xref: /netbsd-src/sys/net/if_tap.c (revision f82d7874c259b2a6cc59b714f844919f32bf7b51)
1 /*	$NetBSD: if_tap.c,v 1.44 2008/05/21 13:56:15 ad Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.44 2008/05/21 13:56:15 ad Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 #include "bpfilter.h"
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/conf.h>
47 #include <sys/device.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/ksyms.h>
51 #include <sys/poll.h>
52 #include <sys/select.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/kauth.h>
56 #include <sys/mutex.h>
57 #include <sys/simplelock.h>
58 #include <sys/intr.h>
59 
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64 #include <net/if_tap.h>
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68 
69 #include <compat/sys/sockio.h>
70 
71 /*
72  * sysctl node management
73  *
74  * It's not really possible to use a SYSCTL_SETUP block with
75  * current LKM implementation, so it is easier to just define
76  * our own function.
77  *
78  * The handler function is a "helper" in Andrew Brown's sysctl
79  * framework terminology.  It is used as a gateway for sysctl
80  * requests over the nodes.
81  *
82  * tap_log allows the module to log creations of nodes and
83  * destroy them all at once using sysctl_teardown.
84  */
85 static int tap_node;
86 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
87 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
88 
89 /*
90  * Since we're an Ethernet device, we need the 3 following
91  * components: a leading struct device, a struct ethercom,
92  * and also a struct ifmedia since we don't attach a PHY to
93  * ourselves. We could emulate one, but there's no real
94  * point.
95  */
96 
97 struct tap_softc {
98 	device_t	sc_dev;
99 	struct ifmedia	sc_im;
100 	struct ethercom	sc_ec;
101 	int		sc_flags;
102 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
103 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
104 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
105 #define TAP_GOING	0x00000008	/* interface is being destroyed */
106 	struct selinfo	sc_rsel;
107 	pid_t		sc_pgid; /* For async. IO */
108 	kmutex_t	sc_rdlock;
109 	struct simplelock	sc_kqlock;
110 	void		*sc_sih;
111 };
112 
113 /* autoconf(9) glue */
114 
115 void	tapattach(int);
116 
117 static int	tap_match(device_t, cfdata_t, void *);
118 static void	tap_attach(device_t, device_t, void *);
119 static int	tap_detach(device_t, int);
120 
121 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
122     tap_match, tap_attach, tap_detach, NULL);
123 extern struct cfdriver tap_cd;
124 
125 /* Real device access routines */
126 static int	tap_dev_close(struct tap_softc *);
127 static int	tap_dev_read(int, struct uio *, int);
128 static int	tap_dev_write(int, struct uio *, int);
129 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
130 static int	tap_dev_poll(int, int, struct lwp *);
131 static int	tap_dev_kqfilter(int, struct knote *);
132 
133 /* Fileops access routines */
134 static int	tap_fops_close(file_t *);
135 static int	tap_fops_read(file_t *, off_t *, struct uio *,
136     kauth_cred_t, int);
137 static int	tap_fops_write(file_t *, off_t *, struct uio *,
138     kauth_cred_t, int);
139 static int	tap_fops_ioctl(file_t *, u_long, void *);
140 static int	tap_fops_poll(file_t *, int);
141 static int	tap_fops_kqfilter(file_t *, struct knote *);
142 
143 static const struct fileops tap_fileops = {
144 	tap_fops_read,
145 	tap_fops_write,
146 	tap_fops_ioctl,
147 	fnullop_fcntl,
148 	tap_fops_poll,
149 	fbadop_stat,
150 	tap_fops_close,
151 	tap_fops_kqfilter,
152 };
153 
154 /* Helper for cloning open() */
155 static int	tap_dev_cloner(struct lwp *);
156 
157 /* Character device routines */
158 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
159 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
160 static int	tap_cdev_read(dev_t, struct uio *, int);
161 static int	tap_cdev_write(dev_t, struct uio *, int);
162 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
163 static int	tap_cdev_poll(dev_t, int, struct lwp *);
164 static int	tap_cdev_kqfilter(dev_t, struct knote *);
165 
166 const struct cdevsw tap_cdevsw = {
167 	tap_cdev_open, tap_cdev_close,
168 	tap_cdev_read, tap_cdev_write,
169 	tap_cdev_ioctl, nostop, notty,
170 	tap_cdev_poll, nommap,
171 	tap_cdev_kqfilter,
172 	D_OTHER,
173 };
174 
175 #define TAP_CLONER	0xfffff		/* Maximal minor value */
176 
177 /* kqueue-related routines */
178 static void	tap_kqdetach(struct knote *);
179 static int	tap_kqread(struct knote *, long);
180 
181 /*
182  * Those are needed by the if_media interface.
183  */
184 
185 static int	tap_mediachange(struct ifnet *);
186 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
187 
188 /*
189  * Those are needed by the ifnet interface, and would typically be
190  * there for any network interface driver.
191  * Some other routines are optional: watchdog and drain.
192  */
193 
194 static void	tap_start(struct ifnet *);
195 static void	tap_stop(struct ifnet *, int);
196 static int	tap_init(struct ifnet *);
197 static int	tap_ioctl(struct ifnet *, u_long, void *);
198 
199 /* Internal functions */
200 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
201 static void	tap_softintr(void *);
202 
203 /*
204  * tap is a clonable interface, although it is highly unrealistic for
205  * an Ethernet device.
206  *
207  * Here are the bits needed for a clonable interface.
208  */
209 static int	tap_clone_create(struct if_clone *, int);
210 static int	tap_clone_destroy(struct ifnet *);
211 
212 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
213 					tap_clone_create,
214 					tap_clone_destroy);
215 
216 /* Helper functionis shared by the two cloning code paths */
217 static struct tap_softc *	tap_clone_creator(int);
218 int	tap_clone_destroyer(device_t);
219 
220 void
221 tapattach(int n)
222 {
223 	int error;
224 
225 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
226 	if (error) {
227 		aprint_error("%s: unable to register cfattach\n",
228 		    tap_cd.cd_name);
229 		(void)config_cfdriver_detach(&tap_cd);
230 		return;
231 	}
232 
233 	if_clone_attach(&tap_cloners);
234 }
235 
236 /* Pretty much useless for a pseudo-device */
237 static int
238 tap_match(device_t parent, cfdata_t cfdata, void *arg)
239 {
240 
241 	return (1);
242 }
243 
244 void
245 tap_attach(device_t parent, device_t self, void *aux)
246 {
247 	struct tap_softc *sc = device_private(self);
248 	struct ifnet *ifp;
249 	const struct sysctlnode *node;
250 	uint8_t enaddr[ETHER_ADDR_LEN] =
251 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
252 	char enaddrstr[3 * ETHER_ADDR_LEN];
253 	struct timeval tv;
254 	uint32_t ui;
255 	int error;
256 
257 	sc->sc_dev = self;
258 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
259 
260 	/*
261 	 * In order to obtain unique initial Ethernet address on a host,
262 	 * do some randomisation using the current uptime.  It's not meant
263 	 * for anything but avoiding hard-coding an address.
264 	 */
265 	getmicrouptime(&tv);
266 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
267 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
268 
269 	aprint_verbose_dev(self, "Ethernet address %s\n",
270 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
271 
272 	/*
273 	 * Why 1000baseT? Why not? You can add more.
274 	 *
275 	 * Note that there are 3 steps: init, one or several additions to
276 	 * list of supported media, and in the end, the selection of one
277 	 * of them.
278 	 */
279 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
280 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
281 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
282 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
283 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
284 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
287 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
288 
289 	/*
290 	 * One should note that an interface must do multicast in order
291 	 * to support IPv6.
292 	 */
293 	ifp = &sc->sc_ec.ec_if;
294 	strcpy(ifp->if_xname, device_xname(self));
295 	ifp->if_softc	= sc;
296 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
297 	ifp->if_ioctl	= tap_ioctl;
298 	ifp->if_start	= tap_start;
299 	ifp->if_stop	= tap_stop;
300 	ifp->if_init	= tap_init;
301 	IFQ_SET_READY(&ifp->if_snd);
302 
303 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
304 
305 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
306 	 * being common to all network interface drivers. */
307 	if_attach(ifp);
308 	ether_ifattach(ifp, enaddr);
309 
310 	sc->sc_flags = 0;
311 
312 	/*
313 	 * Add a sysctl node for that interface.
314 	 *
315 	 * The pointer transmitted is not a string, but instead a pointer to
316 	 * the softc structure, which we can use to build the string value on
317 	 * the fly in the helper function of the node.  See the comments for
318 	 * tap_sysctl_handler for details.
319 	 *
320 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
321 	 * component.  However, we can allocate a number ourselves, as we are
322 	 * the only consumer of the net.link.<iface> node.  In this case, the
323 	 * unit number is conveniently used to number the node.  CTL_CREATE
324 	 * would just work, too.
325 	 */
326 	if ((error = sysctl_createv(NULL, 0, NULL,
327 	    &node, CTLFLAG_READWRITE,
328 	    CTLTYPE_STRING, device_xname(self), NULL,
329 	    tap_sysctl_handler, 0, sc, 18,
330 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
331 	    CTL_EOL)) != 0)
332 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
333 		    error);
334 
335 	/*
336 	 * Initialize the two locks for the device.
337 	 *
338 	 * We need a lock here because even though the tap device can be
339 	 * opened only once, the file descriptor might be passed to another
340 	 * process, say a fork(2)ed child.
341 	 *
342 	 * The Giant saves us from most of the hassle, but since the read
343 	 * operation can sleep, we don't want two processes to wake up at
344 	 * the same moment and both try and dequeue a single packet.
345 	 *
346 	 * The queue for event listeners (used by kqueue(9), see below) has
347 	 * to be protected, too, but we don't need the same level of
348 	 * complexity for that lock, so a simple spinning lock is fine.
349 	 */
350 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
351 	simple_lock_init(&sc->sc_kqlock);
352 }
353 
354 /*
355  * When detaching, we do the inverse of what is done in the attach
356  * routine, in reversed order.
357  */
358 static int
359 tap_detach(device_t self, int flags)
360 {
361 	struct tap_softc *sc = device_private(self);
362 	struct ifnet *ifp = &sc->sc_ec.ec_if;
363 	int error, s;
364 
365 	sc->sc_flags |= TAP_GOING;
366 	s = splnet();
367 	tap_stop(ifp, 1);
368 	if_down(ifp);
369 	splx(s);
370 
371 	softint_disestablish(sc->sc_sih);
372 
373 	/*
374 	 * Destroying a single leaf is a very straightforward operation using
375 	 * sysctl_destroyv.  One should be sure to always end the path with
376 	 * CTL_EOL.
377 	 */
378 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
379 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
380 		aprint_error_dev(self,
381 		    "sysctl_destroyv returned %d, ignoring\n", error);
382 	ether_ifdetach(ifp);
383 	if_detach(ifp);
384 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
385 	mutex_destroy(&sc->sc_rdlock);
386 
387 	return (0);
388 }
389 
390 /*
391  * This function is called by the ifmedia layer to notify the driver
392  * that the user requested a media change.  A real driver would
393  * reconfigure the hardware.
394  */
395 static int
396 tap_mediachange(struct ifnet *ifp)
397 {
398 	return (0);
399 }
400 
401 /*
402  * Here the user asks for the currently used media.
403  */
404 static void
405 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
406 {
407 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
408 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
409 }
410 
411 /*
412  * This is the function where we SEND packets.
413  *
414  * There is no 'receive' equivalent.  A typical driver will get
415  * interrupts from the hardware, and from there will inject new packets
416  * into the network stack.
417  *
418  * Once handled, a packet must be freed.  A real driver might not be able
419  * to fit all the pending packets into the hardware, and is allowed to
420  * return before having sent all the packets.  It should then use the
421  * if_flags flag IFF_OACTIVE to notify the upper layer.
422  *
423  * There are also other flags one should check, such as IFF_PAUSE.
424  *
425  * It is our duty to make packets available to BPF listeners.
426  *
427  * You should be aware that this function is called by the Ethernet layer
428  * at splnet().
429  *
430  * When the device is opened, we have to pass the packet(s) to the
431  * userland.  For that we stay in OACTIVE mode while the userland gets
432  * the packets, and we send a signal to the processes waiting to read.
433  *
434  * wakeup(sc) is the counterpart to the tsleep call in
435  * tap_dev_read, while selnotify() is used for kevent(2) and
436  * poll(2) (which includes select(2)) listeners.
437  */
438 static void
439 tap_start(struct ifnet *ifp)
440 {
441 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
442 	struct mbuf *m0;
443 
444 	if ((sc->sc_flags & TAP_INUSE) == 0) {
445 		/* Simply drop packets */
446 		for(;;) {
447 			IFQ_DEQUEUE(&ifp->if_snd, m0);
448 			if (m0 == NULL)
449 				return;
450 
451 			ifp->if_opackets++;
452 #if NBPFILTER > 0
453 			if (ifp->if_bpf)
454 				bpf_mtap(ifp->if_bpf, m0);
455 #endif
456 
457 			m_freem(m0);
458 		}
459 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
460 		ifp->if_flags |= IFF_OACTIVE;
461 		wakeup(sc);
462 		selnotify(&sc->sc_rsel, 0, 1);
463 		if (sc->sc_flags & TAP_ASYNCIO)
464 			softint_schedule(sc->sc_sih);
465 	}
466 }
467 
468 static void
469 tap_softintr(void *cookie)
470 {
471 	struct tap_softc *sc;
472 	struct ifnet *ifp;
473 	int a, b;
474 
475 	sc = cookie;
476 
477 	if (sc->sc_flags & TAP_ASYNCIO) {
478 		ifp = &sc->sc_ec.ec_if;
479 		if (ifp->if_flags & IFF_RUNNING) {
480 			a = POLL_IN;
481 			b = POLLIN|POLLRDNORM;
482 		} else {
483 			a = POLL_HUP;
484 			b = 0;
485 		}
486 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
487 	}
488 }
489 
490 /*
491  * A typical driver will only contain the following handlers for
492  * ioctl calls, except SIOCSIFPHYADDR.
493  * The latter is a hack I used to set the Ethernet address of the
494  * faked device.
495  *
496  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
497  * called under splnet().
498  */
499 static int
500 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
501 {
502 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
503 	struct ifreq *ifr = (struct ifreq *)data;
504 	int s, error;
505 
506 	s = splnet();
507 
508 	switch (cmd) {
509 #ifdef OSIOCSIFMEDIA
510 	case OSIOCSIFMEDIA:
511 #endif
512 	case SIOCSIFMEDIA:
513 	case SIOCGIFMEDIA:
514 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
515 		break;
516 	case SIOCSIFPHYADDR:
517 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
518 		break;
519 	default:
520 		error = ether_ioctl(ifp, cmd, data);
521 		if (error == ENETRESET)
522 			error = 0;
523 		break;
524 	}
525 
526 	splx(s);
527 
528 	return (error);
529 }
530 
531 /*
532  * Helper function to set Ethernet address.  This shouldn't be done there,
533  * and should actually be available to all Ethernet drivers, real or not.
534  */
535 static int
536 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
537 {
538 	const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr);
539 
540 	if (sdl->sdl_family != AF_LINK)
541 		return (EINVAL);
542 
543 	if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN);
544 
545 	return (0);
546 }
547 
548 /*
549  * _init() would typically be called when an interface goes up,
550  * meaning it should configure itself into the state in which it
551  * can send packets.
552  */
553 static int
554 tap_init(struct ifnet *ifp)
555 {
556 	ifp->if_flags |= IFF_RUNNING;
557 
558 	tap_start(ifp);
559 
560 	return (0);
561 }
562 
563 /*
564  * _stop() is called when an interface goes down.  It is our
565  * responsability to validate that state by clearing the
566  * IFF_RUNNING flag.
567  *
568  * We have to wake up all the sleeping processes to have the pending
569  * read requests cancelled.
570  */
571 static void
572 tap_stop(struct ifnet *ifp, int disable)
573 {
574 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
575 
576 	ifp->if_flags &= ~IFF_RUNNING;
577 	wakeup(sc);
578 	selnotify(&sc->sc_rsel, 0, 1);
579 	if (sc->sc_flags & TAP_ASYNCIO)
580 		softint_schedule(sc->sc_sih);
581 }
582 
583 /*
584  * The 'create' command of ifconfig can be used to create
585  * any numbered instance of a given device.  Thus we have to
586  * make sure we have enough room in cd_devs to create the
587  * user-specified instance.  config_attach_pseudo will do this
588  * for us.
589  */
590 static int
591 tap_clone_create(struct if_clone *ifc, int unit)
592 {
593 	if (tap_clone_creator(unit) == NULL) {
594 		aprint_error("%s%d: unable to attach an instance\n",
595                     tap_cd.cd_name, unit);
596 		return (ENXIO);
597 	}
598 
599 	return (0);
600 }
601 
602 /*
603  * tap(4) can be cloned by two ways:
604  *   using 'ifconfig tap0 create', which will use the network
605  *     interface cloning API, and call tap_clone_create above.
606  *   opening the cloning device node, whose minor number is TAP_CLONER.
607  *     See below for an explanation on how this part work.
608  */
609 static struct tap_softc *
610 tap_clone_creator(int unit)
611 {
612 	struct cfdata *cf;
613 
614 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
615 	cf->cf_name = tap_cd.cd_name;
616 	cf->cf_atname = tap_ca.ca_name;
617 	if (unit == -1) {
618 		/* let autoconf find the first free one */
619 		cf->cf_unit = 0;
620 		cf->cf_fstate = FSTATE_STAR;
621 	} else {
622 		cf->cf_unit = unit;
623 		cf->cf_fstate = FSTATE_NOTFOUND;
624 	}
625 
626 	return device_private(config_attach_pseudo(cf));
627 }
628 
629 /*
630  * The clean design of if_clone and autoconf(9) makes that part
631  * really straightforward.  The second argument of config_detach
632  * means neither QUIET nor FORCED.
633  */
634 static int
635 tap_clone_destroy(struct ifnet *ifp)
636 {
637 	return tap_clone_destroyer(device_private(ifp->if_softc));
638 }
639 
640 int
641 tap_clone_destroyer(device_t dev)
642 {
643 	cfdata_t cf = device_cfdata(dev);
644 	int error;
645 
646 	if ((error = config_detach(dev, 0)) != 0)
647 		aprint_error_dev(dev, "unable to detach instance\n");
648 	free(cf, M_DEVBUF);
649 
650 	return (error);
651 }
652 
653 /*
654  * tap(4) is a bit of an hybrid device.  It can be used in two different
655  * ways:
656  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
657  *  2. open /dev/tap, get a new interface created and read/write off it.
658  *     That interface is destroyed when the process that had it created exits.
659  *
660  * The first way is managed by the cdevsw structure, and you access interfaces
661  * through a (major, minor) mapping:  tap4 is obtained by the minor number
662  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
663  *
664  * The second way is the so-called "cloning" device.  It's a special minor
665  * number (chosen as the maximal number, to allow as much tap devices as
666  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
667  * call ends in tap_cdev_open.  The actual place where it is handled is
668  * tap_dev_cloner.
669  *
670  * An tap device cannot be opened more than once at a time, so the cdevsw
671  * part of open() does nothing but noting that the interface is being used and
672  * hence ready to actually handle packets.
673  */
674 
675 static int
676 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
677 {
678 	struct tap_softc *sc;
679 
680 	if (minor(dev) == TAP_CLONER)
681 		return tap_dev_cloner(l);
682 
683 	sc = device_private(device_lookup(&tap_cd, minor(dev)));
684 	if (sc == NULL)
685 		return (ENXIO);
686 
687 	/* The device can only be opened once */
688 	if (sc->sc_flags & TAP_INUSE)
689 		return (EBUSY);
690 	sc->sc_flags |= TAP_INUSE;
691 	return (0);
692 }
693 
694 /*
695  * There are several kinds of cloning devices, and the most simple is the one
696  * tap(4) uses.  What it does is change the file descriptor with a new one,
697  * with its own fileops structure (which maps to the various read, write,
698  * ioctl functions).  It starts allocating a new file descriptor with falloc,
699  * then actually creates the new tap devices.
700  *
701  * Once those two steps are successful, we can re-wire the existing file
702  * descriptor to its new self.  This is done with fdclone():  it fills the fp
703  * structure as needed (notably f_data gets filled with the fifth parameter
704  * passed, the unit of the tap device which will allows us identifying the
705  * device later), and returns EMOVEFD.
706  *
707  * That magic value is interpreted by sys_open() which then replaces the
708  * current file descriptor by the new one (through a magic member of struct
709  * lwp, l_dupfd).
710  *
711  * The tap device is flagged as being busy since it otherwise could be
712  * externally accessed through the corresponding device node with the cdevsw
713  * interface.
714  */
715 
716 static int
717 tap_dev_cloner(struct lwp *l)
718 {
719 	struct tap_softc *sc;
720 	file_t *fp;
721 	int error, fd;
722 
723 	if ((error = fd_allocfile(&fp, &fd)) != 0)
724 		return (error);
725 
726 	if ((sc = tap_clone_creator(-1)) == NULL) {
727 		fd_abort(curproc, fp, fd);
728 		return (ENXIO);
729 	}
730 
731 	sc->sc_flags |= TAP_INUSE;
732 
733 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
734 	    (void *)(intptr_t)device_unit(sc->sc_dev));
735 }
736 
737 /*
738  * While all other operations (read, write, ioctl, poll and kqfilter) are
739  * really the same whether we are in cdevsw or fileops mode, the close()
740  * function is slightly different in the two cases.
741  *
742  * As for the other, the core of it is shared in tap_dev_close.  What
743  * it does is sufficient for the cdevsw interface, but the cloning interface
744  * needs another thing:  the interface is destroyed when the processes that
745  * created it closes it.
746  */
747 static int
748 tap_cdev_close(dev_t dev, int flags, int fmt,
749     struct lwp *l)
750 {
751 	struct tap_softc *sc =
752 	    device_private(device_lookup(&tap_cd, minor(dev)));
753 
754 	if (sc == NULL)
755 		return (ENXIO);
756 
757 	return tap_dev_close(sc);
758 }
759 
760 /*
761  * It might happen that the administrator used ifconfig to externally destroy
762  * the interface.  In that case, tap_fops_close will be called while
763  * tap_detach is already happening.  If we called it again from here, we
764  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
765  */
766 static int
767 tap_fops_close(file_t *fp)
768 {
769 	int unit = (intptr_t)fp->f_data;
770 	struct tap_softc *sc;
771 	int error;
772 
773 	sc = device_private(device_lookup(&tap_cd, unit));
774 	if (sc == NULL)
775 		return (ENXIO);
776 
777 	/* tap_dev_close currently always succeeds, but it might not
778 	 * always be the case. */
779 	KERNEL_LOCK(1, NULL);
780 	if ((error = tap_dev_close(sc)) != 0) {
781 		KERNEL_UNLOCK_ONE(NULL);
782 		return (error);
783 	}
784 
785 	/* Destroy the device now that it is no longer useful,
786 	 * unless it's already being destroyed. */
787 	if ((sc->sc_flags & TAP_GOING) != 0) {
788 		KERNEL_UNLOCK_ONE(NULL);
789 		return (0);
790 	}
791 
792 	error = tap_clone_destroyer(sc->sc_dev);
793 	KERNEL_UNLOCK_ONE(NULL);
794 	return error;
795 }
796 
797 static int
798 tap_dev_close(struct tap_softc *sc)
799 {
800 	struct ifnet *ifp;
801 	int s;
802 
803 	s = splnet();
804 	/* Let tap_start handle packets again */
805 	ifp = &sc->sc_ec.ec_if;
806 	ifp->if_flags &= ~IFF_OACTIVE;
807 
808 	/* Purge output queue */
809 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
810 		struct mbuf *m;
811 
812 		for (;;) {
813 			IFQ_DEQUEUE(&ifp->if_snd, m);
814 			if (m == NULL)
815 				break;
816 
817 			ifp->if_opackets++;
818 #if NBPFILTER > 0
819 			if (ifp->if_bpf)
820 				bpf_mtap(ifp->if_bpf, m);
821 #endif
822 		}
823 	}
824 	splx(s);
825 
826 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
827 
828 	return (0);
829 }
830 
831 static int
832 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
833 {
834 	return tap_dev_read(minor(dev), uio, flags);
835 }
836 
837 static int
838 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
839     kauth_cred_t cred, int flags)
840 {
841 	int error;
842 
843 	KERNEL_LOCK(1, NULL);
844 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
845 	KERNEL_UNLOCK_ONE(NULL);
846 	return error;
847 }
848 
849 static int
850 tap_dev_read(int unit, struct uio *uio, int flags)
851 {
852 	struct tap_softc *sc =
853 	    device_private(device_lookup(&tap_cd, unit));
854 	struct ifnet *ifp;
855 	struct mbuf *m, *n;
856 	int error = 0, s;
857 
858 	if (sc == NULL)
859 		return (ENXIO);
860 
861 	ifp = &sc->sc_ec.ec_if;
862 	if ((ifp->if_flags & IFF_UP) == 0)
863 		return (EHOSTDOWN);
864 
865 	/*
866 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
867 	 */
868 	if ((sc->sc_flags & TAP_NBIO) != 0) {
869 		if (!mutex_tryenter(&sc->sc_rdlock))
870 			return (EWOULDBLOCK);
871 	} else {
872 		mutex_enter(&sc->sc_rdlock);
873 	}
874 
875 	s = splnet();
876 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
877 		ifp->if_flags &= ~IFF_OACTIVE;
878 		splx(s);
879 		/*
880 		 * We must release the lock before sleeping, and re-acquire it
881 		 * after.
882 		 */
883 		mutex_exit(&sc->sc_rdlock);
884 		if (sc->sc_flags & TAP_NBIO)
885 			error = EWOULDBLOCK;
886 		else
887 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
888 		if (error != 0)
889 			return (error);
890 		/* The device might have been downed */
891 		if ((ifp->if_flags & IFF_UP) == 0)
892 			return (EHOSTDOWN);
893 		if ((sc->sc_flags & TAP_NBIO)) {
894 			if (!mutex_tryenter(&sc->sc_rdlock))
895 				return (EWOULDBLOCK);
896 		} else {
897 			mutex_enter(&sc->sc_rdlock);
898 		}
899 		s = splnet();
900 	}
901 
902 	IFQ_DEQUEUE(&ifp->if_snd, m);
903 	ifp->if_flags &= ~IFF_OACTIVE;
904 	splx(s);
905 	if (m == NULL) {
906 		error = 0;
907 		goto out;
908 	}
909 
910 	ifp->if_opackets++;
911 #if NBPFILTER > 0
912 	if (ifp->if_bpf)
913 		bpf_mtap(ifp->if_bpf, m);
914 #endif
915 
916 	/*
917 	 * One read is one packet.
918 	 */
919 	do {
920 		error = uiomove(mtod(m, void *),
921 		    min(m->m_len, uio->uio_resid), uio);
922 		MFREE(m, n);
923 		m = n;
924 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
925 
926 	if (m != NULL)
927 		m_freem(m);
928 
929 out:
930 	mutex_exit(&sc->sc_rdlock);
931 	return (error);
932 }
933 
934 static int
935 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
936 {
937 	return tap_dev_write(minor(dev), uio, flags);
938 }
939 
940 static int
941 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
942     kauth_cred_t cred, int flags)
943 {
944 	int error;
945 
946 	KERNEL_LOCK(1, NULL);
947 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
948 	KERNEL_UNLOCK_ONE(NULL);
949 	return error;
950 }
951 
952 static int
953 tap_dev_write(int unit, struct uio *uio, int flags)
954 {
955 	struct tap_softc *sc =
956 	    device_private(device_lookup(&tap_cd, unit));
957 	struct ifnet *ifp;
958 	struct mbuf *m, **mp;
959 	int error = 0;
960 	int s;
961 
962 	if (sc == NULL)
963 		return (ENXIO);
964 
965 	ifp = &sc->sc_ec.ec_if;
966 
967 	/* One write, one packet, that's the rule */
968 	MGETHDR(m, M_DONTWAIT, MT_DATA);
969 	if (m == NULL) {
970 		ifp->if_ierrors++;
971 		return (ENOBUFS);
972 	}
973 	m->m_pkthdr.len = uio->uio_resid;
974 
975 	mp = &m;
976 	while (error == 0 && uio->uio_resid > 0) {
977 		if (*mp != m) {
978 			MGET(*mp, M_DONTWAIT, MT_DATA);
979 			if (*mp == NULL) {
980 				error = ENOBUFS;
981 				break;
982 			}
983 		}
984 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
985 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
986 		mp = &(*mp)->m_next;
987 	}
988 	if (error) {
989 		ifp->if_ierrors++;
990 		m_freem(m);
991 		return (error);
992 	}
993 
994 	ifp->if_ipackets++;
995 	m->m_pkthdr.rcvif = ifp;
996 
997 #if NBPFILTER > 0
998 	if (ifp->if_bpf)
999 		bpf_mtap(ifp->if_bpf, m);
1000 #endif
1001 	s =splnet();
1002 	(*ifp->if_input)(ifp, m);
1003 	splx(s);
1004 
1005 	return (0);
1006 }
1007 
1008 static int
1009 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1010     struct lwp *l)
1011 {
1012 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1013 }
1014 
1015 static int
1016 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1017 {
1018 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1019 }
1020 
1021 static int
1022 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1023 {
1024 	struct tap_softc *sc =
1025 	    device_private(device_lookup(&tap_cd, unit));
1026 	int error = 0;
1027 
1028 	if (sc == NULL)
1029 		return (ENXIO);
1030 
1031 	switch (cmd) {
1032 	case FIONREAD:
1033 		{
1034 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1035 			struct mbuf *m;
1036 			int s;
1037 
1038 			s = splnet();
1039 			IFQ_POLL(&ifp->if_snd, m);
1040 
1041 			if (m == NULL)
1042 				*(int *)data = 0;
1043 			else
1044 				*(int *)data = m->m_pkthdr.len;
1045 			splx(s);
1046 		} break;
1047 	case TIOCSPGRP:
1048 	case FIOSETOWN:
1049 		error = fsetown(&sc->sc_pgid, cmd, data);
1050 		break;
1051 	case TIOCGPGRP:
1052 	case FIOGETOWN:
1053 		error = fgetown(sc->sc_pgid, cmd, data);
1054 		break;
1055 	case FIOASYNC:
1056 		if (*(int *)data)
1057 			sc->sc_flags |= TAP_ASYNCIO;
1058 		else
1059 			sc->sc_flags &= ~TAP_ASYNCIO;
1060 		break;
1061 	case FIONBIO:
1062 		if (*(int *)data)
1063 			sc->sc_flags |= TAP_NBIO;
1064 		else
1065 			sc->sc_flags &= ~TAP_NBIO;
1066 		break;
1067 #ifdef OTAPGIFNAME
1068 	case OTAPGIFNAME:
1069 #endif
1070 	case TAPGIFNAME:
1071 		{
1072 			struct ifreq *ifr = (struct ifreq *)data;
1073 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1074 
1075 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1076 		} break;
1077 	default:
1078 		error = ENOTTY;
1079 		break;
1080 	}
1081 
1082 	return (0);
1083 }
1084 
1085 static int
1086 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1087 {
1088 	return tap_dev_poll(minor(dev), events, l);
1089 }
1090 
1091 static int
1092 tap_fops_poll(file_t *fp, int events)
1093 {
1094 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1095 }
1096 
1097 static int
1098 tap_dev_poll(int unit, int events, struct lwp *l)
1099 {
1100 	struct tap_softc *sc =
1101 	    device_private(device_lookup(&tap_cd, unit));
1102 	int revents = 0;
1103 
1104 	if (sc == NULL)
1105 		return POLLERR;
1106 
1107 	if (events & (POLLIN|POLLRDNORM)) {
1108 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1109 		struct mbuf *m;
1110 		int s;
1111 
1112 		s = splnet();
1113 		IFQ_POLL(&ifp->if_snd, m);
1114 		splx(s);
1115 
1116 		if (m != NULL)
1117 			revents |= events & (POLLIN|POLLRDNORM);
1118 		else {
1119 			simple_lock(&sc->sc_kqlock);
1120 			selrecord(l, &sc->sc_rsel);
1121 			simple_unlock(&sc->sc_kqlock);
1122 		}
1123 	}
1124 	revents |= events & (POLLOUT|POLLWRNORM);
1125 
1126 	return (revents);
1127 }
1128 
1129 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1130 	tap_kqread };
1131 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1132 	filt_seltrue };
1133 
1134 static int
1135 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1136 {
1137 	return tap_dev_kqfilter(minor(dev), kn);
1138 }
1139 
1140 static int
1141 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1142 {
1143 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1144 }
1145 
1146 static int
1147 tap_dev_kqfilter(int unit, struct knote *kn)
1148 {
1149 	struct tap_softc *sc =
1150 	    device_private(device_lookup(&tap_cd, unit));
1151 
1152 	if (sc == NULL)
1153 		return (ENXIO);
1154 
1155 	KERNEL_LOCK(1, NULL);
1156 	switch(kn->kn_filter) {
1157 	case EVFILT_READ:
1158 		kn->kn_fop = &tap_read_filterops;
1159 		break;
1160 	case EVFILT_WRITE:
1161 		kn->kn_fop = &tap_seltrue_filterops;
1162 		break;
1163 	default:
1164 		KERNEL_UNLOCK_ONE(NULL);
1165 		return (EINVAL);
1166 	}
1167 
1168 	kn->kn_hook = sc;
1169 	simple_lock(&sc->sc_kqlock);
1170 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1171 	simple_unlock(&sc->sc_kqlock);
1172 	KERNEL_UNLOCK_ONE(NULL);
1173 	return (0);
1174 }
1175 
1176 static void
1177 tap_kqdetach(struct knote *kn)
1178 {
1179 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1180 
1181 	KERNEL_LOCK(1, NULL);
1182 	simple_lock(&sc->sc_kqlock);
1183 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1184 	simple_unlock(&sc->sc_kqlock);
1185 	KERNEL_UNLOCK_ONE(NULL);
1186 }
1187 
1188 static int
1189 tap_kqread(struct knote *kn, long hint)
1190 {
1191 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1192 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1193 	struct mbuf *m;
1194 	int s, rv;
1195 
1196 	KERNEL_LOCK(1, NULL);
1197 	s = splnet();
1198 	IFQ_POLL(&ifp->if_snd, m);
1199 
1200 	if (m == NULL)
1201 		kn->kn_data = 0;
1202 	else
1203 		kn->kn_data = m->m_pkthdr.len;
1204 	splx(s);
1205 	rv = (kn->kn_data != 0 ? 1 : 0);
1206 	KERNEL_UNLOCK_ONE(NULL);
1207 	return rv;
1208 }
1209 
1210 /*
1211  * sysctl management routines
1212  * You can set the address of an interface through:
1213  * net.link.tap.tap<number>
1214  *
1215  * Note the consistent use of tap_log in order to use
1216  * sysctl_teardown at unload time.
1217  *
1218  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1219  * blocks register a function in a special section of the kernel
1220  * (called a link set) which is used at init_sysctl() time to cycle
1221  * through all those functions to create the kernel's sysctl tree.
1222  *
1223  * It is not (currently) possible to use link sets in a LKM, so the
1224  * easiest is to simply call our own setup routine at load time.
1225  *
1226  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1227  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1228  * whole kernel sysctl tree is built, it is not possible to add any
1229  * permanent node.
1230  *
1231  * It should be noted that we're not saving the sysctlnode pointer
1232  * we are returned when creating the "tap" node.  That structure
1233  * cannot be trusted once out of the calling function, as it might
1234  * get reused.  So we just save the MIB number, and always give the
1235  * full path starting from the root for later calls to sysctl_createv
1236  * and sysctl_destroyv.
1237  */
1238 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1239 {
1240 	const struct sysctlnode *node;
1241 	int error = 0;
1242 
1243 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1244 	    CTLFLAG_PERMANENT,
1245 	    CTLTYPE_NODE, "net", NULL,
1246 	    NULL, 0, NULL, 0,
1247 	    CTL_NET, CTL_EOL)) != 0)
1248 		return;
1249 
1250 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1251 	    CTLFLAG_PERMANENT,
1252 	    CTLTYPE_NODE, "link", NULL,
1253 	    NULL, 0, NULL, 0,
1254 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1255 		return;
1256 
1257 	/*
1258 	 * The first four parameters of sysctl_createv are for management.
1259 	 *
1260 	 * The four that follows, here starting with a '0' for the flags,
1261 	 * describe the node.
1262 	 *
1263 	 * The next series of four set its value, through various possible
1264 	 * means.
1265 	 *
1266 	 * Last but not least, the path to the node is described.  That path
1267 	 * is relative to the given root (third argument).  Here we're
1268 	 * starting from the root.
1269 	 */
1270 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1271 	    CTLFLAG_PERMANENT,
1272 	    CTLTYPE_NODE, "tap", NULL,
1273 	    NULL, 0, NULL, 0,
1274 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1275 		return;
1276 	tap_node = node->sysctl_num;
1277 }
1278 
1279 /*
1280  * The helper functions make Andrew Brown's interface really
1281  * shine.  It makes possible to create value on the fly whether
1282  * the sysctl value is read or written.
1283  *
1284  * As shown as an example in the man page, the first step is to
1285  * create a copy of the node to have sysctl_lookup work on it.
1286  *
1287  * Here, we have more work to do than just a copy, since we have
1288  * to create the string.  The first step is to collect the actual
1289  * value of the node, which is a convenient pointer to the softc
1290  * of the interface.  From there we create the string and use it
1291  * as the value, but only for the *copy* of the node.
1292  *
1293  * Then we let sysctl_lookup do the magic, which consists in
1294  * setting oldp and newp as required by the operation.  When the
1295  * value is read, that means that the string will be copied to
1296  * the user, and when it is written, the new value will be copied
1297  * over in the addr array.
1298  *
1299  * If newp is NULL, the user was reading the value, so we don't
1300  * have anything else to do.  If a new value was written, we
1301  * have to check it.
1302  *
1303  * If it is incorrect, we can return an error and leave 'node' as
1304  * it is:  since it is a copy of the actual node, the change will
1305  * be forgotten.
1306  *
1307  * Upon a correct input, we commit the change to the ifnet
1308  * structure of our interface.
1309  */
1310 static int
1311 tap_sysctl_handler(SYSCTLFN_ARGS)
1312 {
1313 	struct sysctlnode node;
1314 	struct tap_softc *sc;
1315 	struct ifnet *ifp;
1316 	int error;
1317 	size_t len;
1318 	char addr[3 * ETHER_ADDR_LEN];
1319 	uint8_t enaddr[ETHER_ADDR_LEN];
1320 
1321 	node = *rnode;
1322 	sc = node.sysctl_data;
1323 	ifp = &sc->sc_ec.ec_if;
1324 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1325 	node.sysctl_data = addr;
1326 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1327 	if (error || newp == NULL)
1328 		return (error);
1329 
1330 	len = strlen(addr);
1331 	if (len < 11 || len > 17)
1332 		return (EINVAL);
1333 
1334 	/* Commit change */
1335 	if (ether_nonstatic_aton(enaddr, addr) != 0)
1336 		return (EINVAL);
1337 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN);
1338 	return (error);
1339 }
1340