1 /* $NetBSD: if_ethersubr.c,v 1.293 2021/05/17 04:07:43 yamaguchi Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.293 2021/05/17 04:07:43 yamaguchi Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 #include "lagg.h" 82 83 #include <sys/sysctl.h> 84 #include <sys/mbuf.h> 85 #include <sys/mutex.h> 86 #include <sys/ioctl.h> 87 #include <sys/errno.h> 88 #include <sys/device.h> 89 #include <sys/entropy.h> 90 #include <sys/rndsource.h> 91 #include <sys/cpu.h> 92 #include <sys/kmem.h> 93 94 #include <net/if.h> 95 #include <net/netisr.h> 96 #include <net/route.h> 97 #include <net/if_llc.h> 98 #include <net/if_dl.h> 99 #include <net/if_types.h> 100 #include <net/pktqueue.h> 101 102 #include <net/if_media.h> 103 #include <dev/mii/mii.h> 104 #include <dev/mii/miivar.h> 105 106 #if NARP == 0 107 /* 108 * XXX there should really be a way to issue this warning from within config(8) 109 */ 110 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 111 #endif 112 113 #include <net/bpf.h> 114 115 #include <net/if_ether.h> 116 #include <net/if_vlanvar.h> 117 118 #if NPPPOE > 0 119 #include <net/if_pppoe.h> 120 #endif 121 122 #if NAGR > 0 123 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */ 124 #include <net/agr/ieee8023ad.h> 125 #include <net/agr/if_agrvar.h> 126 #endif 127 128 #include <net/lagg/if_laggvar.h> 129 130 #if NBRIDGE > 0 131 #include <net/if_bridgevar.h> 132 #endif 133 134 #include <netinet/in.h> 135 #ifdef INET 136 #include <netinet/in_var.h> 137 #endif 138 #include <netinet/if_inarp.h> 139 140 #ifdef INET6 141 #ifndef INET 142 #include <netinet/in.h> 143 #endif 144 #include <netinet6/in6_var.h> 145 #include <netinet6/nd6.h> 146 #endif 147 148 #include "carp.h" 149 #if NCARP > 0 150 #include <netinet/ip_carp.h> 151 #endif 152 153 #ifdef NETATALK 154 #include <netatalk/at.h> 155 #include <netatalk/at_var.h> 156 #include <netatalk/at_extern.h> 157 158 #define llc_snap_org_code llc_un.type_snap.org_code 159 #define llc_snap_ether_type llc_un.type_snap.ether_type 160 161 extern u_char at_org_code[3]; 162 extern u_char aarp_org_code[3]; 163 #endif /* NETATALK */ 164 165 #ifdef MPLS 166 #include <netmpls/mpls.h> 167 #include <netmpls/mpls_var.h> 168 #endif 169 170 CTASSERT(sizeof(struct ether_addr) == 6); 171 CTASSERT(sizeof(struct ether_header) == 14); 172 173 #ifdef DIAGNOSTIC 174 static struct timeval bigpktppslim_last; 175 static int bigpktppslim = 2; /* XXX */ 176 static int bigpktpps_count; 177 static kmutex_t bigpktpps_lock __cacheline_aligned; 178 #endif 179 180 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 181 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 182 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 183 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 184 #define senderr(e) { error = (e); goto bad;} 185 186 /* if_lagg(4) support */ 187 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *); 188 189 static int ether_output(struct ifnet *, struct mbuf *, 190 const struct sockaddr *, const struct rtentry *); 191 192 /* 193 * Ethernet output routine. 194 * Encapsulate a packet of type family for the local net. 195 * Assumes that ifp is actually pointer to ethercom structure. 196 */ 197 static int 198 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 199 const struct sockaddr * const dst, const struct rtentry *rt) 200 { 201 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 202 uint16_t etype = 0; 203 int error = 0, hdrcmplt = 0; 204 struct mbuf *m = m0; 205 struct mbuf *mcopy = NULL; 206 struct ether_header *eh; 207 struct ifnet *ifp = ifp0; 208 #ifdef INET 209 struct arphdr *ah; 210 #endif 211 #ifdef NETATALK 212 struct at_ifaddr *aa; 213 #endif 214 215 #ifdef MBUFTRACE 216 m_claimm(m, ifp->if_mowner); 217 #endif 218 219 #if NCARP > 0 220 if (ifp->if_type == IFT_CARP) { 221 struct ifaddr *ifa; 222 int s = pserialize_read_enter(); 223 224 /* loop back if this is going to the carp interface */ 225 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 226 (ifa = ifa_ifwithaddr(dst)) != NULL) { 227 if (ifa->ifa_ifp == ifp0) { 228 pserialize_read_exit(s); 229 return looutput(ifp0, m, dst, rt); 230 } 231 } 232 pserialize_read_exit(s); 233 234 ifp = ifp->if_carpdev; 235 /* ac = (struct arpcom *)ifp; */ 236 237 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 238 (IFF_UP | IFF_RUNNING)) 239 senderr(ENETDOWN); 240 } 241 #endif 242 243 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 244 senderr(ENETDOWN); 245 246 switch (dst->sa_family) { 247 248 #ifdef INET 249 case AF_INET: 250 if (m->m_flags & M_BCAST) { 251 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 252 } else if (m->m_flags & M_MCAST) { 253 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 254 } else { 255 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 256 if (error) 257 return (error == EWOULDBLOCK) ? 0 : error; 258 } 259 /* If broadcasting on a simplex interface, loopback a copy */ 260 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 261 mcopy = m_copypacket(m, M_DONTWAIT); 262 etype = htons(ETHERTYPE_IP); 263 break; 264 265 case AF_ARP: 266 ah = mtod(m, struct arphdr *); 267 if (m->m_flags & M_BCAST) { 268 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 269 } else { 270 void *tha = ar_tha(ah); 271 272 if (tha == NULL) { 273 /* fake with ARPHRD_IEEE1394 */ 274 m_freem(m); 275 return 0; 276 } 277 memcpy(edst, tha, sizeof(edst)); 278 } 279 280 ah->ar_hrd = htons(ARPHRD_ETHER); 281 282 switch (ntohs(ah->ar_op)) { 283 case ARPOP_REVREQUEST: 284 case ARPOP_REVREPLY: 285 etype = htons(ETHERTYPE_REVARP); 286 break; 287 288 case ARPOP_REQUEST: 289 case ARPOP_REPLY: 290 default: 291 etype = htons(ETHERTYPE_ARP); 292 } 293 break; 294 #endif 295 296 #ifdef INET6 297 case AF_INET6: 298 if (m->m_flags & M_BCAST) { 299 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 300 } else if (m->m_flags & M_MCAST) { 301 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 302 edst); 303 } else { 304 error = nd6_resolve(ifp0, rt, m, dst, edst, 305 sizeof(edst)); 306 if (error) 307 return (error == EWOULDBLOCK) ? 0 : error; 308 } 309 etype = htons(ETHERTYPE_IPV6); 310 break; 311 #endif 312 313 #ifdef NETATALK 314 case AF_APPLETALK: { 315 struct ifaddr *ifa; 316 int s; 317 318 KERNEL_LOCK(1, NULL); 319 320 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 321 KERNEL_UNLOCK_ONE(NULL); 322 return 0; 323 } 324 325 /* 326 * ifaddr is the first thing in at_ifaddr 327 */ 328 s = pserialize_read_enter(); 329 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 330 if (ifa == NULL) { 331 pserialize_read_exit(s); 332 KERNEL_UNLOCK_ONE(NULL); 333 senderr(EADDRNOTAVAIL); 334 } 335 aa = (struct at_ifaddr *)ifa; 336 337 /* 338 * In the phase 2 case, we need to prepend an mbuf for the 339 * llc header. 340 */ 341 if (aa->aa_flags & AFA_PHASE2) { 342 struct llc llc; 343 344 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 345 if (m == NULL) { 346 pserialize_read_exit(s); 347 KERNEL_UNLOCK_ONE(NULL); 348 senderr(ENOBUFS); 349 } 350 351 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 352 llc.llc_control = LLC_UI; 353 memcpy(llc.llc_snap_org_code, at_org_code, 354 sizeof(llc.llc_snap_org_code)); 355 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 356 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 357 } else { 358 etype = htons(ETHERTYPE_ATALK); 359 } 360 pserialize_read_exit(s); 361 KERNEL_UNLOCK_ONE(NULL); 362 break; 363 } 364 #endif /* NETATALK */ 365 366 case pseudo_AF_HDRCMPLT: 367 hdrcmplt = 1; 368 memcpy(esrc, 369 ((const struct ether_header *)dst->sa_data)->ether_shost, 370 sizeof(esrc)); 371 /* FALLTHROUGH */ 372 373 case AF_UNSPEC: 374 memcpy(edst, 375 ((const struct ether_header *)dst->sa_data)->ether_dhost, 376 sizeof(edst)); 377 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 378 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 379 break; 380 381 default: 382 printf("%s: can't handle af%d\n", ifp->if_xname, 383 dst->sa_family); 384 senderr(EAFNOSUPPORT); 385 } 386 387 #ifdef MPLS 388 { 389 struct m_tag *mtag; 390 mtag = m_tag_find(m, PACKET_TAG_MPLS); 391 if (mtag != NULL) { 392 /* Having the tag itself indicates it's MPLS */ 393 etype = htons(ETHERTYPE_MPLS); 394 m_tag_delete(m, mtag); 395 } 396 } 397 #endif 398 399 if (mcopy) 400 (void)looutput(ifp, mcopy, dst, rt); 401 402 KASSERT((m->m_flags & M_PKTHDR) != 0); 403 404 /* 405 * If no ether type is set, this must be a 802.2 formatted packet. 406 */ 407 if (etype == 0) 408 etype = htons(m->m_pkthdr.len); 409 410 /* 411 * Add local net header. If no space in first mbuf, allocate another. 412 */ 413 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 414 if (m == NULL) 415 senderr(ENOBUFS); 416 417 eh = mtod(m, struct ether_header *); 418 /* Note: etype is already in network byte order. */ 419 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 420 memcpy(eh->ether_dhost, edst, sizeof(edst)); 421 if (hdrcmplt) { 422 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 423 } else { 424 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 425 sizeof(eh->ether_shost)); 426 } 427 428 #if NCARP > 0 429 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 430 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 431 sizeof(eh->ether_shost)); 432 } 433 #endif 434 435 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 436 return error; 437 if (m == NULL) 438 return 0; 439 440 #if NBRIDGE > 0 441 /* 442 * Bridges require special output handling. 443 */ 444 if (ifp->if_bridge) 445 return bridge_output(ifp, m, NULL, NULL); 446 #endif 447 448 #if NCARP > 0 449 if (ifp != ifp0) 450 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 451 #endif 452 453 #ifdef ALTQ 454 KERNEL_LOCK(1, NULL); 455 /* 456 * If ALTQ is enabled on the parent interface, do 457 * classification; the queueing discipline might not 458 * require classification, but might require the 459 * address family/header pointer in the pktattr. 460 */ 461 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 462 altq_etherclassify(&ifp->if_snd, m); 463 KERNEL_UNLOCK_ONE(NULL); 464 #endif 465 return ifq_enqueue(ifp, m); 466 467 bad: 468 if_statinc(ifp, if_oerrors); 469 if (m) 470 m_freem(m); 471 return error; 472 } 473 474 #ifdef ALTQ 475 /* 476 * This routine is a slight hack to allow a packet to be classified 477 * if the Ethernet headers are present. It will go away when ALTQ's 478 * classification engine understands link headers. 479 * 480 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 481 * is indeed contiguous, then to read the LLC and so on. 482 */ 483 void 484 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 485 { 486 struct ether_header *eh; 487 struct mbuf *mtop = m; 488 uint16_t ether_type; 489 int hlen, af, hdrsize; 490 void *hdr; 491 492 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 493 494 hlen = ETHER_HDR_LEN; 495 eh = mtod(m, struct ether_header *); 496 497 ether_type = htons(eh->ether_type); 498 499 if (ether_type < ETHERMTU) { 500 /* LLC/SNAP */ 501 struct llc *llc = (struct llc *)(eh + 1); 502 hlen += 8; 503 504 if (m->m_len < hlen || 505 llc->llc_dsap != LLC_SNAP_LSAP || 506 llc->llc_ssap != LLC_SNAP_LSAP || 507 llc->llc_control != LLC_UI) { 508 /* Not SNAP. */ 509 goto bad; 510 } 511 512 ether_type = htons(llc->llc_un.type_snap.ether_type); 513 } 514 515 switch (ether_type) { 516 case ETHERTYPE_IP: 517 af = AF_INET; 518 hdrsize = 20; /* sizeof(struct ip) */ 519 break; 520 521 case ETHERTYPE_IPV6: 522 af = AF_INET6; 523 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 524 break; 525 526 default: 527 af = AF_UNSPEC; 528 hdrsize = 0; 529 break; 530 } 531 532 while (m->m_len <= hlen) { 533 hlen -= m->m_len; 534 m = m->m_next; 535 if (m == NULL) 536 goto bad; 537 } 538 539 if (m->m_len < (hlen + hdrsize)) { 540 /* 541 * protocol header not in a single mbuf. 542 * We can't cope with this situation right 543 * now (but it shouldn't ever happen, really, anyhow). 544 */ 545 #ifdef DEBUG 546 printf("altq_etherclassify: headers span multiple mbufs: " 547 "%d < %d\n", m->m_len, (hlen + hdrsize)); 548 #endif 549 goto bad; 550 } 551 552 m->m_data += hlen; 553 m->m_len -= hlen; 554 555 hdr = mtod(m, void *); 556 557 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 558 mtop->m_pkthdr.pattr_class = 559 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 560 } 561 mtop->m_pkthdr.pattr_af = af; 562 mtop->m_pkthdr.pattr_hdr = hdr; 563 564 m->m_data -= hlen; 565 m->m_len += hlen; 566 567 return; 568 569 bad: 570 mtop->m_pkthdr.pattr_class = NULL; 571 mtop->m_pkthdr.pattr_hdr = NULL; 572 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 573 } 574 #endif /* ALTQ */ 575 576 #if defined (LLC) || defined (NETATALK) 577 static void 578 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 579 { 580 struct ifqueue *inq = NULL; 581 int isr = 0; 582 struct llc *l; 583 584 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 585 goto drop; 586 587 l = (struct llc *)(eh+1); 588 switch (l->llc_dsap) { 589 #ifdef NETATALK 590 case LLC_SNAP_LSAP: 591 switch (l->llc_control) { 592 case LLC_UI: 593 if (l->llc_ssap != LLC_SNAP_LSAP) 594 goto drop; 595 596 if (memcmp(&(l->llc_snap_org_code)[0], 597 at_org_code, sizeof(at_org_code)) == 0 && 598 ntohs(l->llc_snap_ether_type) == 599 ETHERTYPE_ATALK) { 600 inq = &atintrq2; 601 m_adj(m, sizeof(struct ether_header) 602 + sizeof(struct llc)); 603 isr = NETISR_ATALK; 604 break; 605 } 606 607 if (memcmp(&(l->llc_snap_org_code)[0], 608 aarp_org_code, 609 sizeof(aarp_org_code)) == 0 && 610 ntohs(l->llc_snap_ether_type) == 611 ETHERTYPE_AARP) { 612 m_adj(m, sizeof(struct ether_header) 613 + sizeof(struct llc)); 614 aarpinput(ifp, m); /* XXX queue? */ 615 return; 616 } 617 618 default: 619 goto drop; 620 } 621 break; 622 #endif 623 default: 624 goto drop; 625 } 626 627 KASSERT(inq != NULL); 628 IFQ_ENQUEUE_ISR(inq, m, isr); 629 return; 630 631 drop: 632 m_freem(m); 633 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 634 return; 635 } 636 #endif /* defined (LLC) || defined (NETATALK) */ 637 638 /* 639 * Process a received Ethernet packet; 640 * the packet is in the mbuf chain m with 641 * the ether header. 642 */ 643 void 644 ether_input(struct ifnet *ifp, struct mbuf *m) 645 { 646 struct ethercom *ec = (struct ethercom *) ifp; 647 pktqueue_t *pktq = NULL; 648 struct ifqueue *inq = NULL; 649 uint16_t etype; 650 struct ether_header *eh; 651 size_t ehlen; 652 static int earlypkts; 653 int isr = 0; 654 655 KASSERT(!cpu_intr_p()); 656 KASSERT((m->m_flags & M_PKTHDR) != 0); 657 658 if ((ifp->if_flags & IFF_UP) == 0) 659 goto drop; 660 661 #ifdef MBUFTRACE 662 m_claimm(m, &ec->ec_rx_mowner); 663 #endif 664 665 if (__predict_false(m->m_len < sizeof(*eh))) { 666 if ((m = m_pullup(m, sizeof(*eh))) == NULL) 667 goto dropped; 668 } 669 670 eh = mtod(m, struct ether_header *); 671 etype = ntohs(eh->ether_type); 672 ehlen = sizeof(*eh); 673 674 if (__predict_false(earlypkts < 100 || 675 entropy_epoch() == (unsigned)-1)) { 676 rnd_add_data(NULL, eh, ehlen, 0); 677 earlypkts++; 678 } 679 680 /* 681 * Determine if the packet is within its size limits. For MPLS the 682 * header length is variable, so we skip the check. 683 */ 684 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 685 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 686 #ifdef DIAGNOSTIC 687 mutex_enter(&bigpktpps_lock); 688 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 689 bigpktppslim)) { 690 printf("%s: discarding oversize frame (len=%d)\n", 691 ifp->if_xname, m->m_pkthdr.len); 692 } 693 mutex_exit(&bigpktpps_lock); 694 #endif 695 goto drop; 696 } 697 698 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 699 /* 700 * If this is not a simplex interface, drop the packet 701 * if it came from us. 702 */ 703 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 704 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 705 ETHER_ADDR_LEN) == 0) { 706 goto drop; 707 } 708 709 if (memcmp(etherbroadcastaddr, 710 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 711 m->m_flags |= M_BCAST; 712 else 713 m->m_flags |= M_MCAST; 714 if_statinc(ifp, if_imcasts); 715 } 716 717 /* If the CRC is still on the packet, trim it off. */ 718 if (m->m_flags & M_HASFCS) { 719 m_adj(m, -ETHER_CRC_LEN); 720 m->m_flags &= ~M_HASFCS; 721 } 722 723 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 724 725 #if NCARP > 0 726 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 727 /* 728 * Clear M_PROMISC, in case the packet comes from a 729 * vlan. 730 */ 731 m->m_flags &= ~M_PROMISC; 732 if (carp_input(m, (uint8_t *)&eh->ether_shost, 733 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 734 return; 735 } 736 #endif 737 738 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 739 (ifp->if_flags & IFF_PROMISC) != 0 && 740 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 741 ETHER_ADDR_LEN) != 0) { 742 m->m_flags |= M_PROMISC; 743 } 744 745 if ((m->m_flags & M_PROMISC) == 0) { 746 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 747 return; 748 if (m == NULL) 749 return; 750 751 eh = mtod(m, struct ether_header *); 752 etype = ntohs(eh->ether_type); 753 } 754 755 #if NAGR > 0 756 if (ifp->if_agrprivate && 757 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 758 m->m_flags &= ~M_PROMISC; 759 agr_input(ifp, m); 760 return; 761 } 762 #endif 763 764 /* Handle input from a lagg(4) port */ 765 if (ifp->if_type == IFT_IEEE8023ADLAG) { 766 KASSERT(lagg_input_ethernet_p != NULL); 767 m = (*lagg_input_ethernet_p)(ifp, m); 768 if (m == NULL) 769 return; 770 } 771 772 /* 773 * If VLANs are configured on the interface, check to 774 * see if the device performed the decapsulation and 775 * provided us with the tag. 776 */ 777 if (ec->ec_nvlans && vlan_has_tag(m)) { 778 #if NVLAN > 0 779 /* 780 * vlan_input() will either recursively call ether_input() 781 * or drop the packet. 782 */ 783 vlan_input(ifp, m); 784 return; 785 #else 786 goto drop; 787 #endif 788 } 789 790 /* 791 * Handle protocols that expect to have the Ethernet header 792 * (and possibly FCS) intact. 793 */ 794 switch (etype) { 795 case ETHERTYPE_VLAN: { 796 struct ether_vlan_header *evl = (void *)eh; 797 798 /* 799 * If there is a tag of 0, then the VLAN header was probably 800 * just being used to store the priority. Extract the ether 801 * type, and if IP or IPV6, let them deal with it. 802 */ 803 if (m->m_len >= sizeof(*evl) && 804 EVL_VLANOFTAG(evl->evl_tag) == 0) { 805 etype = ntohs(evl->evl_proto); 806 ehlen = sizeof(*evl); 807 if ((m->m_flags & M_PROMISC) == 0 && 808 (etype == ETHERTYPE_IP || 809 etype == ETHERTYPE_IPV6)) 810 break; 811 } 812 813 #if NVLAN > 0 814 /* 815 * vlan_input() will either recursively call ether_input() 816 * or drop the packet. 817 */ 818 if (ec->ec_nvlans != 0) { 819 vlan_input(ifp, m); 820 return; 821 } else 822 #endif 823 goto drop; 824 } 825 826 #if NPPPOE > 0 827 case ETHERTYPE_PPPOEDISC: 828 pppoedisc_input(ifp, m); 829 return; 830 831 case ETHERTYPE_PPPOE: 832 pppoe_input(ifp, m); 833 return; 834 #endif 835 836 case ETHERTYPE_SLOWPROTOCOLS: { 837 uint8_t subtype; 838 839 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 840 goto drop; 841 842 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 843 switch (subtype) { 844 #if NAGR > 0 845 case SLOWPROTOCOLS_SUBTYPE_LACP: 846 if (ifp->if_agrprivate) { 847 ieee8023ad_lacp_input(ifp, m); 848 return; 849 } 850 break; 851 852 case SLOWPROTOCOLS_SUBTYPE_MARKER: 853 if (ifp->if_agrprivate) { 854 ieee8023ad_marker_input(ifp, m); 855 return; 856 } 857 break; 858 #endif 859 860 default: 861 if (subtype == 0 || subtype > 10) { 862 /* illegal value */ 863 goto drop; 864 } 865 /* unknown subtype */ 866 break; 867 } 868 } 869 /* FALLTHROUGH */ 870 default: 871 if (m->m_flags & M_PROMISC) 872 goto drop; 873 } 874 875 /* If the CRC is still on the packet, trim it off. */ 876 if (m->m_flags & M_HASFCS) { 877 m_adj(m, -ETHER_CRC_LEN); 878 m->m_flags &= ~M_HASFCS; 879 } 880 881 /* etype represents the size of the payload in this case */ 882 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 883 KASSERT(ehlen == sizeof(*eh)); 884 #if defined (LLC) || defined (NETATALK) 885 ether_input_llc(ifp, m, eh); 886 return; 887 #else 888 goto drop; 889 #endif 890 } 891 892 /* Strip off the Ethernet header. */ 893 m_adj(m, ehlen); 894 895 switch (etype) { 896 #ifdef INET 897 case ETHERTYPE_IP: 898 #ifdef GATEWAY 899 if (ipflow_fastforward(m)) 900 return; 901 #endif 902 pktq = ip_pktq; 903 break; 904 905 case ETHERTYPE_ARP: 906 isr = NETISR_ARP; 907 inq = &arpintrq; 908 break; 909 910 case ETHERTYPE_REVARP: 911 revarpinput(m); /* XXX queue? */ 912 return; 913 #endif 914 915 #ifdef INET6 916 case ETHERTYPE_IPV6: 917 if (__predict_false(!in6_present)) 918 goto drop; 919 #ifdef GATEWAY 920 if (ip6flow_fastforward(&m)) 921 return; 922 #endif 923 pktq = ip6_pktq; 924 break; 925 #endif 926 927 #ifdef NETATALK 928 case ETHERTYPE_ATALK: 929 isr = NETISR_ATALK; 930 inq = &atintrq1; 931 break; 932 933 case ETHERTYPE_AARP: 934 aarpinput(ifp, m); /* XXX queue? */ 935 return; 936 #endif 937 938 #ifdef MPLS 939 case ETHERTYPE_MPLS: 940 isr = NETISR_MPLS; 941 inq = &mplsintrq; 942 break; 943 #endif 944 945 default: 946 goto drop; 947 } 948 949 if (__predict_true(pktq)) { 950 #ifdef NET_MPSAFE 951 const u_int h = curcpu()->ci_index; 952 #else 953 const uint32_t h = pktq_rps_hash(m); 954 #endif 955 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 956 m_freem(m); 957 } 958 return; 959 } 960 961 if (__predict_false(!inq)) { 962 /* Should not happen. */ 963 goto drop; 964 } 965 966 IFQ_ENQUEUE_ISR(inq, m, isr); 967 return; 968 969 drop: 970 m_freem(m); 971 dropped: 972 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 973 } 974 975 /* 976 * Convert Ethernet address to printable (loggable) representation. 977 */ 978 char * 979 ether_sprintf(const u_char *ap) 980 { 981 static char etherbuf[3 * ETHER_ADDR_LEN]; 982 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 983 } 984 985 char * 986 ether_snprintf(char *buf, size_t len, const u_char *ap) 987 { 988 char *cp = buf; 989 size_t i; 990 991 for (i = 0; i < len / 3; i++) { 992 *cp++ = hexdigits[*ap >> 4]; 993 *cp++ = hexdigits[*ap++ & 0xf]; 994 *cp++ = ':'; 995 } 996 *--cp = '\0'; 997 return buf; 998 } 999 1000 static void 1001 ether_link_state_changed(struct ifnet *ifp, int link_state) 1002 { 1003 #if NVLAN > 0 1004 struct ethercom *ec = (void *)ifp; 1005 1006 if (ec->ec_nvlans) 1007 vlan_link_state_changed(ifp, link_state); 1008 #endif 1009 } 1010 1011 /* 1012 * Perform common duties while attaching to interface list 1013 */ 1014 void 1015 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 1016 { 1017 struct ethercom *ec = (struct ethercom *)ifp; 1018 1019 ifp->if_type = IFT_ETHER; 1020 ifp->if_hdrlen = ETHER_HDR_LEN; 1021 ifp->if_dlt = DLT_EN10MB; 1022 ifp->if_mtu = ETHERMTU; 1023 ifp->if_output = ether_output; 1024 ifp->_if_input = ether_input; 1025 ifp->if_link_state_changed = ether_link_state_changed; 1026 if (ifp->if_baudrate == 0) 1027 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1028 1029 if (lla != NULL) 1030 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1031 1032 LIST_INIT(&ec->ec_multiaddrs); 1033 SIMPLEQ_INIT(&ec->ec_vids); 1034 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1035 ec->ec_flags = 0; 1036 ifp->if_broadcastaddr = etherbroadcastaddr; 1037 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1038 #ifdef MBUFTRACE 1039 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1040 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1041 MOWNER_ATTACH(&ec->ec_tx_mowner); 1042 MOWNER_ATTACH(&ec->ec_rx_mowner); 1043 ifp->if_mowner = &ec->ec_tx_mowner; 1044 #endif 1045 } 1046 1047 void 1048 ether_ifdetach(struct ifnet *ifp) 1049 { 1050 struct ethercom *ec = (void *) ifp; 1051 struct ether_multi *enm; 1052 1053 IFNET_ASSERT_UNLOCKED(ifp); 1054 /* 1055 * Prevent further calls to ioctl (for example turning off 1056 * promiscuous mode from the bridge code), which eventually can 1057 * call if_init() which can cause panics because the interface 1058 * is in the process of being detached. Return device not configured 1059 * instead. 1060 */ 1061 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1062 enxio); 1063 1064 #if NBRIDGE > 0 1065 if (ifp->if_bridge) 1066 bridge_ifdetach(ifp); 1067 #endif 1068 bpf_detach(ifp); 1069 #if NVLAN > 0 1070 if (ec->ec_nvlans) 1071 vlan_ifdetach(ifp); 1072 #endif 1073 1074 #if NLAGG > 0 1075 if (ifp->if_lagg) 1076 lagg_ifdetach(ifp); 1077 #endif 1078 1079 ETHER_LOCK(ec); 1080 KASSERT(ec->ec_nvlans == 0); 1081 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1082 LIST_REMOVE(enm, enm_list); 1083 kmem_free(enm, sizeof(*enm)); 1084 ec->ec_multicnt--; 1085 } 1086 ETHER_UNLOCK(ec); 1087 1088 mutex_obj_free(ec->ec_lock); 1089 ec->ec_lock = NULL; 1090 1091 ifp->if_mowner = NULL; 1092 MOWNER_DETACH(&ec->ec_rx_mowner); 1093 MOWNER_DETACH(&ec->ec_tx_mowner); 1094 } 1095 1096 #if 0 1097 /* 1098 * This is for reference. We have a table-driven version 1099 * of the little-endian crc32 generator, which is faster 1100 * than the double-loop. 1101 */ 1102 uint32_t 1103 ether_crc32_le(const uint8_t *buf, size_t len) 1104 { 1105 uint32_t c, crc, carry; 1106 size_t i, j; 1107 1108 crc = 0xffffffffU; /* initial value */ 1109 1110 for (i = 0; i < len; i++) { 1111 c = buf[i]; 1112 for (j = 0; j < 8; j++) { 1113 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1114 crc >>= 1; 1115 c >>= 1; 1116 if (carry) 1117 crc = (crc ^ ETHER_CRC_POLY_LE); 1118 } 1119 } 1120 1121 return (crc); 1122 } 1123 #else 1124 uint32_t 1125 ether_crc32_le(const uint8_t *buf, size_t len) 1126 { 1127 static const uint32_t crctab[] = { 1128 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1129 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1130 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1131 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1132 }; 1133 uint32_t crc; 1134 size_t i; 1135 1136 crc = 0xffffffffU; /* initial value */ 1137 1138 for (i = 0; i < len; i++) { 1139 crc ^= buf[i]; 1140 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1141 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1142 } 1143 1144 return (crc); 1145 } 1146 #endif 1147 1148 uint32_t 1149 ether_crc32_be(const uint8_t *buf, size_t len) 1150 { 1151 uint32_t c, crc, carry; 1152 size_t i, j; 1153 1154 crc = 0xffffffffU; /* initial value */ 1155 1156 for (i = 0; i < len; i++) { 1157 c = buf[i]; 1158 for (j = 0; j < 8; j++) { 1159 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1160 crc <<= 1; 1161 c >>= 1; 1162 if (carry) 1163 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1164 } 1165 } 1166 1167 return (crc); 1168 } 1169 1170 #ifdef INET 1171 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1172 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1173 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1174 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1175 #endif 1176 #ifdef INET6 1177 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1178 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1179 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1180 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1181 #endif 1182 1183 /* 1184 * ether_aton implementation, not using a static buffer. 1185 */ 1186 int 1187 ether_aton_r(u_char *dest, size_t len, const char *str) 1188 { 1189 const u_char *cp = (const void *)str; 1190 u_char *ep; 1191 1192 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1193 1194 if (len < ETHER_ADDR_LEN) 1195 return ENOSPC; 1196 1197 ep = dest + ETHER_ADDR_LEN; 1198 1199 while (*cp) { 1200 if (!isxdigit(*cp)) 1201 return EINVAL; 1202 1203 *dest = atox(*cp); 1204 cp++; 1205 if (isxdigit(*cp)) { 1206 *dest = (*dest << 4) | atox(*cp); 1207 cp++; 1208 } 1209 dest++; 1210 1211 if (dest == ep) 1212 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1213 1214 switch (*cp) { 1215 case ':': 1216 case '-': 1217 case '.': 1218 cp++; 1219 break; 1220 } 1221 } 1222 return ENOBUFS; 1223 } 1224 1225 /* 1226 * Convert a sockaddr into an Ethernet address or range of Ethernet 1227 * addresses. 1228 */ 1229 int 1230 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1231 uint8_t addrhi[ETHER_ADDR_LEN]) 1232 { 1233 #ifdef INET 1234 const struct sockaddr_in *sin; 1235 #endif 1236 #ifdef INET6 1237 const struct sockaddr_in6 *sin6; 1238 #endif 1239 1240 switch (sa->sa_family) { 1241 1242 case AF_UNSPEC: 1243 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1244 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1245 break; 1246 1247 #ifdef INET 1248 case AF_INET: 1249 sin = satocsin(sa); 1250 if (sin->sin_addr.s_addr == INADDR_ANY) { 1251 /* 1252 * An IP address of INADDR_ANY means listen to 1253 * or stop listening to all of the Ethernet 1254 * multicast addresses used for IP. 1255 * (This is for the sake of IP multicast routers.) 1256 */ 1257 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1258 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1259 } else { 1260 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1261 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1262 } 1263 break; 1264 #endif 1265 #ifdef INET6 1266 case AF_INET6: 1267 sin6 = satocsin6(sa); 1268 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1269 /* 1270 * An IP6 address of 0 means listen to or stop 1271 * listening to all of the Ethernet multicast 1272 * address used for IP6. 1273 * (This is used for multicast routers.) 1274 */ 1275 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1276 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1277 } else { 1278 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1279 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1280 } 1281 break; 1282 #endif 1283 1284 default: 1285 return EAFNOSUPPORT; 1286 } 1287 return 0; 1288 } 1289 1290 /* 1291 * Add an Ethernet multicast address or range of addresses to the list for a 1292 * given interface. 1293 */ 1294 int 1295 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1296 { 1297 struct ether_multi *enm, *_enm; 1298 u_char addrlo[ETHER_ADDR_LEN]; 1299 u_char addrhi[ETHER_ADDR_LEN]; 1300 int error = 0; 1301 1302 /* Allocate out of lock */ 1303 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1304 1305 ETHER_LOCK(ec); 1306 error = ether_multiaddr(sa, addrlo, addrhi); 1307 if (error != 0) 1308 goto out; 1309 1310 /* 1311 * Verify that we have valid Ethernet multicast addresses. 1312 */ 1313 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1314 error = EINVAL; 1315 goto out; 1316 } 1317 1318 /* 1319 * See if the address range is already in the list. 1320 */ 1321 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1322 if (_enm != NULL) { 1323 /* 1324 * Found it; just increment the reference count. 1325 */ 1326 ++_enm->enm_refcount; 1327 error = 0; 1328 goto out; 1329 } 1330 1331 /* 1332 * Link a new multicast record into the interface's multicast list. 1333 */ 1334 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1335 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1336 enm->enm_refcount = 1; 1337 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1338 ec->ec_multicnt++; 1339 1340 /* 1341 * Return ENETRESET to inform the driver that the list has changed 1342 * and its reception filter should be adjusted accordingly. 1343 */ 1344 error = ENETRESET; 1345 enm = NULL; 1346 1347 out: 1348 ETHER_UNLOCK(ec); 1349 if (enm != NULL) 1350 kmem_free(enm, sizeof(*enm)); 1351 return error; 1352 } 1353 1354 /* 1355 * Delete a multicast address record. 1356 */ 1357 int 1358 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1359 { 1360 struct ether_multi *enm; 1361 u_char addrlo[ETHER_ADDR_LEN]; 1362 u_char addrhi[ETHER_ADDR_LEN]; 1363 int error; 1364 1365 ETHER_LOCK(ec); 1366 error = ether_multiaddr(sa, addrlo, addrhi); 1367 if (error != 0) 1368 goto error; 1369 1370 /* 1371 * Look up the address in our list. 1372 */ 1373 enm = ether_lookup_multi(addrlo, addrhi, ec); 1374 if (enm == NULL) { 1375 error = ENXIO; 1376 goto error; 1377 } 1378 if (--enm->enm_refcount != 0) { 1379 /* 1380 * Still some claims to this record. 1381 */ 1382 error = 0; 1383 goto error; 1384 } 1385 1386 /* 1387 * No remaining claims to this record; unlink and free it. 1388 */ 1389 LIST_REMOVE(enm, enm_list); 1390 ec->ec_multicnt--; 1391 ETHER_UNLOCK(ec); 1392 kmem_free(enm, sizeof(*enm)); 1393 1394 /* 1395 * Return ENETRESET to inform the driver that the list has changed 1396 * and its reception filter should be adjusted accordingly. 1397 */ 1398 return ENETRESET; 1399 1400 error: 1401 ETHER_UNLOCK(ec); 1402 return error; 1403 } 1404 1405 void 1406 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1407 { 1408 ec->ec_ifflags_cb = cb; 1409 } 1410 1411 void 1412 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1413 { 1414 1415 ec->ec_vlan_cb = cb; 1416 } 1417 1418 static int 1419 ether_ioctl_reinit(struct ethercom *ec) 1420 { 1421 struct ifnet *ifp = &ec->ec_if; 1422 int error; 1423 1424 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1425 case IFF_RUNNING: 1426 /* 1427 * If interface is marked down and it is running, 1428 * then stop and disable it. 1429 */ 1430 (*ifp->if_stop)(ifp, 1); 1431 break; 1432 case IFF_UP: 1433 /* 1434 * If interface is marked up and it is stopped, then 1435 * start it. 1436 */ 1437 return (*ifp->if_init)(ifp); 1438 case IFF_UP | IFF_RUNNING: 1439 error = 0; 1440 if (ec->ec_ifflags_cb != NULL) { 1441 error = (*ec->ec_ifflags_cb)(ec); 1442 if (error == ENETRESET) { 1443 /* 1444 * Reset the interface to pick up 1445 * changes in any other flags that 1446 * affect the hardware state. 1447 */ 1448 return (*ifp->if_init)(ifp); 1449 } 1450 } else 1451 error = (*ifp->if_init)(ifp); 1452 return error; 1453 case 0: 1454 break; 1455 } 1456 1457 return 0; 1458 } 1459 1460 /* 1461 * Common ioctls for Ethernet interfaces. Note, we must be 1462 * called at splnet(). 1463 */ 1464 int 1465 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1466 { 1467 struct ethercom *ec = (void *)ifp; 1468 struct eccapreq *eccr; 1469 struct ifreq *ifr = (struct ifreq *)data; 1470 struct if_laddrreq *iflr = data; 1471 const struct sockaddr_dl *sdl; 1472 static const uint8_t zero[ETHER_ADDR_LEN]; 1473 int error; 1474 1475 switch (cmd) { 1476 case SIOCINITIFADDR: 1477 { 1478 struct ifaddr *ifa = (struct ifaddr *)data; 1479 if (ifa->ifa_addr->sa_family != AF_LINK 1480 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1481 (IFF_UP | IFF_RUNNING)) { 1482 ifp->if_flags |= IFF_UP; 1483 if ((error = (*ifp->if_init)(ifp)) != 0) 1484 return error; 1485 } 1486 #ifdef INET 1487 if (ifa->ifa_addr->sa_family == AF_INET) 1488 arp_ifinit(ifp, ifa); 1489 #endif 1490 return 0; 1491 } 1492 1493 case SIOCSIFMTU: 1494 { 1495 int maxmtu; 1496 1497 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1498 maxmtu = ETHERMTU_JUMBO; 1499 else 1500 maxmtu = ETHERMTU; 1501 1502 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1503 return EINVAL; 1504 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1505 return error; 1506 else if (ifp->if_flags & IFF_UP) { 1507 /* Make sure the device notices the MTU change. */ 1508 return (*ifp->if_init)(ifp); 1509 } else 1510 return 0; 1511 } 1512 1513 case SIOCSIFFLAGS: 1514 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1515 return error; 1516 return ether_ioctl_reinit(ec); 1517 case SIOCGIFFLAGS: 1518 error = ifioctl_common(ifp, cmd, data); 1519 if (error == 0) { 1520 /* Set IFF_ALLMULTI for backcompat */ 1521 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1522 IFF_ALLMULTI : 0; 1523 } 1524 return error; 1525 case SIOCGETHERCAP: 1526 eccr = (struct eccapreq *)data; 1527 eccr->eccr_capabilities = ec->ec_capabilities; 1528 eccr->eccr_capenable = ec->ec_capenable; 1529 return 0; 1530 case SIOCSETHERCAP: 1531 eccr = (struct eccapreq *)data; 1532 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1533 return EINVAL; 1534 if (eccr->eccr_capenable == ec->ec_capenable) 1535 return 0; 1536 #if 0 /* notyet */ 1537 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1538 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1539 #else 1540 ec->ec_capenable = eccr->eccr_capenable; 1541 #endif 1542 return ether_ioctl_reinit(ec); 1543 case SIOCADDMULTI: 1544 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1545 case SIOCDELMULTI: 1546 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1547 case SIOCSIFMEDIA: 1548 case SIOCGIFMEDIA: 1549 if (ec->ec_mii != NULL) 1550 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1551 cmd); 1552 else if (ec->ec_ifmedia != NULL) 1553 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1554 else 1555 return ENOTTY; 1556 break; 1557 case SIOCALIFADDR: 1558 sdl = satocsdl(sstocsa(&iflr->addr)); 1559 if (sdl->sdl_family != AF_LINK) 1560 ; 1561 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1562 return EINVAL; 1563 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1564 return EINVAL; 1565 /*FALLTHROUGH*/ 1566 default: 1567 return ifioctl_common(ifp, cmd, data); 1568 } 1569 return 0; 1570 } 1571 1572 /* 1573 * Enable/disable passing VLAN packets if the parent interface supports it. 1574 * Return: 1575 * 0: Ok 1576 * -1: Parent interface does not support vlans 1577 * >0: Error 1578 */ 1579 int 1580 ether_enable_vlan_mtu(struct ifnet *ifp) 1581 { 1582 int error; 1583 struct ethercom *ec = (void *)ifp; 1584 1585 /* Parent does not support VLAN's */ 1586 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1587 return -1; 1588 1589 /* 1590 * Parent supports the VLAN_MTU capability, 1591 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1592 * enable it. 1593 */ 1594 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1595 1596 /* Interface is down, defer for later */ 1597 if ((ifp->if_flags & IFF_UP) == 0) 1598 return 0; 1599 1600 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1601 return 0; 1602 1603 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1604 return error; 1605 } 1606 1607 int 1608 ether_disable_vlan_mtu(struct ifnet *ifp) 1609 { 1610 int error; 1611 struct ethercom *ec = (void *)ifp; 1612 1613 /* We still have VLAN's, defer for later */ 1614 if (ec->ec_nvlans != 0) 1615 return 0; 1616 1617 /* Parent does not support VLAB's, nothing to do. */ 1618 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1619 return -1; 1620 1621 /* 1622 * Disable Tx/Rx of VLAN-sized frames. 1623 */ 1624 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1625 1626 /* Interface is down, defer for later */ 1627 if ((ifp->if_flags & IFF_UP) == 0) 1628 return 0; 1629 1630 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1631 return 0; 1632 1633 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1634 return error; 1635 } 1636 1637 static int 1638 ether_multicast_sysctl(SYSCTLFN_ARGS) 1639 { 1640 struct ether_multi *enm; 1641 struct ifnet *ifp; 1642 struct ethercom *ec; 1643 int error = 0; 1644 size_t written; 1645 struct psref psref; 1646 int bound; 1647 unsigned int multicnt; 1648 struct ether_multi_sysctl *addrs; 1649 int i; 1650 1651 if (namelen != 1) 1652 return EINVAL; 1653 1654 bound = curlwp_bind(); 1655 ifp = if_get_byindex(name[0], &psref); 1656 if (ifp == NULL) { 1657 error = ENODEV; 1658 goto out; 1659 } 1660 if (ifp->if_type != IFT_ETHER) { 1661 if_put(ifp, &psref); 1662 *oldlenp = 0; 1663 goto out; 1664 } 1665 ec = (struct ethercom *)ifp; 1666 1667 if (oldp == NULL) { 1668 if_put(ifp, &psref); 1669 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1670 goto out; 1671 } 1672 1673 /* 1674 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1675 * is sleepable, while holding it. Copy data to a local buffer first 1676 * with the lock taken and then call sysctl_copyout without holding it. 1677 */ 1678 retry: 1679 multicnt = ec->ec_multicnt; 1680 1681 if (multicnt == 0) { 1682 if_put(ifp, &psref); 1683 *oldlenp = 0; 1684 goto out; 1685 } 1686 1687 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1688 1689 ETHER_LOCK(ec); 1690 if (multicnt != ec->ec_multicnt) { 1691 /* The number of multicast addresses has changed */ 1692 ETHER_UNLOCK(ec); 1693 kmem_free(addrs, sizeof(*addrs) * multicnt); 1694 goto retry; 1695 } 1696 1697 i = 0; 1698 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1699 struct ether_multi_sysctl *addr = &addrs[i]; 1700 addr->enm_refcount = enm->enm_refcount; 1701 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1702 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1703 i++; 1704 } 1705 ETHER_UNLOCK(ec); 1706 1707 error = 0; 1708 written = 0; 1709 for (i = 0; i < multicnt; i++) { 1710 struct ether_multi_sysctl *addr = &addrs[i]; 1711 1712 if (written + sizeof(*addr) > *oldlenp) 1713 break; 1714 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1715 if (error) 1716 break; 1717 written += sizeof(*addr); 1718 oldp = (char *)oldp + sizeof(*addr); 1719 } 1720 kmem_free(addrs, sizeof(*addrs) * multicnt); 1721 1722 if_put(ifp, &psref); 1723 1724 *oldlenp = written; 1725 out: 1726 curlwp_bindx(bound); 1727 return error; 1728 } 1729 1730 static void 1731 ether_sysctl_setup(struct sysctllog **clog) 1732 { 1733 const struct sysctlnode *rnode = NULL; 1734 1735 sysctl_createv(clog, 0, NULL, &rnode, 1736 CTLFLAG_PERMANENT, 1737 CTLTYPE_NODE, "ether", 1738 SYSCTL_DESCR("Ethernet-specific information"), 1739 NULL, 0, NULL, 0, 1740 CTL_NET, CTL_CREATE, CTL_EOL); 1741 1742 sysctl_createv(clog, 0, &rnode, NULL, 1743 CTLFLAG_PERMANENT, 1744 CTLTYPE_NODE, "multicast", 1745 SYSCTL_DESCR("multicast addresses"), 1746 ether_multicast_sysctl, 0, NULL, 0, 1747 CTL_CREATE, CTL_EOL); 1748 } 1749 1750 void 1751 etherinit(void) 1752 { 1753 1754 #ifdef DIAGNOSTIC 1755 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1756 #endif 1757 ether_sysctl_setup(NULL); 1758 } 1759