xref: /netbsd-src/sys/net/if_ethersubr.c (revision 8e33eff89e26cf71871ead62f0d5063e1313c33a)
1 /*	$NetBSD: if_ethersubr.c,v 1.327 2024/07/05 04:31:53 rin Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)if_ethersubr.c	8.2 (Berkeley) 4/4/96
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.327 2024/07/05 04:31:53 rin Exp $");
65 
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75 
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81 
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/entropy.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92 #include <sys/hook.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100 
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104 
105 #if NARP == 0
106 /*
107  * XXX there should really be a way to issue this warning from within config(8)
108  */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111 
112 #include <net/bpf.h>
113 
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116 
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120 
121 #if NAGR > 0
122 #include <net/ether_slowprotocols.h>
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126 
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130 
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136 
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144 
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149 
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154 
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157 
158 extern u_char	at_org_code[3];
159 extern u_char	aarp_org_code[3];
160 #endif /* NETATALK */
161 
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166 
167 CTASSERT(sizeof(struct ether_addr) == 6);
168 CTASSERT(sizeof(struct ether_header) == 14);
169 
170 #ifdef DIAGNOSTIC
171 static struct timeval bigpktppslim_last;
172 static int bigpktppslim = 2;	/* XXX */
173 static int bigpktpps_count;
174 static kmutex_t bigpktpps_lock __cacheline_aligned;
175 #endif
176 
177 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
178     { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
179 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
180     { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
181 #define senderr(e) { error = (e); goto bad;}
182 
183 static pktq_rps_hash_func_t ether_pktq_rps_hash_p;
184 
185 static int ether_output(struct ifnet *, struct mbuf *,
186     const struct sockaddr *, const struct rtentry *);
187 
188 /*
189  * Ethernet output routine.
190  * Encapsulate a packet of type family for the local net.
191  * Assumes that ifp is actually pointer to ethercom structure.
192  */
193 static int
194 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
195     const struct sockaddr * const dst, const struct rtentry *rt)
196 {
197 	uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
198 	uint16_t etype = 0;
199 	int error = 0, hdrcmplt = 0;
200 	struct mbuf *m = m0;
201 	struct mbuf *mcopy = NULL;
202 	struct ether_header *eh;
203 	struct ifnet *ifp = ifp0;
204 #ifdef INET
205 	struct arphdr *ah;
206 #endif
207 #ifdef NETATALK
208 	struct at_ifaddr *aa;
209 #endif
210 
211 #ifdef MBUFTRACE
212 	m_claimm(m, ifp->if_mowner);
213 #endif
214 
215 #if NCARP > 0
216 	if (ifp->if_type == IFT_CARP) {
217 		struct ifaddr *ifa;
218 		int s = pserialize_read_enter();
219 
220 		/* loop back if this is going to the carp interface */
221 		if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
222 		    (ifa = ifa_ifwithaddr(dst)) != NULL) {
223 			if (ifa->ifa_ifp == ifp0) {
224 				pserialize_read_exit(s);
225 				return looutput(ifp0, m, dst, rt);
226 			}
227 		}
228 		pserialize_read_exit(s);
229 
230 		ifp = ifp->if_carpdev;
231 		/* ac = (struct arpcom *)ifp; */
232 
233 		if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
234 		    (IFF_UP | IFF_RUNNING))
235 			senderr(ENETDOWN);
236 	}
237 #endif
238 
239 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
240 		senderr(ENETDOWN);
241 
242 	switch (dst->sa_family) {
243 
244 #ifdef INET
245 	case AF_INET:
246 		if (m->m_flags & M_BCAST) {
247 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
248 		} else if (m->m_flags & M_MCAST) {
249 			ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
250 		} else {
251 			error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
252 			if (error)
253 				return (error == EWOULDBLOCK) ? 0 : error;
254 		}
255 		/* If broadcasting on a simplex interface, loopback a copy */
256 		if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
257 			mcopy = m_copypacket(m, M_DONTWAIT);
258 		etype = htons(ETHERTYPE_IP);
259 		break;
260 
261 	case AF_ARP:
262 		ah = mtod(m, struct arphdr *);
263 		if (m->m_flags & M_BCAST) {
264 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
265 		} else {
266 			void *tha = ar_tha(ah);
267 
268 			if (tha == NULL) {
269 				/* fake with ARPHRD_IEEE1394 */
270 				m_freem(m);
271 				return 0;
272 			}
273 			memcpy(edst, tha, sizeof(edst));
274 		}
275 
276 		ah->ar_hrd = htons(ARPHRD_ETHER);
277 
278 		switch (ntohs(ah->ar_op)) {
279 		case ARPOP_REVREQUEST:
280 		case ARPOP_REVREPLY:
281 			etype = htons(ETHERTYPE_REVARP);
282 			break;
283 
284 		case ARPOP_REQUEST:
285 		case ARPOP_REPLY:
286 		default:
287 			etype = htons(ETHERTYPE_ARP);
288 		}
289 		break;
290 #endif
291 
292 #ifdef INET6
293 	case AF_INET6:
294 		if (m->m_flags & M_BCAST) {
295 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
296 		} else if (m->m_flags & M_MCAST) {
297 			ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
298 			    edst);
299 		} else {
300 			error = nd6_resolve(ifp0, rt, m, dst, edst,
301 			    sizeof(edst));
302 			if (error)
303 				return (error == EWOULDBLOCK) ? 0 : error;
304 		}
305 		etype = htons(ETHERTYPE_IPV6);
306 		break;
307 #endif
308 
309 #ifdef NETATALK
310 	case AF_APPLETALK: {
311 		struct ifaddr *ifa;
312 		int s;
313 
314 		KERNEL_LOCK(1, NULL);
315 
316 		if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
317 			KERNEL_UNLOCK_ONE(NULL);
318 			return 0;
319 		}
320 
321 		/*
322 		 * ifaddr is the first thing in at_ifaddr
323 		 */
324 		s = pserialize_read_enter();
325 		ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
326 		if (ifa == NULL) {
327 			pserialize_read_exit(s);
328 			KERNEL_UNLOCK_ONE(NULL);
329 			senderr(EADDRNOTAVAIL);
330 		}
331 		aa = (struct at_ifaddr *)ifa;
332 
333 		/*
334 		 * In the phase 2 case, we need to prepend an mbuf for the
335 		 * llc header.
336 		 */
337 		if (aa->aa_flags & AFA_PHASE2) {
338 			struct llc llc;
339 
340 			M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
341 			if (m == NULL) {
342 				pserialize_read_exit(s);
343 				KERNEL_UNLOCK_ONE(NULL);
344 				senderr(ENOBUFS);
345 			}
346 
347 			llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
348 			llc.llc_control = LLC_UI;
349 			memcpy(llc.llc_snap_org_code, at_org_code,
350 			    sizeof(llc.llc_snap_org_code));
351 			llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
352 			memcpy(mtod(m, void *), &llc, sizeof(struct llc));
353 		} else {
354 			etype = htons(ETHERTYPE_ATALK);
355 		}
356 		pserialize_read_exit(s);
357 		KERNEL_UNLOCK_ONE(NULL);
358 		break;
359 	}
360 #endif /* NETATALK */
361 
362 	case pseudo_AF_HDRCMPLT:
363 		hdrcmplt = 1;
364 		memcpy(esrc,
365 		    ((const struct ether_header *)dst->sa_data)->ether_shost,
366 		    sizeof(esrc));
367 		/* FALLTHROUGH */
368 
369 	case AF_UNSPEC:
370 		memcpy(edst,
371 		    ((const struct ether_header *)dst->sa_data)->ether_dhost,
372 		    sizeof(edst));
373 		/* AF_UNSPEC doesn't swap the byte order of the ether_type. */
374 		etype = ((const struct ether_header *)dst->sa_data)->ether_type;
375 		break;
376 
377 	default:
378 		printf("%s: can't handle af%d\n", ifp->if_xname,
379 		    dst->sa_family);
380 		senderr(EAFNOSUPPORT);
381 	}
382 
383 #ifdef MPLS
384 	{
385 		struct m_tag *mtag;
386 		mtag = m_tag_find(m, PACKET_TAG_MPLS);
387 		if (mtag != NULL) {
388 			/* Having the tag itself indicates it's MPLS */
389 			etype = htons(ETHERTYPE_MPLS);
390 			m_tag_delete(m, mtag);
391 		}
392 	}
393 #endif
394 
395 	if (mcopy)
396 		(void)looutput(ifp, mcopy, dst, rt);
397 
398 	KASSERT((m->m_flags & M_PKTHDR) != 0);
399 
400 	/*
401 	 * If no ether type is set, this must be a 802.2 formatted packet.
402 	 */
403 	if (etype == 0)
404 		etype = htons(m->m_pkthdr.len);
405 
406 	/*
407 	 * Add local net header. If no space in first mbuf, allocate another.
408 	 */
409 	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
410 	if (m == NULL)
411 		senderr(ENOBUFS);
412 
413 	eh = mtod(m, struct ether_header *);
414 	/* Note: etype is already in network byte order. */
415 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
416 	memcpy(eh->ether_dhost, edst, sizeof(edst));
417 	if (hdrcmplt) {
418 		memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
419 	} else {
420 	 	memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
421 		    sizeof(eh->ether_shost));
422 	}
423 
424 #if NCARP > 0
425 	if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
426 	 	memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
427 		    sizeof(eh->ether_shost));
428 	}
429 #endif
430 
431 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
432 		return error;
433 	if (m == NULL)
434 		return 0;
435 
436 #if NBRIDGE > 0
437 	/*
438 	 * Bridges require special output handling.
439 	 */
440 	if (ifp->if_bridge)
441 		return bridge_output(ifp, m, NULL, NULL);
442 #endif
443 
444 #if NCARP > 0
445 	if (ifp != ifp0)
446 		if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
447 #endif
448 
449 #ifdef ALTQ
450 	KERNEL_LOCK(1, NULL);
451 	/*
452 	 * If ALTQ is enabled on the parent interface, do
453 	 * classification; the queueing discipline might not
454 	 * require classification, but might require the
455 	 * address family/header pointer in the pktattr.
456 	 */
457 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
458 		altq_etherclassify(&ifp->if_snd, m);
459 	KERNEL_UNLOCK_ONE(NULL);
460 #endif
461 	return ifq_enqueue(ifp, m);
462 
463 bad:
464 	if_statinc(ifp, if_oerrors);
465 	m_freem(m);
466 	return error;
467 }
468 
469 #ifdef ALTQ
470 /*
471  * This routine is a slight hack to allow a packet to be classified
472  * if the Ethernet headers are present.  It will go away when ALTQ's
473  * classification engine understands link headers.
474  *
475  * XXX: We may need to do m_pullups here. First to ensure struct ether_header
476  * is indeed contiguous, then to read the LLC and so on.
477  */
478 void
479 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
480 {
481 	struct ether_header *eh;
482 	struct mbuf *mtop = m;
483 	uint16_t ether_type;
484 	int hlen, af, hdrsize;
485 	void *hdr;
486 
487 	KASSERT((mtop->m_flags & M_PKTHDR) != 0);
488 
489 	hlen = ETHER_HDR_LEN;
490 	eh = mtod(m, struct ether_header *);
491 
492 	ether_type = htons(eh->ether_type);
493 
494 	if (ether_type < ETHERMTU) {
495 		/* LLC/SNAP */
496 		struct llc *llc = (struct llc *)(eh + 1);
497 		hlen += 8;
498 
499 		if (m->m_len < hlen ||
500 		    llc->llc_dsap != LLC_SNAP_LSAP ||
501 		    llc->llc_ssap != LLC_SNAP_LSAP ||
502 		    llc->llc_control != LLC_UI) {
503 			/* Not SNAP. */
504 			goto bad;
505 		}
506 
507 		ether_type = htons(llc->llc_un.type_snap.ether_type);
508 	}
509 
510 	switch (ether_type) {
511 	case ETHERTYPE_IP:
512 		af = AF_INET;
513 		hdrsize = 20;		/* sizeof(struct ip) */
514 		break;
515 
516 	case ETHERTYPE_IPV6:
517 		af = AF_INET6;
518 		hdrsize = 40;		/* sizeof(struct ip6_hdr) */
519 		break;
520 
521 	default:
522 		af = AF_UNSPEC;
523 		hdrsize = 0;
524 		break;
525 	}
526 
527 	while (m->m_len <= hlen) {
528 		hlen -= m->m_len;
529 		m = m->m_next;
530 		if (m == NULL)
531 			goto bad;
532 	}
533 
534 	if (m->m_len < (hlen + hdrsize)) {
535 		/*
536 		 * protocol header not in a single mbuf.
537 		 * We can't cope with this situation right
538 		 * now (but it shouldn't ever happen, really, anyhow).
539 		 */
540 #ifdef DEBUG
541 		printf("altq_etherclassify: headers span multiple mbufs: "
542 		    "%d < %d\n", m->m_len, (hlen + hdrsize));
543 #endif
544 		goto bad;
545 	}
546 
547 	m->m_data += hlen;
548 	m->m_len -= hlen;
549 
550 	hdr = mtod(m, void *);
551 
552 	if (ALTQ_NEEDS_CLASSIFY(ifq)) {
553 		mtop->m_pkthdr.pattr_class =
554 		    (*ifq->altq_classify)(ifq->altq_clfier, m, af);
555 	}
556 	mtop->m_pkthdr.pattr_af = af;
557 	mtop->m_pkthdr.pattr_hdr = hdr;
558 
559 	m->m_data -= hlen;
560 	m->m_len += hlen;
561 
562 	return;
563 
564 bad:
565 	mtop->m_pkthdr.pattr_class = NULL;
566 	mtop->m_pkthdr.pattr_hdr = NULL;
567 	mtop->m_pkthdr.pattr_af = AF_UNSPEC;
568 }
569 #endif /* ALTQ */
570 
571 #if defined (LLC) || defined (NETATALK)
572 static void
573 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
574 {
575 	pktqueue_t *pktq = NULL;
576 	struct llc *l;
577 
578 	if (m->m_len < sizeof(*eh) + sizeof(struct llc))
579 		goto error;
580 
581 	l = (struct llc *)(eh+1);
582 	switch (l->llc_dsap) {
583 #ifdef NETATALK
584 	case LLC_SNAP_LSAP:
585 		switch (l->llc_control) {
586 		case LLC_UI:
587 			if (l->llc_ssap != LLC_SNAP_LSAP)
588 				goto error;
589 
590 			if (memcmp(&(l->llc_snap_org_code)[0],
591 			    at_org_code, sizeof(at_org_code)) == 0 &&
592 			    ntohs(l->llc_snap_ether_type) ==
593 			    ETHERTYPE_ATALK) {
594 				pktq = at_pktq2;
595 				m_adj(m, sizeof(struct ether_header)
596 				    + sizeof(struct llc));
597 				break;
598 			}
599 
600 			if (memcmp(&(l->llc_snap_org_code)[0],
601 			    aarp_org_code,
602 			    sizeof(aarp_org_code)) == 0 &&
603 			    ntohs(l->llc_snap_ether_type) ==
604 			    ETHERTYPE_AARP) {
605 				m_adj(m, sizeof(struct ether_header)
606 				    + sizeof(struct llc));
607 				aarpinput(ifp, m); /* XXX queue? */
608 				return;
609 			}
610 
611 		default:
612 			goto error;
613 		}
614 		break;
615 #endif
616 	default:
617 		goto noproto;
618 	}
619 
620 	KASSERT(pktq != NULL);
621 	if (__predict_false(!pktq_enqueue(pktq, m, 0))) {
622 		m_freem(m);
623 	}
624 	return;
625 
626 noproto:
627 	m_freem(m);
628 	if_statinc(ifp, if_noproto);
629 	return;
630 error:
631 	m_freem(m);
632 	if_statinc(ifp, if_ierrors);
633 	return;
634 }
635 #endif /* defined (LLC) || defined (NETATALK) */
636 
637 /*
638  * Process a received Ethernet packet;
639  * the packet is in the mbuf chain m with
640  * the ether header.
641  */
642 void
643 ether_input(struct ifnet *ifp, struct mbuf *m)
644 {
645 #if NVLAN > 0 || defined(MBUFTRACE)
646 	struct ethercom *ec = (struct ethercom *) ifp;
647 #endif
648 	pktqueue_t *pktq = NULL;
649 	uint16_t etype;
650 	struct ether_header *eh;
651 	size_t ehlen;
652 	static int earlypkts;
653 
654 	/* No RPS for not-IP. */
655 	pktq_rps_hash_func_t rps_hash = NULL;
656 
657 	KASSERT(!cpu_intr_p());
658 	KASSERT((m->m_flags & M_PKTHDR) != 0);
659 
660 	if ((ifp->if_flags & IFF_UP) == 0)
661 		goto drop;
662 
663 #ifdef MBUFTRACE
664 	m_claimm(m, &ec->ec_rx_mowner);
665 #endif
666 
667 	if (__predict_false(m->m_len < sizeof(*eh))) {
668 		if ((m = m_pullup(m, sizeof(*eh))) == NULL) {
669 			if_statinc(ifp, if_ierrors);
670 			return;
671 		}
672 	}
673 
674 	eh = mtod(m, struct ether_header *);
675 	etype = ntohs(eh->ether_type);
676 	ehlen = sizeof(*eh);
677 
678 	if (__predict_false(earlypkts < 100 ||
679 		entropy_epoch() == (unsigned)-1)) {
680 		rnd_add_data(NULL, eh, ehlen, 0);
681 		earlypkts++;
682 	}
683 
684 	/*
685 	 * Determine if the packet is within its size limits. For MPLS the
686 	 * header length is variable, so we skip the check.
687 	 */
688 	if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
689 	    ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
690 #ifdef DIAGNOSTIC
691 		mutex_enter(&bigpktpps_lock);
692 		if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
693 		    bigpktppslim)) {
694 			printf("%s: discarding oversize frame (len=%d)\n",
695 			    ifp->if_xname, m->m_pkthdr.len);
696 		}
697 		mutex_exit(&bigpktpps_lock);
698 #endif
699 		goto error;
700 	}
701 
702 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
703 		/*
704 		 * If this is not a simplex interface, drop the packet
705 		 * if it came from us.
706 		 */
707 		if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
708 		    memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
709 		    ETHER_ADDR_LEN) == 0) {
710 			goto drop;
711 		}
712 
713 		if (memcmp(etherbroadcastaddr,
714 		    eh->ether_dhost, ETHER_ADDR_LEN) == 0)
715 			m->m_flags |= M_BCAST;
716 		else
717 			m->m_flags |= M_MCAST;
718 		if_statinc(ifp, if_imcasts);
719 	}
720 
721 	/* If the CRC is still on the packet, trim it off. */
722 	if (m->m_flags & M_HASFCS) {
723 		m_adj(m, -ETHER_CRC_LEN);
724 		m->m_flags &= ~M_HASFCS;
725 	}
726 
727 	if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
728 
729 	if (!vlan_has_tag(m) && etype == ETHERTYPE_VLAN) {
730 		m = ether_strip_vlantag(m);
731 		if (m == NULL) {
732 			if_statinc(ifp, if_ierrors);
733 			return;
734 		}
735 
736 		eh = mtod(m, struct ether_header *);
737 		etype = ntohs(eh->ether_type);
738 		ehlen = sizeof(*eh);
739 	}
740 
741 	if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
742 	    (ifp->if_flags & IFF_PROMISC) != 0 &&
743 	    memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
744 	     ETHER_ADDR_LEN) != 0) {
745 		m->m_flags |= M_PROMISC;
746 	}
747 
748 	if ((m->m_flags & M_PROMISC) == 0) {
749 		if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
750 			return;
751 		if (m == NULL)
752 			return;
753 
754 		eh = mtod(m, struct ether_header *);
755 		etype = ntohs(eh->ether_type);
756 	}
757 
758 	/*
759 	 * Processing a logical interfaces that are able
760 	 * to configure vlan(4).
761 	*/
762 #if NAGR > 0
763 	if (ifp->if_lagg != NULL &&
764 	    __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
765 		m->m_flags &= ~M_PROMISC;
766 		agr_input(ifp, m);
767 		return;
768 	}
769 #endif
770 
771 	/*
772 	 * VLAN processing.
773 	 *
774 	 * VLAN provides service delimiting so the frames are
775 	 * processed before other handlings. If a VLAN interface
776 	 * does not exist to take those frames, they're returned
777 	 * to ether_input().
778 	 */
779 
780 	if (vlan_has_tag(m)) {
781 		if (EVL_VLANOFTAG(vlan_get_tag(m)) == 0) {
782 			if (etype == ETHERTYPE_VLAN ||
783 			     etype == ETHERTYPE_QINQ)
784 				goto drop;
785 
786 			/* XXX we should actually use the prio value? */
787 			m->m_flags &= ~M_VLANTAG;
788 		} else {
789 #if NVLAN > 0
790 			if (ec->ec_nvlans > 0) {
791 				m = vlan_input(ifp, m);
792 
793 				/* vlan_input() called ether_input() recursively */
794 				if (m == NULL)
795 					return;
796 			}
797 #endif
798 			/* drop VLAN frames not for this port. */
799 			goto noproto;
800 		}
801 	}
802 
803 #if NCARP > 0
804 	if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
805 		/*
806 		 * Clear M_PROMISC, in case the packet comes from a
807 		 * vlan.
808 		 */
809 		m->m_flags &= ~M_PROMISC;
810 		if (carp_input(m, (uint8_t *)&eh->ether_shost,
811 		    (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
812 			return;
813 	}
814 #endif
815 
816 	/*
817 	 * Handle protocols that expect to have the Ethernet header
818 	 * (and possibly FCS) intact.
819 	 */
820 	switch (etype) {
821 #if NPPPOE > 0
822 	case ETHERTYPE_PPPOEDISC:
823 		pppoedisc_input(ifp, m);
824 		return;
825 
826 	case ETHERTYPE_PPPOE:
827 		pppoe_input(ifp, m);
828 		return;
829 #endif
830 
831 	case ETHERTYPE_SLOWPROTOCOLS: {
832 		uint8_t subtype;
833 
834 		if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
835 			goto error;
836 
837 		m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
838 		switch (subtype) {
839 #if NAGR > 0
840 		case SLOWPROTOCOLS_SUBTYPE_LACP:
841 			if (ifp->if_lagg != NULL) {
842 				ieee8023ad_lacp_input(ifp, m);
843 				return;
844 			}
845 			break;
846 
847 		case SLOWPROTOCOLS_SUBTYPE_MARKER:
848 			if (ifp->if_lagg != NULL) {
849 				ieee8023ad_marker_input(ifp, m);
850 				return;
851 			}
852 			break;
853 #endif
854 
855 		default:
856 			if (subtype == 0 || subtype > 10) {
857 				/* illegal value */
858 				goto error;
859 			}
860 			/* unknown subtype */
861 			break;
862 		}
863 	}
864 	/* FALLTHROUGH */
865 	default:
866 		if (m->m_flags & M_PROMISC)
867 			goto drop;
868 	}
869 
870 	/* If the CRC is still on the packet, trim it off. */
871 	if (m->m_flags & M_HASFCS) {
872 		m_adj(m, -ETHER_CRC_LEN);
873 		m->m_flags &= ~M_HASFCS;
874 	}
875 
876 	/* etype represents the size of the payload in this case */
877 	if (etype <= ETHERMTU + sizeof(struct ether_header)) {
878 		KASSERT(ehlen == sizeof(*eh));
879 #if defined (LLC) || defined (NETATALK)
880 		ether_input_llc(ifp, m, eh);
881 		return;
882 #else
883 		/* ethertype of 0-1500 is regarded as noproto */
884 		goto noproto;
885 #endif
886 	}
887 
888 	/* For ARP packets, store the source address so that
889 	 * ARP DAD probes can be validated. */
890 	if (etype == ETHERTYPE_ARP) {
891 		struct m_tag *mtag;
892 
893 		mtag = m_tag_get(PACKET_TAG_ETHERNET_SRC, ETHER_ADDR_LEN,
894 		    M_NOWAIT);
895 		if (mtag != NULL) {
896 			memcpy(mtag + 1, &eh->ether_shost, ETHER_ADDR_LEN);
897 			m_tag_prepend(m, mtag);
898 		}
899 	}
900 
901 	/* Strip off the Ethernet header. */
902 	m_adj(m, ehlen);
903 
904 	switch (etype) {
905 #ifdef INET
906 	case ETHERTYPE_IP:
907 #ifdef GATEWAY
908 		if (ipflow_fastforward(m))
909 			return;
910 #endif
911 		pktq = ip_pktq;
912 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
913 		break;
914 
915 	case ETHERTYPE_ARP:
916 		pktq = arp_pktq;
917 		break;
918 
919 	case ETHERTYPE_REVARP:
920 		revarpinput(m);	/* XXX queue? */
921 		return;
922 #endif
923 
924 #ifdef INET6
925 	case ETHERTYPE_IPV6:
926 		if (__predict_false(!in6_present))
927 			goto noproto;
928 #ifdef GATEWAY
929 		if (ip6flow_fastforward(&m))
930 			return;
931 #endif
932 		pktq = ip6_pktq;
933 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
934 		break;
935 #endif
936 
937 #ifdef NETATALK
938 	case ETHERTYPE_ATALK:
939 		pktq = at_pktq1;
940 		break;
941 
942 	case ETHERTYPE_AARP:
943 		aarpinput(ifp, m); /* XXX queue? */
944 		return;
945 #endif
946 
947 #ifdef MPLS
948 	case ETHERTYPE_MPLS:
949 		pktq = mpls_pktq;
950 		break;
951 #endif
952 
953 	default:
954 		goto noproto;
955 	}
956 
957 	KASSERT(pktq != NULL);
958 	const uint32_t h = rps_hash ? pktq_rps_hash(&rps_hash, m) : 0;
959 	if (__predict_false(!pktq_enqueue(pktq, m, h))) {
960 		m_freem(m);
961 	}
962 	return;
963 
964 drop:
965 	m_freem(m);
966 	if_statinc(ifp, if_iqdrops);
967 	return;
968 noproto:
969 	m_freem(m);
970 	if_statinc(ifp, if_noproto);
971 	return;
972 error:
973 	m_freem(m);
974 	if_statinc(ifp, if_ierrors);
975 	return;
976 }
977 
978 static void
979 ether_bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
980 {
981 	struct ether_vlan_header evl;
982 	struct m_hdr mh, md;
983 
984 	KASSERT(bp != NULL);
985 
986 	if (!vlan_has_tag(m)) {
987 		bpf_mtap3(bp, m, direction);
988 		return;
989 	}
990 
991 	memcpy(&evl, mtod(m, char *), ETHER_HDR_LEN);
992 	evl.evl_proto = evl.evl_encap_proto;
993 	evl.evl_encap_proto = htons(ETHERTYPE_VLAN);
994 	evl.evl_tag = htons(vlan_get_tag(m));
995 
996 	md.mh_flags = 0;
997 	md.mh_data = m->m_data + ETHER_HDR_LEN;
998 	md.mh_len = m->m_len - ETHER_HDR_LEN;
999 	md.mh_next = m->m_next;
1000 
1001 	mh.mh_flags = 0;
1002 	mh.mh_data = (char *)&evl;
1003 	mh.mh_len = sizeof(evl);
1004 	mh.mh_next = (struct mbuf *)&md;
1005 
1006 	bpf_mtap3(bp, (struct mbuf *)&mh, direction);
1007 }
1008 
1009 /*
1010  * Convert Ethernet address to printable (loggable) representation.
1011  */
1012 char *
1013 ether_sprintf(const u_char *ap)
1014 {
1015 	static char etherbuf[3 * ETHER_ADDR_LEN];
1016 	return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
1017 }
1018 
1019 char *
1020 ether_snprintf(char *buf, size_t len, const u_char *ap)
1021 {
1022 	char *cp = buf;
1023 	size_t i;
1024 
1025 	for (i = 0; i < len / 3; i++) {
1026 		*cp++ = hexdigits[*ap >> 4];
1027 		*cp++ = hexdigits[*ap++ & 0xf];
1028 		*cp++ = ':';
1029 	}
1030 	*--cp = '\0';
1031 	return buf;
1032 }
1033 
1034 /*
1035  * Perform common duties while attaching to interface list
1036  */
1037 void
1038 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
1039 {
1040 	struct ethercom *ec = (struct ethercom *)ifp;
1041 	char xnamebuf[HOOKNAMSIZ];
1042 
1043 	if (lla != NULL && ETHER_IS_MULTICAST(lla))
1044 		aprint_error("The multicast bit is set in the MAC address. "
1045 			"It's wrong.\n");
1046 
1047 	ifp->if_type = IFT_ETHER;
1048 	ifp->if_hdrlen = ETHER_HDR_LEN;
1049 	ifp->if_dlt = DLT_EN10MB;
1050 	ifp->if_mtu = ETHERMTU;
1051 	ifp->if_output = ether_output;
1052 	ifp->_if_input = ether_input;
1053 	if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
1054 		ifp->if_bpf_mtap = ether_bpf_mtap;
1055 	if (ifp->if_baudrate == 0)
1056 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
1057 
1058 	if (lla != NULL)
1059 		if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
1060 
1061 	LIST_INIT(&ec->ec_multiaddrs);
1062 	SIMPLEQ_INIT(&ec->ec_vids);
1063 	ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1064 	ec->ec_flags = 0;
1065 	ifp->if_broadcastaddr = etherbroadcastaddr;
1066 	bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1067 	snprintf(xnamebuf, sizeof(xnamebuf),
1068 	    "%s-ether_ifdetachhooks", ifp->if_xname);
1069 	ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf);
1070 #ifdef MBUFTRACE
1071 	mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1072 	mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1073 	MOWNER_ATTACH(&ec->ec_tx_mowner);
1074 	MOWNER_ATTACH(&ec->ec_rx_mowner);
1075 	ifp->if_mowner = &ec->ec_tx_mowner;
1076 #endif
1077 }
1078 
1079 void
1080 ether_ifdetach(struct ifnet *ifp)
1081 {
1082 	struct ethercom *ec = (void *) ifp;
1083 	struct ether_multi *enm;
1084 
1085 	IFNET_ASSERT_UNLOCKED(ifp);
1086 	/*
1087 	 * Prevent further calls to ioctl (for example turning off
1088 	 * promiscuous mode from the bridge code), which eventually can
1089 	 * call if_init() which can cause panics because the interface
1090 	 * is in the process of being detached. Return device not configured
1091 	 * instead.
1092 	 */
1093 	ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1094 	    enxio);
1095 
1096 	simplehook_dohooks(ec->ec_ifdetach_hooks);
1097 	KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks));
1098 	simplehook_destroy(ec->ec_ifdetach_hooks);
1099 
1100 	bpf_detach(ifp);
1101 
1102 	ETHER_LOCK(ec);
1103 	KASSERT(ec->ec_nvlans == 0);
1104 	while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1105 		LIST_REMOVE(enm, enm_list);
1106 		kmem_free(enm, sizeof(*enm));
1107 		ec->ec_multicnt--;
1108 	}
1109 	ETHER_UNLOCK(ec);
1110 
1111 	mutex_obj_free(ec->ec_lock);
1112 	ec->ec_lock = NULL;
1113 
1114 	ifp->if_mowner = NULL;
1115 	MOWNER_DETACH(&ec->ec_rx_mowner);
1116 	MOWNER_DETACH(&ec->ec_tx_mowner);
1117 }
1118 
1119 void *
1120 ether_ifdetachhook_establish(struct ifnet *ifp,
1121     void (*fn)(void *), void *arg)
1122 {
1123 	struct ethercom *ec;
1124 	khook_t *hk;
1125 
1126 	if (ifp->if_type != IFT_ETHER)
1127 		return NULL;
1128 
1129 	ec = (struct ethercom *)ifp;
1130 	hk = simplehook_establish(ec->ec_ifdetach_hooks,
1131 	    fn, arg);
1132 
1133 	return (void *)hk;
1134 }
1135 
1136 void
1137 ether_ifdetachhook_disestablish(struct ifnet *ifp,
1138     void *vhook, kmutex_t *lock)
1139 {
1140 	struct ethercom *ec;
1141 
1142 	if (vhook == NULL)
1143 		return;
1144 
1145 	ec = (struct ethercom *)ifp;
1146 	simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock);
1147 }
1148 
1149 #if 0
1150 /*
1151  * This is for reference.  We have a table-driven version
1152  * of the little-endian crc32 generator, which is faster
1153  * than the double-loop.
1154  */
1155 uint32_t
1156 ether_crc32_le(const uint8_t *buf, size_t len)
1157 {
1158 	uint32_t c, crc, carry;
1159 	size_t i, j;
1160 
1161 	crc = 0xffffffffU;	/* initial value */
1162 
1163 	for (i = 0; i < len; i++) {
1164 		c = buf[i];
1165 		for (j = 0; j < 8; j++) {
1166 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1167 			crc >>= 1;
1168 			c >>= 1;
1169 			if (carry)
1170 				crc = (crc ^ ETHER_CRC_POLY_LE);
1171 		}
1172 	}
1173 
1174 	return (crc);
1175 }
1176 #else
1177 uint32_t
1178 ether_crc32_le(const uint8_t *buf, size_t len)
1179 {
1180 	static const uint32_t crctab[] = {
1181 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1182 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1183 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1184 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1185 	};
1186 	uint32_t crc;
1187 	size_t i;
1188 
1189 	crc = 0xffffffffU;	/* initial value */
1190 
1191 	for (i = 0; i < len; i++) {
1192 		crc ^= buf[i];
1193 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1194 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1195 	}
1196 
1197 	return (crc);
1198 }
1199 #endif
1200 
1201 uint32_t
1202 ether_crc32_be(const uint8_t *buf, size_t len)
1203 {
1204 	uint32_t c, crc, carry;
1205 	size_t i, j;
1206 
1207 	crc = 0xffffffffU;	/* initial value */
1208 
1209 	for (i = 0; i < len; i++) {
1210 		c = buf[i];
1211 		for (j = 0; j < 8; j++) {
1212 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1213 			crc <<= 1;
1214 			c >>= 1;
1215 			if (carry)
1216 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1217 		}
1218 	}
1219 
1220 	return (crc);
1221 }
1222 
1223 #ifdef INET
1224 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1225     { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1226 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1227     { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1228 #endif
1229 #ifdef INET6
1230 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1231     { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1232 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1233     { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1234 #endif
1235 
1236 /*
1237  * ether_aton implementation, not using a static buffer.
1238  */
1239 int
1240 ether_aton_r(u_char *dest, size_t len, const char *str)
1241 {
1242 	const u_char *cp = (const void *)str;
1243 	u_char *ep;
1244 
1245 #define atox(c)	(((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1246 
1247 	if (len < ETHER_ADDR_LEN)
1248 		return ENOSPC;
1249 
1250 	ep = dest + ETHER_ADDR_LEN;
1251 
1252 	while (*cp) {
1253 		if (!isxdigit(*cp))
1254 			return EINVAL;
1255 
1256 		*dest = atox(*cp);
1257 		cp++;
1258 		if (isxdigit(*cp)) {
1259 			*dest = (*dest << 4) | atox(*cp);
1260 			cp++;
1261 		}
1262 		dest++;
1263 
1264 		if (dest == ep)
1265 			return (*cp == '\0') ? 0 : ENAMETOOLONG;
1266 
1267 		switch (*cp) {
1268 		case ':':
1269 		case '-':
1270 		case '.':
1271 			cp++;
1272 			break;
1273 		}
1274 	}
1275 	return ENOBUFS;
1276 }
1277 
1278 /*
1279  * Convert a sockaddr into an Ethernet address or range of Ethernet
1280  * addresses.
1281  */
1282 int
1283 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1284     uint8_t addrhi[ETHER_ADDR_LEN])
1285 {
1286 #ifdef INET
1287 	const struct sockaddr_in *sin;
1288 #endif
1289 #ifdef INET6
1290 	const struct sockaddr_in6 *sin6;
1291 #endif
1292 
1293 	switch (sa->sa_family) {
1294 
1295 	case AF_UNSPEC:
1296 		memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1297 		memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1298 		break;
1299 
1300 #ifdef INET
1301 	case AF_INET:
1302 		sin = satocsin(sa);
1303 		if (sin->sin_addr.s_addr == INADDR_ANY) {
1304 			/*
1305 			 * An IP address of INADDR_ANY means listen to
1306 			 * or stop listening to all of the Ethernet
1307 			 * multicast addresses used for IP.
1308 			 * (This is for the sake of IP multicast routers.)
1309 			 */
1310 			memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1311 			memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1312 		} else {
1313 			ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1314 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1315 		}
1316 		break;
1317 #endif
1318 #ifdef INET6
1319 	case AF_INET6:
1320 		sin6 = satocsin6(sa);
1321 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1322 			/*
1323 			 * An IP6 address of 0 means listen to or stop
1324 			 * listening to all of the Ethernet multicast
1325 			 * address used for IP6.
1326 			 * (This is used for multicast routers.)
1327 			 */
1328 			memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1329 			memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1330 		} else {
1331 			ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1332 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1333 		}
1334 		break;
1335 #endif
1336 
1337 	default:
1338 		return EAFNOSUPPORT;
1339 	}
1340 	return 0;
1341 }
1342 
1343 /*
1344  * Add an Ethernet multicast address or range of addresses to the list for a
1345  * given interface.
1346  */
1347 int
1348 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1349 {
1350 	struct ether_multi *enm, *_enm;
1351 	u_char addrlo[ETHER_ADDR_LEN];
1352 	u_char addrhi[ETHER_ADDR_LEN];
1353 	int error = 0;
1354 
1355 	/* Allocate out of lock */
1356 	enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1357 
1358 	ETHER_LOCK(ec);
1359 	error = ether_multiaddr(sa, addrlo, addrhi);
1360 	if (error != 0)
1361 		goto out;
1362 
1363 	/*
1364 	 * Verify that we have valid Ethernet multicast addresses.
1365 	 */
1366 	if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1367 		error = EINVAL;
1368 		goto out;
1369 	}
1370 
1371 	/*
1372 	 * See if the address range is already in the list.
1373 	 */
1374 	_enm = ether_lookup_multi(addrlo, addrhi, ec);
1375 	if (_enm != NULL) {
1376 		/*
1377 		 * Found it; just increment the reference count.
1378 		 */
1379 		++_enm->enm_refcount;
1380 		error = 0;
1381 		goto out;
1382 	}
1383 
1384 	/*
1385 	 * Link a new multicast record into the interface's multicast list.
1386 	 */
1387 	memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1388 	memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1389 	enm->enm_refcount = 1;
1390 	LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1391 	ec->ec_multicnt++;
1392 
1393 	/*
1394 	 * Return ENETRESET to inform the driver that the list has changed
1395 	 * and its reception filter should be adjusted accordingly.
1396 	 */
1397 	error = ENETRESET;
1398 	enm = NULL;
1399 
1400 out:
1401 	ETHER_UNLOCK(ec);
1402 	if (enm != NULL)
1403 		kmem_free(enm, sizeof(*enm));
1404 	return error;
1405 }
1406 
1407 /*
1408  * Delete a multicast address record.
1409  */
1410 int
1411 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1412 {
1413 	struct ether_multi *enm;
1414 	u_char addrlo[ETHER_ADDR_LEN];
1415 	u_char addrhi[ETHER_ADDR_LEN];
1416 	int error;
1417 
1418 	ETHER_LOCK(ec);
1419 	error = ether_multiaddr(sa, addrlo, addrhi);
1420 	if (error != 0)
1421 		goto error;
1422 
1423 	/*
1424 	 * Look up the address in our list.
1425 	 */
1426 	enm = ether_lookup_multi(addrlo, addrhi, ec);
1427 	if (enm == NULL) {
1428 		error = ENXIO;
1429 		goto error;
1430 	}
1431 	if (--enm->enm_refcount != 0) {
1432 		/*
1433 		 * Still some claims to this record.
1434 		 */
1435 		error = 0;
1436 		goto error;
1437 	}
1438 
1439 	/*
1440 	 * No remaining claims to this record; unlink and free it.
1441 	 */
1442 	LIST_REMOVE(enm, enm_list);
1443 	ec->ec_multicnt--;
1444 	ETHER_UNLOCK(ec);
1445 	kmem_free(enm, sizeof(*enm));
1446 
1447 	/*
1448 	 * Return ENETRESET to inform the driver that the list has changed
1449 	 * and its reception filter should be adjusted accordingly.
1450 	 */
1451 	return ENETRESET;
1452 
1453 error:
1454 	ETHER_UNLOCK(ec);
1455 	return error;
1456 }
1457 
1458 void
1459 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1460 {
1461 	ec->ec_ifflags_cb = cb;
1462 }
1463 
1464 void
1465 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1466 {
1467 
1468 	ec->ec_vlan_cb = cb;
1469 }
1470 
1471 static int
1472 ether_ioctl_reinit(struct ethercom *ec)
1473 {
1474 	struct ifnet *ifp = &ec->ec_if;
1475 	int error;
1476 
1477 	KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
1478 
1479 	switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1480 	case IFF_RUNNING:
1481 		/*
1482 		 * If interface is marked down and it is running,
1483 		 * then stop and disable it.
1484 		 */
1485 		if_stop(ifp, 1);
1486 		break;
1487 	case IFF_UP:
1488 		/*
1489 		 * If interface is marked up and it is stopped, then
1490 		 * start it.
1491 		 */
1492 		return if_init(ifp);
1493 	case IFF_UP | IFF_RUNNING:
1494 		error = 0;
1495 		if (ec->ec_ifflags_cb != NULL) {
1496 			error = (*ec->ec_ifflags_cb)(ec);
1497 			if (error == ENETRESET) {
1498 				/*
1499 				 * Reset the interface to pick up
1500 				 * changes in any other flags that
1501 				 * affect the hardware state.
1502 				 */
1503 				return if_init(ifp);
1504 			}
1505 		} else
1506 			error = if_init(ifp);
1507 		return error;
1508 	case 0:
1509 		break;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Common ioctls for Ethernet interfaces.  Note, we must be
1517  * called at splnet().
1518  */
1519 int
1520 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1521 {
1522 	struct ethercom *ec = (void *)ifp;
1523 	struct eccapreq *eccr;
1524 	struct ifreq *ifr = (struct ifreq *)data;
1525 	struct if_laddrreq *iflr = data;
1526 	const struct sockaddr_dl *sdl;
1527 	static const uint8_t zero[ETHER_ADDR_LEN];
1528 	int error;
1529 
1530 	switch (cmd) {
1531 	case SIOCINITIFADDR:
1532 	    {
1533 		struct ifaddr *ifa = (struct ifaddr *)data;
1534 		if (ifa->ifa_addr->sa_family != AF_LINK
1535 		    && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1536 		       (IFF_UP | IFF_RUNNING)) {
1537 			ifp->if_flags |= IFF_UP;
1538 			if ((error = if_init(ifp)) != 0)
1539 				return error;
1540 		}
1541 #ifdef INET
1542 		if (ifa->ifa_addr->sa_family == AF_INET)
1543 			arp_ifinit(ifp, ifa);
1544 #endif
1545 		return 0;
1546 	    }
1547 
1548 	case SIOCSIFMTU:
1549 	    {
1550 		int maxmtu;
1551 
1552 		if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1553 			maxmtu = ETHERMTU_JUMBO;
1554 		else
1555 			maxmtu = ETHERMTU;
1556 
1557 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1558 			return EINVAL;
1559 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1560 			return error;
1561 		else if (ifp->if_flags & IFF_UP) {
1562 			/* Make sure the device notices the MTU change. */
1563 			return if_init(ifp);
1564 		} else
1565 			return 0;
1566 	    }
1567 
1568 	case SIOCSIFFLAGS:
1569 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1570 			return error;
1571 		return ether_ioctl_reinit(ec);
1572 	case SIOCGIFFLAGS:
1573 		error = ifioctl_common(ifp, cmd, data);
1574 		if (error == 0) {
1575 			/* Set IFF_ALLMULTI for backcompat */
1576 			ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1577 			    IFF_ALLMULTI : 0;
1578 		}
1579 		return error;
1580 	case SIOCGETHERCAP:
1581 		eccr = (struct eccapreq *)data;
1582 		eccr->eccr_capabilities = ec->ec_capabilities;
1583 		eccr->eccr_capenable = ec->ec_capenable;
1584 		return 0;
1585 	case SIOCSETHERCAP:
1586 		eccr = (struct eccapreq *)data;
1587 		if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1588 			return EINVAL;
1589 		if (eccr->eccr_capenable == ec->ec_capenable)
1590 			return 0;
1591 #if 0 /* notyet */
1592 		ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1593 		    | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1594 #else
1595 		ec->ec_capenable = eccr->eccr_capenable;
1596 #endif
1597 		return ether_ioctl_reinit(ec);
1598 	case SIOCADDMULTI:
1599 		return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1600 	case SIOCDELMULTI:
1601 		return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1602 	case SIOCSIFMEDIA:
1603 	case SIOCGIFMEDIA:
1604 		if (ec->ec_mii != NULL)
1605 			return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1606 			    cmd);
1607 		else if (ec->ec_ifmedia != NULL)
1608 			return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1609 		else
1610 			return ENOTTY;
1611 		break;
1612 	case SIOCALIFADDR:
1613 		sdl = satocsdl(sstocsa(&iflr->addr));
1614 		if (sdl->sdl_family != AF_LINK)
1615 			;
1616 		else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1617 			return EINVAL;
1618 		else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1619 			return EINVAL;
1620 		/*FALLTHROUGH*/
1621 	default:
1622 		return ifioctl_common(ifp, cmd, data);
1623 	}
1624 	return 0;
1625 }
1626 
1627 /*
1628  * Enable/disable passing VLAN packets if the parent interface supports it.
1629  * Return:
1630  * 	 0: Ok
1631  *	-1: Parent interface does not support vlans
1632  *	>0: Error
1633  */
1634 int
1635 ether_enable_vlan_mtu(struct ifnet *ifp)
1636 {
1637 	int error;
1638 	struct ethercom *ec = (void *)ifp;
1639 
1640 	/* Parent does not support VLAN's */
1641 	if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1642 		return -1;
1643 
1644 	/*
1645 	 * Parent supports the VLAN_MTU capability,
1646 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1647 	 * enable it.
1648 	 */
1649 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1650 
1651 	/* Interface is down, defer for later */
1652 	if ((ifp->if_flags & IFF_UP) == 0)
1653 		return 0;
1654 
1655 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1656 		return 0;
1657 
1658 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1659 	return error;
1660 }
1661 
1662 int
1663 ether_disable_vlan_mtu(struct ifnet *ifp)
1664 {
1665 	int error;
1666 	struct ethercom *ec = (void *)ifp;
1667 
1668 	/* We still have VLAN's, defer for later */
1669 	if (ec->ec_nvlans != 0)
1670 		return 0;
1671 
1672 	/* Parent does not support VLAB's, nothing to do. */
1673 	if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1674 		return -1;
1675 
1676 	/*
1677 	 * Disable Tx/Rx of VLAN-sized frames.
1678 	 */
1679 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1680 
1681 	/* Interface is down, defer for later */
1682 	if ((ifp->if_flags & IFF_UP) == 0)
1683 		return 0;
1684 
1685 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1686 		return 0;
1687 
1688 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1689 	return error;
1690 }
1691 
1692 /*
1693  * Add and delete VLAN TAG
1694  */
1695 int
1696 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status)
1697 {
1698 	struct ethercom *ec = (void *)ifp;
1699 	struct vlanid_list *vidp;
1700 	bool vlanmtu_enabled;
1701 	uint16_t vid = EVL_VLANOFTAG(vtag);
1702 	int error;
1703 
1704 	vlanmtu_enabled = false;
1705 
1706 	/* Add a vid to the list */
1707 	vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP);
1708 	vidp->vid = vid;
1709 
1710 	ETHER_LOCK(ec);
1711 	ec->ec_nvlans++;
1712 	SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list);
1713 	ETHER_UNLOCK(ec);
1714 
1715 	if (ec->ec_nvlans == 1) {
1716 		IFNET_LOCK(ifp);
1717 		error = ether_enable_vlan_mtu(ifp);
1718 		IFNET_UNLOCK(ifp);
1719 
1720 		if (error == 0) {
1721 			vlanmtu_enabled = true;
1722 		} else if (error != -1) {
1723 			goto fail;
1724 		}
1725 	}
1726 
1727 	if (ec->ec_vlan_cb != NULL) {
1728 		error = (*ec->ec_vlan_cb)(ec, vid, true);
1729 		if (error != 0)
1730 			goto fail;
1731 	}
1732 
1733 	if (vlanmtu_status != NULL)
1734 		*vlanmtu_status = vlanmtu_enabled;
1735 
1736 	return 0;
1737 fail:
1738 	ETHER_LOCK(ec);
1739 	ec->ec_nvlans--;
1740 	SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list);
1741 	ETHER_UNLOCK(ec);
1742 
1743 	if (vlanmtu_enabled) {
1744 		IFNET_LOCK(ifp);
1745 		(void)ether_disable_vlan_mtu(ifp);
1746 		IFNET_UNLOCK(ifp);
1747 	}
1748 
1749 	kmem_free(vidp, sizeof(*vidp));
1750 
1751 	return error;
1752 }
1753 
1754 int
1755 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag)
1756 {
1757 	struct ethercom *ec = (void *)ifp;
1758 	struct vlanid_list *vidp;
1759 	uint16_t vid = EVL_VLANOFTAG(vtag);
1760 
1761 	ETHER_LOCK(ec);
1762 	SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) {
1763 		if (vidp->vid == vid) {
1764 			SIMPLEQ_REMOVE(&ec->ec_vids, vidp,
1765 			    vlanid_list, vid_list);
1766 			ec->ec_nvlans--;
1767 			break;
1768 		}
1769 	}
1770 	ETHER_UNLOCK(ec);
1771 
1772 	if (vidp == NULL)
1773 		return ENOENT;
1774 
1775 	if (ec->ec_vlan_cb != NULL) {
1776 		(void)(*ec->ec_vlan_cb)(ec, vidp->vid, false);
1777 	}
1778 
1779 	if (ec->ec_nvlans == 0) {
1780 		IFNET_LOCK(ifp);
1781 		(void)ether_disable_vlan_mtu(ifp);
1782 		IFNET_UNLOCK(ifp);
1783 	}
1784 
1785 	kmem_free(vidp, sizeof(*vidp));
1786 
1787 	return 0;
1788 }
1789 
1790 int
1791 ether_inject_vlantag(struct mbuf **mp, uint16_t etype, uint16_t tag)
1792 {
1793 	static const size_t min_data_len =
1794 	    ETHER_MIN_LEN - ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1795 	/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
1796 	static const char vlan_zero_pad_buff[ETHER_MIN_LEN] = { 0 };
1797 
1798 	struct ether_vlan_header *evl;
1799 	struct mbuf *m = *mp;
1800 	int error;
1801 
1802 	error = 0;
1803 
1804 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT);
1805 	if (m == NULL) {
1806 		error = ENOBUFS;
1807 		goto out;
1808 	}
1809 
1810 	if (m->m_len < sizeof(*evl)) {
1811 		m = m_pullup(m, sizeof(*evl));
1812 		if (m == NULL) {
1813 			error = ENOBUFS;
1814 			goto out;
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * Transform the Ethernet header into an
1820 	 * Ethernet header with 802.1Q encapsulation.
1821 	 */
1822 	memmove(mtod(m, void *),
1823 	    mtod(m, char *) + ETHER_VLAN_ENCAP_LEN,
1824 	    sizeof(struct ether_header));
1825 	evl = mtod(m, struct ether_vlan_header *);
1826 	evl->evl_proto = evl->evl_encap_proto;
1827 	evl->evl_encap_proto = htons(etype);
1828 	evl->evl_tag = htons(tag);
1829 
1830 	/*
1831 	 * To cater for VLAN-aware layer 2 ethernet
1832 	 * switches which may need to strip the tag
1833 	 * before forwarding the packet, make sure
1834 	 * the packet+tag is at least 68 bytes long.
1835 	 * This is necessary because our parent will
1836 	 * only pad to 64 bytes (ETHER_MIN_LEN) and
1837 	 * some switches will not pad by themselves
1838 	 * after deleting a tag.
1839 	 */
1840 	if (m->m_pkthdr.len < min_data_len) {
1841 		m_copyback(m, m->m_pkthdr.len,
1842 		    min_data_len - m->m_pkthdr.len,
1843 		    vlan_zero_pad_buff);
1844 	}
1845 
1846 	m->m_flags &= ~M_VLANTAG;
1847 
1848 out:
1849 	*mp = m;
1850 	return error;
1851 }
1852 
1853 struct mbuf *
1854 ether_strip_vlantag(struct mbuf *m)
1855 {
1856 	struct ether_vlan_header *evl;
1857 
1858 	if (m->m_len < sizeof(*evl) &&
1859 	    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1860 		return NULL;
1861 	}
1862 
1863 	if (m_makewritable(&m, 0, sizeof(*evl), M_DONTWAIT)) {
1864 		m_freem(m);
1865 		return NULL;
1866 	}
1867 
1868 	evl = mtod(m, struct ether_vlan_header *);
1869 	KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1870 
1871 	vlan_set_tag(m, ntohs(evl->evl_tag));
1872 
1873 	/*
1874 	 * Restore the original ethertype.  We'll remove
1875 	 * the encapsulation after we've found the vlan
1876 	 * interface corresponding to the tag.
1877 	 */
1878 	evl->evl_encap_proto = evl->evl_proto;
1879 
1880 	/*
1881 	 * Remove the encapsulation header and append tag.
1882 	 * The original header has already been fixed up above.
1883 	 */
1884 	vlan_set_tag(m, ntohs(evl->evl_tag));
1885 	memmove((char *)evl + ETHER_VLAN_ENCAP_LEN, evl,
1886 	    offsetof(struct ether_vlan_header, evl_encap_proto));
1887 	m_adj(m, ETHER_VLAN_ENCAP_LEN);
1888 
1889 	return m;
1890 }
1891 
1892 static int
1893 ether_multicast_sysctl(SYSCTLFN_ARGS)
1894 {
1895 	struct ether_multi *enm;
1896 	struct ifnet *ifp;
1897 	struct ethercom *ec;
1898 	int error = 0;
1899 	size_t written;
1900 	struct psref psref;
1901 	int bound;
1902 	unsigned int multicnt;
1903 	struct ether_multi_sysctl *addrs;
1904 	int i;
1905 
1906 	if (namelen != 1)
1907 		return EINVAL;
1908 
1909 	bound = curlwp_bind();
1910 	ifp = if_get_byindex(name[0], &psref);
1911 	if (ifp == NULL) {
1912 		error = ENODEV;
1913 		goto out;
1914 	}
1915 	if (ifp->if_type != IFT_ETHER) {
1916 		if_put(ifp, &psref);
1917 		*oldlenp = 0;
1918 		goto out;
1919 	}
1920 	ec = (struct ethercom *)ifp;
1921 
1922 	if (oldp == NULL) {
1923 		if_put(ifp, &psref);
1924 		*oldlenp = ec->ec_multicnt * sizeof(*addrs);
1925 		goto out;
1926 	}
1927 
1928 	/*
1929 	 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1930 	 * is sleepable, while holding it. Copy data to a local buffer first
1931 	 * with the lock taken and then call sysctl_copyout without holding it.
1932 	 */
1933 retry:
1934 	multicnt = ec->ec_multicnt;
1935 
1936 	if (multicnt == 0) {
1937 		if_put(ifp, &psref);
1938 		*oldlenp = 0;
1939 		goto out;
1940 	}
1941 
1942 	addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1943 
1944 	ETHER_LOCK(ec);
1945 	if (multicnt != ec->ec_multicnt) {
1946 		/* The number of multicast addresses has changed */
1947 		ETHER_UNLOCK(ec);
1948 		kmem_free(addrs, sizeof(*addrs) * multicnt);
1949 		goto retry;
1950 	}
1951 
1952 	i = 0;
1953 	LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1954 		struct ether_multi_sysctl *addr = &addrs[i];
1955 		addr->enm_refcount = enm->enm_refcount;
1956 		memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1957 		memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1958 		i++;
1959 	}
1960 	ETHER_UNLOCK(ec);
1961 
1962 	error = 0;
1963 	written = 0;
1964 	for (i = 0; i < multicnt; i++) {
1965 		struct ether_multi_sysctl *addr = &addrs[i];
1966 
1967 		if (written + sizeof(*addr) > *oldlenp)
1968 			break;
1969 		error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1970 		if (error)
1971 			break;
1972 		written += sizeof(*addr);
1973 		oldp = (char *)oldp + sizeof(*addr);
1974 	}
1975 	kmem_free(addrs, sizeof(*addrs) * multicnt);
1976 
1977 	if_put(ifp, &psref);
1978 
1979 	*oldlenp = written;
1980 out:
1981 	curlwp_bindx(bound);
1982 	return error;
1983 }
1984 
1985 static void
1986 ether_sysctl_setup(struct sysctllog **clog)
1987 {
1988 	const struct sysctlnode *rnode = NULL;
1989 
1990 	sysctl_createv(clog, 0, NULL, &rnode,
1991 		       CTLFLAG_PERMANENT,
1992 		       CTLTYPE_NODE, "ether",
1993 		       SYSCTL_DESCR("Ethernet-specific information"),
1994 		       NULL, 0, NULL, 0,
1995 		       CTL_NET, CTL_CREATE, CTL_EOL);
1996 
1997 	sysctl_createv(clog, 0, &rnode, NULL,
1998 		       CTLFLAG_PERMANENT,
1999 		       CTLTYPE_NODE, "multicast",
2000 		       SYSCTL_DESCR("multicast addresses"),
2001 		       ether_multicast_sysctl, 0, NULL, 0,
2002 		       CTL_CREATE, CTL_EOL);
2003 
2004 	sysctl_createv(clog, 0, &rnode, NULL,
2005 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2006 		       CTLTYPE_STRING, "rps_hash",
2007 		       SYSCTL_DESCR("Interface rps hash function control"),
2008 		       sysctl_pktq_rps_hash_handler, 0, (void *)&ether_pktq_rps_hash_p,
2009 		       PKTQ_RPS_HASH_NAME_LEN,
2010 		       CTL_CREATE, CTL_EOL);
2011 }
2012 
2013 void
2014 etherinit(void)
2015 {
2016 
2017 #ifdef DIAGNOSTIC
2018 	mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
2019 #endif
2020 	ether_pktq_rps_hash_p = pktq_rps_hash_default;
2021 	ether_sysctl_setup(NULL);
2022 }
2023