no out of band data is expected,
2900 		 * pull receive urgent pointer along
2901 		 * with the receive window.
2902 		 */
2903 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2904 			tp->rcv_up = tp->rcv_nxt;
2905 dodata:							/* XXX */
2906 
2907 	/*
2908 	 * Process the segment text, merging it into the TCP sequencing queue,
2909 	 * and arranging for acknowledgement of receipt if necessary.
2910 	 * This process logically involves adjusting tp->rcv_wnd as data
2911 	 * is presented to the user (this happens in tcp_usrreq.c,
2912 	 * tcp_rcvd()).  If a FIN has already been received on this
2913 	 * connection then we just ignore the text.
2914 	 */
2915 	if ((tlen || (tiflags & TH_FIN)) &&
2916 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2917 		/*
2918 		 * Insert segment ti into reassembly queue of tcp with
2919 		 * control block tp.  Return TH_FIN if reassembly now includes
2920 		 * a segment with FIN.  The macro form does the common case
2921 		 * inline (segment is the next to be received on an
2922 		 * established connection, and the queue is empty),
2923 		 * avoiding linkage into and removal from the queue and
2924 		 * repetition of various conversions.
2925 		 * Set DELACK for segments received in order, but ack
2926 		 * immediately when segments are out of order
2927 		 * (so fast retransmit can work).
2928 		 */
2929 		/* NOTE: this was TCP_REASS() macro, but used only once */
2930 		TCP_REASS_LOCK(tp);
2931 		if (th->th_seq == tp->rcv_nxt &&
2932 		    TAILQ_FIRST(&tp->segq) == NULL &&
2933 		    tp->t_state == TCPS_ESTABLISHED) {
2934 			tcp_setup_ack(tp, th);
2935 			tp->rcv_nxt += tlen;
2936 			tiflags = th->th_flags & TH_FIN;
2937 			tcps = TCP_STAT_GETREF();
2938 			tcps[TCP_STAT_RCVPACK]++;
2939 			tcps[TCP_STAT_RCVBYTE] += tlen;
2940 			TCP_STAT_PUTREF();
2941 			nd6_hint(tp);
2942 			if (so->so_state & SS_CANTRCVMORE)
2943 				m_freem(m);
2944 			else {
2945 				m_adj(m, hdroptlen);
2946 				sbappendstream(&(so)->so_rcv, m);
2947 			}
2948 			TCP_REASS_UNLOCK(tp);
2949 			sorwakeup(so);
2950 		} else {
2951 			m_adj(m, hdroptlen);
2952 			tiflags = tcp_reass(tp, th, m, &tlen);
2953 			tp->t_flags |= TF_ACKNOW;
2954 		}
2955 
2956 		/*
2957 		 * Note the amount of data that peer has sent into
2958 		 * our window, in order to estimate the sender's
2959 		 * buffer size.
2960 		 */
2961 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2962 	} else {
2963 		m_freem(m);
2964 		m = NULL;
2965 		tiflags &= ~TH_FIN;
2966 	}
2967 
2968 	/*
2969 	 * If FIN is received ACK the FIN and let the user know
2970 	 * that the connection is closing.  Ignore a FIN received before
2971 	 * the connection is fully established.
2972 	 */
2973 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2974 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2975 			socantrcvmore(so);
2976 			tp->t_flags |= TF_ACKNOW;
2977 			tp->rcv_nxt++;
2978 		}
2979 		switch (tp->t_state) {
2980 
2981 	 	/*
2982 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2983 		 */
2984 		case TCPS_ESTABLISHED:
2985 			tp->t_state = TCPS_CLOSE_WAIT;
2986 			break;
2987 
2988 	 	/*
2989 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2990 		 * enter the CLOSING state.
2991 		 */
2992 		case TCPS_FIN_WAIT_1:
2993 			tp->t_state = TCPS_CLOSING;
2994 			break;
2995 
2996 	 	/*
2997 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2998 		 * starting the time-wait timer, turning off the other
2999 		 * standard timers.
3000 		 */
3001 		case TCPS_FIN_WAIT_2:
3002 			tp->t_state = TCPS_TIME_WAIT;
3003 			tcp_canceltimers(tp);
3004 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3005 			soisdisconnected(so);
3006 			break;
3007 
3008 		/*
3009 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
3010 		 */
3011 		case TCPS_TIME_WAIT:
3012 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3013 			break;
3014 		}
3015 	}
3016 #ifdef TCP_DEBUG
3017 	if (so->so_options & SO_DEBUG)
3018 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
3019 #endif
3020 
3021 	/*
3022 	 * Return any desired output.
3023 	 */
3024 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3025 		KERNEL_LOCK(1, NULL);
3026 		(void) tcp_output(tp);
3027 		KERNEL_UNLOCK_ONE(NULL);
3028 	}
3029 	if (tcp_saveti)
3030 		m_freem(tcp_saveti);
3031 
3032 	if (tp->t_state == TCPS_TIME_WAIT
3033 	    && (so->so_state & SS_NOFDREF)
3034 	    && (tp->t_inpcb || af != AF_INET)
3035 	    && (tp->t_in6pcb || af != AF_INET6)
3036 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3037 	    && TAILQ_EMPTY(&tp->segq)
3038 	    && vtw_add(af, tp)) {
3039 		;
3040 	}
3041 	return;
3042 
3043 badsyn:
3044 	/*
3045 	 * Received a bad SYN.  Increment counters and dropwithreset.
3046 	 */
3047 	TCP_STATINC(TCP_STAT_BADSYN);
3048 	tp = NULL;
3049 	goto dropwithreset;
3050 
3051 dropafterack:
3052 	/*
3053 	 * Generate an ACK dropping incoming segment if it occupies
3054 	 * sequence space, where the ACK reflects our state.
3055 	 */
3056 	if (tiflags & TH_RST)
3057 		goto drop;
3058 	goto dropafterack2;
3059 
3060 dropafterack_ratelim:
3061 	/*
3062 	 * We may want to rate-limit ACKs against SYN/RST attack.
3063 	 */
3064 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3065 	    tcp_ackdrop_ppslim) == 0) {
3066 		/* XXX stat */
3067 		goto drop;
3068 	}
3069 	/* ...fall into dropafterack2... */
3070 
3071 dropafterack2:
3072 	m_freem(m);
3073 	tp->t_flags |= TF_ACKNOW;
3074 	KERNEL_LOCK(1, NULL);
3075 	(void) tcp_output(tp);
3076 	KERNEL_UNLOCK_ONE(NULL);
3077 	if (tcp_saveti)
3078 		m_freem(tcp_saveti);
3079 	return;
3080 
3081 dropwithreset_ratelim:
3082 	/*
3083 	 * We may want to rate-limit RSTs in certain situations,
3084 	 * particularly if we are sending an RST in response to
3085 	 * an attempt to connect to or otherwise communicate with
3086 	 * a port for which we have no socket.
3087 	 */
3088 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3089 	    tcp_rst_ppslim) == 0) {
3090 		/* XXX stat */
3091 		goto drop;
3092 	}
3093 	/* ...fall into dropwithreset... */
3094 
3095 dropwithreset:
3096 	/*
3097 	 * Generate a RST, dropping incoming segment.
3098 	 * Make ACK acceptable to originator of segment.
3099 	 */
3100 	if (tiflags & TH_RST)
3101 		goto drop;
3102 
3103 	switch (af) {
3104 #ifdef INET6
3105 	case AF_INET6:
3106 		/* For following calls to tcp_respond */
3107 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3108 			goto drop;
3109 		break;
3110 #endif /* INET6 */
3111 	case AF_INET:
3112 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3113 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
3114 			goto drop;
3115 	}
3116 
3117 	if (tiflags & TH_ACK)
3118 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3119 	else {
3120 		if (tiflags & TH_SYN)
3121 			tlen++;
3122 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3123 		    TH_RST|TH_ACK);
3124 	}
3125 	if (tcp_saveti)
3126 		m_freem(tcp_saveti);
3127 	return;
3128 
3129 badcsum:
3130 drop:
3131 	/*
3132 	 * Drop space held by incoming segment and return.
3133 	 */
3134 	if (tp) {
3135 		if (tp->t_inpcb)
3136 			so = tp->t_inpcb->inp_socket;
3137 #ifdef INET6
3138 		else if (tp->t_in6pcb)
3139 			so = tp->t_in6pcb->in6p_socket;
3140 #endif
3141 		else
3142 			so = NULL;
3143 #ifdef TCP_DEBUG
3144 		if (so && (so->so_options & SO_DEBUG) != 0)
3145 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3146 #endif
3147 	}
3148 	if (tcp_saveti)
3149 		m_freem(tcp_saveti);
3150 	m_freem(m);
3151 	return;
3152 }
3153 
3154 #ifdef TCP_SIGNATURE
3155 int
3156 tcp_signature_apply(void *fstate, void *data, u_int len)
3157 {
3158 
3159 	MD5Update(fstate, (u_char *)data, len);
3160 	return (0);
3161 }
3162 
3163 struct secasvar *
3164 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3165 {
3166 	struct ip *ip;
3167 	struct ip6_hdr *ip6;
3168 
3169 	ip = mtod(m, struct ip *);
3170 	switch (ip->ip_v) {
3171 	case 4:
3172 		ip = mtod(m, struct ip *);
3173 		ip6 = NULL;
3174 		break;
3175 	case 6:
3176 		ip = NULL;
3177 		ip6 = mtod(m, struct ip6_hdr *);
3178 		break;
3179 	default:
3180 		return (NULL);
3181 	}
3182 
3183 #ifdef IPSEC
3184 	if (ipsec_used) {
3185 		union sockaddr_union dst;
3186 		/* Extract the destination from the IP header in the mbuf. */
3187 		memset(&dst, 0, sizeof(union sockaddr_union));
3188 		if (ip != NULL) {
3189 			dst.sa.sa_len = sizeof(struct sockaddr_in);
3190 			dst.sa.sa_family = AF_INET;
3191 			dst.sin.sin_addr = ip->ip_dst;
3192 		} else {
3193 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
3194 			dst.sa.sa_family = AF_INET6;
3195 			dst.sin6.sin6_addr = ip6->ip6_dst;
3196 		}
3197 
3198 		/*
3199 		 * Look up an SADB entry which matches the address of the peer.
3200 		 */
3201 		return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3202 	}
3203 	return NULL;
3204 #else
3205 	if (ip)
3206 		return key_allocsa(AF_INET, (void *)&ip->ip_src,
3207 		    (void *)&ip->ip_dst, IPPROTO_TCP,
3208 		    htonl(TCP_SIG_SPI), 0, 0);
3209 	else
3210 		return key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
3211 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
3212 		    htonl(TCP_SIG_SPI), 0, 0);
3213 #endif
3214 }
3215 
3216 int
3217 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3218     struct secasvar *sav, char *sig)
3219 {
3220 	MD5_CTX ctx;
3221 	struct ip *ip;
3222 	struct ipovly *ipovly;
3223 #ifdef INET6
3224 	struct ip6_hdr *ip6;
3225 	struct ip6_hdr_pseudo ip6pseudo;
3226 #endif /* INET6 */
3227 	struct ippseudo ippseudo;
3228 	struct tcphdr th0;
3229 	int l, tcphdrlen;
3230 
3231 	if (sav == NULL)
3232 		return (-1);
3233 
3234 	tcphdrlen = th->th_off * 4;
3235 
3236 	switch (mtod(m, struct ip *)->ip_v) {
3237 	case 4:
3238 		MD5Init(&ctx);
3239 		ip = mtod(m, struct ip *);
3240 		memset(&ippseudo, 0, sizeof(ippseudo));
3241 		ipovly = (struct ipovly *)ip;
3242 		ippseudo.ippseudo_src = ipovly->ih_src;
3243 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3244 		ippseudo.ippseudo_pad = 0;
3245 		ippseudo.ippseudo_p = IPPROTO_TCP;
3246 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3247 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3248 		break;
3249 #if INET6
3250 	case 6:
3251 		MD5Init(&ctx);
3252 		ip6 = mtod(m, struct ip6_hdr *);
3253 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3254 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3255 		in6_clearscope(&ip6pseudo.ip6ph_src);
3256 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3257 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3258 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3259 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3260 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3261 		break;
3262 #endif /* INET6 */
3263 	default:
3264 		return (-1);
3265 	}
3266 
3267 	th0 = *th;
3268 	th0.th_sum = 0;
3269 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3270 
3271 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3272 	if (l > 0)
3273 		m_apply(m, thoff + tcphdrlen,
3274 		    m->m_pkthdr.len - thoff - tcphdrlen,
3275 		    tcp_signature_apply, &ctx);
3276 
3277 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3278 	MD5Final(sig, &ctx);
3279 
3280 	return (0);
3281 }
3282 #endif
3283 
3284 /*
3285  * tcp_dooptions: parse and process tcp options.
3286  *
3287  * returns -1 if this segment should be dropped.  (eg. wrong signature)
3288  * otherwise returns 0.
3289  */
3290 
3291 static int
3292 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3293     struct tcphdr *th,
3294     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3295 {
3296 	u_int16_t mss;
3297 	int opt, optlen = 0;
3298 #ifdef TCP_SIGNATURE
3299 	void *sigp = NULL;
3300 	char sigbuf[TCP_SIGLEN];
3301 	struct secasvar *sav = NULL;
3302 #endif
3303 
3304 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3305 		opt = cp[0];
3306 		if (opt == TCPOPT_EOL)
3307 			break;
3308 		if (opt == TCPOPT_NOP)
3309 			optlen = 1;
3310 		else {
3311 			if (cnt < 2)
3312 				break;
3313 			optlen = cp[1];
3314 			if (optlen < 2 || optlen > cnt)
3315 				break;
3316 		}
3317 		switch (opt) {
3318 
3319 		default:
3320 			continue;
3321 
3322 		case TCPOPT_MAXSEG:
3323 			if (optlen != TCPOLEN_MAXSEG)
3324 				continue;
3325 			if (!(th->th_flags & TH_SYN))
3326 				continue;
3327 			if (TCPS_HAVERCVDSYN(tp->t_state))
3328 				continue;
3329 			bcopy(cp + 2, &mss, sizeof(mss));
3330 			oi->maxseg = ntohs(mss);
3331 			break;
3332 
3333 		case TCPOPT_WINDOW:
3334 			if (optlen != TCPOLEN_WINDOW)
3335 				continue;
3336 			if (!(th->th_flags & TH_SYN))
3337 				continue;
3338 			if (TCPS_HAVERCVDSYN(tp->t_state))
3339 				continue;
3340 			tp->t_flags |= TF_RCVD_SCALE;
3341 			tp->requested_s_scale = cp[2];
3342 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3343 				char buf[INET6_ADDRSTRLEN];
3344 				struct ip *ip = mtod(m, struct ip *);
3345 #ifdef INET6
3346 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3347 #endif
3348 				if (ip)
3349 					in_print(buf, sizeof(buf),
3350 					    &ip->ip_src);
3351 #ifdef INET6
3352 				else if (ip6)
3353 					in6_print(buf, sizeof(buf),
3354 					    &ip6->ip6_src);
3355 #endif
3356 				else
3357 					strlcpy(buf, "(unknown)", sizeof(buf));
3358 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3359 				    "assuming %d\n",
3360 				    tp->requested_s_scale, buf,
3361 				    TCP_MAX_WINSHIFT);
3362 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3363 			}
3364 			break;
3365 
3366 		case TCPOPT_TIMESTAMP:
3367 			if (optlen != TCPOLEN_TIMESTAMP)
3368 				continue;
3369 			oi->ts_present = 1;
3370 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3371 			NTOHL(oi->ts_val);
3372 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3373 			NTOHL(oi->ts_ecr);
3374 
3375 			if (!(th->th_flags & TH_SYN))
3376 				continue;
3377 			if (TCPS_HAVERCVDSYN(tp->t_state))
3378 				continue;
3379 			/*
3380 			 * A timestamp received in a SYN makes
3381 			 * it ok to send timestamp requests and replies.
3382 			 */
3383 			tp->t_flags |= TF_RCVD_TSTMP;
3384 			tp->ts_recent = oi->ts_val;
3385 			tp->ts_recent_age = tcp_now;
3386                         break;
3387 
3388 		case TCPOPT_SACK_PERMITTED:
3389 			if (optlen != TCPOLEN_SACK_PERMITTED)
3390 				continue;
3391 			if (!(th->th_flags & TH_SYN))
3392 				continue;
3393 			if (TCPS_HAVERCVDSYN(tp->t_state))
3394 				continue;
3395 			if (tcp_do_sack) {
3396 				tp->t_flags |= TF_SACK_PERMIT;
3397 				tp->t_flags |= TF_WILL_SACK;
3398 			}
3399 			break;
3400 
3401 		case TCPOPT_SACK:
3402 			tcp_sack_option(tp, th, cp, optlen);
3403 			break;
3404 #ifdef TCP_SIGNATURE
3405 		case TCPOPT_SIGNATURE:
3406 			if (optlen != TCPOLEN_SIGNATURE)
3407 				continue;
3408 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3409 				return (-1);
3410 
3411 			sigp = sigbuf;
3412 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3413 			tp->t_flags |= TF_SIGNATURE;
3414 			break;
3415 #endif
3416 		}
3417 	}
3418 
3419 #ifndef TCP_SIGNATURE
3420 	return 0;
3421 #else
3422 	if (tp->t_flags & TF_SIGNATURE) {
3423 
3424 		sav = tcp_signature_getsav(m, th);
3425 
3426 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3427 			return (-1);
3428 	}
3429 
3430 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3431 		goto out;
3432 
3433 	if (sigp) {
3434 		char sig[TCP_SIGLEN];
3435 
3436 		tcp_fields_to_net(th);
3437 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3438 			tcp_fields_to_host(th);
3439 			goto out;
3440 		}
3441 		tcp_fields_to_host(th);
3442 
3443 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
3444 			TCP_STATINC(TCP_STAT_BADSIG);
3445 			goto out;
3446 		} else
3447 			TCP_STATINC(TCP_STAT_GOODSIG);
3448 
3449 		key_sa_recordxfer(sav, m);
3450 		KEY_FREESAV(&sav);
3451 	}
3452 	return 0;
3453 out:
3454 	if (sav != NULL)
3455 		KEY_FREESAV(&sav);
3456 	return -1;
3457 #endif
3458 }
3459 
3460 /*
3461  * Pull out of band byte out of a segment so
3462  * it doesn't appear in the user's data queue.
3463  * It is still reflected in the segment length for
3464  * sequencing purposes.
3465  */
3466 void
3467 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3468     struct mbuf *m, int off)
3469 {
3470 	int cnt = off + th->th_urp - 1;
3471 
3472 	while (cnt >= 0) {
3473 		if (m->m_len > cnt) {
3474 			char *cp = mtod(m, char *) + cnt;
3475 			struct tcpcb *tp = sototcpcb(so);
3476 
3477 			tp->t_iobc = *cp;
3478 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3479 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3480 			m->m_len--;
3481 			return;
3482 		}
3483 		cnt -= m->m_len;
3484 		m = m->m_next;
3485 		if (m == 0)
3486 			break;
3487 	}
3488 	panic("tcp_pulloutofband");
3489 }
3490 
3491 /*
3492  * Collect new round-trip time estimate
3493  * and update averages and current timeout.
3494  *
3495  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3496  * difference of two timestamps.
3497  */
3498 void
3499 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3500 {
3501 	int32_t delta;
3502 
3503 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3504 	if (tp->t_srtt != 0) {
3505 		/*
3506 		 * Compute the amount to add to srtt for smoothing,
3507 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3508 		 * srtt is stored in 1/32 slow ticks, we conceptually
3509 		 * shift left 5 bits, subtract srtt to get the
3510 		 * diference, and then shift right by TCP_RTT_SHIFT
3511 		 * (3) to obtain 1/8 of the difference.
3512 		 */
3513 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3514 		/*
3515 		 * This can never happen, because delta's lowest
3516 		 * possible value is 1/8 of t_srtt.  But if it does,
3517 		 * set srtt to some reasonable value, here chosen
3518 		 * as 1/8 tick.
3519 		 */
3520 		if ((tp->t_srtt += delta) <= 0)
3521 			tp->t_srtt = 1 << 2;
3522 		/*
3523 		 * RFC2988 requires that rttvar be updated first.
3524 		 * This code is compliant because "delta" is the old
3525 		 * srtt minus the new observation (scaled).
3526 		 *
3527 		 * RFC2988 says:
3528 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3529 		 *
3530 		 * delta is in units of 1/32 ticks, and has then been
3531 		 * divided by 8.  This is equivalent to being in 1/16s
3532 		 * units and divided by 4.  Subtract from it 1/4 of
3533 		 * the existing rttvar to form the (signed) amount to
3534 		 * adjust.
3535 		 */
3536 		if (delta < 0)
3537 			delta = -delta;
3538 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3539 		/*
3540 		 * As with srtt, this should never happen.  There is
3541 		 * no support in RFC2988 for this operation.  But 1/4s
3542 		 * as rttvar when faced with something arguably wrong
3543 		 * is ok.
3544 		 */
3545 		if ((tp->t_rttvar += delta) <= 0)
3546 			tp->t_rttvar = 1 << 2;
3547 
3548 		/*
3549 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3550 		 * Problem is: it doesn't work.  Disabled by defaulting
3551 		 * tcp_rttlocal to 0; see corresponding code in
3552 		 * tcp_subr that selects local vs remote in a different way.
3553 		 *
3554 		 * The static branch prediction hint here should be removed
3555 		 * when the rtt estimator is fixed and the rtt_enable code
3556 		 * is turned back on.
3557 		 */
3558 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3559 		    && tp->t_srtt > tcp_msl_remote_threshold
3560 		    && tp->t_msl  < tcp_msl_remote) {
3561 			tp->t_msl = tcp_msl_remote;
3562 		}
3563 	} else {
3564 		/*
3565 		 * This is the first measurement.  Per RFC2988, 2.2,
3566 		 * set rtt=R and srtt=R/2.
3567 		 * For srtt, storage representation is 1/32 ticks,
3568 		 * so shift left by 5.
3569 		 * For rttvar, storage representation is 1/16 ticks,
3570 		 * So shift left by 4, but then right by 1 to halve.
3571 		 */
3572 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3573 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3574 	}
3575 	tp->t_rtttime = 0;
3576 	tp->t_rxtshift = 0;
3577 
3578 	/*
3579 	 * the retransmit should happen at rtt + 4 * rttvar.
3580 	 * Because of the way we do the smoothing, srtt and rttvar
3581 	 * will each average +1/2 tick of bias.  When we compute
3582 	 * the retransmit timer, we want 1/2 tick of rounding and
3583 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3584 	 * firing of the timer.  The bias will give us exactly the
3585 	 * 1.5 tick we need.  But, because the bias is
3586 	 * statistical, we have to test that we don't drop below
3587 	 * the minimum feasible timer (which is 2 ticks).
3588 	 */
3589 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3590 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3591 
3592 	/*
3593 	 * We received an ack for a packet that wasn't retransmitted;
3594 	 * it is probably safe to discard any error indications we've
3595 	 * received recently.  This isn't quite right, but close enough
3596 	 * for now (a route might have failed after we sent a segment,
3597 	 * and the return path might not be symmetrical).
3598 	 */
3599 	tp->t_softerror = 0;
3600 }
3601 
3602 
3603 /*
3604  * TCP compressed state engine.  Currently used to hold compressed
3605  * state for SYN_RECEIVED.
3606  */
3607 
3608 u_long	syn_cache_count;
3609 u_int32_t syn_hash1, syn_hash2;
3610 
3611 #define SYN_HASH(sa, sp, dp) \
3612 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3613 				     ((u_int32_t)(sp)))^syn_hash2)))
3614 #ifndef INET6
3615 #define	SYN_HASHALL(hash, src, dst) \
3616 do {									\
3617 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3618 		((const struct sockaddr_in *)(src))->sin_port,		\
3619 		((const struct sockaddr_in *)(dst))->sin_port);		\
3620 } while (/*CONSTCOND*/ 0)
3621 #else
3622 #define SYN_HASH6(sa, sp, dp) \
3623 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3624 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3625 	 & 0x7fffffff)
3626 
3627 #define SYN_HASHALL(hash, src, dst) \
3628 do {									\
3629 	switch ((src)->sa_family) {					\
3630 	case AF_INET:							\
3631 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3632 			((const struct sockaddr_in *)(src))->sin_port,	\
3633 			((const struct sockaddr_in *)(dst))->sin_port);	\
3634 		break;							\
3635 	case AF_INET6:							\
3636 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3637 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3638 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3639 		break;							\
3640 	default:							\
3641 		hash = 0;						\
3642 	}								\
3643 } while (/*CONSTCOND*/0)
3644 #endif /* INET6 */
3645 
3646 static struct pool syn_cache_pool;
3647 
3648 /*
3649  * We don't estimate RTT with SYNs, so each packet starts with the default
3650  * RTT and each timer step has a fixed timeout value.
3651  */
3652 #define	SYN_CACHE_TIMER_ARM(sc)						\
3653 do {									\
3654 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3655 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3656 	    TCPTV_REXMTMAX);						\
3657 	callout_reset(&(sc)->sc_timer,					\
3658 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3659 } while (/*CONSTCOND*/0)
3660 
3661 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3662 
3663 static inline void
3664 syn_cache_rm(struct syn_cache *sc)
3665 {
3666 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3667 	    sc, sc_bucketq);
3668 	sc->sc_tp = NULL;
3669 	LIST_REMOVE(sc, sc_tpq);
3670 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3671 	callout_stop(&sc->sc_timer);
3672 	syn_cache_count--;
3673 }
3674 
3675 static inline void
3676 syn_cache_put(struct syn_cache *sc)
3677 {
3678 	if (sc->sc_ipopts)
3679 		(void) m_free(sc->sc_ipopts);
3680 	rtcache_free(&sc->sc_route);
3681 	sc->sc_flags |= SCF_DEAD;
3682 	if (!callout_invoking(&sc->sc_timer))
3683 		callout_schedule(&(sc)->sc_timer, 1);
3684 }
3685 
3686 void
3687 syn_cache_init(void)
3688 {
3689 	int i;
3690 
3691 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3692 	    "synpl", NULL, IPL_SOFTNET);
3693 
3694 	/* Initialize the hash buckets. */
3695 	for (i = 0; i < tcp_syn_cache_size; i++)
3696 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3697 }
3698 
3699 void
3700 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3701 {
3702 	struct syn_cache_head *scp;
3703 	struct syn_cache *sc2;
3704 	int s;
3705 
3706 	/*
3707 	 * If there are no entries in the hash table, reinitialize
3708 	 * the hash secrets.
3709 	 */
3710 	if (syn_cache_count == 0) {
3711 		syn_hash1 = cprng_fast32();
3712 		syn_hash2 = cprng_fast32();
3713 	}
3714 
3715 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3716 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3717 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3718 
3719 	/*
3720 	 * Make sure that we don't overflow the per-bucket
3721 	 * limit or the total cache size limit.
3722 	 */
3723 	s = splsoftnet();
3724 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3725 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3726 		/*
3727 		 * The bucket is full.  Toss the oldest element in the
3728 		 * bucket.  This will be the first entry in the bucket.
3729 		 */
3730 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3731 #ifdef DIAGNOSTIC
3732 		/*
3733 		 * This should never happen; we should always find an
3734 		 * entry in our bucket.
3735 		 */
3736 		if (sc2 == NULL)
3737 			panic("syn_cache_insert: bucketoverflow: impossible");
3738 #endif
3739 		syn_cache_rm(sc2);
3740 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3741 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3742 		struct syn_cache_head *scp2, *sce;
3743 
3744 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3745 		/*
3746 		 * The cache is full.  Toss the oldest entry in the
3747 		 * first non-empty bucket we can find.
3748 		 *
3749 		 * XXX We would really like to toss the oldest
3750 		 * entry in the cache, but we hope that this
3751 		 * condition doesn't happen very often.
3752 		 */
3753 		scp2 = scp;
3754 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3755 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3756 			for (++scp2; scp2 != scp; scp2++) {
3757 				if (scp2 >= sce)
3758 					scp2 = &tcp_syn_cache[0];
3759 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3760 					break;
3761 			}
3762 #ifdef DIAGNOSTIC
3763 			/*
3764 			 * This should never happen; we should always find a
3765 			 * non-empty bucket.
3766 			 */
3767 			if (scp2 == scp)
3768 				panic("syn_cache_insert: cacheoverflow: "
3769 				    "impossible");
3770 #endif
3771 		}
3772 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3773 		syn_cache_rm(sc2);
3774 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3775 	}
3776 
3777 	/*
3778 	 * Initialize the entry's timer.
3779 	 */
3780 	sc->sc_rxttot = 0;
3781 	sc->sc_rxtshift = 0;
3782 	SYN_CACHE_TIMER_ARM(sc);
3783 
3784 	/* Link it from tcpcb entry */
3785 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3786 
3787 	/* Put it into the bucket. */
3788 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3789 	scp->sch_length++;
3790 	syn_cache_count++;
3791 
3792 	TCP_STATINC(TCP_STAT_SC_ADDED);
3793 	splx(s);
3794 }
3795 
3796 /*
3797  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3798  * If we have retransmitted an entry the maximum number of times, expire
3799  * that entry.
3800  */
3801 void
3802 syn_cache_timer(void *arg)
3803 {
3804 	struct syn_cache *sc = arg;
3805 
3806 	mutex_enter(softnet_lock);
3807 	KERNEL_LOCK(1, NULL);
3808 	callout_ack(&sc->sc_timer);
3809 
3810 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3811 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3812 		callout_destroy(&sc->sc_timer);
3813 		pool_put(&syn_cache_pool, sc);
3814 		KERNEL_UNLOCK_ONE(NULL);
3815 		mutex_exit(softnet_lock);
3816 		return;
3817 	}
3818 
3819 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3820 		/* Drop it -- too many retransmissions. */
3821 		goto dropit;
3822 	}
3823 
3824 	/*
3825 	 * Compute the total amount of time this entry has
3826 	 * been on a queue.  If this entry has been on longer
3827 	 * than the keep alive timer would allow, expire it.
3828 	 */
3829 	sc->sc_rxttot += sc->sc_rxtcur;
3830 	if (sc->sc_rxttot >= tcp_keepinit)
3831 		goto dropit;
3832 
3833 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3834 	(void) syn_cache_respond(sc, NULL);
3835 
3836 	/* Advance the timer back-off. */
3837 	sc->sc_rxtshift++;
3838 	SYN_CACHE_TIMER_ARM(sc);
3839 
3840 	KERNEL_UNLOCK_ONE(NULL);
3841 	mutex_exit(softnet_lock);
3842 	return;
3843 
3844  dropit:
3845 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3846 	syn_cache_rm(sc);
3847 	if (sc->sc_ipopts)
3848 		(void) m_free(sc->sc_ipopts);
3849 	rtcache_free(&sc->sc_route);
3850 	callout_destroy(&sc->sc_timer);
3851 	pool_put(&syn_cache_pool, sc);
3852 	KERNEL_UNLOCK_ONE(NULL);
3853 	mutex_exit(softnet_lock);
3854 }
3855 
3856 /*
3857  * Remove syn cache created by the specified tcb entry,
3858  * because this does not make sense to keep them
3859  * (if there's no tcb entry, syn cache entry will never be used)
3860  */
3861 void
3862 syn_cache_cleanup(struct tcpcb *tp)
3863 {
3864 	struct syn_cache *sc, *nsc;
3865 	int s;
3866 
3867 	s = splsoftnet();
3868 
3869 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3870 		nsc = LIST_NEXT(sc, sc_tpq);
3871 
3872 #ifdef DIAGNOSTIC
3873 		if (sc->sc_tp != tp)
3874 			panic("invalid sc_tp in syn_cache_cleanup");
3875 #endif
3876 		syn_cache_rm(sc);
3877 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3878 	}
3879 	/* just for safety */
3880 	LIST_INIT(&tp->t_sc);
3881 
3882 	splx(s);
3883 }
3884 
3885 /*
3886  * Find an entry in the syn cache.
3887  */
3888 struct syn_cache *
3889 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3890     struct syn_cache_head **headp)
3891 {
3892 	struct syn_cache *sc;
3893 	struct syn_cache_head *scp;
3894 	u_int32_t hash;
3895 	int s;
3896 
3897 	SYN_HASHALL(hash, src, dst);
3898 
3899 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3900 	*headp = scp;
3901 	s = splsoftnet();
3902 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3903 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3904 		if (sc->sc_hash != hash)
3905 			continue;
3906 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3907 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3908 			splx(s);
3909 			return (sc);
3910 		}
3911 	}
3912 	splx(s);
3913 	return (NULL);
3914 }
3915 
3916 /*
3917  * This function gets called when we receive an ACK for a
3918  * socket in the LISTEN state.  We look up the connection
3919  * in the syn cache, and if its there, we pull it out of
3920  * the cache and turn it into a full-blown connection in
3921  * the SYN-RECEIVED state.
3922  *
3923  * The return values may not be immediately obvious, and their effects
3924  * can be subtle, so here they are:
3925  *
3926  *	NULL	SYN was not found in cache; caller should drop the
3927  *		packet and send an RST.
3928  *
3929  *	-1	We were unable to create the new connection, and are
3930  *		aborting it.  An ACK,RST is being sent to the peer
3931  *		(unless we got screwey sequence numbners; see below),
3932  *		because the 3-way handshake has been completed.  Caller
3933  *		should not free the mbuf, since we may be using it.  If
3934  *		we are not, we will free it.
3935  *
3936  *	Otherwise, the return value is a pointer to the new socket
3937  *	associated with the connection.
3938  */
3939 struct socket *
3940 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3941     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3942     struct socket *so, struct mbuf *m)
3943 {
3944 	struct syn_cache *sc;
3945 	struct syn_cache_head *scp;
3946 	struct inpcb *inp = NULL;
3947 #ifdef INET6
3948 	struct in6pcb *in6p = NULL;
3949 #endif
3950 	struct tcpcb *tp = 0;
3951 	int s;
3952 	struct socket *oso;
3953 
3954 	s = splsoftnet();
3955 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3956 		splx(s);
3957 		return (NULL);
3958 	}
3959 
3960 	/*
3961 	 * Verify the sequence and ack numbers.  Try getting the correct
3962 	 * response again.
3963 	 */
3964 	if ((th->th_ack != sc->sc_iss + 1) ||
3965 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3966 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3967 		(void) syn_cache_respond(sc, m);
3968 		splx(s);
3969 		return ((struct socket *)(-1));
3970 	}
3971 
3972 	/* Remove this cache entry */
3973 	syn_cache_rm(sc);
3974 	splx(s);
3975 
3976 	/*
3977 	 * Ok, create the full blown connection, and set things up
3978 	 * as they would have been set up if we had created the
3979 	 * connection when the SYN arrived.  If we can't create
3980 	 * the connection, abort it.
3981 	 */
3982 	/*
3983 	 * inp still has the OLD in_pcb stuff, set the
3984 	 * v6-related flags on the new guy, too.   This is
3985 	 * done particularly for the case where an AF_INET6
3986 	 * socket is bound only to a port, and a v4 connection
3987 	 * comes in on that port.
3988 	 * we also copy the flowinfo from the original pcb
3989 	 * to the new one.
3990 	 */
3991 	oso = so;
3992 	so = sonewconn(so, true);
3993 	if (so == NULL)
3994 		goto resetandabort;
3995 
3996 	switch (so->so_proto->pr_domain->dom_family) {
3997 #ifdef INET
3998 	case AF_INET:
3999 		inp = sotoinpcb(so);
4000 		break;
4001 #endif
4002 #ifdef INET6
4003 	case AF_INET6:
4004 		in6p = sotoin6pcb(so);
4005 		break;
4006 #endif
4007 	}
4008 	switch (src->sa_family) {
4009 #ifdef INET
4010 	case AF_INET:
4011 		if (inp) {
4012 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
4013 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
4014 			inp->inp_options = ip_srcroute();
4015 			in_pcbstate(inp, INP_BOUND);
4016 			if (inp->inp_options == NULL) {
4017 				inp->inp_options = sc->sc_ipopts;
4018 				sc->sc_ipopts = NULL;
4019 			}
4020 		}
4021 #ifdef INET6
4022 		else if (in6p) {
4023 			/* IPv4 packet to AF_INET6 socket */
4024 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
4025 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
4026 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
4027 				&in6p->in6p_laddr.s6_addr32[3],
4028 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
4029 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4030 			in6totcpcb(in6p)->t_family = AF_INET;
4031 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4032 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4033 			else
4034 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4035 			in6_pcbstate(in6p, IN6P_BOUND);
4036 		}
4037 #endif
4038 		break;
4039 #endif
4040 #ifdef INET6
4041 	case AF_INET6:
4042 		if (in6p) {
4043 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4044 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4045 			in6_pcbstate(in6p, IN6P_BOUND);
4046 		}
4047 		break;
4048 #endif
4049 	}
4050 #ifdef INET6
4051 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4052 		struct in6pcb *oin6p = sotoin6pcb(oso);
4053 		/* inherit socket options from the listening socket */
4054 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4055 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4056 			m_freem(in6p->in6p_options);
4057 			in6p->in6p_options = 0;
4058 		}
4059 		ip6_savecontrol(in6p, &in6p->in6p_options,
4060 			mtod(m, struct ip6_hdr *), m);
4061 	}
4062 #endif
4063 
4064 #if defined(IPSEC)
4065 	if (ipsec_used) {
4066 		/*
4067 		 * we make a copy of policy, instead of sharing the policy, for
4068 		 * better behavior in terms of SA lookup and dead SA removal.
4069 		 */
4070 		if (inp) {
4071 			/* copy old policy into new socket's */
4072 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
4073 			    inp->inp_sp))
4074 				printf("tcp_input: could not copy policy\n");
4075 		}
4076 #ifdef INET6
4077 		else if (in6p) {
4078 			/* copy old policy into new socket's */
4079 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4080 			    in6p->in6p_sp))
4081 				printf("tcp_input: could not copy policy\n");
4082 		}
4083 #endif
4084 	}
4085 #endif
4086 
4087 	/*
4088 	 * Give the new socket our cached route reference.
4089 	 */
4090 	if (inp) {
4091 		rtcache_copy(&inp->inp_route, &sc->sc_route);
4092 		rtcache_free(&sc->sc_route);
4093 	}
4094 #ifdef INET6
4095 	else {
4096 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4097 		rtcache_free(&sc->sc_route);
4098 	}
4099 #endif
4100 
4101 	if (inp) {
4102 		struct sockaddr_in sin;
4103 		memcpy(&sin, src, src->sa_len);
4104 		if (in_pcbconnect(inp, &sin, &lwp0)) {
4105 			goto resetandabort;
4106 		}
4107 	}
4108 #ifdef INET6
4109 	else if (in6p) {
4110 		struct sockaddr_in6 sin6;
4111 		memcpy(&sin6, src, src->sa_len);
4112 		if (src->sa_family == AF_INET) {
4113 			/* IPv4 packet to AF_INET6 socket */
4114 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
4115 		}
4116 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
4117 			goto resetandabort;
4118 		}
4119 	}
4120 #endif
4121 	else {
4122 		goto resetandabort;
4123 	}
4124 
4125 	if (inp)
4126 		tp = intotcpcb(inp);
4127 #ifdef INET6
4128 	else if (in6p)
4129 		tp = in6totcpcb(in6p);
4130 #endif
4131 	else
4132 		tp = NULL;
4133 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4134 	if (sc->sc_request_r_scale != 15) {
4135 		tp->requested_s_scale = sc->sc_requested_s_scale;
4136 		tp->request_r_scale = sc->sc_request_r_scale;
4137 		tp->snd_scale = sc->sc_requested_s_scale;
4138 		tp->rcv_scale = sc->sc_request_r_scale;
4139 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4140 	}
4141 	if (sc->sc_flags & SCF_TIMESTAMP)
4142 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4143 	tp->ts_timebase = sc->sc_timebase;
4144 
4145 	tp->t_template = tcp_template(tp);
4146 	if (tp->t_template == 0) {
4147 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
4148 		so = NULL;
4149 		m_freem(m);
4150 		goto abort;
4151 	}
4152 
4153 	tp->iss = sc->sc_iss;
4154 	tp->irs = sc->sc_irs;
4155 	tcp_sendseqinit(tp);
4156 	tcp_rcvseqinit(tp);
4157 	tp->t_state = TCPS_SYN_RECEIVED;
4158 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4159 	TCP_STATINC(TCP_STAT_ACCEPTS);
4160 
4161 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4162 		tp->t_flags |= TF_WILL_SACK;
4163 
4164 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4165 		tp->t_flags |= TF_ECN_PERMIT;
4166 
4167 #ifdef TCP_SIGNATURE
4168 	if (sc->sc_flags & SCF_SIGNATURE)
4169 		tp->t_flags |= TF_SIGNATURE;
4170 #endif
4171 
4172 	/* Initialize tp->t_ourmss before we deal with the peer's! */
4173 	tp->t_ourmss = sc->sc_ourmaxseg;
4174 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4175 
4176 	/*
4177 	 * Initialize the initial congestion window.  If we
4178 	 * had to retransmit the SYN,ACK, we must initialize cwnd
4179 	 * to 1 segment (i.e. the Loss Window).
4180 	 */
4181 	if (sc->sc_rxtshift)
4182 		tp->snd_cwnd = tp->t_peermss;
4183 	else {
4184 		int ss = tcp_init_win;
4185 #ifdef INET
4186 		if (inp != NULL && in_localaddr(inp->inp_faddr))
4187 			ss = tcp_init_win_local;
4188 #endif
4189 #ifdef INET6
4190 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4191 			ss = tcp_init_win_local;
4192 #endif
4193 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4194 	}
4195 
4196 	tcp_rmx_rtt(tp);
4197 	tp->snd_wl1 = sc->sc_irs;
4198 	tp->rcv_up = sc->sc_irs + 1;
4199 
4200 	/*
4201 	 * This is what whould have happened in tcp_output() when
4202 	 * the SYN,ACK was sent.
4203 	 */
4204 	tp->snd_up = tp->snd_una;
4205 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4206 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4207 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4208 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4209 	tp->last_ack_sent = tp->rcv_nxt;
4210 	tp->t_partialacks = -1;
4211 	tp->t_dupacks = 0;
4212 
4213 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4214 	s = splsoftnet();
4215 	syn_cache_put(sc);
4216 	splx(s);
4217 	return (so);
4218 
4219 resetandabort:
4220 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4221 abort:
4222 	if (so != NULL) {
4223 		(void) soqremque(so, 1);
4224 		(void) soabort(so);
4225 		mutex_enter(softnet_lock);
4226 	}
4227 	s = splsoftnet();
4228 	syn_cache_put(sc);
4229 	splx(s);
4230 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4231 	return ((struct socket *)(-1));
4232 }
4233 
4234 /*
4235  * This function is called when we get a RST for a
4236  * non-existent connection, so that we can see if the
4237  * connection is in the syn cache.  If it is, zap it.
4238  */
4239 
4240 void
4241 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4242 {
4243 	struct syn_cache *sc;
4244 	struct syn_cache_head *scp;
4245 	int s = splsoftnet();
4246 
4247 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4248 		splx(s);
4249 		return;
4250 	}
4251 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4252 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4253 		splx(s);
4254 		return;
4255 	}
4256 	syn_cache_rm(sc);
4257 	TCP_STATINC(TCP_STAT_SC_RESET);
4258 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4259 	splx(s);
4260 }
4261 
4262 void
4263 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4264     struct tcphdr *th)
4265 {
4266 	struct syn_cache *sc;
4267 	struct syn_cache_head *scp;
4268 	int s;
4269 
4270 	s = splsoftnet();
4271 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4272 		splx(s);
4273 		return;
4274 	}
4275 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4276 	if (ntohl (th->th_seq) != sc->sc_iss) {
4277 		splx(s);
4278 		return;
4279 	}
4280 
4281 	/*
4282 	 * If we've retransmitted 3 times and this is our second error,
4283 	 * we remove the entry.  Otherwise, we allow it to continue on.
4284 	 * This prevents us from incorrectly nuking an entry during a
4285 	 * spurious network outage.
4286 	 *
4287 	 * See tcp_notify().
4288 	 */
4289 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4290 		sc->sc_flags |= SCF_UNREACH;
4291 		splx(s);
4292 		return;
4293 	}
4294 
4295 	syn_cache_rm(sc);
4296 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4297 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4298 	splx(s);
4299 }
4300 
4301 /*
4302  * Given a LISTEN socket and an inbound SYN request, add
4303  * this to the syn cache, and send back a segment:
4304  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4305  * to the source.
4306  *
4307  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4308  * Doing so would require that we hold onto the data and deliver it
4309  * to the application.  However, if we are the target of a SYN-flood
4310  * DoS attack, an attacker could send data which would eventually
4311  * consume all available buffer space if it were ACKed.  By not ACKing
4312  * the data, we avoid this DoS scenario.
4313  */
4314 
4315 int
4316 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4317     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4318     int optlen, struct tcp_opt_info *oi)
4319 {
4320 	struct tcpcb tb, *tp;
4321 	long win;
4322 	struct syn_cache *sc;
4323 	struct syn_cache_head *scp;
4324 	struct mbuf *ipopts;
4325 	struct tcp_opt_info opti;
4326 	int s;
4327 
4328 	tp = sototcpcb(so);
4329 
4330 	memset(&opti, 0, sizeof(opti));
4331 
4332 	/*
4333 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4334 	 *
4335 	 * Note this check is performed in tcp_input() very early on.
4336 	 */
4337 
4338 	/*
4339 	 * Initialize some local state.
4340 	 */
4341 	win = sbspace(&so->so_rcv);
4342 	if (win > TCP_MAXWIN)
4343 		win = TCP_MAXWIN;
4344 
4345 	switch (src->sa_family) {
4346 #ifdef INET
4347 	case AF_INET:
4348 		/*
4349 		 * Remember the IP options, if any.
4350 		 */
4351 		ipopts = ip_srcroute();
4352 		break;
4353 #endif
4354 	default:
4355 		ipopts = NULL;
4356 	}
4357 
4358 #ifdef TCP_SIGNATURE
4359 	if (optp || (tp->t_flags & TF_SIGNATURE))
4360 #else
4361 	if (optp)
4362 #endif
4363 	{
4364 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4365 #ifdef TCP_SIGNATURE
4366 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4367 #endif
4368 		tb.t_state = TCPS_LISTEN;
4369 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4370 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4371 			return (0);
4372 	} else
4373 		tb.t_flags = 0;
4374 
4375 	/*
4376 	 * See if we already have an entry for this connection.
4377 	 * If we do, resend the SYN,ACK.  We do not count this
4378 	 * as a retransmission (XXX though maybe we should).
4379 	 */
4380 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4381 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4382 		if (ipopts) {
4383 			/*
4384 			 * If we were remembering a previous source route,
4385 			 * forget it and use the new one we've been given.
4386 			 */
4387 			if (sc->sc_ipopts)
4388 				(void) m_free(sc->sc_ipopts);
4389 			sc->sc_ipopts = ipopts;
4390 		}
4391 		sc->sc_timestamp = tb.ts_recent;
4392 		if (syn_cache_respond(sc, m) == 0) {
4393 			uint64_t *tcps = TCP_STAT_GETREF();
4394 			tcps[TCP_STAT_SNDACKS]++;
4395 			tcps[TCP_STAT_SNDTOTAL]++;
4396 			TCP_STAT_PUTREF();
4397 		}
4398 		return (1);
4399 	}
4400 
4401 	s = splsoftnet();
4402 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4403 	splx(s);
4404 	if (sc == NULL) {
4405 		if (ipopts)
4406 			(void) m_free(ipopts);
4407 		return (0);
4408 	}
4409 
4410 	/*
4411 	 * Fill in the cache, and put the necessary IP and TCP
4412 	 * options into the reply.
4413 	 */
4414 	memset(sc, 0, sizeof(struct syn_cache));
4415 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4416 	bcopy(src, &sc->sc_src, src->sa_len);
4417 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4418 	sc->sc_flags = 0;
4419 	sc->sc_ipopts = ipopts;
4420 	sc->sc_irs = th->th_seq;
4421 	switch (src->sa_family) {
4422 #ifdef INET
4423 	case AF_INET:
4424 	    {
4425 		struct sockaddr_in *srcin = (void *) src;
4426 		struct sockaddr_in *dstin = (void *) dst;
4427 
4428 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4429 		    &srcin->sin_addr, dstin->sin_port,
4430 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4431 		break;
4432 	    }
4433 #endif /* INET */
4434 #ifdef INET6
4435 	case AF_INET6:
4436 	    {
4437 		struct sockaddr_in6 *srcin6 = (void *) src;
4438 		struct sockaddr_in6 *dstin6 = (void *) dst;
4439 
4440 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4441 		    &srcin6->sin6_addr, dstin6->sin6_port,
4442 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4443 		break;
4444 	    }
4445 #endif /* INET6 */
4446 	}
4447 	sc->sc_peermaxseg = oi->maxseg;
4448 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4449 						m_get_rcvif_NOMPSAFE(m) : NULL,
4450 						sc->sc_src.sa.sa_family);
4451 	sc->sc_win = win;
4452 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4453 	sc->sc_timestamp = tb.ts_recent;
4454 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4455 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4456 		sc->sc_flags |= SCF_TIMESTAMP;
4457 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4458 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4459 		sc->sc_requested_s_scale = tb.requested_s_scale;
4460 		sc->sc_request_r_scale = 0;
4461 		/*
4462 		 * Pick the smallest possible scaling factor that
4463 		 * will still allow us to scale up to sb_max.
4464 		 *
4465 		 * We do this because there are broken firewalls that
4466 		 * will corrupt the window scale option, leading to
4467 		 * the other endpoint believing that our advertised
4468 		 * window is unscaled.  At scale factors larger than
4469 		 * 5 the unscaled window will drop below 1500 bytes,
4470 		 * leading to serious problems when traversing these
4471 		 * broken firewalls.
4472 		 *
4473 		 * With the default sbmax of 256K, a scale factor
4474 		 * of 3 will be chosen by this algorithm.  Those who
4475 		 * choose a larger sbmax should watch out
4476 		 * for the compatiblity problems mentioned above.
4477 		 *
4478 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4479 		 * or <SYN,ACK>) segment itself is never scaled.
4480 		 */
4481 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4482 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4483 			sc->sc_request_r_scale++;
4484 	} else {
4485 		sc->sc_requested_s_scale = 15;
4486 		sc->sc_request_r_scale = 15;
4487 	}
4488 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4489 		sc->sc_flags |= SCF_SACK_PERMIT;
4490 
4491 	/*
4492 	 * ECN setup packet recieved.
4493 	 */
4494 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4495 		sc->sc_flags |= SCF_ECN_PERMIT;
4496 
4497 #ifdef TCP_SIGNATURE
4498 	if (tb.t_flags & TF_SIGNATURE)
4499 		sc->sc_flags |= SCF_SIGNATURE;
4500 #endif
4501 	sc->sc_tp = tp;
4502 	if (syn_cache_respond(sc, m) == 0) {
4503 		uint64_t *tcps = TCP_STAT_GETREF();
4504 		tcps[TCP_STAT_SNDACKS]++;
4505 		tcps[TCP_STAT_SNDTOTAL]++;
4506 		TCP_STAT_PUTREF();
4507 		syn_cache_insert(sc, tp);
4508 	} else {
4509 		s = splsoftnet();
4510 		/*
4511 		 * syn_cache_put() will try to schedule the timer, so
4512 		 * we need to initialize it
4513 		 */
4514 		SYN_CACHE_TIMER_ARM(sc);
4515 		syn_cache_put(sc);
4516 		splx(s);
4517 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4518 	}
4519 	return (1);
4520 }
4521 
4522 /*
4523  * syn_cache_respond: (re)send SYN+ACK.
4524  *
4525  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
4526  */
4527 
4528 int
4529 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4530 {
4531 #ifdef INET6
4532 	struct rtentry *rt = NULL;
4533 #endif
4534 	struct route *ro;
4535 	u_int8_t *optp;
4536 	int optlen, error;
4537 	u_int16_t tlen;
4538 	struct ip *ip = NULL;
4539 #ifdef INET6
4540 	struct ip6_hdr *ip6 = NULL;
4541 #endif
4542 	struct tcpcb *tp = NULL;
4543 	struct tcphdr *th;
4544 	u_int hlen;
4545 	struct socket *so;
4546 
4547 	ro = &sc->sc_route;
4548 	switch (sc->sc_src.sa.sa_family) {
4549 	case AF_INET:
4550 		hlen = sizeof(struct ip);
4551 		break;
4552 #ifdef INET6
4553 	case AF_INET6:
4554 		hlen = sizeof(struct ip6_hdr);
4555 		break;
4556 #endif
4557 	default:
4558 		if (m)
4559 			m_freem(m);
4560 		return (EAFNOSUPPORT);
4561 	}
4562 
4563 	/* Compute the size of the TCP options. */
4564 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4565 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4566 #ifdef TCP_SIGNATURE
4567 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4568 #endif
4569 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4570 
4571 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4572 
4573 	/*
4574 	 * Create the IP+TCP header from scratch.
4575 	 */
4576 	if (m)
4577 		m_freem(m);
4578 #ifdef DIAGNOSTIC
4579 	if (max_linkhdr + tlen > MCLBYTES)
4580 		return (ENOBUFS);
4581 #endif
4582 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4583 	if (m && (max_linkhdr + tlen) > MHLEN) {
4584 		MCLGET(m, M_DONTWAIT);
4585 		if ((m->m_flags & M_EXT) == 0) {
4586 			m_freem(m);
4587 			m = NULL;
4588 		}
4589 	}
4590 	if (m == NULL)
4591 		return (ENOBUFS);
4592 	MCLAIM(m, &tcp_tx_mowner);
4593 
4594 	/* Fixup the mbuf. */
4595 	m->m_data += max_linkhdr;
4596 	m->m_len = m->m_pkthdr.len = tlen;
4597 	if (sc->sc_tp) {
4598 		tp = sc->sc_tp;
4599 		if (tp->t_inpcb)
4600 			so = tp->t_inpcb->inp_socket;
4601 #ifdef INET6
4602 		else if (tp->t_in6pcb)
4603 			so = tp->t_in6pcb->in6p_socket;
4604 #endif
4605 		else
4606 			so = NULL;
4607 	} else
4608 		so = NULL;
4609 	m_reset_rcvif(m);
4610 	memset(mtod(m, u_char *), 0, tlen);
4611 
4612 	switch (sc->sc_src.sa.sa_family) {
4613 	case AF_INET:
4614 		ip = mtod(m, struct ip *);
4615 		ip->ip_v = 4;
4616 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4617 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4618 		ip->ip_p = IPPROTO_TCP;
4619 		th = (struct tcphdr *)(ip + 1);
4620 		th->th_dport = sc->sc_src.sin.sin_port;
4621 		th->th_sport = sc->sc_dst.sin.sin_port;
4622 		break;
4623 #ifdef INET6
4624 	case AF_INET6:
4625 		ip6 = mtod(m, struct ip6_hdr *);
4626 		ip6->ip6_vfc = IPV6_VERSION;
4627 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4628 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4629 		ip6->ip6_nxt = IPPROTO_TCP;
4630 		/* ip6_plen will be updated in ip6_output() */
4631 		th = (struct tcphdr *)(ip6 + 1);
4632 		th->th_dport = sc->sc_src.sin6.sin6_port;
4633 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4634 		break;
4635 #endif
4636 	default:
4637 		th = NULL;
4638 	}
4639 
4640 	th->th_seq = htonl(sc->sc_iss);
4641 	th->th_ack = htonl(sc->sc_irs + 1);
4642 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4643 	th->th_flags = TH_SYN|TH_ACK;
4644 	th->th_win = htons(sc->sc_win);
4645 	/* th_sum already 0 */
4646 	/* th_urp already 0 */
4647 
4648 	/* Tack on the TCP options. */
4649 	optp = (u_int8_t *)(th + 1);
4650 	*optp++ = TCPOPT_MAXSEG;
4651 	*optp++ = 4;
4652 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4653 	*optp++ = sc->sc_ourmaxseg & 0xff;
4654 
4655 	if (sc->sc_request_r_scale != 15) {
4656 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4657 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4658 		    sc->sc_request_r_scale);
4659 		optp += 4;
4660 	}
4661 
4662 	if (sc->sc_flags & SCF_TIMESTAMP) {
4663 		u_int32_t *lp = (u_int32_t *)(optp);
4664 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4665 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4666 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4667 		*lp   = htonl(sc->sc_timestamp);
4668 		optp += TCPOLEN_TSTAMP_APPA;
4669 	}
4670 
4671 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4672 		u_int8_t *p = optp;
4673 
4674 		/* Let the peer know that we will SACK. */
4675 		p[0] = TCPOPT_SACK_PERMITTED;
4676 		p[1] = 2;
4677 		p[2] = TCPOPT_NOP;
4678 		p[3] = TCPOPT_NOP;
4679 		optp += 4;
4680 	}
4681 
4682 	/*
4683 	 * Send ECN SYN-ACK setup packet.
4684 	 * Routes can be asymetric, so, even if we receive a packet
4685 	 * with ECE and CWR set, we must not assume no one will block
4686 	 * the ECE packet we are about to send.
4687 	 */
4688 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4689 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4690 		th->th_flags |= TH_ECE;
4691 		TCP_STATINC(TCP_STAT_ECN_SHS);
4692 
4693 		/*
4694 		 * draft-ietf-tcpm-ecnsyn-00.txt
4695 		 *
4696 		 * "[...] a TCP node MAY respond to an ECN-setup
4697 		 * SYN packet by setting ECT in the responding
4698 		 * ECN-setup SYN/ACK packet, indicating to routers
4699 		 * that the SYN/ACK packet is ECN-Capable.
4700 		 * This allows a congested router along the path
4701 		 * to mark the packet instead of dropping the
4702 		 * packet as an indication of congestion."
4703 		 *
4704 		 * "[...] There can be a great benefit in setting
4705 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4706 		 * Congestion is  most likely to occur in
4707 		 * the server-to-client direction.  As a result,
4708 		 * setting an ECN-capable codepoint in SYN/ACK
4709 		 * packets can reduce the occurence of three-second
4710 		 * retransmit timeouts resulting from the drop
4711 		 * of SYN/ACK packets."
4712 		 *
4713 		 * Page 4 and 6, January 2006.
4714 		 */
4715 
4716 		switch (sc->sc_src.sa.sa_family) {
4717 #ifdef INET
4718 		case AF_INET:
4719 			ip->ip_tos |= IPTOS_ECN_ECT0;
4720 			break;
4721 #endif
4722 #ifdef INET6
4723 		case AF_INET6:
4724 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4725 			break;
4726 #endif
4727 		}
4728 		TCP_STATINC(TCP_STAT_ECN_ECT);
4729 	}
4730 
4731 #ifdef TCP_SIGNATURE
4732 	if (sc->sc_flags & SCF_SIGNATURE) {
4733 		struct secasvar *sav;
4734 		u_int8_t *sigp;
4735 
4736 		sav = tcp_signature_getsav(m, th);
4737 
4738 		if (sav == NULL) {
4739 			if (m)
4740 				m_freem(m);
4741 			return (EPERM);
4742 		}
4743 
4744 		*optp++ = TCPOPT_SIGNATURE;
4745 		*optp++ = TCPOLEN_SIGNATURE;
4746 		sigp = optp;
4747 		memset(optp, 0, TCP_SIGLEN);
4748 		optp += TCP_SIGLEN;
4749 		*optp++ = TCPOPT_NOP;
4750 		*optp++ = TCPOPT_EOL;
4751 
4752 		(void)tcp_signature(m, th, hlen, sav, sigp);
4753 
4754 		key_sa_recordxfer(sav, m);
4755 		KEY_FREESAV(&sav);
4756 	}
4757 #endif
4758 
4759 	/* Compute the packet's checksum. */
4760 	switch (sc->sc_src.sa.sa_family) {
4761 	case AF_INET:
4762 		ip->ip_len = htons(tlen - hlen);
4763 		th->th_sum = 0;
4764 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4765 		break;
4766 #ifdef INET6
4767 	case AF_INET6:
4768 		ip6->ip6_plen = htons(tlen - hlen);
4769 		th->th_sum = 0;
4770 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4771 		break;
4772 #endif
4773 	}
4774 
4775 	/*
4776 	 * Fill in some straggling IP bits.  Note the stack expects
4777 	 * ip_len to be in host order, for convenience.
4778 	 */
4779 	switch (sc->sc_src.sa.sa_family) {
4780 #ifdef INET
4781 	case AF_INET:
4782 		ip->ip_len = htons(tlen);
4783 		ip->ip_ttl = ip_defttl;
4784 		/* XXX tos? */
4785 		break;
4786 #endif
4787 #ifdef INET6
4788 	case AF_INET6:
4789 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4790 		ip6->ip6_vfc |= IPV6_VERSION;
4791 		ip6->ip6_plen = htons(tlen - hlen);
4792 		/* ip6_hlim will be initialized afterwards */
4793 		/* XXX flowlabel? */
4794 		break;
4795 #endif
4796 	}
4797 
4798 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4799 	tp = sc->sc_tp;
4800 
4801 	switch (sc->sc_src.sa.sa_family) {
4802 #ifdef INET
4803 	case AF_INET:
4804 		error = ip_output(m, sc->sc_ipopts, ro,
4805 		    (ip_mtudisc ? IP_MTUDISC : 0),
4806 		    NULL, so);
4807 		break;
4808 #endif
4809 #ifdef INET6
4810 	case AF_INET6:
4811 		ip6->ip6_hlim = in6_selecthlim(NULL,
4812 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4813 		rtcache_unref(rt, ro);
4814 
4815 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4816 		break;
4817 #endif
4818 	default:
4819 		error = EAFNOSUPPORT;
4820 		break;
4821 	}
4822 	return (error);
4823 }
4824