1 /* $NetBSD: if_ethersubr.c,v 1.275 2019/05/29 10:07:30 msaitoh Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.275 2019/05/29 10:07:30 msaitoh Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/rnd.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 93 #include <net/if.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/if_llc.h> 97 #include <net/if_dl.h> 98 #include <net/if_types.h> 99 #include <net/pktqueue.h> 100 101 #include <net/if_media.h> 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 105 #if NARP == 0 106 /* 107 * XXX there should really be a way to issue this warning from within config(8) 108 */ 109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 110 #endif 111 112 #include <net/bpf.h> 113 114 #include <net/if_ether.h> 115 #include <net/if_vlanvar.h> 116 117 #if NPPPOE > 0 118 #include <net/if_pppoe.h> 119 #endif 120 121 #if NAGR > 0 122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */ 123 #include <net/agr/ieee8023ad.h> 124 #include <net/agr/if_agrvar.h> 125 #endif 126 127 #if NBRIDGE > 0 128 #include <net/if_bridgevar.h> 129 #endif 130 131 #include <netinet/in.h> 132 #ifdef INET 133 #include <netinet/in_var.h> 134 #endif 135 #include <netinet/if_inarp.h> 136 137 #ifdef INET6 138 #ifndef INET 139 #include <netinet/in.h> 140 #endif 141 #include <netinet6/in6_var.h> 142 #include <netinet6/nd6.h> 143 #endif 144 145 #include "carp.h" 146 #if NCARP > 0 147 #include <netinet/ip_carp.h> 148 #endif 149 150 #ifdef NETATALK 151 #include <netatalk/at.h> 152 #include <netatalk/at_var.h> 153 #include <netatalk/at_extern.h> 154 155 #define llc_snap_org_code llc_un.type_snap.org_code 156 #define llc_snap_ether_type llc_un.type_snap.ether_type 157 158 extern u_char at_org_code[3]; 159 extern u_char aarp_org_code[3]; 160 #endif /* NETATALK */ 161 162 #ifdef MPLS 163 #include <netmpls/mpls.h> 164 #include <netmpls/mpls_var.h> 165 #endif 166 167 static struct timeval bigpktppslim_last; 168 static int bigpktppslim = 2; /* XXX */ 169 static int bigpktpps_count; 170 static kmutex_t bigpktpps_lock __cacheline_aligned; 171 172 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 173 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 174 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 175 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 176 #define senderr(e) { error = (e); goto bad;} 177 178 static int ether_output(struct ifnet *, struct mbuf *, 179 const struct sockaddr *, const struct rtentry *); 180 181 /* 182 * Ethernet output routine. 183 * Encapsulate a packet of type family for the local net. 184 * Assumes that ifp is actually pointer to ethercom structure. 185 */ 186 static int 187 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 188 const struct sockaddr * const dst, const struct rtentry *rt) 189 { 190 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 191 uint16_t etype = 0; 192 int error = 0, hdrcmplt = 0; 193 struct mbuf *m = m0; 194 struct mbuf *mcopy = NULL; 195 struct ether_header *eh; 196 struct ifnet *ifp = ifp0; 197 #ifdef INET 198 struct arphdr *ah; 199 #endif 200 #ifdef NETATALK 201 struct at_ifaddr *aa; 202 #endif 203 204 #ifdef MBUFTRACE 205 m_claimm(m, ifp->if_mowner); 206 #endif 207 208 #if NCARP > 0 209 if (ifp->if_type == IFT_CARP) { 210 struct ifaddr *ifa; 211 int s = pserialize_read_enter(); 212 213 /* loop back if this is going to the carp interface */ 214 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 215 (ifa = ifa_ifwithaddr(dst)) != NULL) { 216 if (ifa->ifa_ifp == ifp0) { 217 pserialize_read_exit(s); 218 return looutput(ifp0, m, dst, rt); 219 } 220 } 221 pserialize_read_exit(s); 222 223 ifp = ifp->if_carpdev; 224 /* ac = (struct arpcom *)ifp; */ 225 226 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 227 (IFF_UP | IFF_RUNNING)) 228 senderr(ENETDOWN); 229 } 230 #endif 231 232 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 233 senderr(ENETDOWN); 234 235 switch (dst->sa_family) { 236 237 #ifdef INET 238 case AF_INET: 239 if (m->m_flags & M_BCAST) { 240 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 241 } else if (m->m_flags & M_MCAST) { 242 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 243 } else { 244 error = arpresolve(ifp, rt, m, dst, edst, sizeof(edst)); 245 if (error) 246 return (error == EWOULDBLOCK) ? 0 : error; 247 } 248 /* If broadcasting on a simplex interface, loopback a copy */ 249 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 250 mcopy = m_copypacket(m, M_DONTWAIT); 251 etype = htons(ETHERTYPE_IP); 252 break; 253 254 case AF_ARP: 255 ah = mtod(m, struct arphdr *); 256 if (m->m_flags & M_BCAST) { 257 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 258 } else { 259 void *tha = ar_tha(ah); 260 261 if (tha == NULL) { 262 /* fake with ARPHRD_IEEE1394 */ 263 m_freem(m); 264 return 0; 265 } 266 memcpy(edst, tha, sizeof(edst)); 267 } 268 269 ah->ar_hrd = htons(ARPHRD_ETHER); 270 271 switch (ntohs(ah->ar_op)) { 272 case ARPOP_REVREQUEST: 273 case ARPOP_REVREPLY: 274 etype = htons(ETHERTYPE_REVARP); 275 break; 276 277 case ARPOP_REQUEST: 278 case ARPOP_REPLY: 279 default: 280 etype = htons(ETHERTYPE_ARP); 281 } 282 break; 283 #endif 284 285 #ifdef INET6 286 case AF_INET6: 287 if (m->m_flags & M_BCAST) { 288 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 289 } else if (m->m_flags & M_MCAST) { 290 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 291 edst); 292 } else { 293 error = nd6_resolve(ifp, rt, m, dst, edst, 294 sizeof(edst)); 295 if (error) 296 return (error == EWOULDBLOCK) ? 0 : error; 297 } 298 etype = htons(ETHERTYPE_IPV6); 299 break; 300 #endif 301 302 #ifdef NETATALK 303 case AF_APPLETALK: { 304 struct ifaddr *ifa; 305 int s; 306 307 KERNEL_LOCK(1, NULL); 308 309 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 310 KERNEL_UNLOCK_ONE(NULL); 311 return 0; 312 } 313 314 /* 315 * ifaddr is the first thing in at_ifaddr 316 */ 317 s = pserialize_read_enter(); 318 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 319 if (ifa == NULL) { 320 pserialize_read_exit(s); 321 KERNEL_UNLOCK_ONE(NULL); 322 senderr(EADDRNOTAVAIL); 323 } 324 aa = (struct at_ifaddr *)ifa; 325 326 /* 327 * In the phase 2 case, we need to prepend an mbuf for the 328 * llc header. 329 */ 330 if (aa->aa_flags & AFA_PHASE2) { 331 struct llc llc; 332 333 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 334 if (m == NULL) { 335 pserialize_read_exit(s); 336 KERNEL_UNLOCK_ONE(NULL); 337 senderr(ENOBUFS); 338 } 339 340 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 341 llc.llc_control = LLC_UI; 342 memcpy(llc.llc_snap_org_code, at_org_code, 343 sizeof(llc.llc_snap_org_code)); 344 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 345 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 346 } else { 347 etype = htons(ETHERTYPE_ATALK); 348 } 349 pserialize_read_exit(s); 350 KERNEL_UNLOCK_ONE(NULL); 351 break; 352 } 353 #endif /* NETATALK */ 354 355 case pseudo_AF_HDRCMPLT: 356 hdrcmplt = 1; 357 memcpy(esrc, 358 ((const struct ether_header *)dst->sa_data)->ether_shost, 359 sizeof(esrc)); 360 /* FALLTHROUGH */ 361 362 case AF_UNSPEC: 363 memcpy(edst, 364 ((const struct ether_header *)dst->sa_data)->ether_dhost, 365 sizeof(edst)); 366 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 367 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 368 break; 369 370 default: 371 printf("%s: can't handle af%d\n", ifp->if_xname, 372 dst->sa_family); 373 senderr(EAFNOSUPPORT); 374 } 375 376 #ifdef MPLS 377 { 378 struct m_tag *mtag; 379 mtag = m_tag_find(m, PACKET_TAG_MPLS); 380 if (mtag != NULL) { 381 /* Having the tag itself indicates it's MPLS */ 382 etype = htons(ETHERTYPE_MPLS); 383 m_tag_delete(m, mtag); 384 } 385 } 386 #endif 387 388 if (mcopy) 389 (void)looutput(ifp, mcopy, dst, rt); 390 391 KASSERT((m->m_flags & M_PKTHDR) != 0); 392 393 /* 394 * If no ether type is set, this must be a 802.2 formatted packet. 395 */ 396 if (etype == 0) 397 etype = htons(m->m_pkthdr.len); 398 399 /* 400 * Add local net header. If no space in first mbuf, allocate another. 401 */ 402 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 403 if (m == NULL) 404 senderr(ENOBUFS); 405 406 eh = mtod(m, struct ether_header *); 407 /* Note: etype is already in network byte order. */ 408 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 409 memcpy(eh->ether_dhost, edst, sizeof(edst)); 410 if (hdrcmplt) { 411 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 412 } else { 413 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 414 sizeof(eh->ether_shost)); 415 } 416 417 #if NCARP > 0 418 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 419 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 420 sizeof(eh->ether_shost)); 421 } 422 #endif 423 424 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 425 return error; 426 if (m == NULL) 427 return 0; 428 429 #if NBRIDGE > 0 430 /* 431 * Bridges require special output handling. 432 */ 433 if (ifp->if_bridge) 434 return bridge_output(ifp, m, NULL, NULL); 435 #endif 436 437 #if NCARP > 0 438 if (ifp != ifp0) 439 ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN; 440 #endif 441 442 #ifdef ALTQ 443 KERNEL_LOCK(1, NULL); 444 /* 445 * If ALTQ is enabled on the parent interface, do 446 * classification; the queueing discipline might not 447 * require classification, but might require the 448 * address family/header pointer in the pktattr. 449 */ 450 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 451 altq_etherclassify(&ifp->if_snd, m); 452 KERNEL_UNLOCK_ONE(NULL); 453 #endif 454 return ifq_enqueue(ifp, m); 455 456 bad: 457 if (m) 458 m_freem(m); 459 return error; 460 } 461 462 #ifdef ALTQ 463 /* 464 * This routine is a slight hack to allow a packet to be classified 465 * if the Ethernet headers are present. It will go away when ALTQ's 466 * classification engine understands link headers. 467 * 468 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 469 * is indeed contiguous, then to read the LLC and so on. 470 */ 471 void 472 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 473 { 474 struct ether_header *eh; 475 struct mbuf *mtop = m; 476 uint16_t ether_type; 477 int hlen, af, hdrsize; 478 void *hdr; 479 480 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 481 482 hlen = ETHER_HDR_LEN; 483 eh = mtod(m, struct ether_header *); 484 485 ether_type = htons(eh->ether_type); 486 487 if (ether_type < ETHERMTU) { 488 /* LLC/SNAP */ 489 struct llc *llc = (struct llc *)(eh + 1); 490 hlen += 8; 491 492 if (m->m_len < hlen || 493 llc->llc_dsap != LLC_SNAP_LSAP || 494 llc->llc_ssap != LLC_SNAP_LSAP || 495 llc->llc_control != LLC_UI) { 496 /* Not SNAP. */ 497 goto bad; 498 } 499 500 ether_type = htons(llc->llc_un.type_snap.ether_type); 501 } 502 503 switch (ether_type) { 504 case ETHERTYPE_IP: 505 af = AF_INET; 506 hdrsize = 20; /* sizeof(struct ip) */ 507 break; 508 509 case ETHERTYPE_IPV6: 510 af = AF_INET6; 511 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 512 break; 513 514 default: 515 af = AF_UNSPEC; 516 hdrsize = 0; 517 break; 518 } 519 520 while (m->m_len <= hlen) { 521 hlen -= m->m_len; 522 m = m->m_next; 523 if (m == NULL) 524 goto bad; 525 } 526 527 if (m->m_len < (hlen + hdrsize)) { 528 /* 529 * protocol header not in a single mbuf. 530 * We can't cope with this situation right 531 * now (but it shouldn't ever happen, really, anyhow). 532 */ 533 #ifdef DEBUG 534 printf("altq_etherclassify: headers span multiple mbufs: " 535 "%d < %d\n", m->m_len, (hlen + hdrsize)); 536 #endif 537 goto bad; 538 } 539 540 m->m_data += hlen; 541 m->m_len -= hlen; 542 543 hdr = mtod(m, void *); 544 545 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 546 mtop->m_pkthdr.pattr_class = 547 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 548 } 549 mtop->m_pkthdr.pattr_af = af; 550 mtop->m_pkthdr.pattr_hdr = hdr; 551 552 m->m_data -= hlen; 553 m->m_len += hlen; 554 555 return; 556 557 bad: 558 mtop->m_pkthdr.pattr_class = NULL; 559 mtop->m_pkthdr.pattr_hdr = NULL; 560 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 561 } 562 #endif /* ALTQ */ 563 564 /* 565 * Process a received Ethernet packet; 566 * the packet is in the mbuf chain m with 567 * the ether header. 568 */ 569 void 570 ether_input(struct ifnet *ifp, struct mbuf *m) 571 { 572 struct ethercom *ec = (struct ethercom *) ifp; 573 pktqueue_t *pktq = NULL; 574 struct ifqueue *inq = NULL; 575 uint16_t etype; 576 struct ether_header *eh; 577 size_t ehlen; 578 static int earlypkts; 579 int isr = 0; 580 #if defined (LLC) || defined(NETATALK) 581 struct llc *l; 582 #endif 583 584 KASSERT(!cpu_intr_p()); 585 KASSERT((m->m_flags & M_PKTHDR) != 0); 586 587 if ((ifp->if_flags & IFF_UP) == 0) { 588 m_freem(m); 589 return; 590 } 591 if (m->m_len < sizeof(*eh)) { 592 m = m_pullup(m, sizeof(*eh)); 593 if (m == NULL) 594 return; 595 } 596 597 #ifdef MBUFTRACE 598 m_claimm(m, &ec->ec_rx_mowner); 599 #endif 600 eh = mtod(m, struct ether_header *); 601 etype = ntohs(eh->ether_type); 602 ehlen = sizeof(*eh); 603 604 if (__predict_false(earlypkts < 100 || !rnd_initial_entropy)) { 605 rnd_add_data(NULL, eh, ehlen, 0); 606 earlypkts++; 607 } 608 609 /* 610 * Determine if the packet is within its size limits. For MPLS the 611 * header length is variable, so we skip the check. 612 */ 613 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 614 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 615 mutex_enter(&bigpktpps_lock); 616 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 617 bigpktppslim)) { 618 printf("%s: discarding oversize frame (len=%d)\n", 619 ifp->if_xname, m->m_pkthdr.len); 620 } 621 mutex_exit(&bigpktpps_lock); 622 m_freem(m); 623 return; 624 } 625 626 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 627 /* 628 * If this is not a simplex interface, drop the packet 629 * if it came from us. 630 */ 631 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 632 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 633 ETHER_ADDR_LEN) == 0) { 634 m_freem(m); 635 return; 636 } 637 638 if (memcmp(etherbroadcastaddr, 639 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 640 m->m_flags |= M_BCAST; 641 else 642 m->m_flags |= M_MCAST; 643 ifp->if_imcasts++; 644 } 645 646 /* If the CRC is still on the packet, trim it off. */ 647 if (m->m_flags & M_HASFCS) { 648 m_adj(m, -ETHER_CRC_LEN); 649 m->m_flags &= ~M_HASFCS; 650 } 651 652 ifp->if_ibytes += m->m_pkthdr.len; 653 654 #if NCARP > 0 655 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 656 /* 657 * Clear M_PROMISC, in case the packet comes from a 658 * vlan. 659 */ 660 m->m_flags &= ~M_PROMISC; 661 if (carp_input(m, (uint8_t *)&eh->ether_shost, 662 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 663 return; 664 } 665 #endif 666 667 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 668 (ifp->if_flags & IFF_PROMISC) != 0 && 669 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 670 ETHER_ADDR_LEN) != 0) { 671 m->m_flags |= M_PROMISC; 672 } 673 674 if ((m->m_flags & M_PROMISC) == 0) { 675 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 676 return; 677 if (m == NULL) 678 return; 679 680 eh = mtod(m, struct ether_header *); 681 etype = ntohs(eh->ether_type); 682 } 683 684 #if NAGR > 0 685 if (ifp->if_agrprivate && 686 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 687 m->m_flags &= ~M_PROMISC; 688 agr_input(ifp, m); 689 return; 690 } 691 #endif 692 693 /* 694 * If VLANs are configured on the interface, check to 695 * see if the device performed the decapsulation and 696 * provided us with the tag. 697 */ 698 if (ec->ec_nvlans && vlan_has_tag(m)) { 699 #if NVLAN > 0 700 /* 701 * vlan_input() will either recursively call ether_input() 702 * or drop the packet. 703 */ 704 vlan_input(ifp, m); 705 #else 706 m_freem(m); 707 #endif 708 return; 709 } 710 711 /* 712 * Handle protocols that expect to have the Ethernet header 713 * (and possibly FCS) intact. 714 */ 715 switch (etype) { 716 case ETHERTYPE_VLAN: { 717 struct ether_vlan_header *evl = (void *)eh; 718 719 /* 720 * If there is a tag of 0, then the VLAN header was probably 721 * just being used to store the priority. Extract the ether 722 * type, and if IP or IPV6, let them deal with it. 723 */ 724 if (m->m_len >= sizeof(*evl) && 725 EVL_VLANOFTAG(evl->evl_tag) == 0) { 726 etype = ntohs(evl->evl_proto); 727 ehlen = sizeof(*evl); 728 if ((m->m_flags & M_PROMISC) == 0 && 729 (etype == ETHERTYPE_IP || 730 etype == ETHERTYPE_IPV6)) 731 break; 732 } 733 734 #if NVLAN > 0 735 /* 736 * vlan_input() will either recursively call ether_input() 737 * or drop the packet. 738 */ 739 if (ec->ec_nvlans != 0) 740 vlan_input(ifp, m); 741 else 742 #endif 743 m_freem(m); 744 745 return; 746 } 747 748 #if NPPPOE > 0 749 case ETHERTYPE_PPPOEDISC: 750 pppoedisc_input(ifp, m); 751 return; 752 753 case ETHERTYPE_PPPOE: 754 pppoe_input(ifp, m); 755 return; 756 #endif 757 758 case ETHERTYPE_SLOWPROTOCOLS: { 759 uint8_t subtype; 760 761 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) { 762 m_freem(m); 763 return; 764 } 765 766 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 767 switch (subtype) { 768 #if NAGR > 0 769 case SLOWPROTOCOLS_SUBTYPE_LACP: 770 if (ifp->if_agrprivate) { 771 ieee8023ad_lacp_input(ifp, m); 772 return; 773 } 774 break; 775 776 case SLOWPROTOCOLS_SUBTYPE_MARKER: 777 if (ifp->if_agrprivate) { 778 ieee8023ad_marker_input(ifp, m); 779 return; 780 } 781 break; 782 #endif 783 784 default: 785 if (subtype == 0 || subtype > 10) { 786 /* illegal value */ 787 m_freem(m); 788 return; 789 } 790 /* unknown subtype */ 791 break; 792 } 793 } 794 /* FALLTHROUGH */ 795 default: 796 if (m->m_flags & M_PROMISC) { 797 m_freem(m); 798 return; 799 } 800 } 801 802 /* If the CRC is still on the packet, trim it off. */ 803 if (m->m_flags & M_HASFCS) { 804 m_adj(m, -ETHER_CRC_LEN); 805 m->m_flags &= ~M_HASFCS; 806 } 807 808 if (etype > ETHERMTU + sizeof(struct ether_header)) { 809 /* Strip off the Ethernet header. */ 810 m_adj(m, ehlen); 811 812 switch (etype) { 813 #ifdef INET 814 case ETHERTYPE_IP: 815 #ifdef GATEWAY 816 if (ipflow_fastforward(m)) 817 return; 818 #endif 819 pktq = ip_pktq; 820 break; 821 822 case ETHERTYPE_ARP: 823 isr = NETISR_ARP; 824 inq = &arpintrq; 825 break; 826 827 case ETHERTYPE_REVARP: 828 revarpinput(m); /* XXX queue? */ 829 return; 830 #endif 831 832 #ifdef INET6 833 case ETHERTYPE_IPV6: 834 if (__predict_false(!in6_present)) { 835 m_freem(m); 836 return; 837 } 838 #ifdef GATEWAY 839 if (ip6flow_fastforward(&m)) 840 return; 841 #endif 842 pktq = ip6_pktq; 843 break; 844 #endif 845 846 #ifdef NETATALK 847 case ETHERTYPE_ATALK: 848 isr = NETISR_ATALK; 849 inq = &atintrq1; 850 break; 851 852 case ETHERTYPE_AARP: 853 aarpinput(ifp, m); /* XXX queue? */ 854 return; 855 #endif 856 857 #ifdef MPLS 858 case ETHERTYPE_MPLS: 859 isr = NETISR_MPLS; 860 inq = &mplsintrq; 861 break; 862 #endif 863 864 default: 865 m_freem(m); 866 return; 867 } 868 } else { 869 KASSERT(ehlen == sizeof(*eh)); 870 #if defined (LLC) || defined (NETATALK) 871 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) { 872 goto dropanyway; 873 } 874 l = (struct llc *)(eh+1); 875 876 switch (l->llc_dsap) { 877 #ifdef NETATALK 878 case LLC_SNAP_LSAP: 879 switch (l->llc_control) { 880 case LLC_UI: 881 if (l->llc_ssap != LLC_SNAP_LSAP) { 882 goto dropanyway; 883 } 884 885 if (memcmp(&(l->llc_snap_org_code)[0], 886 at_org_code, sizeof(at_org_code)) == 0 && 887 ntohs(l->llc_snap_ether_type) == 888 ETHERTYPE_ATALK) { 889 inq = &atintrq2; 890 m_adj(m, sizeof(struct ether_header) 891 + sizeof(struct llc)); 892 isr = NETISR_ATALK; 893 break; 894 } 895 896 if (memcmp(&(l->llc_snap_org_code)[0], 897 aarp_org_code, 898 sizeof(aarp_org_code)) == 0 && 899 ntohs(l->llc_snap_ether_type) == 900 ETHERTYPE_AARP) { 901 m_adj(m, sizeof(struct ether_header) 902 + sizeof(struct llc)); 903 aarpinput(ifp, m); /* XXX queue? */ 904 return; 905 } 906 907 default: 908 goto dropanyway; 909 } 910 break; 911 #endif 912 dropanyway: 913 default: 914 m_freem(m); 915 return; 916 } 917 #else /* LLC || NETATALK */ 918 m_freem(m); 919 return; 920 #endif /* LLC || NETATALK */ 921 } 922 923 if (__predict_true(pktq)) { 924 #ifdef NET_MPSAFE 925 const u_int h = curcpu()->ci_index; 926 #else 927 const uint32_t h = pktq_rps_hash(m); 928 #endif 929 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 930 m_freem(m); 931 } 932 return; 933 } 934 935 if (__predict_false(!inq)) { 936 /* Should not happen. */ 937 m_freem(m); 938 return; 939 } 940 941 IFQ_LOCK(inq); 942 if (IF_QFULL(inq)) { 943 IF_DROP(inq); 944 IFQ_UNLOCK(inq); 945 m_freem(m); 946 } else { 947 IF_ENQUEUE(inq, m); 948 IFQ_UNLOCK(inq); 949 schednetisr(isr); 950 } 951 } 952 953 /* 954 * Convert Ethernet address to printable (loggable) representation. 955 */ 956 char * 957 ether_sprintf(const u_char *ap) 958 { 959 static char etherbuf[3 * ETHER_ADDR_LEN]; 960 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 961 } 962 963 char * 964 ether_snprintf(char *buf, size_t len, const u_char *ap) 965 { 966 char *cp = buf; 967 size_t i; 968 969 for (i = 0; i < len / 3; i++) { 970 *cp++ = hexdigits[*ap >> 4]; 971 *cp++ = hexdigits[*ap++ & 0xf]; 972 *cp++ = ':'; 973 } 974 *--cp = '\0'; 975 return buf; 976 } 977 978 /* 979 * Perform common duties while attaching to interface list 980 */ 981 void 982 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 983 { 984 struct ethercom *ec = (struct ethercom *)ifp; 985 986 ifp->if_type = IFT_ETHER; 987 ifp->if_hdrlen = ETHER_HDR_LEN; 988 ifp->if_dlt = DLT_EN10MB; 989 ifp->if_mtu = ETHERMTU; 990 ifp->if_output = ether_output; 991 ifp->_if_input = ether_input; 992 if (ifp->if_baudrate == 0) 993 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 994 995 if (lla != NULL) 996 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 997 998 LIST_INIT(&ec->ec_multiaddrs); 999 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1000 ec->ec_flags = 0; 1001 ifp->if_broadcastaddr = etherbroadcastaddr; 1002 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1003 #ifdef MBUFTRACE 1004 strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname, 1005 sizeof(ec->ec_tx_mowner.mo_name)); 1006 strlcpy(ec->ec_tx_mowner.mo_descr, "tx", 1007 sizeof(ec->ec_tx_mowner.mo_descr)); 1008 strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname, 1009 sizeof(ec->ec_rx_mowner.mo_name)); 1010 strlcpy(ec->ec_rx_mowner.mo_descr, "rx", 1011 sizeof(ec->ec_rx_mowner.mo_descr)); 1012 MOWNER_ATTACH(&ec->ec_tx_mowner); 1013 MOWNER_ATTACH(&ec->ec_rx_mowner); 1014 ifp->if_mowner = &ec->ec_tx_mowner; 1015 #endif 1016 } 1017 1018 void 1019 ether_ifdetach(struct ifnet *ifp) 1020 { 1021 struct ethercom *ec = (void *) ifp; 1022 struct ether_multi *enm; 1023 1024 IFNET_ASSERT_UNLOCKED(ifp); 1025 /* 1026 * Prevent further calls to ioctl (for example turning off 1027 * promiscuous mode from the bridge code), which eventually can 1028 * call if_init() which can cause panics because the interface 1029 * is in the process of being detached. Return device not configured 1030 * instead. 1031 */ 1032 ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio; 1033 1034 #if NBRIDGE > 0 1035 if (ifp->if_bridge) 1036 bridge_ifdetach(ifp); 1037 #endif 1038 bpf_detach(ifp); 1039 #if NVLAN > 0 1040 if (ec->ec_nvlans) 1041 vlan_ifdetach(ifp); 1042 #endif 1043 1044 ETHER_LOCK(ec); 1045 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1046 LIST_REMOVE(enm, enm_list); 1047 kmem_free(enm, sizeof(*enm)); 1048 ec->ec_multicnt--; 1049 } 1050 ETHER_UNLOCK(ec); 1051 1052 mutex_obj_free(ec->ec_lock); 1053 ec->ec_lock = NULL; 1054 1055 ifp->if_mowner = NULL; 1056 MOWNER_DETACH(&ec->ec_rx_mowner); 1057 MOWNER_DETACH(&ec->ec_tx_mowner); 1058 } 1059 1060 #if 0 1061 /* 1062 * This is for reference. We have a table-driven version 1063 * of the little-endian crc32 generator, which is faster 1064 * than the double-loop. 1065 */ 1066 uint32_t 1067 ether_crc32_le(const uint8_t *buf, size_t len) 1068 { 1069 uint32_t c, crc, carry; 1070 size_t i, j; 1071 1072 crc = 0xffffffffU; /* initial value */ 1073 1074 for (i = 0; i < len; i++) { 1075 c = buf[i]; 1076 for (j = 0; j < 8; j++) { 1077 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1078 crc >>= 1; 1079 c >>= 1; 1080 if (carry) 1081 crc = (crc ^ ETHER_CRC_POLY_LE); 1082 } 1083 } 1084 1085 return (crc); 1086 } 1087 #else 1088 uint32_t 1089 ether_crc32_le(const uint8_t *buf, size_t len) 1090 { 1091 static const uint32_t crctab[] = { 1092 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1093 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1094 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1095 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1096 }; 1097 uint32_t crc; 1098 size_t i; 1099 1100 crc = 0xffffffffU; /* initial value */ 1101 1102 for (i = 0; i < len; i++) { 1103 crc ^= buf[i]; 1104 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1105 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1106 } 1107 1108 return (crc); 1109 } 1110 #endif 1111 1112 uint32_t 1113 ether_crc32_be(const uint8_t *buf, size_t len) 1114 { 1115 uint32_t c, crc, carry; 1116 size_t i, j; 1117 1118 crc = 0xffffffffU; /* initial value */ 1119 1120 for (i = 0; i < len; i++) { 1121 c = buf[i]; 1122 for (j = 0; j < 8; j++) { 1123 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1124 crc <<= 1; 1125 c >>= 1; 1126 if (carry) 1127 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1128 } 1129 } 1130 1131 return (crc); 1132 } 1133 1134 #ifdef INET 1135 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1136 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1137 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1138 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1139 #endif 1140 #ifdef INET6 1141 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1142 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1143 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1144 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1145 #endif 1146 1147 /* 1148 * ether_aton implementation, not using a static buffer. 1149 */ 1150 int 1151 ether_aton_r(u_char *dest, size_t len, const char *str) 1152 { 1153 const u_char *cp = (const void *)str; 1154 u_char *ep; 1155 1156 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1157 1158 if (len < ETHER_ADDR_LEN) 1159 return ENOSPC; 1160 1161 ep = dest + ETHER_ADDR_LEN; 1162 1163 while (*cp) { 1164 if (!isxdigit(*cp)) 1165 return EINVAL; 1166 1167 *dest = atox(*cp); 1168 cp++; 1169 if (isxdigit(*cp)) { 1170 *dest = (*dest << 4) | atox(*cp); 1171 cp++; 1172 } 1173 dest++; 1174 1175 if (dest == ep) 1176 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1177 1178 switch (*cp) { 1179 case ':': 1180 case '-': 1181 case '.': 1182 cp++; 1183 break; 1184 } 1185 } 1186 return ENOBUFS; 1187 } 1188 1189 /* 1190 * Convert a sockaddr into an Ethernet address or range of Ethernet 1191 * addresses. 1192 */ 1193 int 1194 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1195 uint8_t addrhi[ETHER_ADDR_LEN]) 1196 { 1197 #ifdef INET 1198 const struct sockaddr_in *sin; 1199 #endif 1200 #ifdef INET6 1201 const struct sockaddr_in6 *sin6; 1202 #endif 1203 1204 switch (sa->sa_family) { 1205 1206 case AF_UNSPEC: 1207 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1208 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1209 break; 1210 1211 #ifdef INET 1212 case AF_INET: 1213 sin = satocsin(sa); 1214 if (sin->sin_addr.s_addr == INADDR_ANY) { 1215 /* 1216 * An IP address of INADDR_ANY means listen to 1217 * or stop listening to all of the Ethernet 1218 * multicast addresses used for IP. 1219 * (This is for the sake of IP multicast routers.) 1220 */ 1221 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1222 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1223 } else { 1224 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1225 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1226 } 1227 break; 1228 #endif 1229 #ifdef INET6 1230 case AF_INET6: 1231 sin6 = satocsin6(sa); 1232 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1233 /* 1234 * An IP6 address of 0 means listen to or stop 1235 * listening to all of the Ethernet multicast 1236 * address used for IP6. 1237 * (This is used for multicast routers.) 1238 */ 1239 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1240 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1241 } else { 1242 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1243 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1244 } 1245 break; 1246 #endif 1247 1248 default: 1249 return EAFNOSUPPORT; 1250 } 1251 return 0; 1252 } 1253 1254 /* 1255 * Add an Ethernet multicast address or range of addresses to the list for a 1256 * given interface. 1257 */ 1258 int 1259 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1260 { 1261 struct ether_multi *enm, *_enm; 1262 u_char addrlo[ETHER_ADDR_LEN]; 1263 u_char addrhi[ETHER_ADDR_LEN]; 1264 int error = 0; 1265 1266 /* Allocate out of lock */ 1267 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1268 1269 ETHER_LOCK(ec); 1270 error = ether_multiaddr(sa, addrlo, addrhi); 1271 if (error != 0) 1272 goto out; 1273 1274 /* 1275 * Verify that we have valid Ethernet multicast addresses. 1276 */ 1277 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1278 error = EINVAL; 1279 goto out; 1280 } 1281 1282 /* 1283 * See if the address range is already in the list. 1284 */ 1285 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1286 if (_enm != NULL) { 1287 /* 1288 * Found it; just increment the reference count. 1289 */ 1290 ++_enm->enm_refcount; 1291 error = 0; 1292 goto out; 1293 } 1294 1295 /* 1296 * Link a new multicast record into the interface's multicast list. 1297 */ 1298 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1299 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1300 enm->enm_refcount = 1; 1301 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1302 ec->ec_multicnt++; 1303 1304 /* 1305 * Return ENETRESET to inform the driver that the list has changed 1306 * and its reception filter should be adjusted accordingly. 1307 */ 1308 error = ENETRESET; 1309 enm = NULL; 1310 1311 out: 1312 ETHER_UNLOCK(ec); 1313 if (enm != NULL) 1314 kmem_free(enm, sizeof(*enm)); 1315 return error; 1316 } 1317 1318 /* 1319 * Delete a multicast address record. 1320 */ 1321 int 1322 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1323 { 1324 struct ether_multi *enm; 1325 u_char addrlo[ETHER_ADDR_LEN]; 1326 u_char addrhi[ETHER_ADDR_LEN]; 1327 int error; 1328 1329 ETHER_LOCK(ec); 1330 error = ether_multiaddr(sa, addrlo, addrhi); 1331 if (error != 0) 1332 goto error; 1333 1334 /* 1335 * Look up the address in our list. 1336 */ 1337 enm = ether_lookup_multi(addrlo, addrhi, ec); 1338 if (enm == NULL) { 1339 error = ENXIO; 1340 goto error; 1341 } 1342 if (--enm->enm_refcount != 0) { 1343 /* 1344 * Still some claims to this record. 1345 */ 1346 error = 0; 1347 goto error; 1348 } 1349 1350 /* 1351 * No remaining claims to this record; unlink and free it. 1352 */ 1353 LIST_REMOVE(enm, enm_list); 1354 ec->ec_multicnt--; 1355 ETHER_UNLOCK(ec); 1356 kmem_free(enm, sizeof(*enm)); 1357 1358 /* 1359 * Return ENETRESET to inform the driver that the list has changed 1360 * and its reception filter should be adjusted accordingly. 1361 */ 1362 return ENETRESET; 1363 1364 error: 1365 ETHER_UNLOCK(ec); 1366 return error; 1367 } 1368 1369 void 1370 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1371 { 1372 ec->ec_ifflags_cb = cb; 1373 } 1374 1375 static int 1376 ether_ioctl_reinit(struct ethercom *ec) 1377 { 1378 struct ifnet *ifp = &ec->ec_if; 1379 int error; 1380 1381 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1382 case IFF_RUNNING: 1383 /* 1384 * If interface is marked down and it is running, 1385 * then stop and disable it. 1386 */ 1387 (*ifp->if_stop)(ifp, 1); 1388 break; 1389 case IFF_UP: 1390 /* 1391 * If interface is marked up and it is stopped, then 1392 * start it. 1393 */ 1394 return (*ifp->if_init)(ifp); 1395 case IFF_UP | IFF_RUNNING: 1396 error = 0; 1397 if (ec->ec_ifflags_cb != NULL) { 1398 error = (*ec->ec_ifflags_cb)(ec); 1399 if (error == ENETRESET) { 1400 /* 1401 * Reset the interface to pick up 1402 * changes in any other flags that 1403 * affect the hardware state. 1404 */ 1405 return (*ifp->if_init)(ifp); 1406 } 1407 } else 1408 error = (*ifp->if_init)(ifp); 1409 return error; 1410 case 0: 1411 break; 1412 } 1413 1414 return 0; 1415 } 1416 1417 /* 1418 * Common ioctls for Ethernet interfaces. Note, we must be 1419 * called at splnet(). 1420 */ 1421 int 1422 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1423 { 1424 struct ethercom *ec = (void *)ifp; 1425 struct eccapreq *eccr; 1426 struct ifreq *ifr = (struct ifreq *)data; 1427 struct if_laddrreq *iflr = data; 1428 const struct sockaddr_dl *sdl; 1429 static const uint8_t zero[ETHER_ADDR_LEN]; 1430 int error; 1431 1432 switch (cmd) { 1433 case SIOCINITIFADDR: 1434 { 1435 struct ifaddr *ifa = (struct ifaddr *)data; 1436 if (ifa->ifa_addr->sa_family != AF_LINK 1437 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1438 (IFF_UP | IFF_RUNNING)) { 1439 ifp->if_flags |= IFF_UP; 1440 if ((error = (*ifp->if_init)(ifp)) != 0) 1441 return error; 1442 } 1443 #ifdef INET 1444 if (ifa->ifa_addr->sa_family == AF_INET) 1445 arp_ifinit(ifp, ifa); 1446 #endif 1447 return 0; 1448 } 1449 1450 case SIOCSIFMTU: 1451 { 1452 int maxmtu; 1453 1454 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1455 maxmtu = ETHERMTU_JUMBO; 1456 else 1457 maxmtu = ETHERMTU; 1458 1459 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1460 return EINVAL; 1461 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1462 return error; 1463 else if (ifp->if_flags & IFF_UP) { 1464 /* Make sure the device notices the MTU change. */ 1465 return (*ifp->if_init)(ifp); 1466 } else 1467 return 0; 1468 } 1469 1470 case SIOCSIFFLAGS: 1471 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1472 return error; 1473 return ether_ioctl_reinit(ec); 1474 case SIOCGIFFLAGS: 1475 error = ifioctl_common(ifp, cmd, data); 1476 if (error == 0) { 1477 /* Set IFF_ALLMULTI for backcompat */ 1478 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1479 IFF_ALLMULTI : 0; 1480 } 1481 return error; 1482 case SIOCGETHERCAP: 1483 eccr = (struct eccapreq *)data; 1484 eccr->eccr_capabilities = ec->ec_capabilities; 1485 eccr->eccr_capenable = ec->ec_capenable; 1486 return 0; 1487 case SIOCSETHERCAP: 1488 eccr = (struct eccapreq *)data; 1489 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1490 return EINVAL; 1491 if (eccr->eccr_capenable == ec->ec_capenable) 1492 return 0; 1493 #if 0 /* notyet */ 1494 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1495 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1496 #else 1497 ec->ec_capenable = eccr->eccr_capenable; 1498 #endif 1499 return ether_ioctl_reinit(ec); 1500 case SIOCADDMULTI: 1501 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1502 case SIOCDELMULTI: 1503 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1504 case SIOCSIFMEDIA: 1505 case SIOCGIFMEDIA: 1506 if (ec->ec_mii != NULL) 1507 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1508 cmd); 1509 else if (ec->ec_ifmedia != NULL) 1510 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1511 else 1512 return ENOTTY; 1513 break; 1514 case SIOCALIFADDR: 1515 sdl = satocsdl(sstocsa(&iflr->addr)); 1516 if (sdl->sdl_family != AF_LINK) 1517 ; 1518 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1519 return EINVAL; 1520 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1521 return EINVAL; 1522 /*FALLTHROUGH*/ 1523 default: 1524 return ifioctl_common(ifp, cmd, data); 1525 } 1526 return 0; 1527 } 1528 1529 /* 1530 * Enable/disable passing VLAN packets if the parent interface supports it. 1531 * Return: 1532 * 0: Ok 1533 * -1: Parent interface does not support vlans 1534 * >0: Error 1535 */ 1536 int 1537 ether_enable_vlan_mtu(struct ifnet *ifp) 1538 { 1539 int error; 1540 struct ethercom *ec = (void *)ifp; 1541 1542 /* Parent does not support VLAN's */ 1543 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1544 return -1; 1545 1546 /* 1547 * Parent supports the VLAN_MTU capability, 1548 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1549 * enable it. 1550 */ 1551 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1552 1553 /* Interface is down, defer for later */ 1554 if ((ifp->if_flags & IFF_UP) == 0) 1555 return 0; 1556 1557 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1558 return 0; 1559 1560 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1561 return error; 1562 } 1563 1564 int 1565 ether_disable_vlan_mtu(struct ifnet *ifp) 1566 { 1567 int error; 1568 struct ethercom *ec = (void *)ifp; 1569 1570 /* We still have VLAN's, defer for later */ 1571 if (ec->ec_nvlans != 0) 1572 return 0; 1573 1574 /* Parent does not support VLAB's, nothing to do. */ 1575 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1576 return -1; 1577 1578 /* 1579 * Disable Tx/Rx of VLAN-sized frames. 1580 */ 1581 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1582 1583 /* Interface is down, defer for later */ 1584 if ((ifp->if_flags & IFF_UP) == 0) 1585 return 0; 1586 1587 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1588 return 0; 1589 1590 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1591 return error; 1592 } 1593 1594 static int 1595 ether_multicast_sysctl(SYSCTLFN_ARGS) 1596 { 1597 struct ether_multi *enm; 1598 struct ifnet *ifp; 1599 struct ethercom *ec; 1600 int error = 0; 1601 size_t written; 1602 struct psref psref; 1603 int bound; 1604 unsigned int multicnt; 1605 struct ether_multi_sysctl *addrs; 1606 int i; 1607 1608 if (namelen != 1) 1609 return EINVAL; 1610 1611 bound = curlwp_bind(); 1612 ifp = if_get_byindex(name[0], &psref); 1613 if (ifp == NULL) { 1614 error = ENODEV; 1615 goto out; 1616 } 1617 if (ifp->if_type != IFT_ETHER) { 1618 if_put(ifp, &psref); 1619 *oldlenp = 0; 1620 goto out; 1621 } 1622 ec = (struct ethercom *)ifp; 1623 1624 if (oldp == NULL) { 1625 if_put(ifp, &psref); 1626 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1627 goto out; 1628 } 1629 1630 /* 1631 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1632 * is sleepable, while holding it. Copy data to a local buffer first 1633 * with the lock taken and then call sysctl_copyout without holding it. 1634 */ 1635 retry: 1636 multicnt = ec->ec_multicnt; 1637 1638 if (multicnt == 0) { 1639 if_put(ifp, &psref); 1640 *oldlenp = 0; 1641 goto out; 1642 } 1643 1644 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1645 1646 ETHER_LOCK(ec); 1647 if (multicnt != ec->ec_multicnt) { 1648 /* The number of multicast addresses has changed */ 1649 ETHER_UNLOCK(ec); 1650 kmem_free(addrs, sizeof(*addrs) * multicnt); 1651 goto retry; 1652 } 1653 1654 i = 0; 1655 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1656 struct ether_multi_sysctl *addr = &addrs[i]; 1657 addr->enm_refcount = enm->enm_refcount; 1658 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1659 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1660 i++; 1661 } 1662 ETHER_UNLOCK(ec); 1663 1664 error = 0; 1665 written = 0; 1666 for (i = 0; i < multicnt; i++) { 1667 struct ether_multi_sysctl *addr = &addrs[i]; 1668 1669 if (written + sizeof(*addr) > *oldlenp) 1670 break; 1671 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1672 if (error) 1673 break; 1674 written += sizeof(*addr); 1675 oldp = (char *)oldp + sizeof(*addr); 1676 } 1677 kmem_free(addrs, sizeof(*addrs) * multicnt); 1678 1679 if_put(ifp, &psref); 1680 1681 *oldlenp = written; 1682 out: 1683 curlwp_bindx(bound); 1684 return error; 1685 } 1686 1687 static void 1688 ether_sysctl_setup(struct sysctllog **clog) 1689 { 1690 const struct sysctlnode *rnode = NULL; 1691 1692 sysctl_createv(clog, 0, NULL, &rnode, 1693 CTLFLAG_PERMANENT, 1694 CTLTYPE_NODE, "ether", 1695 SYSCTL_DESCR("Ethernet-specific information"), 1696 NULL, 0, NULL, 0, 1697 CTL_NET, CTL_CREATE, CTL_EOL); 1698 1699 sysctl_createv(clog, 0, &rnode, NULL, 1700 CTLFLAG_PERMANENT, 1701 CTLTYPE_NODE, "multicast", 1702 SYSCTL_DESCR("multicast addresses"), 1703 ether_multicast_sysctl, 0, NULL, 0, 1704 CTL_CREATE, CTL_EOL); 1705 } 1706 1707 void 1708 etherinit(void) 1709 { 1710 1711 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1712 ether_sysctl_setup(NULL); 1713 } 1714