1 /* $NetBSD: if_ethersubr.c,v 1.323 2022/11/15 10:47:39 roy Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.323 2022/11/15 10:47:39 roy Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/entropy.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 #include <sys/hook.h> 93 94 #include <net/if.h> 95 #include <net/route.h> 96 #include <net/if_llc.h> 97 #include <net/if_dl.h> 98 #include <net/if_types.h> 99 #include <net/pktqueue.h> 100 101 #include <net/if_media.h> 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 105 #if NARP == 0 106 /* 107 * XXX there should really be a way to issue this warning from within config(8) 108 */ 109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 110 #endif 111 112 #include <net/bpf.h> 113 114 #include <net/if_ether.h> 115 #include <net/if_vlanvar.h> 116 117 #if NPPPOE > 0 118 #include <net/if_pppoe.h> 119 #endif 120 121 #if NAGR > 0 122 #include <net/ether_slowprotocols.h> 123 #include <net/agr/ieee8023ad.h> 124 #include <net/agr/if_agrvar.h> 125 #endif 126 127 #if NBRIDGE > 0 128 #include <net/if_bridgevar.h> 129 #endif 130 131 #include <netinet/in.h> 132 #ifdef INET 133 #include <netinet/in_var.h> 134 #endif 135 #include <netinet/if_inarp.h> 136 137 #ifdef INET6 138 #ifndef INET 139 #include <netinet/in.h> 140 #endif 141 #include <netinet6/in6_var.h> 142 #include <netinet6/nd6.h> 143 #endif 144 145 #include "carp.h" 146 #if NCARP > 0 147 #include <netinet/ip_carp.h> 148 #endif 149 150 #ifdef NETATALK 151 #include <netatalk/at.h> 152 #include <netatalk/at_var.h> 153 #include <netatalk/at_extern.h> 154 155 #define llc_snap_org_code llc_un.type_snap.org_code 156 #define llc_snap_ether_type llc_un.type_snap.ether_type 157 158 extern u_char at_org_code[3]; 159 extern u_char aarp_org_code[3]; 160 #endif /* NETATALK */ 161 162 #ifdef MPLS 163 #include <netmpls/mpls.h> 164 #include <netmpls/mpls_var.h> 165 #endif 166 167 CTASSERT(sizeof(struct ether_addr) == 6); 168 CTASSERT(sizeof(struct ether_header) == 14); 169 170 #ifdef DIAGNOSTIC 171 static struct timeval bigpktppslim_last; 172 static int bigpktppslim = 2; /* XXX */ 173 static int bigpktpps_count; 174 static kmutex_t bigpktpps_lock __cacheline_aligned; 175 #endif 176 177 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 178 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 179 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 180 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 181 #define senderr(e) { error = (e); goto bad;} 182 183 static pktq_rps_hash_func_t ether_pktq_rps_hash_p; 184 185 static int ether_output(struct ifnet *, struct mbuf *, 186 const struct sockaddr *, const struct rtentry *); 187 188 /* 189 * Ethernet output routine. 190 * Encapsulate a packet of type family for the local net. 191 * Assumes that ifp is actually pointer to ethercom structure. 192 */ 193 static int 194 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 195 const struct sockaddr * const dst, const struct rtentry *rt) 196 { 197 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 198 uint16_t etype = 0; 199 int error = 0, hdrcmplt = 0; 200 struct mbuf *m = m0; 201 struct mbuf *mcopy = NULL; 202 struct ether_header *eh; 203 struct ifnet *ifp = ifp0; 204 #ifdef INET 205 struct arphdr *ah; 206 #endif 207 #ifdef NETATALK 208 struct at_ifaddr *aa; 209 #endif 210 211 #ifdef MBUFTRACE 212 m_claimm(m, ifp->if_mowner); 213 #endif 214 215 #if NCARP > 0 216 if (ifp->if_type == IFT_CARP) { 217 struct ifaddr *ifa; 218 int s = pserialize_read_enter(); 219 220 /* loop back if this is going to the carp interface */ 221 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 222 (ifa = ifa_ifwithaddr(dst)) != NULL) { 223 if (ifa->ifa_ifp == ifp0) { 224 pserialize_read_exit(s); 225 return looutput(ifp0, m, dst, rt); 226 } 227 } 228 pserialize_read_exit(s); 229 230 ifp = ifp->if_carpdev; 231 /* ac = (struct arpcom *)ifp; */ 232 233 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 234 (IFF_UP | IFF_RUNNING)) 235 senderr(ENETDOWN); 236 } 237 #endif 238 239 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 240 senderr(ENETDOWN); 241 242 switch (dst->sa_family) { 243 244 #ifdef INET 245 case AF_INET: 246 if (m->m_flags & M_BCAST) { 247 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 248 } else if (m->m_flags & M_MCAST) { 249 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 250 } else { 251 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 252 if (error) 253 return (error == EWOULDBLOCK) ? 0 : error; 254 } 255 /* If broadcasting on a simplex interface, loopback a copy */ 256 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 257 mcopy = m_copypacket(m, M_DONTWAIT); 258 etype = htons(ETHERTYPE_IP); 259 break; 260 261 case AF_ARP: 262 ah = mtod(m, struct arphdr *); 263 if (m->m_flags & M_BCAST) { 264 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 265 } else { 266 void *tha = ar_tha(ah); 267 268 if (tha == NULL) { 269 /* fake with ARPHRD_IEEE1394 */ 270 m_freem(m); 271 return 0; 272 } 273 memcpy(edst, tha, sizeof(edst)); 274 } 275 276 ah->ar_hrd = htons(ARPHRD_ETHER); 277 278 switch (ntohs(ah->ar_op)) { 279 case ARPOP_REVREQUEST: 280 case ARPOP_REVREPLY: 281 etype = htons(ETHERTYPE_REVARP); 282 break; 283 284 case ARPOP_REQUEST: 285 case ARPOP_REPLY: 286 default: 287 etype = htons(ETHERTYPE_ARP); 288 } 289 break; 290 #endif 291 292 #ifdef INET6 293 case AF_INET6: 294 if (m->m_flags & M_BCAST) { 295 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 296 } else if (m->m_flags & M_MCAST) { 297 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 298 edst); 299 } else { 300 error = nd6_resolve(ifp0, rt, m, dst, edst, 301 sizeof(edst)); 302 if (error) 303 return (error == EWOULDBLOCK) ? 0 : error; 304 } 305 etype = htons(ETHERTYPE_IPV6); 306 break; 307 #endif 308 309 #ifdef NETATALK 310 case AF_APPLETALK: { 311 struct ifaddr *ifa; 312 int s; 313 314 KERNEL_LOCK(1, NULL); 315 316 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 317 KERNEL_UNLOCK_ONE(NULL); 318 return 0; 319 } 320 321 /* 322 * ifaddr is the first thing in at_ifaddr 323 */ 324 s = pserialize_read_enter(); 325 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 326 if (ifa == NULL) { 327 pserialize_read_exit(s); 328 KERNEL_UNLOCK_ONE(NULL); 329 senderr(EADDRNOTAVAIL); 330 } 331 aa = (struct at_ifaddr *)ifa; 332 333 /* 334 * In the phase 2 case, we need to prepend an mbuf for the 335 * llc header. 336 */ 337 if (aa->aa_flags & AFA_PHASE2) { 338 struct llc llc; 339 340 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 341 if (m == NULL) { 342 pserialize_read_exit(s); 343 KERNEL_UNLOCK_ONE(NULL); 344 senderr(ENOBUFS); 345 } 346 347 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 348 llc.llc_control = LLC_UI; 349 memcpy(llc.llc_snap_org_code, at_org_code, 350 sizeof(llc.llc_snap_org_code)); 351 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 352 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 353 } else { 354 etype = htons(ETHERTYPE_ATALK); 355 } 356 pserialize_read_exit(s); 357 KERNEL_UNLOCK_ONE(NULL); 358 break; 359 } 360 #endif /* NETATALK */ 361 362 case pseudo_AF_HDRCMPLT: 363 hdrcmplt = 1; 364 memcpy(esrc, 365 ((const struct ether_header *)dst->sa_data)->ether_shost, 366 sizeof(esrc)); 367 /* FALLTHROUGH */ 368 369 case AF_UNSPEC: 370 memcpy(edst, 371 ((const struct ether_header *)dst->sa_data)->ether_dhost, 372 sizeof(edst)); 373 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 374 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 375 break; 376 377 default: 378 printf("%s: can't handle af%d\n", ifp->if_xname, 379 dst->sa_family); 380 senderr(EAFNOSUPPORT); 381 } 382 383 #ifdef MPLS 384 { 385 struct m_tag *mtag; 386 mtag = m_tag_find(m, PACKET_TAG_MPLS); 387 if (mtag != NULL) { 388 /* Having the tag itself indicates it's MPLS */ 389 etype = htons(ETHERTYPE_MPLS); 390 m_tag_delete(m, mtag); 391 } 392 } 393 #endif 394 395 if (mcopy) 396 (void)looutput(ifp, mcopy, dst, rt); 397 398 KASSERT((m->m_flags & M_PKTHDR) != 0); 399 400 /* 401 * If no ether type is set, this must be a 802.2 formatted packet. 402 */ 403 if (etype == 0) 404 etype = htons(m->m_pkthdr.len); 405 406 /* 407 * Add local net header. If no space in first mbuf, allocate another. 408 */ 409 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 410 if (m == NULL) 411 senderr(ENOBUFS); 412 413 eh = mtod(m, struct ether_header *); 414 /* Note: etype is already in network byte order. */ 415 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 416 memcpy(eh->ether_dhost, edst, sizeof(edst)); 417 if (hdrcmplt) { 418 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 419 } else { 420 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 421 sizeof(eh->ether_shost)); 422 } 423 424 #if NCARP > 0 425 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 426 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 427 sizeof(eh->ether_shost)); 428 } 429 #endif 430 431 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 432 return error; 433 if (m == NULL) 434 return 0; 435 436 #if NBRIDGE > 0 437 /* 438 * Bridges require special output handling. 439 */ 440 if (ifp->if_bridge) 441 return bridge_output(ifp, m, NULL, NULL); 442 #endif 443 444 #if NCARP > 0 445 if (ifp != ifp0) 446 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 447 #endif 448 449 #ifdef ALTQ 450 KERNEL_LOCK(1, NULL); 451 /* 452 * If ALTQ is enabled on the parent interface, do 453 * classification; the queueing discipline might not 454 * require classification, but might require the 455 * address family/header pointer in the pktattr. 456 */ 457 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 458 altq_etherclassify(&ifp->if_snd, m); 459 KERNEL_UNLOCK_ONE(NULL); 460 #endif 461 return ifq_enqueue(ifp, m); 462 463 bad: 464 if_statinc(ifp, if_oerrors); 465 if (m) 466 m_freem(m); 467 return error; 468 } 469 470 #ifdef ALTQ 471 /* 472 * This routine is a slight hack to allow a packet to be classified 473 * if the Ethernet headers are present. It will go away when ALTQ's 474 * classification engine understands link headers. 475 * 476 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 477 * is indeed contiguous, then to read the LLC and so on. 478 */ 479 void 480 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 481 { 482 struct ether_header *eh; 483 struct mbuf *mtop = m; 484 uint16_t ether_type; 485 int hlen, af, hdrsize; 486 void *hdr; 487 488 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 489 490 hlen = ETHER_HDR_LEN; 491 eh = mtod(m, struct ether_header *); 492 493 ether_type = htons(eh->ether_type); 494 495 if (ether_type < ETHERMTU) { 496 /* LLC/SNAP */ 497 struct llc *llc = (struct llc *)(eh + 1); 498 hlen += 8; 499 500 if (m->m_len < hlen || 501 llc->llc_dsap != LLC_SNAP_LSAP || 502 llc->llc_ssap != LLC_SNAP_LSAP || 503 llc->llc_control != LLC_UI) { 504 /* Not SNAP. */ 505 goto bad; 506 } 507 508 ether_type = htons(llc->llc_un.type_snap.ether_type); 509 } 510 511 switch (ether_type) { 512 case ETHERTYPE_IP: 513 af = AF_INET; 514 hdrsize = 20; /* sizeof(struct ip) */ 515 break; 516 517 case ETHERTYPE_IPV6: 518 af = AF_INET6; 519 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 520 break; 521 522 default: 523 af = AF_UNSPEC; 524 hdrsize = 0; 525 break; 526 } 527 528 while (m->m_len <= hlen) { 529 hlen -= m->m_len; 530 m = m->m_next; 531 if (m == NULL) 532 goto bad; 533 } 534 535 if (m->m_len < (hlen + hdrsize)) { 536 /* 537 * protocol header not in a single mbuf. 538 * We can't cope with this situation right 539 * now (but it shouldn't ever happen, really, anyhow). 540 */ 541 #ifdef DEBUG 542 printf("altq_etherclassify: headers span multiple mbufs: " 543 "%d < %d\n", m->m_len, (hlen + hdrsize)); 544 #endif 545 goto bad; 546 } 547 548 m->m_data += hlen; 549 m->m_len -= hlen; 550 551 hdr = mtod(m, void *); 552 553 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 554 mtop->m_pkthdr.pattr_class = 555 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 556 } 557 mtop->m_pkthdr.pattr_af = af; 558 mtop->m_pkthdr.pattr_hdr = hdr; 559 560 m->m_data -= hlen; 561 m->m_len += hlen; 562 563 return; 564 565 bad: 566 mtop->m_pkthdr.pattr_class = NULL; 567 mtop->m_pkthdr.pattr_hdr = NULL; 568 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 569 } 570 #endif /* ALTQ */ 571 572 #if defined (LLC) || defined (NETATALK) 573 static void 574 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 575 { 576 pktqueue_t *pktq = NULL; 577 struct llc *l; 578 579 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 580 goto error; 581 582 l = (struct llc *)(eh+1); 583 switch (l->llc_dsap) { 584 #ifdef NETATALK 585 case LLC_SNAP_LSAP: 586 switch (l->llc_control) { 587 case LLC_UI: 588 if (l->llc_ssap != LLC_SNAP_LSAP) 589 goto error; 590 591 if (memcmp(&(l->llc_snap_org_code)[0], 592 at_org_code, sizeof(at_org_code)) == 0 && 593 ntohs(l->llc_snap_ether_type) == 594 ETHERTYPE_ATALK) { 595 pktq = at_pktq2; 596 m_adj(m, sizeof(struct ether_header) 597 + sizeof(struct llc)); 598 break; 599 } 600 601 if (memcmp(&(l->llc_snap_org_code)[0], 602 aarp_org_code, 603 sizeof(aarp_org_code)) == 0 && 604 ntohs(l->llc_snap_ether_type) == 605 ETHERTYPE_AARP) { 606 m_adj(m, sizeof(struct ether_header) 607 + sizeof(struct llc)); 608 aarpinput(ifp, m); /* XXX queue? */ 609 return; 610 } 611 612 default: 613 goto error; 614 } 615 break; 616 #endif 617 default: 618 goto noproto; 619 } 620 621 KASSERT(pktq != NULL); 622 if (__predict_false(!pktq_enqueue(pktq, m, 0))) { 623 m_freem(m); 624 } 625 return; 626 627 noproto: 628 m_freem(m); 629 if_statinc(ifp, if_noproto); 630 return; 631 error: 632 m_freem(m); 633 if_statinc(ifp, if_ierrors); 634 return; 635 } 636 #endif /* defined (LLC) || defined (NETATALK) */ 637 638 /* 639 * Process a received Ethernet packet; 640 * the packet is in the mbuf chain m with 641 * the ether header. 642 */ 643 void 644 ether_input(struct ifnet *ifp, struct mbuf *m) 645 { 646 #if NVLAN > 0 || defined(MBUFTRACE) 647 struct ethercom *ec = (struct ethercom *) ifp; 648 #endif 649 pktqueue_t *pktq = NULL; 650 uint16_t etype; 651 struct ether_header *eh; 652 size_t ehlen; 653 static int earlypkts; 654 655 /* No RPS for not-IP. */ 656 pktq_rps_hash_func_t rps_hash = NULL; 657 658 KASSERT(!cpu_intr_p()); 659 KASSERT((m->m_flags & M_PKTHDR) != 0); 660 661 if ((ifp->if_flags & IFF_UP) == 0) 662 goto drop; 663 664 #ifdef MBUFTRACE 665 m_claimm(m, &ec->ec_rx_mowner); 666 #endif 667 668 if (__predict_false(m->m_len < sizeof(*eh))) { 669 if ((m = m_pullup(m, sizeof(*eh))) == NULL) { 670 if_statinc(ifp, if_ierrors); 671 return; 672 } 673 } 674 675 eh = mtod(m, struct ether_header *); 676 etype = ntohs(eh->ether_type); 677 ehlen = sizeof(*eh); 678 679 if (__predict_false(earlypkts < 100 || 680 entropy_epoch() == (unsigned)-1)) { 681 rnd_add_data(NULL, eh, ehlen, 0); 682 earlypkts++; 683 } 684 685 /* 686 * Determine if the packet is within its size limits. For MPLS the 687 * header length is variable, so we skip the check. 688 */ 689 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 690 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 691 #ifdef DIAGNOSTIC 692 mutex_enter(&bigpktpps_lock); 693 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 694 bigpktppslim)) { 695 printf("%s: discarding oversize frame (len=%d)\n", 696 ifp->if_xname, m->m_pkthdr.len); 697 } 698 mutex_exit(&bigpktpps_lock); 699 #endif 700 goto error; 701 } 702 703 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 704 /* 705 * If this is not a simplex interface, drop the packet 706 * if it came from us. 707 */ 708 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 709 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 710 ETHER_ADDR_LEN) == 0) { 711 goto drop; 712 } 713 714 if (memcmp(etherbroadcastaddr, 715 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 716 m->m_flags |= M_BCAST; 717 else 718 m->m_flags |= M_MCAST; 719 if_statinc(ifp, if_imcasts); 720 } 721 722 /* If the CRC is still on the packet, trim it off. */ 723 if (m->m_flags & M_HASFCS) { 724 m_adj(m, -ETHER_CRC_LEN); 725 m->m_flags &= ~M_HASFCS; 726 } 727 728 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 729 730 if (!vlan_has_tag(m) && etype == ETHERTYPE_VLAN) { 731 m = ether_strip_vlantag(m); 732 if (m == NULL) { 733 if_statinc(ifp, if_ierrors); 734 return; 735 } 736 737 eh = mtod(m, struct ether_header *); 738 etype = ntohs(eh->ether_type); 739 ehlen = sizeof(*eh); 740 } 741 742 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 743 (ifp->if_flags & IFF_PROMISC) != 0 && 744 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 745 ETHER_ADDR_LEN) != 0) { 746 m->m_flags |= M_PROMISC; 747 } 748 749 if ((m->m_flags & M_PROMISC) == 0) { 750 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 751 return; 752 if (m == NULL) 753 return; 754 755 eh = mtod(m, struct ether_header *); 756 etype = ntohs(eh->ether_type); 757 } 758 759 /* 760 * Processing a logical interfaces that are able 761 * to configure vlan(4). 762 */ 763 #if NAGR > 0 764 if (ifp->if_lagg != NULL && 765 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 766 m->m_flags &= ~M_PROMISC; 767 agr_input(ifp, m); 768 return; 769 } 770 #endif 771 772 /* 773 * VLAN processing. 774 * 775 * VLAN provides service delimiting so the frames are 776 * processed before other handlings. If a VLAN interface 777 * does not exist to take those frames, they're returned 778 * to ether_input(). 779 */ 780 781 if (vlan_has_tag(m)) { 782 if (EVL_VLANOFTAG(vlan_get_tag(m)) == 0) { 783 if (etype == ETHERTYPE_VLAN || 784 etype == ETHERTYPE_QINQ) 785 goto drop; 786 787 /* XXX we should actually use the prio value? */ 788 m->m_flags &= ~M_VLANTAG; 789 } else { 790 #if NVLAN > 0 791 if (ec->ec_nvlans > 0) { 792 m = vlan_input(ifp, m); 793 794 /* vlan_input() called ether_input() recursively */ 795 if (m == NULL) 796 return; 797 } 798 #endif 799 /* drop VLAN frames not for this port. */ 800 goto noproto; 801 } 802 } 803 804 #if NCARP > 0 805 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 806 /* 807 * Clear M_PROMISC, in case the packet comes from a 808 * vlan. 809 */ 810 m->m_flags &= ~M_PROMISC; 811 if (carp_input(m, (uint8_t *)&eh->ether_shost, 812 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 813 return; 814 } 815 #endif 816 817 /* 818 * Handle protocols that expect to have the Ethernet header 819 * (and possibly FCS) intact. 820 */ 821 switch (etype) { 822 #if NPPPOE > 0 823 case ETHERTYPE_PPPOEDISC: 824 pppoedisc_input(ifp, m); 825 return; 826 827 case ETHERTYPE_PPPOE: 828 pppoe_input(ifp, m); 829 return; 830 #endif 831 832 case ETHERTYPE_SLOWPROTOCOLS: { 833 uint8_t subtype; 834 835 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 836 goto error; 837 838 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 839 switch (subtype) { 840 #if NAGR > 0 841 case SLOWPROTOCOLS_SUBTYPE_LACP: 842 if (ifp->if_lagg != NULL) { 843 ieee8023ad_lacp_input(ifp, m); 844 return; 845 } 846 break; 847 848 case SLOWPROTOCOLS_SUBTYPE_MARKER: 849 if (ifp->if_lagg != NULL) { 850 ieee8023ad_marker_input(ifp, m); 851 return; 852 } 853 break; 854 #endif 855 856 default: 857 if (subtype == 0 || subtype > 10) { 858 /* illegal value */ 859 goto error; 860 } 861 /* unknown subtype */ 862 break; 863 } 864 } 865 /* FALLTHROUGH */ 866 default: 867 if (m->m_flags & M_PROMISC) 868 goto drop; 869 } 870 871 /* If the CRC is still on the packet, trim it off. */ 872 if (m->m_flags & M_HASFCS) { 873 m_adj(m, -ETHER_CRC_LEN); 874 m->m_flags &= ~M_HASFCS; 875 } 876 877 /* etype represents the size of the payload in this case */ 878 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 879 KASSERT(ehlen == sizeof(*eh)); 880 #if defined (LLC) || defined (NETATALK) 881 ether_input_llc(ifp, m, eh); 882 return; 883 #else 884 /* ethertype of 0-1500 is regarded as noproto */ 885 goto noproto; 886 #endif 887 } 888 889 /* For ARP packets, store the source address so that 890 * ARP DAD probes can be validated. */ 891 if (etype == ETHERTYPE_ARP) { 892 struct m_tag *mtag; 893 894 mtag = m_tag_get(PACKET_TAG_ETHERNET_SRC, ETHER_ADDR_LEN, 895 M_NOWAIT); 896 if (mtag != NULL) { 897 memcpy(mtag + 1, &eh->ether_shost, ETHER_ADDR_LEN); 898 m_tag_prepend(m, mtag); 899 } 900 } 901 902 /* Strip off the Ethernet header. */ 903 m_adj(m, ehlen); 904 905 switch (etype) { 906 #ifdef INET 907 case ETHERTYPE_IP: 908 #ifdef GATEWAY 909 if (ipflow_fastforward(m)) 910 return; 911 #endif 912 pktq = ip_pktq; 913 rps_hash = atomic_load_relaxed(ðer_pktq_rps_hash_p); 914 break; 915 916 case ETHERTYPE_ARP: 917 pktq = arp_pktq; 918 break; 919 920 case ETHERTYPE_REVARP: 921 revarpinput(m); /* XXX queue? */ 922 return; 923 #endif 924 925 #ifdef INET6 926 case ETHERTYPE_IPV6: 927 if (__predict_false(!in6_present)) 928 goto noproto; 929 #ifdef GATEWAY 930 if (ip6flow_fastforward(&m)) 931 return; 932 #endif 933 pktq = ip6_pktq; 934 rps_hash = atomic_load_relaxed(ðer_pktq_rps_hash_p); 935 break; 936 #endif 937 938 #ifdef NETATALK 939 case ETHERTYPE_ATALK: 940 pktq = at_pktq1; 941 break; 942 943 case ETHERTYPE_AARP: 944 aarpinput(ifp, m); /* XXX queue? */ 945 return; 946 #endif 947 948 #ifdef MPLS 949 case ETHERTYPE_MPLS: 950 pktq = mpls_pktq; 951 break; 952 #endif 953 954 default: 955 goto noproto; 956 } 957 958 KASSERT(pktq != NULL); 959 const uint32_t h = rps_hash ? pktq_rps_hash(&rps_hash, m) : 0; 960 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 961 m_freem(m); 962 } 963 return; 964 965 drop: 966 m_freem(m); 967 if_statinc(ifp, if_iqdrops); 968 return; 969 noproto: 970 m_freem(m); 971 if_statinc(ifp, if_noproto); 972 return; 973 error: 974 m_freem(m); 975 if_statinc(ifp, if_ierrors); 976 return; 977 } 978 979 static void 980 ether_bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction) 981 { 982 struct ether_vlan_header evl; 983 struct m_hdr mh, md; 984 985 KASSERT(bp != NULL); 986 987 if (!vlan_has_tag(m)) { 988 bpf_mtap3(bp, m, direction); 989 return; 990 } 991 992 memcpy(&evl, mtod(m, char *), ETHER_HDR_LEN); 993 evl.evl_proto = evl.evl_encap_proto; 994 evl.evl_encap_proto = htons(ETHERTYPE_VLAN); 995 evl.evl_tag = htons(vlan_get_tag(m)); 996 997 md.mh_flags = 0; 998 md.mh_data = m->m_data + ETHER_HDR_LEN; 999 md.mh_len = m->m_len - ETHER_HDR_LEN; 1000 md.mh_next = m->m_next; 1001 1002 mh.mh_flags = 0; 1003 mh.mh_data = (char *)&evl; 1004 mh.mh_len = sizeof(evl); 1005 mh.mh_next = (struct mbuf *)&md; 1006 1007 bpf_mtap3(bp, (struct mbuf *)&mh, direction); 1008 } 1009 1010 /* 1011 * Convert Ethernet address to printable (loggable) representation. 1012 */ 1013 char * 1014 ether_sprintf(const u_char *ap) 1015 { 1016 static char etherbuf[3 * ETHER_ADDR_LEN]; 1017 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 1018 } 1019 1020 char * 1021 ether_snprintf(char *buf, size_t len, const u_char *ap) 1022 { 1023 char *cp = buf; 1024 size_t i; 1025 1026 for (i = 0; i < len / 3; i++) { 1027 *cp++ = hexdigits[*ap >> 4]; 1028 *cp++ = hexdigits[*ap++ & 0xf]; 1029 *cp++ = ':'; 1030 } 1031 *--cp = '\0'; 1032 return buf; 1033 } 1034 1035 /* 1036 * Perform common duties while attaching to interface list 1037 */ 1038 void 1039 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 1040 { 1041 struct ethercom *ec = (struct ethercom *)ifp; 1042 char xnamebuf[HOOKNAMSIZ]; 1043 1044 ifp->if_type = IFT_ETHER; 1045 ifp->if_hdrlen = ETHER_HDR_LEN; 1046 ifp->if_dlt = DLT_EN10MB; 1047 ifp->if_mtu = ETHERMTU; 1048 ifp->if_output = ether_output; 1049 ifp->_if_input = ether_input; 1050 ifp->if_bpf_mtap = ether_bpf_mtap; 1051 if (ifp->if_baudrate == 0) 1052 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1053 1054 if (lla != NULL) 1055 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1056 1057 LIST_INIT(&ec->ec_multiaddrs); 1058 SIMPLEQ_INIT(&ec->ec_vids); 1059 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1060 ec->ec_flags = 0; 1061 ifp->if_broadcastaddr = etherbroadcastaddr; 1062 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1063 snprintf(xnamebuf, sizeof(xnamebuf), 1064 "%s-ether_ifdetachhooks", ifp->if_xname); 1065 ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf); 1066 #ifdef MBUFTRACE 1067 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1068 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1069 MOWNER_ATTACH(&ec->ec_tx_mowner); 1070 MOWNER_ATTACH(&ec->ec_rx_mowner); 1071 ifp->if_mowner = &ec->ec_tx_mowner; 1072 #endif 1073 } 1074 1075 void 1076 ether_ifdetach(struct ifnet *ifp) 1077 { 1078 struct ethercom *ec = (void *) ifp; 1079 struct ether_multi *enm; 1080 1081 IFNET_ASSERT_UNLOCKED(ifp); 1082 /* 1083 * Prevent further calls to ioctl (for example turning off 1084 * promiscuous mode from the bridge code), which eventually can 1085 * call if_init() which can cause panics because the interface 1086 * is in the process of being detached. Return device not configured 1087 * instead. 1088 */ 1089 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1090 enxio); 1091 1092 simplehook_dohooks(ec->ec_ifdetach_hooks); 1093 KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks)); 1094 simplehook_destroy(ec->ec_ifdetach_hooks); 1095 1096 bpf_detach(ifp); 1097 1098 ETHER_LOCK(ec); 1099 KASSERT(ec->ec_nvlans == 0); 1100 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1101 LIST_REMOVE(enm, enm_list); 1102 kmem_free(enm, sizeof(*enm)); 1103 ec->ec_multicnt--; 1104 } 1105 ETHER_UNLOCK(ec); 1106 1107 mutex_obj_free(ec->ec_lock); 1108 ec->ec_lock = NULL; 1109 1110 ifp->if_mowner = NULL; 1111 MOWNER_DETACH(&ec->ec_rx_mowner); 1112 MOWNER_DETACH(&ec->ec_tx_mowner); 1113 } 1114 1115 void * 1116 ether_ifdetachhook_establish(struct ifnet *ifp, 1117 void (*fn)(void *), void *arg) 1118 { 1119 struct ethercom *ec; 1120 khook_t *hk; 1121 1122 if (ifp->if_type != IFT_ETHER) 1123 return NULL; 1124 1125 ec = (struct ethercom *)ifp; 1126 hk = simplehook_establish(ec->ec_ifdetach_hooks, 1127 fn, arg); 1128 1129 return (void *)hk; 1130 } 1131 1132 void 1133 ether_ifdetachhook_disestablish(struct ifnet *ifp, 1134 void *vhook, kmutex_t *lock) 1135 { 1136 struct ethercom *ec; 1137 1138 if (vhook == NULL) 1139 return; 1140 1141 ec = (struct ethercom *)ifp; 1142 simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock); 1143 } 1144 1145 #if 0 1146 /* 1147 * This is for reference. We have a table-driven version 1148 * of the little-endian crc32 generator, which is faster 1149 * than the double-loop. 1150 */ 1151 uint32_t 1152 ether_crc32_le(const uint8_t *buf, size_t len) 1153 { 1154 uint32_t c, crc, carry; 1155 size_t i, j; 1156 1157 crc = 0xffffffffU; /* initial value */ 1158 1159 for (i = 0; i < len; i++) { 1160 c = buf[i]; 1161 for (j = 0; j < 8; j++) { 1162 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1163 crc >>= 1; 1164 c >>= 1; 1165 if (carry) 1166 crc = (crc ^ ETHER_CRC_POLY_LE); 1167 } 1168 } 1169 1170 return (crc); 1171 } 1172 #else 1173 uint32_t 1174 ether_crc32_le(const uint8_t *buf, size_t len) 1175 { 1176 static const uint32_t crctab[] = { 1177 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1178 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1179 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1180 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1181 }; 1182 uint32_t crc; 1183 size_t i; 1184 1185 crc = 0xffffffffU; /* initial value */ 1186 1187 for (i = 0; i < len; i++) { 1188 crc ^= buf[i]; 1189 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1190 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1191 } 1192 1193 return (crc); 1194 } 1195 #endif 1196 1197 uint32_t 1198 ether_crc32_be(const uint8_t *buf, size_t len) 1199 { 1200 uint32_t c, crc, carry; 1201 size_t i, j; 1202 1203 crc = 0xffffffffU; /* initial value */ 1204 1205 for (i = 0; i < len; i++) { 1206 c = buf[i]; 1207 for (j = 0; j < 8; j++) { 1208 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1209 crc <<= 1; 1210 c >>= 1; 1211 if (carry) 1212 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1213 } 1214 } 1215 1216 return (crc); 1217 } 1218 1219 #ifdef INET 1220 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1221 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1222 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1223 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1224 #endif 1225 #ifdef INET6 1226 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1227 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1228 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1229 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1230 #endif 1231 1232 /* 1233 * ether_aton implementation, not using a static buffer. 1234 */ 1235 int 1236 ether_aton_r(u_char *dest, size_t len, const char *str) 1237 { 1238 const u_char *cp = (const void *)str; 1239 u_char *ep; 1240 1241 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1242 1243 if (len < ETHER_ADDR_LEN) 1244 return ENOSPC; 1245 1246 ep = dest + ETHER_ADDR_LEN; 1247 1248 while (*cp) { 1249 if (!isxdigit(*cp)) 1250 return EINVAL; 1251 1252 *dest = atox(*cp); 1253 cp++; 1254 if (isxdigit(*cp)) { 1255 *dest = (*dest << 4) | atox(*cp); 1256 cp++; 1257 } 1258 dest++; 1259 1260 if (dest == ep) 1261 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1262 1263 switch (*cp) { 1264 case ':': 1265 case '-': 1266 case '.': 1267 cp++; 1268 break; 1269 } 1270 } 1271 return ENOBUFS; 1272 } 1273 1274 /* 1275 * Convert a sockaddr into an Ethernet address or range of Ethernet 1276 * addresses. 1277 */ 1278 int 1279 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1280 uint8_t addrhi[ETHER_ADDR_LEN]) 1281 { 1282 #ifdef INET 1283 const struct sockaddr_in *sin; 1284 #endif 1285 #ifdef INET6 1286 const struct sockaddr_in6 *sin6; 1287 #endif 1288 1289 switch (sa->sa_family) { 1290 1291 case AF_UNSPEC: 1292 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1293 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1294 break; 1295 1296 #ifdef INET 1297 case AF_INET: 1298 sin = satocsin(sa); 1299 if (sin->sin_addr.s_addr == INADDR_ANY) { 1300 /* 1301 * An IP address of INADDR_ANY means listen to 1302 * or stop listening to all of the Ethernet 1303 * multicast addresses used for IP. 1304 * (This is for the sake of IP multicast routers.) 1305 */ 1306 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1307 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1308 } else { 1309 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1310 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1311 } 1312 break; 1313 #endif 1314 #ifdef INET6 1315 case AF_INET6: 1316 sin6 = satocsin6(sa); 1317 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1318 /* 1319 * An IP6 address of 0 means listen to or stop 1320 * listening to all of the Ethernet multicast 1321 * address used for IP6. 1322 * (This is used for multicast routers.) 1323 */ 1324 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1325 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1326 } else { 1327 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1328 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1329 } 1330 break; 1331 #endif 1332 1333 default: 1334 return EAFNOSUPPORT; 1335 } 1336 return 0; 1337 } 1338 1339 /* 1340 * Add an Ethernet multicast address or range of addresses to the list for a 1341 * given interface. 1342 */ 1343 int 1344 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1345 { 1346 struct ether_multi *enm, *_enm; 1347 u_char addrlo[ETHER_ADDR_LEN]; 1348 u_char addrhi[ETHER_ADDR_LEN]; 1349 int error = 0; 1350 1351 /* Allocate out of lock */ 1352 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1353 1354 ETHER_LOCK(ec); 1355 error = ether_multiaddr(sa, addrlo, addrhi); 1356 if (error != 0) 1357 goto out; 1358 1359 /* 1360 * Verify that we have valid Ethernet multicast addresses. 1361 */ 1362 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1363 error = EINVAL; 1364 goto out; 1365 } 1366 1367 /* 1368 * See if the address range is already in the list. 1369 */ 1370 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1371 if (_enm != NULL) { 1372 /* 1373 * Found it; just increment the reference count. 1374 */ 1375 ++_enm->enm_refcount; 1376 error = 0; 1377 goto out; 1378 } 1379 1380 /* 1381 * Link a new multicast record into the interface's multicast list. 1382 */ 1383 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1384 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1385 enm->enm_refcount = 1; 1386 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1387 ec->ec_multicnt++; 1388 1389 /* 1390 * Return ENETRESET to inform the driver that the list has changed 1391 * and its reception filter should be adjusted accordingly. 1392 */ 1393 error = ENETRESET; 1394 enm = NULL; 1395 1396 out: 1397 ETHER_UNLOCK(ec); 1398 if (enm != NULL) 1399 kmem_free(enm, sizeof(*enm)); 1400 return error; 1401 } 1402 1403 /* 1404 * Delete a multicast address record. 1405 */ 1406 int 1407 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1408 { 1409 struct ether_multi *enm; 1410 u_char addrlo[ETHER_ADDR_LEN]; 1411 u_char addrhi[ETHER_ADDR_LEN]; 1412 int error; 1413 1414 ETHER_LOCK(ec); 1415 error = ether_multiaddr(sa, addrlo, addrhi); 1416 if (error != 0) 1417 goto error; 1418 1419 /* 1420 * Look up the address in our list. 1421 */ 1422 enm = ether_lookup_multi(addrlo, addrhi, ec); 1423 if (enm == NULL) { 1424 error = ENXIO; 1425 goto error; 1426 } 1427 if (--enm->enm_refcount != 0) { 1428 /* 1429 * Still some claims to this record. 1430 */ 1431 error = 0; 1432 goto error; 1433 } 1434 1435 /* 1436 * No remaining claims to this record; unlink and free it. 1437 */ 1438 LIST_REMOVE(enm, enm_list); 1439 ec->ec_multicnt--; 1440 ETHER_UNLOCK(ec); 1441 kmem_free(enm, sizeof(*enm)); 1442 1443 /* 1444 * Return ENETRESET to inform the driver that the list has changed 1445 * and its reception filter should be adjusted accordingly. 1446 */ 1447 return ENETRESET; 1448 1449 error: 1450 ETHER_UNLOCK(ec); 1451 return error; 1452 } 1453 1454 void 1455 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1456 { 1457 ec->ec_ifflags_cb = cb; 1458 } 1459 1460 void 1461 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1462 { 1463 1464 ec->ec_vlan_cb = cb; 1465 } 1466 1467 static int 1468 ether_ioctl_reinit(struct ethercom *ec) 1469 { 1470 struct ifnet *ifp = &ec->ec_if; 1471 int error; 1472 1473 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 1474 1475 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1476 case IFF_RUNNING: 1477 /* 1478 * If interface is marked down and it is running, 1479 * then stop and disable it. 1480 */ 1481 if_stop(ifp, 1); 1482 break; 1483 case IFF_UP: 1484 /* 1485 * If interface is marked up and it is stopped, then 1486 * start it. 1487 */ 1488 return if_init(ifp); 1489 case IFF_UP | IFF_RUNNING: 1490 error = 0; 1491 if (ec->ec_ifflags_cb != NULL) { 1492 error = (*ec->ec_ifflags_cb)(ec); 1493 if (error == ENETRESET) { 1494 /* 1495 * Reset the interface to pick up 1496 * changes in any other flags that 1497 * affect the hardware state. 1498 */ 1499 return if_init(ifp); 1500 } 1501 } else 1502 error = if_init(ifp); 1503 return error; 1504 case 0: 1505 break; 1506 } 1507 1508 return 0; 1509 } 1510 1511 /* 1512 * Common ioctls for Ethernet interfaces. Note, we must be 1513 * called at splnet(). 1514 */ 1515 int 1516 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1517 { 1518 struct ethercom *ec = (void *)ifp; 1519 struct eccapreq *eccr; 1520 struct ifreq *ifr = (struct ifreq *)data; 1521 struct if_laddrreq *iflr = data; 1522 const struct sockaddr_dl *sdl; 1523 static const uint8_t zero[ETHER_ADDR_LEN]; 1524 int error; 1525 1526 switch (cmd) { 1527 case SIOCINITIFADDR: 1528 { 1529 struct ifaddr *ifa = (struct ifaddr *)data; 1530 if (ifa->ifa_addr->sa_family != AF_LINK 1531 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1532 (IFF_UP | IFF_RUNNING)) { 1533 ifp->if_flags |= IFF_UP; 1534 if ((error = if_init(ifp)) != 0) 1535 return error; 1536 } 1537 #ifdef INET 1538 if (ifa->ifa_addr->sa_family == AF_INET) 1539 arp_ifinit(ifp, ifa); 1540 #endif 1541 return 0; 1542 } 1543 1544 case SIOCSIFMTU: 1545 { 1546 int maxmtu; 1547 1548 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1549 maxmtu = ETHERMTU_JUMBO; 1550 else 1551 maxmtu = ETHERMTU; 1552 1553 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1554 return EINVAL; 1555 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1556 return error; 1557 else if (ifp->if_flags & IFF_UP) { 1558 /* Make sure the device notices the MTU change. */ 1559 return if_init(ifp); 1560 } else 1561 return 0; 1562 } 1563 1564 case SIOCSIFFLAGS: 1565 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1566 return error; 1567 return ether_ioctl_reinit(ec); 1568 case SIOCGIFFLAGS: 1569 error = ifioctl_common(ifp, cmd, data); 1570 if (error == 0) { 1571 /* Set IFF_ALLMULTI for backcompat */ 1572 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1573 IFF_ALLMULTI : 0; 1574 } 1575 return error; 1576 case SIOCGETHERCAP: 1577 eccr = (struct eccapreq *)data; 1578 eccr->eccr_capabilities = ec->ec_capabilities; 1579 eccr->eccr_capenable = ec->ec_capenable; 1580 return 0; 1581 case SIOCSETHERCAP: 1582 eccr = (struct eccapreq *)data; 1583 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1584 return EINVAL; 1585 if (eccr->eccr_capenable == ec->ec_capenable) 1586 return 0; 1587 #if 0 /* notyet */ 1588 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1589 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1590 #else 1591 ec->ec_capenable = eccr->eccr_capenable; 1592 #endif 1593 return ether_ioctl_reinit(ec); 1594 case SIOCADDMULTI: 1595 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1596 case SIOCDELMULTI: 1597 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1598 case SIOCSIFMEDIA: 1599 case SIOCGIFMEDIA: 1600 if (ec->ec_mii != NULL) 1601 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1602 cmd); 1603 else if (ec->ec_ifmedia != NULL) 1604 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1605 else 1606 return ENOTTY; 1607 break; 1608 case SIOCALIFADDR: 1609 sdl = satocsdl(sstocsa(&iflr->addr)); 1610 if (sdl->sdl_family != AF_LINK) 1611 ; 1612 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1613 return EINVAL; 1614 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1615 return EINVAL; 1616 /*FALLTHROUGH*/ 1617 default: 1618 return ifioctl_common(ifp, cmd, data); 1619 } 1620 return 0; 1621 } 1622 1623 /* 1624 * Enable/disable passing VLAN packets if the parent interface supports it. 1625 * Return: 1626 * 0: Ok 1627 * -1: Parent interface does not support vlans 1628 * >0: Error 1629 */ 1630 int 1631 ether_enable_vlan_mtu(struct ifnet *ifp) 1632 { 1633 int error; 1634 struct ethercom *ec = (void *)ifp; 1635 1636 /* Parent does not support VLAN's */ 1637 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1638 return -1; 1639 1640 /* 1641 * Parent supports the VLAN_MTU capability, 1642 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1643 * enable it. 1644 */ 1645 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1646 1647 /* Interface is down, defer for later */ 1648 if ((ifp->if_flags & IFF_UP) == 0) 1649 return 0; 1650 1651 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1652 return 0; 1653 1654 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1655 return error; 1656 } 1657 1658 int 1659 ether_disable_vlan_mtu(struct ifnet *ifp) 1660 { 1661 int error; 1662 struct ethercom *ec = (void *)ifp; 1663 1664 /* We still have VLAN's, defer for later */ 1665 if (ec->ec_nvlans != 0) 1666 return 0; 1667 1668 /* Parent does not support VLAB's, nothing to do. */ 1669 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1670 return -1; 1671 1672 /* 1673 * Disable Tx/Rx of VLAN-sized frames. 1674 */ 1675 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1676 1677 /* Interface is down, defer for later */ 1678 if ((ifp->if_flags & IFF_UP) == 0) 1679 return 0; 1680 1681 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1682 return 0; 1683 1684 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1685 return error; 1686 } 1687 1688 /* 1689 * Add and delete VLAN TAG 1690 */ 1691 int 1692 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status) 1693 { 1694 struct ethercom *ec = (void *)ifp; 1695 struct vlanid_list *vidp; 1696 bool vlanmtu_enabled; 1697 uint16_t vid = EVL_VLANOFTAG(vtag); 1698 int error; 1699 1700 vlanmtu_enabled = false; 1701 1702 /* Add a vid to the list */ 1703 vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP); 1704 vidp->vid = vid; 1705 1706 ETHER_LOCK(ec); 1707 ec->ec_nvlans++; 1708 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list); 1709 ETHER_UNLOCK(ec); 1710 1711 if (ec->ec_nvlans == 1) { 1712 IFNET_LOCK(ifp); 1713 error = ether_enable_vlan_mtu(ifp); 1714 IFNET_UNLOCK(ifp); 1715 1716 if (error == 0) { 1717 vlanmtu_enabled = true; 1718 } else if (error != -1) { 1719 goto fail; 1720 } 1721 } 1722 1723 if (ec->ec_vlan_cb != NULL) { 1724 error = (*ec->ec_vlan_cb)(ec, vid, true); 1725 if (error != 0) 1726 goto fail; 1727 } 1728 1729 if (vlanmtu_status != NULL) 1730 *vlanmtu_status = vlanmtu_enabled; 1731 1732 return 0; 1733 fail: 1734 ETHER_LOCK(ec); 1735 ec->ec_nvlans--; 1736 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list); 1737 ETHER_UNLOCK(ec); 1738 1739 if (vlanmtu_enabled) { 1740 IFNET_LOCK(ifp); 1741 (void)ether_disable_vlan_mtu(ifp); 1742 IFNET_UNLOCK(ifp); 1743 } 1744 1745 kmem_free(vidp, sizeof(*vidp)); 1746 1747 return error; 1748 } 1749 1750 int 1751 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag) 1752 { 1753 struct ethercom *ec = (void *)ifp; 1754 struct vlanid_list *vidp; 1755 uint16_t vid = EVL_VLANOFTAG(vtag); 1756 1757 ETHER_LOCK(ec); 1758 SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) { 1759 if (vidp->vid == vid) { 1760 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, 1761 vlanid_list, vid_list); 1762 ec->ec_nvlans--; 1763 break; 1764 } 1765 } 1766 ETHER_UNLOCK(ec); 1767 1768 if (vidp == NULL) 1769 return ENOENT; 1770 1771 if (ec->ec_vlan_cb != NULL) { 1772 (void)(*ec->ec_vlan_cb)(ec, vidp->vid, false); 1773 } 1774 1775 if (ec->ec_nvlans == 0) { 1776 IFNET_LOCK(ifp); 1777 (void)ether_disable_vlan_mtu(ifp); 1778 IFNET_UNLOCK(ifp); 1779 } 1780 1781 kmem_free(vidp, sizeof(*vidp)); 1782 1783 return 0; 1784 } 1785 1786 int 1787 ether_inject_vlantag(struct mbuf **mp, uint16_t etype, uint16_t tag) 1788 { 1789 static const size_t min_data_len = 1790 ETHER_MIN_LEN - ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN; 1791 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */ 1792 static const char vlan_zero_pad_buff[ETHER_MIN_LEN] = { 0 }; 1793 1794 struct ether_vlan_header *evl; 1795 struct mbuf *m = *mp; 1796 int error; 1797 1798 error = 0; 1799 1800 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT); 1801 if (m == NULL) { 1802 error = ENOBUFS; 1803 goto out; 1804 } 1805 1806 if (m->m_len < sizeof(*evl)) { 1807 m = m_pullup(m, sizeof(*evl)); 1808 if (m == NULL) { 1809 error = ENOBUFS; 1810 goto out; 1811 } 1812 } 1813 1814 /* 1815 * Transform the Ethernet header into an 1816 * Ethernet header with 802.1Q encapsulation. 1817 */ 1818 memmove(mtod(m, void *), 1819 mtod(m, char *) + ETHER_VLAN_ENCAP_LEN, 1820 sizeof(struct ether_header)); 1821 evl = mtod(m, struct ether_vlan_header *); 1822 evl->evl_proto = evl->evl_encap_proto; 1823 evl->evl_encap_proto = htons(etype); 1824 evl->evl_tag = htons(tag); 1825 1826 /* 1827 * To cater for VLAN-aware layer 2 ethernet 1828 * switches which may need to strip the tag 1829 * before forwarding the packet, make sure 1830 * the packet+tag is at least 68 bytes long. 1831 * This is necessary because our parent will 1832 * only pad to 64 bytes (ETHER_MIN_LEN) and 1833 * some switches will not pad by themselves 1834 * after deleting a tag. 1835 */ 1836 if (m->m_pkthdr.len < min_data_len) { 1837 m_copyback(m, m->m_pkthdr.len, 1838 min_data_len - m->m_pkthdr.len, 1839 vlan_zero_pad_buff); 1840 } 1841 1842 m->m_flags &= ~M_VLANTAG; 1843 1844 out: 1845 *mp = m; 1846 return error; 1847 } 1848 1849 struct mbuf * 1850 ether_strip_vlantag(struct mbuf *m) 1851 { 1852 struct ether_vlan_header *evl; 1853 1854 if (m->m_len < sizeof(*evl) && 1855 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1856 return NULL; 1857 } 1858 1859 if (m_makewritable(&m, 0, sizeof(*evl), M_DONTWAIT)) { 1860 m_freem(m); 1861 return NULL; 1862 } 1863 1864 evl = mtod(m, struct ether_vlan_header *); 1865 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN); 1866 1867 vlan_set_tag(m, ntohs(evl->evl_tag)); 1868 1869 /* 1870 * Restore the original ethertype. We'll remove 1871 * the encapsulation after we've found the vlan 1872 * interface corresponding to the tag. 1873 */ 1874 evl->evl_encap_proto = evl->evl_proto; 1875 1876 /* 1877 * Remove the encapsulation header and append tag. 1878 * The original header has already been fixed up above. 1879 */ 1880 vlan_set_tag(m, ntohs(evl->evl_tag)); 1881 memmove((char *)evl + ETHER_VLAN_ENCAP_LEN, evl, 1882 offsetof(struct ether_vlan_header, evl_encap_proto)); 1883 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1884 1885 return m; 1886 } 1887 1888 static int 1889 ether_multicast_sysctl(SYSCTLFN_ARGS) 1890 { 1891 struct ether_multi *enm; 1892 struct ifnet *ifp; 1893 struct ethercom *ec; 1894 int error = 0; 1895 size_t written; 1896 struct psref psref; 1897 int bound; 1898 unsigned int multicnt; 1899 struct ether_multi_sysctl *addrs; 1900 int i; 1901 1902 if (namelen != 1) 1903 return EINVAL; 1904 1905 bound = curlwp_bind(); 1906 ifp = if_get_byindex(name[0], &psref); 1907 if (ifp == NULL) { 1908 error = ENODEV; 1909 goto out; 1910 } 1911 if (ifp->if_type != IFT_ETHER) { 1912 if_put(ifp, &psref); 1913 *oldlenp = 0; 1914 goto out; 1915 } 1916 ec = (struct ethercom *)ifp; 1917 1918 if (oldp == NULL) { 1919 if_put(ifp, &psref); 1920 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1921 goto out; 1922 } 1923 1924 /* 1925 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1926 * is sleepable, while holding it. Copy data to a local buffer first 1927 * with the lock taken and then call sysctl_copyout without holding it. 1928 */ 1929 retry: 1930 multicnt = ec->ec_multicnt; 1931 1932 if (multicnt == 0) { 1933 if_put(ifp, &psref); 1934 *oldlenp = 0; 1935 goto out; 1936 } 1937 1938 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1939 1940 ETHER_LOCK(ec); 1941 if (multicnt != ec->ec_multicnt) { 1942 /* The number of multicast addresses has changed */ 1943 ETHER_UNLOCK(ec); 1944 kmem_free(addrs, sizeof(*addrs) * multicnt); 1945 goto retry; 1946 } 1947 1948 i = 0; 1949 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1950 struct ether_multi_sysctl *addr = &addrs[i]; 1951 addr->enm_refcount = enm->enm_refcount; 1952 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1953 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1954 i++; 1955 } 1956 ETHER_UNLOCK(ec); 1957 1958 error = 0; 1959 written = 0; 1960 for (i = 0; i < multicnt; i++) { 1961 struct ether_multi_sysctl *addr = &addrs[i]; 1962 1963 if (written + sizeof(*addr) > *oldlenp) 1964 break; 1965 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1966 if (error) 1967 break; 1968 written += sizeof(*addr); 1969 oldp = (char *)oldp + sizeof(*addr); 1970 } 1971 kmem_free(addrs, sizeof(*addrs) * multicnt); 1972 1973 if_put(ifp, &psref); 1974 1975 *oldlenp = written; 1976 out: 1977 curlwp_bindx(bound); 1978 return error; 1979 } 1980 1981 static void 1982 ether_sysctl_setup(struct sysctllog **clog) 1983 { 1984 const struct sysctlnode *rnode = NULL; 1985 1986 sysctl_createv(clog, 0, NULL, &rnode, 1987 CTLFLAG_PERMANENT, 1988 CTLTYPE_NODE, "ether", 1989 SYSCTL_DESCR("Ethernet-specific information"), 1990 NULL, 0, NULL, 0, 1991 CTL_NET, CTL_CREATE, CTL_EOL); 1992 1993 sysctl_createv(clog, 0, &rnode, NULL, 1994 CTLFLAG_PERMANENT, 1995 CTLTYPE_NODE, "multicast", 1996 SYSCTL_DESCR("multicast addresses"), 1997 ether_multicast_sysctl, 0, NULL, 0, 1998 CTL_CREATE, CTL_EOL); 1999 2000 sysctl_createv(clog, 0, &rnode, NULL, 2001 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2002 CTLTYPE_STRING, "rps_hash", 2003 SYSCTL_DESCR("Interface rps hash function control"), 2004 sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p, 2005 PKTQ_RPS_HASH_NAME_LEN, 2006 CTL_CREATE, CTL_EOL); 2007 } 2008 2009 void 2010 etherinit(void) 2011 { 2012 2013 #ifdef DIAGNOSTIC 2014 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 2015 #endif 2016 ether_pktq_rps_hash_p = pktq_rps_hash_default; 2017 ether_sysctl_setup(NULL); 2018 } 2019