1 /* $NetBSD: if_ethersubr.c,v 1.327 2024/07/05 04:31:53 rin Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.327 2024/07/05 04:31:53 rin Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/entropy.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 #include <sys/hook.h> 93 94 #include <net/if.h> 95 #include <net/route.h> 96 #include <net/if_llc.h> 97 #include <net/if_dl.h> 98 #include <net/if_types.h> 99 #include <net/pktqueue.h> 100 101 #include <net/if_media.h> 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 105 #if NARP == 0 106 /* 107 * XXX there should really be a way to issue this warning from within config(8) 108 */ 109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 110 #endif 111 112 #include <net/bpf.h> 113 114 #include <net/if_ether.h> 115 #include <net/if_vlanvar.h> 116 117 #if NPPPOE > 0 118 #include <net/if_pppoe.h> 119 #endif 120 121 #if NAGR > 0 122 #include <net/ether_slowprotocols.h> 123 #include <net/agr/ieee8023ad.h> 124 #include <net/agr/if_agrvar.h> 125 #endif 126 127 #if NBRIDGE > 0 128 #include <net/if_bridgevar.h> 129 #endif 130 131 #include <netinet/in.h> 132 #ifdef INET 133 #include <netinet/in_var.h> 134 #endif 135 #include <netinet/if_inarp.h> 136 137 #ifdef INET6 138 #ifndef INET 139 #include <netinet/in.h> 140 #endif 141 #include <netinet6/in6_var.h> 142 #include <netinet6/nd6.h> 143 #endif 144 145 #include "carp.h" 146 #if NCARP > 0 147 #include <netinet/ip_carp.h> 148 #endif 149 150 #ifdef NETATALK 151 #include <netatalk/at.h> 152 #include <netatalk/at_var.h> 153 #include <netatalk/at_extern.h> 154 155 #define llc_snap_org_code llc_un.type_snap.org_code 156 #define llc_snap_ether_type llc_un.type_snap.ether_type 157 158 extern u_char at_org_code[3]; 159 extern u_char aarp_org_code[3]; 160 #endif /* NETATALK */ 161 162 #ifdef MPLS 163 #include <netmpls/mpls.h> 164 #include <netmpls/mpls_var.h> 165 #endif 166 167 CTASSERT(sizeof(struct ether_addr) == 6); 168 CTASSERT(sizeof(struct ether_header) == 14); 169 170 #ifdef DIAGNOSTIC 171 static struct timeval bigpktppslim_last; 172 static int bigpktppslim = 2; /* XXX */ 173 static int bigpktpps_count; 174 static kmutex_t bigpktpps_lock __cacheline_aligned; 175 #endif 176 177 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 178 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 179 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 180 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 181 #define senderr(e) { error = (e); goto bad;} 182 183 static pktq_rps_hash_func_t ether_pktq_rps_hash_p; 184 185 static int ether_output(struct ifnet *, struct mbuf *, 186 const struct sockaddr *, const struct rtentry *); 187 188 /* 189 * Ethernet output routine. 190 * Encapsulate a packet of type family for the local net. 191 * Assumes that ifp is actually pointer to ethercom structure. 192 */ 193 static int 194 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 195 const struct sockaddr * const dst, const struct rtentry *rt) 196 { 197 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 198 uint16_t etype = 0; 199 int error = 0, hdrcmplt = 0; 200 struct mbuf *m = m0; 201 struct mbuf *mcopy = NULL; 202 struct ether_header *eh; 203 struct ifnet *ifp = ifp0; 204 #ifdef INET 205 struct arphdr *ah; 206 #endif 207 #ifdef NETATALK 208 struct at_ifaddr *aa; 209 #endif 210 211 #ifdef MBUFTRACE 212 m_claimm(m, ifp->if_mowner); 213 #endif 214 215 #if NCARP > 0 216 if (ifp->if_type == IFT_CARP) { 217 struct ifaddr *ifa; 218 int s = pserialize_read_enter(); 219 220 /* loop back if this is going to the carp interface */ 221 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 222 (ifa = ifa_ifwithaddr(dst)) != NULL) { 223 if (ifa->ifa_ifp == ifp0) { 224 pserialize_read_exit(s); 225 return looutput(ifp0, m, dst, rt); 226 } 227 } 228 pserialize_read_exit(s); 229 230 ifp = ifp->if_carpdev; 231 /* ac = (struct arpcom *)ifp; */ 232 233 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 234 (IFF_UP | IFF_RUNNING)) 235 senderr(ENETDOWN); 236 } 237 #endif 238 239 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 240 senderr(ENETDOWN); 241 242 switch (dst->sa_family) { 243 244 #ifdef INET 245 case AF_INET: 246 if (m->m_flags & M_BCAST) { 247 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 248 } else if (m->m_flags & M_MCAST) { 249 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 250 } else { 251 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 252 if (error) 253 return (error == EWOULDBLOCK) ? 0 : error; 254 } 255 /* If broadcasting on a simplex interface, loopback a copy */ 256 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 257 mcopy = m_copypacket(m, M_DONTWAIT); 258 etype = htons(ETHERTYPE_IP); 259 break; 260 261 case AF_ARP: 262 ah = mtod(m, struct arphdr *); 263 if (m->m_flags & M_BCAST) { 264 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 265 } else { 266 void *tha = ar_tha(ah); 267 268 if (tha == NULL) { 269 /* fake with ARPHRD_IEEE1394 */ 270 m_freem(m); 271 return 0; 272 } 273 memcpy(edst, tha, sizeof(edst)); 274 } 275 276 ah->ar_hrd = htons(ARPHRD_ETHER); 277 278 switch (ntohs(ah->ar_op)) { 279 case ARPOP_REVREQUEST: 280 case ARPOP_REVREPLY: 281 etype = htons(ETHERTYPE_REVARP); 282 break; 283 284 case ARPOP_REQUEST: 285 case ARPOP_REPLY: 286 default: 287 etype = htons(ETHERTYPE_ARP); 288 } 289 break; 290 #endif 291 292 #ifdef INET6 293 case AF_INET6: 294 if (m->m_flags & M_BCAST) { 295 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 296 } else if (m->m_flags & M_MCAST) { 297 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 298 edst); 299 } else { 300 error = nd6_resolve(ifp0, rt, m, dst, edst, 301 sizeof(edst)); 302 if (error) 303 return (error == EWOULDBLOCK) ? 0 : error; 304 } 305 etype = htons(ETHERTYPE_IPV6); 306 break; 307 #endif 308 309 #ifdef NETATALK 310 case AF_APPLETALK: { 311 struct ifaddr *ifa; 312 int s; 313 314 KERNEL_LOCK(1, NULL); 315 316 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 317 KERNEL_UNLOCK_ONE(NULL); 318 return 0; 319 } 320 321 /* 322 * ifaddr is the first thing in at_ifaddr 323 */ 324 s = pserialize_read_enter(); 325 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 326 if (ifa == NULL) { 327 pserialize_read_exit(s); 328 KERNEL_UNLOCK_ONE(NULL); 329 senderr(EADDRNOTAVAIL); 330 } 331 aa = (struct at_ifaddr *)ifa; 332 333 /* 334 * In the phase 2 case, we need to prepend an mbuf for the 335 * llc header. 336 */ 337 if (aa->aa_flags & AFA_PHASE2) { 338 struct llc llc; 339 340 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 341 if (m == NULL) { 342 pserialize_read_exit(s); 343 KERNEL_UNLOCK_ONE(NULL); 344 senderr(ENOBUFS); 345 } 346 347 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 348 llc.llc_control = LLC_UI; 349 memcpy(llc.llc_snap_org_code, at_org_code, 350 sizeof(llc.llc_snap_org_code)); 351 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 352 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 353 } else { 354 etype = htons(ETHERTYPE_ATALK); 355 } 356 pserialize_read_exit(s); 357 KERNEL_UNLOCK_ONE(NULL); 358 break; 359 } 360 #endif /* NETATALK */ 361 362 case pseudo_AF_HDRCMPLT: 363 hdrcmplt = 1; 364 memcpy(esrc, 365 ((const struct ether_header *)dst->sa_data)->ether_shost, 366 sizeof(esrc)); 367 /* FALLTHROUGH */ 368 369 case AF_UNSPEC: 370 memcpy(edst, 371 ((const struct ether_header *)dst->sa_data)->ether_dhost, 372 sizeof(edst)); 373 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 374 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 375 break; 376 377 default: 378 printf("%s: can't handle af%d\n", ifp->if_xname, 379 dst->sa_family); 380 senderr(EAFNOSUPPORT); 381 } 382 383 #ifdef MPLS 384 { 385 struct m_tag *mtag; 386 mtag = m_tag_find(m, PACKET_TAG_MPLS); 387 if (mtag != NULL) { 388 /* Having the tag itself indicates it's MPLS */ 389 etype = htons(ETHERTYPE_MPLS); 390 m_tag_delete(m, mtag); 391 } 392 } 393 #endif 394 395 if (mcopy) 396 (void)looutput(ifp, mcopy, dst, rt); 397 398 KASSERT((m->m_flags & M_PKTHDR) != 0); 399 400 /* 401 * If no ether type is set, this must be a 802.2 formatted packet. 402 */ 403 if (etype == 0) 404 etype = htons(m->m_pkthdr.len); 405 406 /* 407 * Add local net header. If no space in first mbuf, allocate another. 408 */ 409 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 410 if (m == NULL) 411 senderr(ENOBUFS); 412 413 eh = mtod(m, struct ether_header *); 414 /* Note: etype is already in network byte order. */ 415 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 416 memcpy(eh->ether_dhost, edst, sizeof(edst)); 417 if (hdrcmplt) { 418 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 419 } else { 420 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 421 sizeof(eh->ether_shost)); 422 } 423 424 #if NCARP > 0 425 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 426 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 427 sizeof(eh->ether_shost)); 428 } 429 #endif 430 431 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 432 return error; 433 if (m == NULL) 434 return 0; 435 436 #if NBRIDGE > 0 437 /* 438 * Bridges require special output handling. 439 */ 440 if (ifp->if_bridge) 441 return bridge_output(ifp, m, NULL, NULL); 442 #endif 443 444 #if NCARP > 0 445 if (ifp != ifp0) 446 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 447 #endif 448 449 #ifdef ALTQ 450 KERNEL_LOCK(1, NULL); 451 /* 452 * If ALTQ is enabled on the parent interface, do 453 * classification; the queueing discipline might not 454 * require classification, but might require the 455 * address family/header pointer in the pktattr. 456 */ 457 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 458 altq_etherclassify(&ifp->if_snd, m); 459 KERNEL_UNLOCK_ONE(NULL); 460 #endif 461 return ifq_enqueue(ifp, m); 462 463 bad: 464 if_statinc(ifp, if_oerrors); 465 m_freem(m); 466 return error; 467 } 468 469 #ifdef ALTQ 470 /* 471 * This routine is a slight hack to allow a packet to be classified 472 * if the Ethernet headers are present. It will go away when ALTQ's 473 * classification engine understands link headers. 474 * 475 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 476 * is indeed contiguous, then to read the LLC and so on. 477 */ 478 void 479 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 480 { 481 struct ether_header *eh; 482 struct mbuf *mtop = m; 483 uint16_t ether_type; 484 int hlen, af, hdrsize; 485 void *hdr; 486 487 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 488 489 hlen = ETHER_HDR_LEN; 490 eh = mtod(m, struct ether_header *); 491 492 ether_type = htons(eh->ether_type); 493 494 if (ether_type < ETHERMTU) { 495 /* LLC/SNAP */ 496 struct llc *llc = (struct llc *)(eh + 1); 497 hlen += 8; 498 499 if (m->m_len < hlen || 500 llc->llc_dsap != LLC_SNAP_LSAP || 501 llc->llc_ssap != LLC_SNAP_LSAP || 502 llc->llc_control != LLC_UI) { 503 /* Not SNAP. */ 504 goto bad; 505 } 506 507 ether_type = htons(llc->llc_un.type_snap.ether_type); 508 } 509 510 switch (ether_type) { 511 case ETHERTYPE_IP: 512 af = AF_INET; 513 hdrsize = 20; /* sizeof(struct ip) */ 514 break; 515 516 case ETHERTYPE_IPV6: 517 af = AF_INET6; 518 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 519 break; 520 521 default: 522 af = AF_UNSPEC; 523 hdrsize = 0; 524 break; 525 } 526 527 while (m->m_len <= hlen) { 528 hlen -= m->m_len; 529 m = m->m_next; 530 if (m == NULL) 531 goto bad; 532 } 533 534 if (m->m_len < (hlen + hdrsize)) { 535 /* 536 * protocol header not in a single mbuf. 537 * We can't cope with this situation right 538 * now (but it shouldn't ever happen, really, anyhow). 539 */ 540 #ifdef DEBUG 541 printf("altq_etherclassify: headers span multiple mbufs: " 542 "%d < %d\n", m->m_len, (hlen + hdrsize)); 543 #endif 544 goto bad; 545 } 546 547 m->m_data += hlen; 548 m->m_len -= hlen; 549 550 hdr = mtod(m, void *); 551 552 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 553 mtop->m_pkthdr.pattr_class = 554 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 555 } 556 mtop->m_pkthdr.pattr_af = af; 557 mtop->m_pkthdr.pattr_hdr = hdr; 558 559 m->m_data -= hlen; 560 m->m_len += hlen; 561 562 return; 563 564 bad: 565 mtop->m_pkthdr.pattr_class = NULL; 566 mtop->m_pkthdr.pattr_hdr = NULL; 567 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 568 } 569 #endif /* ALTQ */ 570 571 #if defined (LLC) || defined (NETATALK) 572 static void 573 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 574 { 575 pktqueue_t *pktq = NULL; 576 struct llc *l; 577 578 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 579 goto error; 580 581 l = (struct llc *)(eh+1); 582 switch (l->llc_dsap) { 583 #ifdef NETATALK 584 case LLC_SNAP_LSAP: 585 switch (l->llc_control) { 586 case LLC_UI: 587 if (l->llc_ssap != LLC_SNAP_LSAP) 588 goto error; 589 590 if (memcmp(&(l->llc_snap_org_code)[0], 591 at_org_code, sizeof(at_org_code)) == 0 && 592 ntohs(l->llc_snap_ether_type) == 593 ETHERTYPE_ATALK) { 594 pktq = at_pktq2; 595 m_adj(m, sizeof(struct ether_header) 596 + sizeof(struct llc)); 597 break; 598 } 599 600 if (memcmp(&(l->llc_snap_org_code)[0], 601 aarp_org_code, 602 sizeof(aarp_org_code)) == 0 && 603 ntohs(l->llc_snap_ether_type) == 604 ETHERTYPE_AARP) { 605 m_adj(m, sizeof(struct ether_header) 606 + sizeof(struct llc)); 607 aarpinput(ifp, m); /* XXX queue? */ 608 return; 609 } 610 611 default: 612 goto error; 613 } 614 break; 615 #endif 616 default: 617 goto noproto; 618 } 619 620 KASSERT(pktq != NULL); 621 if (__predict_false(!pktq_enqueue(pktq, m, 0))) { 622 m_freem(m); 623 } 624 return; 625 626 noproto: 627 m_freem(m); 628 if_statinc(ifp, if_noproto); 629 return; 630 error: 631 m_freem(m); 632 if_statinc(ifp, if_ierrors); 633 return; 634 } 635 #endif /* defined (LLC) || defined (NETATALK) */ 636 637 /* 638 * Process a received Ethernet packet; 639 * the packet is in the mbuf chain m with 640 * the ether header. 641 */ 642 void 643 ether_input(struct ifnet *ifp, struct mbuf *m) 644 { 645 #if NVLAN > 0 || defined(MBUFTRACE) 646 struct ethercom *ec = (struct ethercom *) ifp; 647 #endif 648 pktqueue_t *pktq = NULL; 649 uint16_t etype; 650 struct ether_header *eh; 651 size_t ehlen; 652 static int earlypkts; 653 654 /* No RPS for not-IP. */ 655 pktq_rps_hash_func_t rps_hash = NULL; 656 657 KASSERT(!cpu_intr_p()); 658 KASSERT((m->m_flags & M_PKTHDR) != 0); 659 660 if ((ifp->if_flags & IFF_UP) == 0) 661 goto drop; 662 663 #ifdef MBUFTRACE 664 m_claimm(m, &ec->ec_rx_mowner); 665 #endif 666 667 if (__predict_false(m->m_len < sizeof(*eh))) { 668 if ((m = m_pullup(m, sizeof(*eh))) == NULL) { 669 if_statinc(ifp, if_ierrors); 670 return; 671 } 672 } 673 674 eh = mtod(m, struct ether_header *); 675 etype = ntohs(eh->ether_type); 676 ehlen = sizeof(*eh); 677 678 if (__predict_false(earlypkts < 100 || 679 entropy_epoch() == (unsigned)-1)) { 680 rnd_add_data(NULL, eh, ehlen, 0); 681 earlypkts++; 682 } 683 684 /* 685 * Determine if the packet is within its size limits. For MPLS the 686 * header length is variable, so we skip the check. 687 */ 688 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 689 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 690 #ifdef DIAGNOSTIC 691 mutex_enter(&bigpktpps_lock); 692 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 693 bigpktppslim)) { 694 printf("%s: discarding oversize frame (len=%d)\n", 695 ifp->if_xname, m->m_pkthdr.len); 696 } 697 mutex_exit(&bigpktpps_lock); 698 #endif 699 goto error; 700 } 701 702 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 703 /* 704 * If this is not a simplex interface, drop the packet 705 * if it came from us. 706 */ 707 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 708 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 709 ETHER_ADDR_LEN) == 0) { 710 goto drop; 711 } 712 713 if (memcmp(etherbroadcastaddr, 714 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 715 m->m_flags |= M_BCAST; 716 else 717 m->m_flags |= M_MCAST; 718 if_statinc(ifp, if_imcasts); 719 } 720 721 /* If the CRC is still on the packet, trim it off. */ 722 if (m->m_flags & M_HASFCS) { 723 m_adj(m, -ETHER_CRC_LEN); 724 m->m_flags &= ~M_HASFCS; 725 } 726 727 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 728 729 if (!vlan_has_tag(m) && etype == ETHERTYPE_VLAN) { 730 m = ether_strip_vlantag(m); 731 if (m == NULL) { 732 if_statinc(ifp, if_ierrors); 733 return; 734 } 735 736 eh = mtod(m, struct ether_header *); 737 etype = ntohs(eh->ether_type); 738 ehlen = sizeof(*eh); 739 } 740 741 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 742 (ifp->if_flags & IFF_PROMISC) != 0 && 743 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 744 ETHER_ADDR_LEN) != 0) { 745 m->m_flags |= M_PROMISC; 746 } 747 748 if ((m->m_flags & M_PROMISC) == 0) { 749 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 750 return; 751 if (m == NULL) 752 return; 753 754 eh = mtod(m, struct ether_header *); 755 etype = ntohs(eh->ether_type); 756 } 757 758 /* 759 * Processing a logical interfaces that are able 760 * to configure vlan(4). 761 */ 762 #if NAGR > 0 763 if (ifp->if_lagg != NULL && 764 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 765 m->m_flags &= ~M_PROMISC; 766 agr_input(ifp, m); 767 return; 768 } 769 #endif 770 771 /* 772 * VLAN processing. 773 * 774 * VLAN provides service delimiting so the frames are 775 * processed before other handlings. If a VLAN interface 776 * does not exist to take those frames, they're returned 777 * to ether_input(). 778 */ 779 780 if (vlan_has_tag(m)) { 781 if (EVL_VLANOFTAG(vlan_get_tag(m)) == 0) { 782 if (etype == ETHERTYPE_VLAN || 783 etype == ETHERTYPE_QINQ) 784 goto drop; 785 786 /* XXX we should actually use the prio value? */ 787 m->m_flags &= ~M_VLANTAG; 788 } else { 789 #if NVLAN > 0 790 if (ec->ec_nvlans > 0) { 791 m = vlan_input(ifp, m); 792 793 /* vlan_input() called ether_input() recursively */ 794 if (m == NULL) 795 return; 796 } 797 #endif 798 /* drop VLAN frames not for this port. */ 799 goto noproto; 800 } 801 } 802 803 #if NCARP > 0 804 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 805 /* 806 * Clear M_PROMISC, in case the packet comes from a 807 * vlan. 808 */ 809 m->m_flags &= ~M_PROMISC; 810 if (carp_input(m, (uint8_t *)&eh->ether_shost, 811 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 812 return; 813 } 814 #endif 815 816 /* 817 * Handle protocols that expect to have the Ethernet header 818 * (and possibly FCS) intact. 819 */ 820 switch (etype) { 821 #if NPPPOE > 0 822 case ETHERTYPE_PPPOEDISC: 823 pppoedisc_input(ifp, m); 824 return; 825 826 case ETHERTYPE_PPPOE: 827 pppoe_input(ifp, m); 828 return; 829 #endif 830 831 case ETHERTYPE_SLOWPROTOCOLS: { 832 uint8_t subtype; 833 834 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 835 goto error; 836 837 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 838 switch (subtype) { 839 #if NAGR > 0 840 case SLOWPROTOCOLS_SUBTYPE_LACP: 841 if (ifp->if_lagg != NULL) { 842 ieee8023ad_lacp_input(ifp, m); 843 return; 844 } 845 break; 846 847 case SLOWPROTOCOLS_SUBTYPE_MARKER: 848 if (ifp->if_lagg != NULL) { 849 ieee8023ad_marker_input(ifp, m); 850 return; 851 } 852 break; 853 #endif 854 855 default: 856 if (subtype == 0 || subtype > 10) { 857 /* illegal value */ 858 goto error; 859 } 860 /* unknown subtype */ 861 break; 862 } 863 } 864 /* FALLTHROUGH */ 865 default: 866 if (m->m_flags & M_PROMISC) 867 goto drop; 868 } 869 870 /* If the CRC is still on the packet, trim it off. */ 871 if (m->m_flags & M_HASFCS) { 872 m_adj(m, -ETHER_CRC_LEN); 873 m->m_flags &= ~M_HASFCS; 874 } 875 876 /* etype represents the size of the payload in this case */ 877 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 878 KASSERT(ehlen == sizeof(*eh)); 879 #if defined (LLC) || defined (NETATALK) 880 ether_input_llc(ifp, m, eh); 881 return; 882 #else 883 /* ethertype of 0-1500 is regarded as noproto */ 884 goto noproto; 885 #endif 886 } 887 888 /* For ARP packets, store the source address so that 889 * ARP DAD probes can be validated. */ 890 if (etype == ETHERTYPE_ARP) { 891 struct m_tag *mtag; 892 893 mtag = m_tag_get(PACKET_TAG_ETHERNET_SRC, ETHER_ADDR_LEN, 894 M_NOWAIT); 895 if (mtag != NULL) { 896 memcpy(mtag + 1, &eh->ether_shost, ETHER_ADDR_LEN); 897 m_tag_prepend(m, mtag); 898 } 899 } 900 901 /* Strip off the Ethernet header. */ 902 m_adj(m, ehlen); 903 904 switch (etype) { 905 #ifdef INET 906 case ETHERTYPE_IP: 907 #ifdef GATEWAY 908 if (ipflow_fastforward(m)) 909 return; 910 #endif 911 pktq = ip_pktq; 912 rps_hash = atomic_load_relaxed(ðer_pktq_rps_hash_p); 913 break; 914 915 case ETHERTYPE_ARP: 916 pktq = arp_pktq; 917 break; 918 919 case ETHERTYPE_REVARP: 920 revarpinput(m); /* XXX queue? */ 921 return; 922 #endif 923 924 #ifdef INET6 925 case ETHERTYPE_IPV6: 926 if (__predict_false(!in6_present)) 927 goto noproto; 928 #ifdef GATEWAY 929 if (ip6flow_fastforward(&m)) 930 return; 931 #endif 932 pktq = ip6_pktq; 933 rps_hash = atomic_load_relaxed(ðer_pktq_rps_hash_p); 934 break; 935 #endif 936 937 #ifdef NETATALK 938 case ETHERTYPE_ATALK: 939 pktq = at_pktq1; 940 break; 941 942 case ETHERTYPE_AARP: 943 aarpinput(ifp, m); /* XXX queue? */ 944 return; 945 #endif 946 947 #ifdef MPLS 948 case ETHERTYPE_MPLS: 949 pktq = mpls_pktq; 950 break; 951 #endif 952 953 default: 954 goto noproto; 955 } 956 957 KASSERT(pktq != NULL); 958 const uint32_t h = rps_hash ? pktq_rps_hash(&rps_hash, m) : 0; 959 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 960 m_freem(m); 961 } 962 return; 963 964 drop: 965 m_freem(m); 966 if_statinc(ifp, if_iqdrops); 967 return; 968 noproto: 969 m_freem(m); 970 if_statinc(ifp, if_noproto); 971 return; 972 error: 973 m_freem(m); 974 if_statinc(ifp, if_ierrors); 975 return; 976 } 977 978 static void 979 ether_bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction) 980 { 981 struct ether_vlan_header evl; 982 struct m_hdr mh, md; 983 984 KASSERT(bp != NULL); 985 986 if (!vlan_has_tag(m)) { 987 bpf_mtap3(bp, m, direction); 988 return; 989 } 990 991 memcpy(&evl, mtod(m, char *), ETHER_HDR_LEN); 992 evl.evl_proto = evl.evl_encap_proto; 993 evl.evl_encap_proto = htons(ETHERTYPE_VLAN); 994 evl.evl_tag = htons(vlan_get_tag(m)); 995 996 md.mh_flags = 0; 997 md.mh_data = m->m_data + ETHER_HDR_LEN; 998 md.mh_len = m->m_len - ETHER_HDR_LEN; 999 md.mh_next = m->m_next; 1000 1001 mh.mh_flags = 0; 1002 mh.mh_data = (char *)&evl; 1003 mh.mh_len = sizeof(evl); 1004 mh.mh_next = (struct mbuf *)&md; 1005 1006 bpf_mtap3(bp, (struct mbuf *)&mh, direction); 1007 } 1008 1009 /* 1010 * Convert Ethernet address to printable (loggable) representation. 1011 */ 1012 char * 1013 ether_sprintf(const u_char *ap) 1014 { 1015 static char etherbuf[3 * ETHER_ADDR_LEN]; 1016 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 1017 } 1018 1019 char * 1020 ether_snprintf(char *buf, size_t len, const u_char *ap) 1021 { 1022 char *cp = buf; 1023 size_t i; 1024 1025 for (i = 0; i < len / 3; i++) { 1026 *cp++ = hexdigits[*ap >> 4]; 1027 *cp++ = hexdigits[*ap++ & 0xf]; 1028 *cp++ = ':'; 1029 } 1030 *--cp = '\0'; 1031 return buf; 1032 } 1033 1034 /* 1035 * Perform common duties while attaching to interface list 1036 */ 1037 void 1038 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 1039 { 1040 struct ethercom *ec = (struct ethercom *)ifp; 1041 char xnamebuf[HOOKNAMSIZ]; 1042 1043 if (lla != NULL && ETHER_IS_MULTICAST(lla)) 1044 aprint_error("The multicast bit is set in the MAC address. " 1045 "It's wrong.\n"); 1046 1047 ifp->if_type = IFT_ETHER; 1048 ifp->if_hdrlen = ETHER_HDR_LEN; 1049 ifp->if_dlt = DLT_EN10MB; 1050 ifp->if_mtu = ETHERMTU; 1051 ifp->if_output = ether_output; 1052 ifp->_if_input = ether_input; 1053 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) 1054 ifp->if_bpf_mtap = ether_bpf_mtap; 1055 if (ifp->if_baudrate == 0) 1056 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1057 1058 if (lla != NULL) 1059 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1060 1061 LIST_INIT(&ec->ec_multiaddrs); 1062 SIMPLEQ_INIT(&ec->ec_vids); 1063 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1064 ec->ec_flags = 0; 1065 ifp->if_broadcastaddr = etherbroadcastaddr; 1066 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1067 snprintf(xnamebuf, sizeof(xnamebuf), 1068 "%s-ether_ifdetachhooks", ifp->if_xname); 1069 ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf); 1070 #ifdef MBUFTRACE 1071 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1072 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1073 MOWNER_ATTACH(&ec->ec_tx_mowner); 1074 MOWNER_ATTACH(&ec->ec_rx_mowner); 1075 ifp->if_mowner = &ec->ec_tx_mowner; 1076 #endif 1077 } 1078 1079 void 1080 ether_ifdetach(struct ifnet *ifp) 1081 { 1082 struct ethercom *ec = (void *) ifp; 1083 struct ether_multi *enm; 1084 1085 IFNET_ASSERT_UNLOCKED(ifp); 1086 /* 1087 * Prevent further calls to ioctl (for example turning off 1088 * promiscuous mode from the bridge code), which eventually can 1089 * call if_init() which can cause panics because the interface 1090 * is in the process of being detached. Return device not configured 1091 * instead. 1092 */ 1093 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1094 enxio); 1095 1096 simplehook_dohooks(ec->ec_ifdetach_hooks); 1097 KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks)); 1098 simplehook_destroy(ec->ec_ifdetach_hooks); 1099 1100 bpf_detach(ifp); 1101 1102 ETHER_LOCK(ec); 1103 KASSERT(ec->ec_nvlans == 0); 1104 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1105 LIST_REMOVE(enm, enm_list); 1106 kmem_free(enm, sizeof(*enm)); 1107 ec->ec_multicnt--; 1108 } 1109 ETHER_UNLOCK(ec); 1110 1111 mutex_obj_free(ec->ec_lock); 1112 ec->ec_lock = NULL; 1113 1114 ifp->if_mowner = NULL; 1115 MOWNER_DETACH(&ec->ec_rx_mowner); 1116 MOWNER_DETACH(&ec->ec_tx_mowner); 1117 } 1118 1119 void * 1120 ether_ifdetachhook_establish(struct ifnet *ifp, 1121 void (*fn)(void *), void *arg) 1122 { 1123 struct ethercom *ec; 1124 khook_t *hk; 1125 1126 if (ifp->if_type != IFT_ETHER) 1127 return NULL; 1128 1129 ec = (struct ethercom *)ifp; 1130 hk = simplehook_establish(ec->ec_ifdetach_hooks, 1131 fn, arg); 1132 1133 return (void *)hk; 1134 } 1135 1136 void 1137 ether_ifdetachhook_disestablish(struct ifnet *ifp, 1138 void *vhook, kmutex_t *lock) 1139 { 1140 struct ethercom *ec; 1141 1142 if (vhook == NULL) 1143 return; 1144 1145 ec = (struct ethercom *)ifp; 1146 simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock); 1147 } 1148 1149 #if 0 1150 /* 1151 * This is for reference. We have a table-driven version 1152 * of the little-endian crc32 generator, which is faster 1153 * than the double-loop. 1154 */ 1155 uint32_t 1156 ether_crc32_le(const uint8_t *buf, size_t len) 1157 { 1158 uint32_t c, crc, carry; 1159 size_t i, j; 1160 1161 crc = 0xffffffffU; /* initial value */ 1162 1163 for (i = 0; i < len; i++) { 1164 c = buf[i]; 1165 for (j = 0; j < 8; j++) { 1166 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1167 crc >>= 1; 1168 c >>= 1; 1169 if (carry) 1170 crc = (crc ^ ETHER_CRC_POLY_LE); 1171 } 1172 } 1173 1174 return (crc); 1175 } 1176 #else 1177 uint32_t 1178 ether_crc32_le(const uint8_t *buf, size_t len) 1179 { 1180 static const uint32_t crctab[] = { 1181 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1182 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1183 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1184 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1185 }; 1186 uint32_t crc; 1187 size_t i; 1188 1189 crc = 0xffffffffU; /* initial value */ 1190 1191 for (i = 0; i < len; i++) { 1192 crc ^= buf[i]; 1193 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1194 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1195 } 1196 1197 return (crc); 1198 } 1199 #endif 1200 1201 uint32_t 1202 ether_crc32_be(const uint8_t *buf, size_t len) 1203 { 1204 uint32_t c, crc, carry; 1205 size_t i, j; 1206 1207 crc = 0xffffffffU; /* initial value */ 1208 1209 for (i = 0; i < len; i++) { 1210 c = buf[i]; 1211 for (j = 0; j < 8; j++) { 1212 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1213 crc <<= 1; 1214 c >>= 1; 1215 if (carry) 1216 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1217 } 1218 } 1219 1220 return (crc); 1221 } 1222 1223 #ifdef INET 1224 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1225 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1226 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1227 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1228 #endif 1229 #ifdef INET6 1230 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1231 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1232 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1233 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1234 #endif 1235 1236 /* 1237 * ether_aton implementation, not using a static buffer. 1238 */ 1239 int 1240 ether_aton_r(u_char *dest, size_t len, const char *str) 1241 { 1242 const u_char *cp = (const void *)str; 1243 u_char *ep; 1244 1245 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1246 1247 if (len < ETHER_ADDR_LEN) 1248 return ENOSPC; 1249 1250 ep = dest + ETHER_ADDR_LEN; 1251 1252 while (*cp) { 1253 if (!isxdigit(*cp)) 1254 return EINVAL; 1255 1256 *dest = atox(*cp); 1257 cp++; 1258 if (isxdigit(*cp)) { 1259 *dest = (*dest << 4) | atox(*cp); 1260 cp++; 1261 } 1262 dest++; 1263 1264 if (dest == ep) 1265 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1266 1267 switch (*cp) { 1268 case ':': 1269 case '-': 1270 case '.': 1271 cp++; 1272 break; 1273 } 1274 } 1275 return ENOBUFS; 1276 } 1277 1278 /* 1279 * Convert a sockaddr into an Ethernet address or range of Ethernet 1280 * addresses. 1281 */ 1282 int 1283 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1284 uint8_t addrhi[ETHER_ADDR_LEN]) 1285 { 1286 #ifdef INET 1287 const struct sockaddr_in *sin; 1288 #endif 1289 #ifdef INET6 1290 const struct sockaddr_in6 *sin6; 1291 #endif 1292 1293 switch (sa->sa_family) { 1294 1295 case AF_UNSPEC: 1296 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1297 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1298 break; 1299 1300 #ifdef INET 1301 case AF_INET: 1302 sin = satocsin(sa); 1303 if (sin->sin_addr.s_addr == INADDR_ANY) { 1304 /* 1305 * An IP address of INADDR_ANY means listen to 1306 * or stop listening to all of the Ethernet 1307 * multicast addresses used for IP. 1308 * (This is for the sake of IP multicast routers.) 1309 */ 1310 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1311 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1312 } else { 1313 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1314 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1315 } 1316 break; 1317 #endif 1318 #ifdef INET6 1319 case AF_INET6: 1320 sin6 = satocsin6(sa); 1321 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1322 /* 1323 * An IP6 address of 0 means listen to or stop 1324 * listening to all of the Ethernet multicast 1325 * address used for IP6. 1326 * (This is used for multicast routers.) 1327 */ 1328 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1329 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1330 } else { 1331 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1332 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1333 } 1334 break; 1335 #endif 1336 1337 default: 1338 return EAFNOSUPPORT; 1339 } 1340 return 0; 1341 } 1342 1343 /* 1344 * Add an Ethernet multicast address or range of addresses to the list for a 1345 * given interface. 1346 */ 1347 int 1348 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1349 { 1350 struct ether_multi *enm, *_enm; 1351 u_char addrlo[ETHER_ADDR_LEN]; 1352 u_char addrhi[ETHER_ADDR_LEN]; 1353 int error = 0; 1354 1355 /* Allocate out of lock */ 1356 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1357 1358 ETHER_LOCK(ec); 1359 error = ether_multiaddr(sa, addrlo, addrhi); 1360 if (error != 0) 1361 goto out; 1362 1363 /* 1364 * Verify that we have valid Ethernet multicast addresses. 1365 */ 1366 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1367 error = EINVAL; 1368 goto out; 1369 } 1370 1371 /* 1372 * See if the address range is already in the list. 1373 */ 1374 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1375 if (_enm != NULL) { 1376 /* 1377 * Found it; just increment the reference count. 1378 */ 1379 ++_enm->enm_refcount; 1380 error = 0; 1381 goto out; 1382 } 1383 1384 /* 1385 * Link a new multicast record into the interface's multicast list. 1386 */ 1387 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1388 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1389 enm->enm_refcount = 1; 1390 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1391 ec->ec_multicnt++; 1392 1393 /* 1394 * Return ENETRESET to inform the driver that the list has changed 1395 * and its reception filter should be adjusted accordingly. 1396 */ 1397 error = ENETRESET; 1398 enm = NULL; 1399 1400 out: 1401 ETHER_UNLOCK(ec); 1402 if (enm != NULL) 1403 kmem_free(enm, sizeof(*enm)); 1404 return error; 1405 } 1406 1407 /* 1408 * Delete a multicast address record. 1409 */ 1410 int 1411 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1412 { 1413 struct ether_multi *enm; 1414 u_char addrlo[ETHER_ADDR_LEN]; 1415 u_char addrhi[ETHER_ADDR_LEN]; 1416 int error; 1417 1418 ETHER_LOCK(ec); 1419 error = ether_multiaddr(sa, addrlo, addrhi); 1420 if (error != 0) 1421 goto error; 1422 1423 /* 1424 * Look up the address in our list. 1425 */ 1426 enm = ether_lookup_multi(addrlo, addrhi, ec); 1427 if (enm == NULL) { 1428 error = ENXIO; 1429 goto error; 1430 } 1431 if (--enm->enm_refcount != 0) { 1432 /* 1433 * Still some claims to this record. 1434 */ 1435 error = 0; 1436 goto error; 1437 } 1438 1439 /* 1440 * No remaining claims to this record; unlink and free it. 1441 */ 1442 LIST_REMOVE(enm, enm_list); 1443 ec->ec_multicnt--; 1444 ETHER_UNLOCK(ec); 1445 kmem_free(enm, sizeof(*enm)); 1446 1447 /* 1448 * Return ENETRESET to inform the driver that the list has changed 1449 * and its reception filter should be adjusted accordingly. 1450 */ 1451 return ENETRESET; 1452 1453 error: 1454 ETHER_UNLOCK(ec); 1455 return error; 1456 } 1457 1458 void 1459 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1460 { 1461 ec->ec_ifflags_cb = cb; 1462 } 1463 1464 void 1465 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1466 { 1467 1468 ec->ec_vlan_cb = cb; 1469 } 1470 1471 static int 1472 ether_ioctl_reinit(struct ethercom *ec) 1473 { 1474 struct ifnet *ifp = &ec->ec_if; 1475 int error; 1476 1477 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 1478 1479 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1480 case IFF_RUNNING: 1481 /* 1482 * If interface is marked down and it is running, 1483 * then stop and disable it. 1484 */ 1485 if_stop(ifp, 1); 1486 break; 1487 case IFF_UP: 1488 /* 1489 * If interface is marked up and it is stopped, then 1490 * start it. 1491 */ 1492 return if_init(ifp); 1493 case IFF_UP | IFF_RUNNING: 1494 error = 0; 1495 if (ec->ec_ifflags_cb != NULL) { 1496 error = (*ec->ec_ifflags_cb)(ec); 1497 if (error == ENETRESET) { 1498 /* 1499 * Reset the interface to pick up 1500 * changes in any other flags that 1501 * affect the hardware state. 1502 */ 1503 return if_init(ifp); 1504 } 1505 } else 1506 error = if_init(ifp); 1507 return error; 1508 case 0: 1509 break; 1510 } 1511 1512 return 0; 1513 } 1514 1515 /* 1516 * Common ioctls for Ethernet interfaces. Note, we must be 1517 * called at splnet(). 1518 */ 1519 int 1520 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1521 { 1522 struct ethercom *ec = (void *)ifp; 1523 struct eccapreq *eccr; 1524 struct ifreq *ifr = (struct ifreq *)data; 1525 struct if_laddrreq *iflr = data; 1526 const struct sockaddr_dl *sdl; 1527 static const uint8_t zero[ETHER_ADDR_LEN]; 1528 int error; 1529 1530 switch (cmd) { 1531 case SIOCINITIFADDR: 1532 { 1533 struct ifaddr *ifa = (struct ifaddr *)data; 1534 if (ifa->ifa_addr->sa_family != AF_LINK 1535 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1536 (IFF_UP | IFF_RUNNING)) { 1537 ifp->if_flags |= IFF_UP; 1538 if ((error = if_init(ifp)) != 0) 1539 return error; 1540 } 1541 #ifdef INET 1542 if (ifa->ifa_addr->sa_family == AF_INET) 1543 arp_ifinit(ifp, ifa); 1544 #endif 1545 return 0; 1546 } 1547 1548 case SIOCSIFMTU: 1549 { 1550 int maxmtu; 1551 1552 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1553 maxmtu = ETHERMTU_JUMBO; 1554 else 1555 maxmtu = ETHERMTU; 1556 1557 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1558 return EINVAL; 1559 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1560 return error; 1561 else if (ifp->if_flags & IFF_UP) { 1562 /* Make sure the device notices the MTU change. */ 1563 return if_init(ifp); 1564 } else 1565 return 0; 1566 } 1567 1568 case SIOCSIFFLAGS: 1569 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1570 return error; 1571 return ether_ioctl_reinit(ec); 1572 case SIOCGIFFLAGS: 1573 error = ifioctl_common(ifp, cmd, data); 1574 if (error == 0) { 1575 /* Set IFF_ALLMULTI for backcompat */ 1576 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1577 IFF_ALLMULTI : 0; 1578 } 1579 return error; 1580 case SIOCGETHERCAP: 1581 eccr = (struct eccapreq *)data; 1582 eccr->eccr_capabilities = ec->ec_capabilities; 1583 eccr->eccr_capenable = ec->ec_capenable; 1584 return 0; 1585 case SIOCSETHERCAP: 1586 eccr = (struct eccapreq *)data; 1587 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1588 return EINVAL; 1589 if (eccr->eccr_capenable == ec->ec_capenable) 1590 return 0; 1591 #if 0 /* notyet */ 1592 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1593 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1594 #else 1595 ec->ec_capenable = eccr->eccr_capenable; 1596 #endif 1597 return ether_ioctl_reinit(ec); 1598 case SIOCADDMULTI: 1599 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1600 case SIOCDELMULTI: 1601 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1602 case SIOCSIFMEDIA: 1603 case SIOCGIFMEDIA: 1604 if (ec->ec_mii != NULL) 1605 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1606 cmd); 1607 else if (ec->ec_ifmedia != NULL) 1608 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1609 else 1610 return ENOTTY; 1611 break; 1612 case SIOCALIFADDR: 1613 sdl = satocsdl(sstocsa(&iflr->addr)); 1614 if (sdl->sdl_family != AF_LINK) 1615 ; 1616 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1617 return EINVAL; 1618 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1619 return EINVAL; 1620 /*FALLTHROUGH*/ 1621 default: 1622 return ifioctl_common(ifp, cmd, data); 1623 } 1624 return 0; 1625 } 1626 1627 /* 1628 * Enable/disable passing VLAN packets if the parent interface supports it. 1629 * Return: 1630 * 0: Ok 1631 * -1: Parent interface does not support vlans 1632 * >0: Error 1633 */ 1634 int 1635 ether_enable_vlan_mtu(struct ifnet *ifp) 1636 { 1637 int error; 1638 struct ethercom *ec = (void *)ifp; 1639 1640 /* Parent does not support VLAN's */ 1641 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1642 return -1; 1643 1644 /* 1645 * Parent supports the VLAN_MTU capability, 1646 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1647 * enable it. 1648 */ 1649 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1650 1651 /* Interface is down, defer for later */ 1652 if ((ifp->if_flags & IFF_UP) == 0) 1653 return 0; 1654 1655 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1656 return 0; 1657 1658 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1659 return error; 1660 } 1661 1662 int 1663 ether_disable_vlan_mtu(struct ifnet *ifp) 1664 { 1665 int error; 1666 struct ethercom *ec = (void *)ifp; 1667 1668 /* We still have VLAN's, defer for later */ 1669 if (ec->ec_nvlans != 0) 1670 return 0; 1671 1672 /* Parent does not support VLAB's, nothing to do. */ 1673 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1674 return -1; 1675 1676 /* 1677 * Disable Tx/Rx of VLAN-sized frames. 1678 */ 1679 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1680 1681 /* Interface is down, defer for later */ 1682 if ((ifp->if_flags & IFF_UP) == 0) 1683 return 0; 1684 1685 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1686 return 0; 1687 1688 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1689 return error; 1690 } 1691 1692 /* 1693 * Add and delete VLAN TAG 1694 */ 1695 int 1696 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status) 1697 { 1698 struct ethercom *ec = (void *)ifp; 1699 struct vlanid_list *vidp; 1700 bool vlanmtu_enabled; 1701 uint16_t vid = EVL_VLANOFTAG(vtag); 1702 int error; 1703 1704 vlanmtu_enabled = false; 1705 1706 /* Add a vid to the list */ 1707 vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP); 1708 vidp->vid = vid; 1709 1710 ETHER_LOCK(ec); 1711 ec->ec_nvlans++; 1712 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list); 1713 ETHER_UNLOCK(ec); 1714 1715 if (ec->ec_nvlans == 1) { 1716 IFNET_LOCK(ifp); 1717 error = ether_enable_vlan_mtu(ifp); 1718 IFNET_UNLOCK(ifp); 1719 1720 if (error == 0) { 1721 vlanmtu_enabled = true; 1722 } else if (error != -1) { 1723 goto fail; 1724 } 1725 } 1726 1727 if (ec->ec_vlan_cb != NULL) { 1728 error = (*ec->ec_vlan_cb)(ec, vid, true); 1729 if (error != 0) 1730 goto fail; 1731 } 1732 1733 if (vlanmtu_status != NULL) 1734 *vlanmtu_status = vlanmtu_enabled; 1735 1736 return 0; 1737 fail: 1738 ETHER_LOCK(ec); 1739 ec->ec_nvlans--; 1740 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list); 1741 ETHER_UNLOCK(ec); 1742 1743 if (vlanmtu_enabled) { 1744 IFNET_LOCK(ifp); 1745 (void)ether_disable_vlan_mtu(ifp); 1746 IFNET_UNLOCK(ifp); 1747 } 1748 1749 kmem_free(vidp, sizeof(*vidp)); 1750 1751 return error; 1752 } 1753 1754 int 1755 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag) 1756 { 1757 struct ethercom *ec = (void *)ifp; 1758 struct vlanid_list *vidp; 1759 uint16_t vid = EVL_VLANOFTAG(vtag); 1760 1761 ETHER_LOCK(ec); 1762 SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) { 1763 if (vidp->vid == vid) { 1764 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, 1765 vlanid_list, vid_list); 1766 ec->ec_nvlans--; 1767 break; 1768 } 1769 } 1770 ETHER_UNLOCK(ec); 1771 1772 if (vidp == NULL) 1773 return ENOENT; 1774 1775 if (ec->ec_vlan_cb != NULL) { 1776 (void)(*ec->ec_vlan_cb)(ec, vidp->vid, false); 1777 } 1778 1779 if (ec->ec_nvlans == 0) { 1780 IFNET_LOCK(ifp); 1781 (void)ether_disable_vlan_mtu(ifp); 1782 IFNET_UNLOCK(ifp); 1783 } 1784 1785 kmem_free(vidp, sizeof(*vidp)); 1786 1787 return 0; 1788 } 1789 1790 int 1791 ether_inject_vlantag(struct mbuf **mp, uint16_t etype, uint16_t tag) 1792 { 1793 static const size_t min_data_len = 1794 ETHER_MIN_LEN - ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN; 1795 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */ 1796 static const char vlan_zero_pad_buff[ETHER_MIN_LEN] = { 0 }; 1797 1798 struct ether_vlan_header *evl; 1799 struct mbuf *m = *mp; 1800 int error; 1801 1802 error = 0; 1803 1804 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT); 1805 if (m == NULL) { 1806 error = ENOBUFS; 1807 goto out; 1808 } 1809 1810 if (m->m_len < sizeof(*evl)) { 1811 m = m_pullup(m, sizeof(*evl)); 1812 if (m == NULL) { 1813 error = ENOBUFS; 1814 goto out; 1815 } 1816 } 1817 1818 /* 1819 * Transform the Ethernet header into an 1820 * Ethernet header with 802.1Q encapsulation. 1821 */ 1822 memmove(mtod(m, void *), 1823 mtod(m, char *) + ETHER_VLAN_ENCAP_LEN, 1824 sizeof(struct ether_header)); 1825 evl = mtod(m, struct ether_vlan_header *); 1826 evl->evl_proto = evl->evl_encap_proto; 1827 evl->evl_encap_proto = htons(etype); 1828 evl->evl_tag = htons(tag); 1829 1830 /* 1831 * To cater for VLAN-aware layer 2 ethernet 1832 * switches which may need to strip the tag 1833 * before forwarding the packet, make sure 1834 * the packet+tag is at least 68 bytes long. 1835 * This is necessary because our parent will 1836 * only pad to 64 bytes (ETHER_MIN_LEN) and 1837 * some switches will not pad by themselves 1838 * after deleting a tag. 1839 */ 1840 if (m->m_pkthdr.len < min_data_len) { 1841 m_copyback(m, m->m_pkthdr.len, 1842 min_data_len - m->m_pkthdr.len, 1843 vlan_zero_pad_buff); 1844 } 1845 1846 m->m_flags &= ~M_VLANTAG; 1847 1848 out: 1849 *mp = m; 1850 return error; 1851 } 1852 1853 struct mbuf * 1854 ether_strip_vlantag(struct mbuf *m) 1855 { 1856 struct ether_vlan_header *evl; 1857 1858 if (m->m_len < sizeof(*evl) && 1859 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1860 return NULL; 1861 } 1862 1863 if (m_makewritable(&m, 0, sizeof(*evl), M_DONTWAIT)) { 1864 m_freem(m); 1865 return NULL; 1866 } 1867 1868 evl = mtod(m, struct ether_vlan_header *); 1869 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN); 1870 1871 vlan_set_tag(m, ntohs(evl->evl_tag)); 1872 1873 /* 1874 * Restore the original ethertype. We'll remove 1875 * the encapsulation after we've found the vlan 1876 * interface corresponding to the tag. 1877 */ 1878 evl->evl_encap_proto = evl->evl_proto; 1879 1880 /* 1881 * Remove the encapsulation header and append tag. 1882 * The original header has already been fixed up above. 1883 */ 1884 vlan_set_tag(m, ntohs(evl->evl_tag)); 1885 memmove((char *)evl + ETHER_VLAN_ENCAP_LEN, evl, 1886 offsetof(struct ether_vlan_header, evl_encap_proto)); 1887 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1888 1889 return m; 1890 } 1891 1892 static int 1893 ether_multicast_sysctl(SYSCTLFN_ARGS) 1894 { 1895 struct ether_multi *enm; 1896 struct ifnet *ifp; 1897 struct ethercom *ec; 1898 int error = 0; 1899 size_t written; 1900 struct psref psref; 1901 int bound; 1902 unsigned int multicnt; 1903 struct ether_multi_sysctl *addrs; 1904 int i; 1905 1906 if (namelen != 1) 1907 return EINVAL; 1908 1909 bound = curlwp_bind(); 1910 ifp = if_get_byindex(name[0], &psref); 1911 if (ifp == NULL) { 1912 error = ENODEV; 1913 goto out; 1914 } 1915 if (ifp->if_type != IFT_ETHER) { 1916 if_put(ifp, &psref); 1917 *oldlenp = 0; 1918 goto out; 1919 } 1920 ec = (struct ethercom *)ifp; 1921 1922 if (oldp == NULL) { 1923 if_put(ifp, &psref); 1924 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1925 goto out; 1926 } 1927 1928 /* 1929 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1930 * is sleepable, while holding it. Copy data to a local buffer first 1931 * with the lock taken and then call sysctl_copyout without holding it. 1932 */ 1933 retry: 1934 multicnt = ec->ec_multicnt; 1935 1936 if (multicnt == 0) { 1937 if_put(ifp, &psref); 1938 *oldlenp = 0; 1939 goto out; 1940 } 1941 1942 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1943 1944 ETHER_LOCK(ec); 1945 if (multicnt != ec->ec_multicnt) { 1946 /* The number of multicast addresses has changed */ 1947 ETHER_UNLOCK(ec); 1948 kmem_free(addrs, sizeof(*addrs) * multicnt); 1949 goto retry; 1950 } 1951 1952 i = 0; 1953 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1954 struct ether_multi_sysctl *addr = &addrs[i]; 1955 addr->enm_refcount = enm->enm_refcount; 1956 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1957 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1958 i++; 1959 } 1960 ETHER_UNLOCK(ec); 1961 1962 error = 0; 1963 written = 0; 1964 for (i = 0; i < multicnt; i++) { 1965 struct ether_multi_sysctl *addr = &addrs[i]; 1966 1967 if (written + sizeof(*addr) > *oldlenp) 1968 break; 1969 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1970 if (error) 1971 break; 1972 written += sizeof(*addr); 1973 oldp = (char *)oldp + sizeof(*addr); 1974 } 1975 kmem_free(addrs, sizeof(*addrs) * multicnt); 1976 1977 if_put(ifp, &psref); 1978 1979 *oldlenp = written; 1980 out: 1981 curlwp_bindx(bound); 1982 return error; 1983 } 1984 1985 static void 1986 ether_sysctl_setup(struct sysctllog **clog) 1987 { 1988 const struct sysctlnode *rnode = NULL; 1989 1990 sysctl_createv(clog, 0, NULL, &rnode, 1991 CTLFLAG_PERMANENT, 1992 CTLTYPE_NODE, "ether", 1993 SYSCTL_DESCR("Ethernet-specific information"), 1994 NULL, 0, NULL, 0, 1995 CTL_NET, CTL_CREATE, CTL_EOL); 1996 1997 sysctl_createv(clog, 0, &rnode, NULL, 1998 CTLFLAG_PERMANENT, 1999 CTLTYPE_NODE, "multicast", 2000 SYSCTL_DESCR("multicast addresses"), 2001 ether_multicast_sysctl, 0, NULL, 0, 2002 CTL_CREATE, CTL_EOL); 2003 2004 sysctl_createv(clog, 0, &rnode, NULL, 2005 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2006 CTLTYPE_STRING, "rps_hash", 2007 SYSCTL_DESCR("Interface rps hash function control"), 2008 sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p, 2009 PKTQ_RPS_HASH_NAME_LEN, 2010 CTL_CREATE, CTL_EOL); 2011 } 2012 2013 void 2014 etherinit(void) 2015 { 2016 2017 #ifdef DIAGNOSTIC 2018 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 2019 #endif 2020 ether_pktq_rps_hash_p = pktq_rps_hash_default; 2021 ether_sysctl_setup(NULL); 2022 } 2023