1 /* $NetBSD: if.c,v 1.468 2020/01/20 18:38:18 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.468 2020/01/20 18:38:18 thorpej Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_wlan.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mrouting.h" 102 #endif 103 104 #include <sys/param.h> 105 #include <sys/mbuf.h> 106 #include <sys/systm.h> 107 #include <sys/callout.h> 108 #include <sys/proc.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/domain.h> 112 #include <sys/protosw.h> 113 #include <sys/kernel.h> 114 #include <sys/ioctl.h> 115 #include <sys/sysctl.h> 116 #include <sys/syslog.h> 117 #include <sys/kauth.h> 118 #include <sys/kmem.h> 119 #include <sys/xcall.h> 120 #include <sys/cpu.h> 121 #include <sys/intr.h> 122 #include <sys/module_hook.h> 123 #include <sys/compat_stub.h> 124 #include <sys/msan.h> 125 126 #include <net/if.h> 127 #include <net/if_dl.h> 128 #include <net/if_ether.h> 129 #include <net/if_media.h> 130 #include <net80211/ieee80211.h> 131 #include <net80211/ieee80211_ioctl.h> 132 #include <net/if_types.h> 133 #include <net/route.h> 134 #include <net/netisr.h> 135 #include <sys/module.h> 136 #ifdef NETATALK 137 #include <netatalk/at_extern.h> 138 #include <netatalk/at.h> 139 #endif 140 #include <net/pfil.h> 141 #include <netinet/in.h> 142 #include <netinet/in_var.h> 143 #include <netinet/ip_encap.h> 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 153 #include "bridge.h" 154 #if NBRIDGE > 0 155 #include <net/if_bridgevar.h> 156 #endif 157 158 #include "carp.h" 159 #if NCARP > 0 160 #include <netinet/ip_carp.h> 161 #endif 162 163 #include <compat/sys/sockio.h> 164 165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 167 168 /* 169 * Global list of interfaces. 170 */ 171 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 172 struct ifnet_head ifnet_list; 173 174 struct pslist_head ifnet_pslist; 175 static ifnet_t ** ifindex2ifnet = NULL; 176 static u_int if_index = 1; 177 static size_t if_indexlim = 0; 178 static uint64_t index_gen; 179 /* Mutex to protect the above objects. */ 180 kmutex_t ifnet_mtx __cacheline_aligned; 181 static struct psref_class *ifnet_psref_class __read_mostly; 182 static pserialize_t ifnet_psz; 183 184 static kmutex_t if_clone_mtx; 185 186 struct ifnet *lo0ifp; 187 int ifqmaxlen = IFQ_MAXLEN; 188 189 struct psref_class *ifa_psref_class __read_mostly; 190 191 static int if_delroute_matcher(struct rtentry *, void *); 192 193 static bool if_is_unit(const char *); 194 static struct if_clone *if_clone_lookup(const char *, int *); 195 196 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 197 static int if_cloners_count; 198 199 /* Packet filtering hook for interfaces. */ 200 pfil_head_t * if_pfil __read_mostly; 201 202 static kauth_listener_t if_listener; 203 204 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 205 static void if_detach_queues(struct ifnet *, struct ifqueue *); 206 static void sysctl_sndq_setup(struct sysctllog **, const char *, 207 struct ifaltq *); 208 static void if_slowtimo(void *); 209 static void if_attachdomain1(struct ifnet *); 210 static int ifconf(u_long, void *); 211 static int if_transmit(struct ifnet *, struct mbuf *); 212 static int if_clone_create(const char *); 213 static int if_clone_destroy(const char *); 214 static void if_link_state_change_si(void *); 215 static void if_up_locked(struct ifnet *); 216 static void _if_down(struct ifnet *); 217 static void if_down_deactivated(struct ifnet *); 218 219 struct if_percpuq { 220 struct ifnet *ipq_ifp; 221 void *ipq_si; 222 struct percpu *ipq_ifqs; /* struct ifqueue */ 223 }; 224 225 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 226 227 static void if_percpuq_drops(void *, void *, struct cpu_info *); 228 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 229 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 230 struct if_percpuq *); 231 232 struct if_deferred_start { 233 struct ifnet *ids_ifp; 234 void (*ids_if_start)(struct ifnet *); 235 void *ids_si; 236 }; 237 238 static void if_deferred_start_softint(void *); 239 static void if_deferred_start_common(struct ifnet *); 240 static void if_deferred_start_destroy(struct ifnet *); 241 242 #if defined(INET) || defined(INET6) 243 static void sysctl_net_pktq_setup(struct sysctllog **, int); 244 #endif 245 246 /* 247 * Hook for if_vlan - needed by if_agr 248 */ 249 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook; 250 251 static void if_sysctl_setup(struct sysctllog **); 252 253 static int 254 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 255 void *arg0, void *arg1, void *arg2, void *arg3) 256 { 257 int result; 258 enum kauth_network_req req; 259 260 result = KAUTH_RESULT_DEFER; 261 req = (enum kauth_network_req)arg1; 262 263 if (action != KAUTH_NETWORK_INTERFACE) 264 return result; 265 266 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 267 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 268 result = KAUTH_RESULT_ALLOW; 269 270 return result; 271 } 272 273 /* 274 * Network interface utility routines. 275 * 276 * Routines with ifa_ifwith* names take sockaddr *'s as 277 * parameters. 278 */ 279 void 280 ifinit(void) 281 { 282 283 #if (defined(INET) || defined(INET6)) 284 encapinit(); 285 #endif 286 287 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 288 if_listener_cb, NULL); 289 290 /* interfaces are available, inform socket code */ 291 ifioctl = doifioctl; 292 } 293 294 /* 295 * XXX Initialization before configure(). 296 * XXX hack to get pfil_add_hook working in autoconf. 297 */ 298 void 299 ifinit1(void) 300 { 301 302 #ifdef NET_MPSAFE 303 printf("NET_MPSAFE enabled\n"); 304 #endif 305 306 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 307 308 TAILQ_INIT(&ifnet_list); 309 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 310 ifnet_psz = pserialize_create(); 311 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 312 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 313 PSLIST_INIT(&ifnet_pslist); 314 315 if_indexlim = 8; 316 317 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 318 KASSERT(if_pfil != NULL); 319 320 #if NETHER > 0 || defined(NETATALK) || defined(WLAN) 321 etherinit(); 322 #endif 323 } 324 325 /* XXX must be after domaininit() */ 326 void 327 ifinit_post(void) 328 { 329 330 if_sysctl_setup(NULL); 331 } 332 333 ifnet_t * 334 if_alloc(u_char type) 335 { 336 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 337 } 338 339 void 340 if_free(ifnet_t *ifp) 341 { 342 kmem_free(ifp, sizeof(ifnet_t)); 343 } 344 345 void 346 if_initname(struct ifnet *ifp, const char *name, int unit) 347 { 348 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 349 "%s%d", name, unit); 350 } 351 352 /* 353 * Null routines used while an interface is going away. These routines 354 * just return an error. 355 */ 356 357 int 358 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 359 const struct sockaddr *so, const struct rtentry *rt) 360 { 361 362 return ENXIO; 363 } 364 365 void 366 if_nullinput(struct ifnet *ifp, struct mbuf *m) 367 { 368 369 /* Nothing. */ 370 } 371 372 void 373 if_nullstart(struct ifnet *ifp) 374 { 375 376 /* Nothing. */ 377 } 378 379 int 380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 381 { 382 383 m_freem(m); 384 return ENXIO; 385 } 386 387 int 388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 389 { 390 391 return ENXIO; 392 } 393 394 int 395 if_nullinit(struct ifnet *ifp) 396 { 397 398 return ENXIO; 399 } 400 401 void 402 if_nullstop(struct ifnet *ifp, int disable) 403 { 404 405 /* Nothing. */ 406 } 407 408 void 409 if_nullslowtimo(struct ifnet *ifp) 410 { 411 412 /* Nothing. */ 413 } 414 415 void 416 if_nulldrain(struct ifnet *ifp) 417 { 418 419 /* Nothing. */ 420 } 421 422 void 423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 424 { 425 struct ifaddr *ifa; 426 struct sockaddr_dl *sdl; 427 428 ifp->if_addrlen = addrlen; 429 if_alloc_sadl(ifp); 430 ifa = ifp->if_dl; 431 sdl = satosdl(ifa->ifa_addr); 432 433 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 434 if (factory) { 435 KASSERT(ifp->if_hwdl == NULL); 436 ifp->if_hwdl = ifp->if_dl; 437 ifaref(ifp->if_hwdl); 438 } 439 /* TBD routing socket */ 440 } 441 442 struct ifaddr * 443 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 444 { 445 unsigned socksize, ifasize; 446 int addrlen, namelen; 447 struct sockaddr_dl *mask, *sdl; 448 struct ifaddr *ifa; 449 450 namelen = strlen(ifp->if_xname); 451 addrlen = ifp->if_addrlen; 452 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 453 ifasize = sizeof(*ifa) + 2 * socksize; 454 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); 455 456 sdl = (struct sockaddr_dl *)(ifa + 1); 457 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 458 459 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 460 ifp->if_xname, namelen, NULL, addrlen); 461 mask->sdl_family = AF_LINK; 462 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 463 memset(&mask->sdl_data[0], 0xff, namelen); 464 ifa->ifa_rtrequest = link_rtrequest; 465 ifa->ifa_addr = (struct sockaddr *)sdl; 466 ifa->ifa_netmask = (struct sockaddr *)mask; 467 ifa_psref_init(ifa); 468 469 *sdlp = sdl; 470 471 return ifa; 472 } 473 474 static void 475 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 476 { 477 const struct sockaddr_dl *sdl; 478 479 ifp->if_dl = ifa; 480 ifaref(ifa); 481 sdl = satosdl(ifa->ifa_addr); 482 ifp->if_sadl = sdl; 483 } 484 485 /* 486 * Allocate the link level name for the specified interface. This 487 * is an attachment helper. It must be called after ifp->if_addrlen 488 * is initialized, which may not be the case when if_attach() is 489 * called. 490 */ 491 void 492 if_alloc_sadl(struct ifnet *ifp) 493 { 494 struct ifaddr *ifa; 495 const struct sockaddr_dl *sdl; 496 497 /* 498 * If the interface already has a link name, release it 499 * now. This is useful for interfaces that can change 500 * link types, and thus switch link names often. 501 */ 502 if (ifp->if_sadl != NULL) 503 if_free_sadl(ifp, 0); 504 505 ifa = if_dl_create(ifp, &sdl); 506 507 ifa_insert(ifp, ifa); 508 if_sadl_setrefs(ifp, ifa); 509 } 510 511 static void 512 if_deactivate_sadl(struct ifnet *ifp) 513 { 514 struct ifaddr *ifa; 515 516 KASSERT(ifp->if_dl != NULL); 517 518 ifa = ifp->if_dl; 519 520 ifp->if_sadl = NULL; 521 522 ifp->if_dl = NULL; 523 ifafree(ifa); 524 } 525 526 static void 527 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 528 { 529 struct ifaddr *old; 530 531 KASSERT(ifp->if_dl != NULL); 532 533 old = ifp->if_dl; 534 535 ifaref(ifa); 536 /* XXX Update if_dl and if_sadl atomically */ 537 ifp->if_dl = ifa; 538 ifp->if_sadl = satosdl(ifa->ifa_addr); 539 540 ifafree(old); 541 } 542 543 void 544 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 545 const struct sockaddr_dl *sdl) 546 { 547 int s, ss; 548 struct ifaddr *ifa; 549 int bound = curlwp_bind(); 550 551 KASSERT(ifa_held(ifa0)); 552 553 s = splsoftnet(); 554 555 if_replace_sadl(ifp, ifa0); 556 557 ss = pserialize_read_enter(); 558 IFADDR_READER_FOREACH(ifa, ifp) { 559 struct psref psref; 560 ifa_acquire(ifa, &psref); 561 pserialize_read_exit(ss); 562 563 rtinit(ifa, RTM_LLINFO_UPD, 0); 564 565 ss = pserialize_read_enter(); 566 ifa_release(ifa, &psref); 567 } 568 pserialize_read_exit(ss); 569 570 splx(s); 571 curlwp_bindx(bound); 572 } 573 574 /* 575 * Free the link level name for the specified interface. This is 576 * a detach helper. This is called from if_detach(). 577 */ 578 void 579 if_free_sadl(struct ifnet *ifp, int factory) 580 { 581 struct ifaddr *ifa; 582 int s; 583 584 if (factory && ifp->if_hwdl != NULL) { 585 ifa = ifp->if_hwdl; 586 ifp->if_hwdl = NULL; 587 ifafree(ifa); 588 } 589 590 ifa = ifp->if_dl; 591 if (ifa == NULL) { 592 KASSERT(ifp->if_sadl == NULL); 593 return; 594 } 595 596 KASSERT(ifp->if_sadl != NULL); 597 598 s = splsoftnet(); 599 KASSERT(ifa->ifa_addr->sa_family == AF_LINK); 600 ifa_remove(ifp, ifa); 601 if_deactivate_sadl(ifp); 602 splx(s); 603 } 604 605 static void 606 if_getindex(ifnet_t *ifp) 607 { 608 bool hitlimit = false; 609 610 ifp->if_index_gen = index_gen++; 611 612 ifp->if_index = if_index; 613 if (ifindex2ifnet == NULL) { 614 if_index++; 615 goto skip; 616 } 617 while (if_byindex(ifp->if_index)) { 618 /* 619 * If we hit USHRT_MAX, we skip back to 0 since 620 * there are a number of places where the value 621 * of if_index or if_index itself is compared 622 * to or stored in an unsigned short. By 623 * jumping back, we won't botch those assignments 624 * or comparisons. 625 */ 626 if (++if_index == 0) { 627 if_index = 1; 628 } else if (if_index == USHRT_MAX) { 629 /* 630 * However, if we have to jump back to 631 * zero *twice* without finding an empty 632 * slot in ifindex2ifnet[], then there 633 * there are too many (>65535) interfaces. 634 */ 635 if (hitlimit) { 636 panic("too many interfaces"); 637 } 638 hitlimit = true; 639 if_index = 1; 640 } 641 ifp->if_index = if_index; 642 } 643 skip: 644 /* 645 * ifindex2ifnet is indexed by if_index. Since if_index will 646 * grow dynamically, it should grow too. 647 */ 648 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 649 size_t m, n, oldlim; 650 void *q; 651 652 oldlim = if_indexlim; 653 while (ifp->if_index >= if_indexlim) 654 if_indexlim <<= 1; 655 656 /* grow ifindex2ifnet */ 657 m = oldlim * sizeof(struct ifnet *); 658 n = if_indexlim * sizeof(struct ifnet *); 659 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); 660 if (ifindex2ifnet != NULL) { 661 memcpy(q, ifindex2ifnet, m); 662 free(ifindex2ifnet, M_IFADDR); 663 } 664 ifindex2ifnet = (struct ifnet **)q; 665 } 666 ifindex2ifnet[ifp->if_index] = ifp; 667 } 668 669 /* 670 * Initialize an interface and assign an index for it. 671 * 672 * It must be called prior to a device specific attach routine 673 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 674 * and be followed by if_register: 675 * 676 * if_initialize(ifp); 677 * ether_ifattach(ifp, enaddr); 678 * if_register(ifp); 679 */ 680 int 681 if_initialize(ifnet_t *ifp) 682 { 683 int rv = 0; 684 685 KASSERT(if_indexlim > 0); 686 TAILQ_INIT(&ifp->if_addrlist); 687 688 /* 689 * Link level name is allocated later by a separate call to 690 * if_alloc_sadl(). 691 */ 692 693 if (ifp->if_snd.ifq_maxlen == 0) 694 ifp->if_snd.ifq_maxlen = ifqmaxlen; 695 696 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 697 698 ifp->if_link_state = LINK_STATE_UNKNOWN; 699 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 700 701 ifp->if_capenable = 0; 702 ifp->if_csum_flags_tx = 0; 703 ifp->if_csum_flags_rx = 0; 704 705 #ifdef ALTQ 706 ifp->if_snd.altq_type = 0; 707 ifp->if_snd.altq_disc = NULL; 708 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 709 ifp->if_snd.altq_tbr = NULL; 710 ifp->if_snd.altq_ifp = ifp; 711 #endif 712 713 IFQ_LOCK_INIT(&ifp->if_snd); 714 715 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 716 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 717 718 IF_AFDATA_LOCK_INIT(ifp); 719 720 if (if_is_link_state_changeable(ifp)) { 721 u_int flags = SOFTINT_NET; 722 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 723 ifp->if_link_si = softint_establish(flags, 724 if_link_state_change_si, ifp); 725 if (ifp->if_link_si == NULL) { 726 rv = ENOMEM; 727 goto fail; 728 } 729 } 730 731 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 732 PSLIST_INIT(&ifp->if_addr_pslist); 733 psref_target_init(&ifp->if_psref, ifnet_psref_class); 734 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 735 LIST_INIT(&ifp->if_multiaddrs); 736 737 IFNET_GLOBAL_LOCK(); 738 if_getindex(ifp); 739 IFNET_GLOBAL_UNLOCK(); 740 741 return 0; 742 743 fail: 744 IF_AFDATA_LOCK_DESTROY(ifp); 745 746 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 747 (void)pfil_head_destroy(ifp->if_pfil); 748 749 IFQ_LOCK_DESTROY(&ifp->if_snd); 750 751 return rv; 752 } 753 754 /* 755 * Register an interface to the list of "active" interfaces. 756 */ 757 void 758 if_register(ifnet_t *ifp) 759 { 760 /* 761 * If the driver has not supplied its own if_ioctl, then 762 * supply the default. 763 */ 764 if (ifp->if_ioctl == NULL) 765 ifp->if_ioctl = ifioctl_common; 766 767 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 768 769 if (!STAILQ_EMPTY(&domains)) 770 if_attachdomain1(ifp); 771 772 /* Announce the interface. */ 773 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 774 775 if (ifp->if_slowtimo != NULL) { 776 ifp->if_slowtimo_ch = 777 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 778 callout_init(ifp->if_slowtimo_ch, 0); 779 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 780 if_slowtimo(ifp); 781 } 782 783 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 784 ifp->if_transmit = if_transmit; 785 786 IFNET_GLOBAL_LOCK(); 787 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 788 IFNET_WRITER_INSERT_TAIL(ifp); 789 IFNET_GLOBAL_UNLOCK(); 790 } 791 792 /* 793 * The if_percpuq framework 794 * 795 * It allows network device drivers to execute the network stack 796 * in softint (so called softint-based if_input). It utilizes 797 * softint and percpu ifqueue. It doesn't distribute any packets 798 * between CPUs, unlike pktqueue(9). 799 * 800 * Currently we support two options for device drivers to apply the framework: 801 * - Use it implicitly with less changes 802 * - If you use if_attach in driver's _attach function and if_input in 803 * driver's Rx interrupt handler, a packet is queued and a softint handles 804 * the packet implicitly 805 * - Use it explicitly in each driver (recommended) 806 * - You can use if_percpuq_* directly in your driver 807 * - In this case, you need to allocate struct if_percpuq in driver's softc 808 * - See wm(4) as a reference implementation 809 */ 810 811 static void 812 if_percpuq_softint(void *arg) 813 { 814 struct if_percpuq *ipq = arg; 815 struct ifnet *ifp = ipq->ipq_ifp; 816 struct mbuf *m; 817 818 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 819 ifp->if_ipackets++; 820 bpf_mtap(ifp, m, BPF_D_IN); 821 822 ifp->_if_input(ifp, m); 823 } 824 } 825 826 static void 827 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 828 { 829 struct ifqueue *const ifq = p; 830 831 memset(ifq, 0, sizeof(*ifq)); 832 ifq->ifq_maxlen = IFQ_MAXLEN; 833 } 834 835 struct if_percpuq * 836 if_percpuq_create(struct ifnet *ifp) 837 { 838 struct if_percpuq *ipq; 839 u_int flags = SOFTINT_NET; 840 841 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 842 843 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 844 ipq->ipq_ifp = ifp; 845 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); 846 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 847 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 848 849 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 850 851 return ipq; 852 } 853 854 static struct mbuf * 855 if_percpuq_dequeue(struct if_percpuq *ipq) 856 { 857 struct mbuf *m; 858 struct ifqueue *ifq; 859 int s; 860 861 s = splnet(); 862 ifq = percpu_getref(ipq->ipq_ifqs); 863 IF_DEQUEUE(ifq, m); 864 percpu_putref(ipq->ipq_ifqs); 865 splx(s); 866 867 return m; 868 } 869 870 static void 871 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 872 { 873 struct ifqueue *const ifq = p; 874 875 IF_PURGE(ifq); 876 } 877 878 void 879 if_percpuq_destroy(struct if_percpuq *ipq) 880 { 881 882 /* if_detach may already destroy it */ 883 if (ipq == NULL) 884 return; 885 886 softint_disestablish(ipq->ipq_si); 887 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 888 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 889 kmem_free(ipq, sizeof(*ipq)); 890 } 891 892 void 893 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 894 { 895 struct ifqueue *ifq; 896 int s; 897 898 KASSERT(ipq != NULL); 899 900 s = splnet(); 901 ifq = percpu_getref(ipq->ipq_ifqs); 902 if (IF_QFULL(ifq)) { 903 IF_DROP(ifq); 904 percpu_putref(ipq->ipq_ifqs); 905 m_freem(m); 906 goto out; 907 } 908 IF_ENQUEUE(ifq, m); 909 percpu_putref(ipq->ipq_ifqs); 910 911 softint_schedule(ipq->ipq_si); 912 out: 913 splx(s); 914 } 915 916 static void 917 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 918 { 919 struct ifqueue *const ifq = p; 920 int *sum = arg; 921 922 *sum += ifq->ifq_drops; 923 } 924 925 static int 926 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 927 { 928 struct sysctlnode node; 929 struct if_percpuq *ipq; 930 int sum = 0; 931 int error; 932 933 node = *rnode; 934 ipq = node.sysctl_data; 935 936 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 937 938 node.sysctl_data = ∑ 939 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 940 if (error != 0 || newp == NULL) 941 return error; 942 943 return 0; 944 } 945 946 static void 947 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 948 struct if_percpuq *ipq) 949 { 950 const struct sysctlnode *cnode, *rnode; 951 952 if (sysctl_createv(clog, 0, NULL, &rnode, 953 CTLFLAG_PERMANENT, 954 CTLTYPE_NODE, "interfaces", 955 SYSCTL_DESCR("Per-interface controls"), 956 NULL, 0, NULL, 0, 957 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 958 goto bad; 959 960 if (sysctl_createv(clog, 0, &rnode, &rnode, 961 CTLFLAG_PERMANENT, 962 CTLTYPE_NODE, ifname, 963 SYSCTL_DESCR("Interface controls"), 964 NULL, 0, NULL, 0, 965 CTL_CREATE, CTL_EOL) != 0) 966 goto bad; 967 968 if (sysctl_createv(clog, 0, &rnode, &rnode, 969 CTLFLAG_PERMANENT, 970 CTLTYPE_NODE, "rcvq", 971 SYSCTL_DESCR("Interface input queue controls"), 972 NULL, 0, NULL, 0, 973 CTL_CREATE, CTL_EOL) != 0) 974 goto bad; 975 976 #ifdef NOTYET 977 /* XXX Should show each per-CPU queue length? */ 978 if (sysctl_createv(clog, 0, &rnode, &rnode, 979 CTLFLAG_PERMANENT, 980 CTLTYPE_INT, "len", 981 SYSCTL_DESCR("Current input queue length"), 982 sysctl_percpuq_len, 0, NULL, 0, 983 CTL_CREATE, CTL_EOL) != 0) 984 goto bad; 985 986 if (sysctl_createv(clog, 0, &rnode, &cnode, 987 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 988 CTLTYPE_INT, "maxlen", 989 SYSCTL_DESCR("Maximum allowed input queue length"), 990 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 991 CTL_CREATE, CTL_EOL) != 0) 992 goto bad; 993 #endif 994 995 if (sysctl_createv(clog, 0, &rnode, &cnode, 996 CTLFLAG_PERMANENT, 997 CTLTYPE_INT, "drops", 998 SYSCTL_DESCR("Total packets dropped due to full input queue"), 999 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 1000 CTL_CREATE, CTL_EOL) != 0) 1001 goto bad; 1002 1003 return; 1004 bad: 1005 printf("%s: could not attach sysctl nodes\n", ifname); 1006 return; 1007 } 1008 1009 /* 1010 * The deferred if_start framework 1011 * 1012 * The common APIs to defer if_start to softint when if_start is requested 1013 * from a device driver running in hardware interrupt context. 1014 */ 1015 /* 1016 * Call ifp->if_start (or equivalent) in a dedicated softint for 1017 * deferred if_start. 1018 */ 1019 static void 1020 if_deferred_start_softint(void *arg) 1021 { 1022 struct if_deferred_start *ids = arg; 1023 struct ifnet *ifp = ids->ids_ifp; 1024 1025 ids->ids_if_start(ifp); 1026 } 1027 1028 /* 1029 * The default callback function for deferred if_start. 1030 */ 1031 static void 1032 if_deferred_start_common(struct ifnet *ifp) 1033 { 1034 int s; 1035 1036 s = splnet(); 1037 if_start_lock(ifp); 1038 splx(s); 1039 } 1040 1041 static inline bool 1042 if_snd_is_used(struct ifnet *ifp) 1043 { 1044 1045 return ALTQ_IS_ENABLED(&ifp->if_snd) || 1046 ifp->if_transmit == if_transmit || 1047 ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit; 1048 } 1049 1050 /* 1051 * Schedule deferred if_start. 1052 */ 1053 void 1054 if_schedule_deferred_start(struct ifnet *ifp) 1055 { 1056 1057 KASSERT(ifp->if_deferred_start != NULL); 1058 1059 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1060 return; 1061 1062 softint_schedule(ifp->if_deferred_start->ids_si); 1063 } 1064 1065 /* 1066 * Create an instance of deferred if_start. A driver should call the function 1067 * only if the driver needs deferred if_start. Drivers can setup their own 1068 * deferred if_start function via 2nd argument. 1069 */ 1070 void 1071 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1072 { 1073 struct if_deferred_start *ids; 1074 u_int flags = SOFTINT_NET; 1075 1076 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 1077 1078 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1079 ids->ids_ifp = ifp; 1080 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); 1081 if (func != NULL) 1082 ids->ids_if_start = func; 1083 else 1084 ids->ids_if_start = if_deferred_start_common; 1085 1086 ifp->if_deferred_start = ids; 1087 } 1088 1089 static void 1090 if_deferred_start_destroy(struct ifnet *ifp) 1091 { 1092 1093 if (ifp->if_deferred_start == NULL) 1094 return; 1095 1096 softint_disestablish(ifp->if_deferred_start->ids_si); 1097 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1098 ifp->if_deferred_start = NULL; 1099 } 1100 1101 /* 1102 * The common interface input routine that is called by device drivers, 1103 * which should be used only when the driver's rx handler already runs 1104 * in softint. 1105 */ 1106 void 1107 if_input(struct ifnet *ifp, struct mbuf *m) 1108 { 1109 1110 KASSERT(ifp->if_percpuq == NULL); 1111 KASSERT(!cpu_intr_p()); 1112 1113 ifp->if_ipackets++; 1114 bpf_mtap(ifp, m, BPF_D_IN); 1115 1116 ifp->_if_input(ifp, m); 1117 } 1118 1119 /* 1120 * DEPRECATED. Use if_initialize and if_register instead. 1121 * See the above comment of if_initialize. 1122 * 1123 * Note that it implicitly enables if_percpuq to make drivers easy to 1124 * migrate softint-based if_input without much changes. If you don't 1125 * want to enable it, use if_initialize instead. 1126 */ 1127 int 1128 if_attach(ifnet_t *ifp) 1129 { 1130 int rv; 1131 1132 rv = if_initialize(ifp); 1133 if (rv != 0) 1134 return rv; 1135 1136 ifp->if_percpuq = if_percpuq_create(ifp); 1137 if_register(ifp); 1138 1139 return 0; 1140 } 1141 1142 void 1143 if_attachdomain(void) 1144 { 1145 struct ifnet *ifp; 1146 int s; 1147 int bound = curlwp_bind(); 1148 1149 s = pserialize_read_enter(); 1150 IFNET_READER_FOREACH(ifp) { 1151 struct psref psref; 1152 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1153 pserialize_read_exit(s); 1154 if_attachdomain1(ifp); 1155 s = pserialize_read_enter(); 1156 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1157 } 1158 pserialize_read_exit(s); 1159 curlwp_bindx(bound); 1160 } 1161 1162 static void 1163 if_attachdomain1(struct ifnet *ifp) 1164 { 1165 struct domain *dp; 1166 int s; 1167 1168 s = splsoftnet(); 1169 1170 /* address family dependent data region */ 1171 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1172 DOMAIN_FOREACH(dp) { 1173 if (dp->dom_ifattach != NULL) 1174 ifp->if_afdata[dp->dom_family] = 1175 (*dp->dom_ifattach)(ifp); 1176 } 1177 1178 splx(s); 1179 } 1180 1181 /* 1182 * Deactivate an interface. This points all of the procedure 1183 * handles at error stubs. May be called from interrupt context. 1184 */ 1185 void 1186 if_deactivate(struct ifnet *ifp) 1187 { 1188 int s; 1189 1190 s = splsoftnet(); 1191 1192 ifp->if_output = if_nulloutput; 1193 ifp->_if_input = if_nullinput; 1194 ifp->if_start = if_nullstart; 1195 ifp->if_transmit = if_nulltransmit; 1196 ifp->if_ioctl = if_nullioctl; 1197 ifp->if_init = if_nullinit; 1198 ifp->if_stop = if_nullstop; 1199 ifp->if_slowtimo = if_nullslowtimo; 1200 ifp->if_drain = if_nulldrain; 1201 1202 /* No more packets may be enqueued. */ 1203 ifp->if_snd.ifq_maxlen = 0; 1204 1205 splx(s); 1206 } 1207 1208 bool 1209 if_is_deactivated(const struct ifnet *ifp) 1210 { 1211 1212 return ifp->if_output == if_nulloutput; 1213 } 1214 1215 void 1216 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1217 { 1218 struct ifaddr *ifa, *nifa; 1219 int s; 1220 1221 s = pserialize_read_enter(); 1222 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1223 nifa = IFADDR_READER_NEXT(ifa); 1224 if (ifa->ifa_addr->sa_family != family) 1225 continue; 1226 pserialize_read_exit(s); 1227 1228 (*purgeaddr)(ifa); 1229 1230 s = pserialize_read_enter(); 1231 } 1232 pserialize_read_exit(s); 1233 } 1234 1235 #ifdef IFAREF_DEBUG 1236 static struct ifaddr **ifa_list; 1237 static int ifa_list_size; 1238 1239 /* Depends on only one if_attach runs at once */ 1240 static void 1241 if_build_ifa_list(struct ifnet *ifp) 1242 { 1243 struct ifaddr *ifa; 1244 int i; 1245 1246 KASSERT(ifa_list == NULL); 1247 KASSERT(ifa_list_size == 0); 1248 1249 IFADDR_READER_FOREACH(ifa, ifp) 1250 ifa_list_size++; 1251 1252 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1253 i = 0; 1254 IFADDR_READER_FOREACH(ifa, ifp) { 1255 ifa_list[i++] = ifa; 1256 ifaref(ifa); 1257 } 1258 } 1259 1260 static void 1261 if_check_and_free_ifa_list(struct ifnet *ifp) 1262 { 1263 int i; 1264 struct ifaddr *ifa; 1265 1266 if (ifa_list == NULL) 1267 return; 1268 1269 for (i = 0; i < ifa_list_size; i++) { 1270 char buf[64]; 1271 1272 ifa = ifa_list[i]; 1273 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1274 if (ifa->ifa_refcnt > 1) { 1275 log(LOG_WARNING, 1276 "ifa(%s) still referenced (refcnt=%d)\n", 1277 buf, ifa->ifa_refcnt - 1); 1278 } else 1279 log(LOG_DEBUG, 1280 "ifa(%s) not referenced (refcnt=%d)\n", 1281 buf, ifa->ifa_refcnt - 1); 1282 ifafree(ifa); 1283 } 1284 1285 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1286 ifa_list = NULL; 1287 ifa_list_size = 0; 1288 } 1289 #endif 1290 1291 /* 1292 * Detach an interface from the list of "active" interfaces, 1293 * freeing any resources as we go along. 1294 * 1295 * NOTE: This routine must be called with a valid thread context, 1296 * as it may block. 1297 */ 1298 void 1299 if_detach(struct ifnet *ifp) 1300 { 1301 struct socket so; 1302 struct ifaddr *ifa; 1303 #ifdef IFAREF_DEBUG 1304 struct ifaddr *last_ifa = NULL; 1305 #endif 1306 struct domain *dp; 1307 const struct protosw *pr; 1308 int s, i, family, purged; 1309 1310 #ifdef IFAREF_DEBUG 1311 if_build_ifa_list(ifp); 1312 #endif 1313 /* 1314 * XXX It's kind of lame that we have to have the 1315 * XXX socket structure... 1316 */ 1317 memset(&so, 0, sizeof(so)); 1318 1319 s = splnet(); 1320 1321 sysctl_teardown(&ifp->if_sysctl_log); 1322 IFNET_LOCK(ifp); 1323 if_deactivate(ifp); 1324 IFNET_UNLOCK(ifp); 1325 1326 /* 1327 * Unlink from the list and wait for all readers to leave 1328 * from pserialize read sections. Note that we can't do 1329 * psref_target_destroy here. See below. 1330 */ 1331 IFNET_GLOBAL_LOCK(); 1332 ifindex2ifnet[ifp->if_index] = NULL; 1333 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1334 IFNET_WRITER_REMOVE(ifp); 1335 pserialize_perform(ifnet_psz); 1336 IFNET_GLOBAL_UNLOCK(); 1337 1338 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1339 ifp->if_slowtimo = NULL; 1340 callout_halt(ifp->if_slowtimo_ch, NULL); 1341 callout_destroy(ifp->if_slowtimo_ch); 1342 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1343 } 1344 if_deferred_start_destroy(ifp); 1345 1346 /* 1347 * Do an if_down() to give protocols a chance to do something. 1348 */ 1349 if_down_deactivated(ifp); 1350 1351 #ifdef ALTQ 1352 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1353 altq_disable(&ifp->if_snd); 1354 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1355 altq_detach(&ifp->if_snd); 1356 #endif 1357 1358 #if NCARP > 0 1359 /* Remove the interface from any carp group it is a part of. */ 1360 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1361 carp_ifdetach(ifp); 1362 #endif 1363 1364 /* 1365 * Rip all the addresses off the interface. This should make 1366 * all of the routes go away. 1367 * 1368 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1369 * from the list, including our "cursor", ifa. For safety, 1370 * and to honor the TAILQ abstraction, I just restart the 1371 * loop after each removal. Note that the loop will exit 1372 * when all of the remaining ifaddrs belong to the AF_LINK 1373 * family. I am counting on the historical fact that at 1374 * least one pr_usrreq in each address domain removes at 1375 * least one ifaddr. 1376 */ 1377 again: 1378 /* 1379 * At this point, no other one tries to remove ifa in the list, 1380 * so we don't need to take a lock or psref. Avoid using 1381 * IFADDR_READER_FOREACH to pass over an inspection of contract 1382 * violations of pserialize. 1383 */ 1384 IFADDR_WRITER_FOREACH(ifa, ifp) { 1385 family = ifa->ifa_addr->sa_family; 1386 #ifdef IFAREF_DEBUG 1387 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1388 ifa, family, ifa->ifa_refcnt); 1389 if (last_ifa != NULL && ifa == last_ifa) 1390 panic("if_detach: loop detected"); 1391 last_ifa = ifa; 1392 #endif 1393 if (family == AF_LINK) 1394 continue; 1395 dp = pffinddomain(family); 1396 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1397 /* 1398 * XXX These PURGEIF calls are redundant with the 1399 * purge-all-families calls below, but are left in for 1400 * now both to make a smaller change, and to avoid 1401 * unplanned interactions with clearing of 1402 * ifp->if_addrlist. 1403 */ 1404 purged = 0; 1405 for (pr = dp->dom_protosw; 1406 pr < dp->dom_protoswNPROTOSW; pr++) { 1407 so.so_proto = pr; 1408 if (pr->pr_usrreqs) { 1409 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1410 purged = 1; 1411 } 1412 } 1413 if (purged == 0) { 1414 /* 1415 * XXX What's really the best thing to do 1416 * XXX here? --thorpej@NetBSD.org 1417 */ 1418 printf("if_detach: WARNING: AF %d not purged\n", 1419 family); 1420 ifa_remove(ifp, ifa); 1421 } 1422 goto again; 1423 } 1424 1425 if_free_sadl(ifp, 1); 1426 1427 restart: 1428 IFADDR_WRITER_FOREACH(ifa, ifp) { 1429 family = ifa->ifa_addr->sa_family; 1430 KASSERT(family == AF_LINK); 1431 ifa_remove(ifp, ifa); 1432 goto restart; 1433 } 1434 1435 /* Delete stray routes from the routing table. */ 1436 for (i = 0; i <= AF_MAX; i++) 1437 rt_delete_matched_entries(i, if_delroute_matcher, ifp); 1438 1439 DOMAIN_FOREACH(dp) { 1440 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1441 { 1442 void *p = ifp->if_afdata[dp->dom_family]; 1443 if (p) { 1444 ifp->if_afdata[dp->dom_family] = NULL; 1445 (*dp->dom_ifdetach)(ifp, p); 1446 } 1447 } 1448 1449 /* 1450 * One would expect multicast memberships (INET and 1451 * INET6) on UDP sockets to be purged by the PURGEIF 1452 * calls above, but if all addresses were removed from 1453 * the interface prior to destruction, the calls will 1454 * not be made (e.g. ppp, for which pppd(8) generally 1455 * removes addresses before destroying the interface). 1456 * Because there is no invariant that multicast 1457 * memberships only exist for interfaces with IPv4 1458 * addresses, we must call PURGEIF regardless of 1459 * addresses. (Protocols which might store ifnet 1460 * pointers are marked with PR_PURGEIF.) 1461 */ 1462 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1463 so.so_proto = pr; 1464 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1465 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1466 } 1467 } 1468 1469 /* 1470 * Must be done after the above pr_purgeif because if_psref may be 1471 * still used in pr_purgeif. 1472 */ 1473 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1474 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1475 1476 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1477 (void)pfil_head_destroy(ifp->if_pfil); 1478 1479 /* Announce that the interface is gone. */ 1480 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1481 1482 IF_AFDATA_LOCK_DESTROY(ifp); 1483 1484 if (if_is_link_state_changeable(ifp)) { 1485 softint_disestablish(ifp->if_link_si); 1486 ifp->if_link_si = NULL; 1487 } 1488 1489 /* 1490 * remove packets that came from ifp, from software interrupt queues. 1491 */ 1492 DOMAIN_FOREACH(dp) { 1493 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1494 struct ifqueue *iq = dp->dom_ifqueues[i]; 1495 if (iq == NULL) 1496 break; 1497 dp->dom_ifqueues[i] = NULL; 1498 if_detach_queues(ifp, iq); 1499 } 1500 } 1501 1502 /* 1503 * IP queues have to be processed separately: net-queue barrier 1504 * ensures that the packets are dequeued while a cross-call will 1505 * ensure that the interrupts have completed. FIXME: not quite.. 1506 */ 1507 #ifdef INET 1508 pktq_barrier(ip_pktq); 1509 #endif 1510 #ifdef INET6 1511 if (in6_present) 1512 pktq_barrier(ip6_pktq); 1513 #endif 1514 xc_barrier(0); 1515 1516 if (ifp->if_percpuq != NULL) { 1517 if_percpuq_destroy(ifp->if_percpuq); 1518 ifp->if_percpuq = NULL; 1519 } 1520 1521 mutex_obj_free(ifp->if_ioctl_lock); 1522 ifp->if_ioctl_lock = NULL; 1523 mutex_obj_free(ifp->if_snd.ifq_lock); 1524 1525 splx(s); 1526 1527 #ifdef IFAREF_DEBUG 1528 if_check_and_free_ifa_list(ifp); 1529 #endif 1530 } 1531 1532 static void 1533 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1534 { 1535 struct mbuf *m, *prev, *next; 1536 1537 prev = NULL; 1538 for (m = q->ifq_head; m != NULL; m = next) { 1539 KASSERT((m->m_flags & M_PKTHDR) != 0); 1540 1541 next = m->m_nextpkt; 1542 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1543 prev = m; 1544 continue; 1545 } 1546 1547 if (prev != NULL) 1548 prev->m_nextpkt = m->m_nextpkt; 1549 else 1550 q->ifq_head = m->m_nextpkt; 1551 if (q->ifq_tail == m) 1552 q->ifq_tail = prev; 1553 q->ifq_len--; 1554 1555 m->m_nextpkt = NULL; 1556 m_freem(m); 1557 IF_DROP(q); 1558 } 1559 } 1560 1561 /* 1562 * Callback for a radix tree walk to delete all references to an 1563 * ifnet. 1564 */ 1565 static int 1566 if_delroute_matcher(struct rtentry *rt, void *v) 1567 { 1568 struct ifnet *ifp = (struct ifnet *)v; 1569 1570 if (rt->rt_ifp == ifp) 1571 return 1; 1572 else 1573 return 0; 1574 } 1575 1576 /* 1577 * Create a clone network interface. 1578 */ 1579 static int 1580 if_clone_create(const char *name) 1581 { 1582 struct if_clone *ifc; 1583 int unit; 1584 struct ifnet *ifp; 1585 struct psref psref; 1586 1587 KASSERT(mutex_owned(&if_clone_mtx)); 1588 1589 ifc = if_clone_lookup(name, &unit); 1590 if (ifc == NULL) 1591 return EINVAL; 1592 1593 ifp = if_get(name, &psref); 1594 if (ifp != NULL) { 1595 if_put(ifp, &psref); 1596 return EEXIST; 1597 } 1598 1599 return (*ifc->ifc_create)(ifc, unit); 1600 } 1601 1602 /* 1603 * Destroy a clone network interface. 1604 */ 1605 static int 1606 if_clone_destroy(const char *name) 1607 { 1608 struct if_clone *ifc; 1609 struct ifnet *ifp; 1610 struct psref psref; 1611 int error; 1612 int (*if_ioctl)(struct ifnet *, u_long, void *); 1613 1614 KASSERT(mutex_owned(&if_clone_mtx)); 1615 1616 ifc = if_clone_lookup(name, NULL); 1617 if (ifc == NULL) 1618 return EINVAL; 1619 1620 if (ifc->ifc_destroy == NULL) 1621 return EOPNOTSUPP; 1622 1623 ifp = if_get(name, &psref); 1624 if (ifp == NULL) 1625 return ENXIO; 1626 1627 /* We have to disable ioctls here */ 1628 IFNET_LOCK(ifp); 1629 if_ioctl = ifp->if_ioctl; 1630 ifp->if_ioctl = if_nullioctl; 1631 IFNET_UNLOCK(ifp); 1632 1633 /* 1634 * We cannot call ifc_destroy with holding ifp. 1635 * Releasing ifp here is safe thanks to if_clone_mtx. 1636 */ 1637 if_put(ifp, &psref); 1638 1639 error = (*ifc->ifc_destroy)(ifp); 1640 1641 if (error != 0) { 1642 /* We have to restore if_ioctl on error */ 1643 IFNET_LOCK(ifp); 1644 ifp->if_ioctl = if_ioctl; 1645 IFNET_UNLOCK(ifp); 1646 } 1647 1648 return error; 1649 } 1650 1651 static bool 1652 if_is_unit(const char *name) 1653 { 1654 1655 while (*name != '\0') { 1656 if (*name < '0' || *name > '9') 1657 return false; 1658 name++; 1659 } 1660 1661 return true; 1662 } 1663 1664 /* 1665 * Look up a network interface cloner. 1666 */ 1667 static struct if_clone * 1668 if_clone_lookup(const char *name, int *unitp) 1669 { 1670 struct if_clone *ifc; 1671 const char *cp; 1672 char *dp, ifname[IFNAMSIZ + 3]; 1673 int unit; 1674 1675 KASSERT(mutex_owned(&if_clone_mtx)); 1676 1677 strcpy(ifname, "if_"); 1678 /* separate interface name from unit */ 1679 /* TODO: search unit number from backward */ 1680 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1681 *cp && !if_is_unit(cp);) 1682 *dp++ = *cp++; 1683 1684 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1685 return NULL; /* No name or unit number */ 1686 *dp++ = '\0'; 1687 1688 again: 1689 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1690 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1691 break; 1692 } 1693 1694 if (ifc == NULL) { 1695 int error; 1696 if (*ifname == '\0') 1697 return NULL; 1698 mutex_exit(&if_clone_mtx); 1699 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1700 mutex_enter(&if_clone_mtx); 1701 if (error) 1702 return NULL; 1703 *ifname = '\0'; 1704 goto again; 1705 } 1706 1707 unit = 0; 1708 while (cp - name < IFNAMSIZ && *cp) { 1709 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1710 /* Bogus unit number. */ 1711 return NULL; 1712 } 1713 unit = (unit * 10) + (*cp++ - '0'); 1714 } 1715 1716 if (unitp != NULL) 1717 *unitp = unit; 1718 return ifc; 1719 } 1720 1721 /* 1722 * Register a network interface cloner. 1723 */ 1724 void 1725 if_clone_attach(struct if_clone *ifc) 1726 { 1727 1728 mutex_enter(&if_clone_mtx); 1729 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1730 if_cloners_count++; 1731 mutex_exit(&if_clone_mtx); 1732 } 1733 1734 /* 1735 * Unregister a network interface cloner. 1736 */ 1737 void 1738 if_clone_detach(struct if_clone *ifc) 1739 { 1740 1741 mutex_enter(&if_clone_mtx); 1742 LIST_REMOVE(ifc, ifc_list); 1743 if_cloners_count--; 1744 mutex_exit(&if_clone_mtx); 1745 } 1746 1747 /* 1748 * Provide list of interface cloners to userspace. 1749 */ 1750 int 1751 if_clone_list(int buf_count, char *buffer, int *total) 1752 { 1753 char outbuf[IFNAMSIZ], *dst; 1754 struct if_clone *ifc; 1755 int count, error = 0; 1756 1757 mutex_enter(&if_clone_mtx); 1758 *total = if_cloners_count; 1759 if ((dst = buffer) == NULL) { 1760 /* Just asking how many there are. */ 1761 goto out; 1762 } 1763 1764 if (buf_count < 0) { 1765 error = EINVAL; 1766 goto out; 1767 } 1768 1769 count = (if_cloners_count < buf_count) ? 1770 if_cloners_count : buf_count; 1771 1772 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1773 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1774 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1775 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1776 error = ENAMETOOLONG; 1777 goto out; 1778 } 1779 error = copyout(outbuf, dst, sizeof(outbuf)); 1780 if (error != 0) 1781 break; 1782 } 1783 1784 out: 1785 mutex_exit(&if_clone_mtx); 1786 return error; 1787 } 1788 1789 void 1790 ifa_psref_init(struct ifaddr *ifa) 1791 { 1792 1793 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1794 } 1795 1796 void 1797 ifaref(struct ifaddr *ifa) 1798 { 1799 1800 atomic_inc_uint(&ifa->ifa_refcnt); 1801 } 1802 1803 void 1804 ifafree(struct ifaddr *ifa) 1805 { 1806 KASSERT(ifa != NULL); 1807 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt); 1808 1809 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) { 1810 free(ifa, M_IFADDR); 1811 } 1812 } 1813 1814 bool 1815 ifa_is_destroying(struct ifaddr *ifa) 1816 { 1817 1818 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1819 } 1820 1821 void 1822 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1823 { 1824 1825 ifa->ifa_ifp = ifp; 1826 1827 /* 1828 * Check MP-safety for IFEF_MPSAFE drivers. 1829 * Check !IFF_RUNNING for initialization routines that normally don't 1830 * take IFNET_LOCK but it's safe because there is no competitor. 1831 * XXX there are false positive cases because IFF_RUNNING can be off on 1832 * if_stop. 1833 */ 1834 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1835 IFNET_LOCKED(ifp)); 1836 1837 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1838 IFADDR_ENTRY_INIT(ifa); 1839 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1840 1841 ifaref(ifa); 1842 } 1843 1844 void 1845 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1846 { 1847 1848 KASSERT(ifa->ifa_ifp == ifp); 1849 /* 1850 * Check MP-safety for IFEF_MPSAFE drivers. 1851 * if_is_deactivated indicates ifa_remove is called form if_detach 1852 * where is safe even if IFNET_LOCK isn't held. 1853 */ 1854 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp)); 1855 1856 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1857 IFADDR_WRITER_REMOVE(ifa); 1858 #ifdef NET_MPSAFE 1859 IFNET_GLOBAL_LOCK(); 1860 pserialize_perform(ifnet_psz); 1861 IFNET_GLOBAL_UNLOCK(); 1862 #endif 1863 1864 #ifdef NET_MPSAFE 1865 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1866 #endif 1867 IFADDR_ENTRY_DESTROY(ifa); 1868 ifafree(ifa); 1869 } 1870 1871 void 1872 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1873 { 1874 1875 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 1876 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1877 } 1878 1879 void 1880 ifa_release(struct ifaddr *ifa, struct psref *psref) 1881 { 1882 1883 if (ifa == NULL) 1884 return; 1885 1886 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1887 } 1888 1889 bool 1890 ifa_held(struct ifaddr *ifa) 1891 { 1892 1893 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1894 } 1895 1896 static inline int 1897 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1898 { 1899 return sockaddr_cmp(sa1, sa2) == 0; 1900 } 1901 1902 /* 1903 * Locate an interface based on a complete address. 1904 */ 1905 /*ARGSUSED*/ 1906 struct ifaddr * 1907 ifa_ifwithaddr(const struct sockaddr *addr) 1908 { 1909 struct ifnet *ifp; 1910 struct ifaddr *ifa; 1911 1912 IFNET_READER_FOREACH(ifp) { 1913 if (if_is_deactivated(ifp)) 1914 continue; 1915 IFADDR_READER_FOREACH(ifa, ifp) { 1916 if (ifa->ifa_addr->sa_family != addr->sa_family) 1917 continue; 1918 if (equal(addr, ifa->ifa_addr)) 1919 return ifa; 1920 if ((ifp->if_flags & IFF_BROADCAST) && 1921 ifa->ifa_broadaddr && 1922 /* IP6 doesn't have broadcast */ 1923 ifa->ifa_broadaddr->sa_len != 0 && 1924 equal(ifa->ifa_broadaddr, addr)) 1925 return ifa; 1926 } 1927 } 1928 return NULL; 1929 } 1930 1931 struct ifaddr * 1932 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1933 { 1934 struct ifaddr *ifa; 1935 int s = pserialize_read_enter(); 1936 1937 ifa = ifa_ifwithaddr(addr); 1938 if (ifa != NULL) 1939 ifa_acquire(ifa, psref); 1940 pserialize_read_exit(s); 1941 1942 return ifa; 1943 } 1944 1945 /* 1946 * Locate the point to point interface with a given destination address. 1947 */ 1948 /*ARGSUSED*/ 1949 struct ifaddr * 1950 ifa_ifwithdstaddr(const struct sockaddr *addr) 1951 { 1952 struct ifnet *ifp; 1953 struct ifaddr *ifa; 1954 1955 IFNET_READER_FOREACH(ifp) { 1956 if (if_is_deactivated(ifp)) 1957 continue; 1958 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1959 continue; 1960 IFADDR_READER_FOREACH(ifa, ifp) { 1961 if (ifa->ifa_addr->sa_family != addr->sa_family || 1962 ifa->ifa_dstaddr == NULL) 1963 continue; 1964 if (equal(addr, ifa->ifa_dstaddr)) 1965 return ifa; 1966 } 1967 } 1968 1969 return NULL; 1970 } 1971 1972 struct ifaddr * 1973 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1974 { 1975 struct ifaddr *ifa; 1976 int s; 1977 1978 s = pserialize_read_enter(); 1979 ifa = ifa_ifwithdstaddr(addr); 1980 if (ifa != NULL) 1981 ifa_acquire(ifa, psref); 1982 pserialize_read_exit(s); 1983 1984 return ifa; 1985 } 1986 1987 /* 1988 * Find an interface on a specific network. If many, choice 1989 * is most specific found. 1990 */ 1991 struct ifaddr * 1992 ifa_ifwithnet(const struct sockaddr *addr) 1993 { 1994 struct ifnet *ifp; 1995 struct ifaddr *ifa, *ifa_maybe = NULL; 1996 const struct sockaddr_dl *sdl; 1997 u_int af = addr->sa_family; 1998 const char *addr_data = addr->sa_data, *cplim; 1999 2000 if (af == AF_LINK) { 2001 sdl = satocsdl(addr); 2002 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 2003 ifindex2ifnet[sdl->sdl_index] && 2004 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 2005 return ifindex2ifnet[sdl->sdl_index]->if_dl; 2006 } 2007 } 2008 #ifdef NETATALK 2009 if (af == AF_APPLETALK) { 2010 const struct sockaddr_at *sat, *sat2; 2011 sat = (const struct sockaddr_at *)addr; 2012 IFNET_READER_FOREACH(ifp) { 2013 if (if_is_deactivated(ifp)) 2014 continue; 2015 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 2016 if (ifa == NULL) 2017 continue; 2018 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 2019 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 2020 return ifa; /* exact match */ 2021 if (ifa_maybe == NULL) { 2022 /* else keep the if with the right range */ 2023 ifa_maybe = ifa; 2024 } 2025 } 2026 return ifa_maybe; 2027 } 2028 #endif 2029 IFNET_READER_FOREACH(ifp) { 2030 if (if_is_deactivated(ifp)) 2031 continue; 2032 IFADDR_READER_FOREACH(ifa, ifp) { 2033 const char *cp, *cp2, *cp3; 2034 2035 if (ifa->ifa_addr->sa_family != af || 2036 ifa->ifa_netmask == NULL) 2037 next: continue; 2038 cp = addr_data; 2039 cp2 = ifa->ifa_addr->sa_data; 2040 cp3 = ifa->ifa_netmask->sa_data; 2041 cplim = (const char *)ifa->ifa_netmask + 2042 ifa->ifa_netmask->sa_len; 2043 while (cp3 < cplim) { 2044 if ((*cp++ ^ *cp2++) & *cp3++) { 2045 /* want to continue for() loop */ 2046 goto next; 2047 } 2048 } 2049 if (ifa_maybe == NULL || 2050 rt_refines(ifa->ifa_netmask, 2051 ifa_maybe->ifa_netmask)) 2052 ifa_maybe = ifa; 2053 } 2054 } 2055 return ifa_maybe; 2056 } 2057 2058 struct ifaddr * 2059 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2060 { 2061 struct ifaddr *ifa; 2062 int s; 2063 2064 s = pserialize_read_enter(); 2065 ifa = ifa_ifwithnet(addr); 2066 if (ifa != NULL) 2067 ifa_acquire(ifa, psref); 2068 pserialize_read_exit(s); 2069 2070 return ifa; 2071 } 2072 2073 /* 2074 * Find the interface of the addresss. 2075 */ 2076 struct ifaddr * 2077 ifa_ifwithladdr(const struct sockaddr *addr) 2078 { 2079 struct ifaddr *ia; 2080 2081 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2082 (ia = ifa_ifwithnet(addr))) 2083 return ia; 2084 return NULL; 2085 } 2086 2087 struct ifaddr * 2088 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2089 { 2090 struct ifaddr *ifa; 2091 int s; 2092 2093 s = pserialize_read_enter(); 2094 ifa = ifa_ifwithladdr(addr); 2095 if (ifa != NULL) 2096 ifa_acquire(ifa, psref); 2097 pserialize_read_exit(s); 2098 2099 return ifa; 2100 } 2101 2102 /* 2103 * Find an interface using a specific address family 2104 */ 2105 struct ifaddr * 2106 ifa_ifwithaf(int af) 2107 { 2108 struct ifnet *ifp; 2109 struct ifaddr *ifa = NULL; 2110 int s; 2111 2112 s = pserialize_read_enter(); 2113 IFNET_READER_FOREACH(ifp) { 2114 if (if_is_deactivated(ifp)) 2115 continue; 2116 IFADDR_READER_FOREACH(ifa, ifp) { 2117 if (ifa->ifa_addr->sa_family == af) 2118 goto out; 2119 } 2120 } 2121 out: 2122 pserialize_read_exit(s); 2123 return ifa; 2124 } 2125 2126 /* 2127 * Find an interface address specific to an interface best matching 2128 * a given address. 2129 */ 2130 struct ifaddr * 2131 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2132 { 2133 struct ifaddr *ifa; 2134 const char *cp, *cp2, *cp3; 2135 const char *cplim; 2136 struct ifaddr *ifa_maybe = 0; 2137 u_int af = addr->sa_family; 2138 2139 if (if_is_deactivated(ifp)) 2140 return NULL; 2141 2142 if (af >= AF_MAX) 2143 return NULL; 2144 2145 IFADDR_READER_FOREACH(ifa, ifp) { 2146 if (ifa->ifa_addr->sa_family != af) 2147 continue; 2148 ifa_maybe = ifa; 2149 if (ifa->ifa_netmask == NULL) { 2150 if (equal(addr, ifa->ifa_addr) || 2151 (ifa->ifa_dstaddr && 2152 equal(addr, ifa->ifa_dstaddr))) 2153 return ifa; 2154 continue; 2155 } 2156 cp = addr->sa_data; 2157 cp2 = ifa->ifa_addr->sa_data; 2158 cp3 = ifa->ifa_netmask->sa_data; 2159 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2160 for (; cp3 < cplim; cp3++) { 2161 if ((*cp++ ^ *cp2++) & *cp3) 2162 break; 2163 } 2164 if (cp3 == cplim) 2165 return ifa; 2166 } 2167 return ifa_maybe; 2168 } 2169 2170 struct ifaddr * 2171 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2172 struct psref *psref) 2173 { 2174 struct ifaddr *ifa; 2175 int s; 2176 2177 s = pserialize_read_enter(); 2178 ifa = ifaof_ifpforaddr(addr, ifp); 2179 if (ifa != NULL) 2180 ifa_acquire(ifa, psref); 2181 pserialize_read_exit(s); 2182 2183 return ifa; 2184 } 2185 2186 /* 2187 * Default action when installing a route with a Link Level gateway. 2188 * Lookup an appropriate real ifa to point to. 2189 * This should be moved to /sys/net/link.c eventually. 2190 */ 2191 void 2192 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2193 { 2194 struct ifaddr *ifa; 2195 const struct sockaddr *dst; 2196 struct ifnet *ifp; 2197 struct psref psref; 2198 2199 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2200 return; 2201 ifp = rt->rt_ifa->ifa_ifp; 2202 dst = rt_getkey(rt); 2203 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2204 rt_replace_ifa(rt, ifa); 2205 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2206 ifa->ifa_rtrequest(cmd, rt, info); 2207 ifa_release(ifa, &psref); 2208 } 2209 } 2210 2211 /* 2212 * bitmask macros to manage a densely packed link_state change queue. 2213 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2214 * LINK_STATE_UP(2) we need 2 bits for each state change. 2215 * As a state change to store is 0, treat all bits set as an unset item. 2216 */ 2217 #define LQ_ITEM_BITS 2 2218 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2219 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2220 #define LINK_STATE_UNSET LQ_ITEM_MASK 2221 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2222 #define LQ_STORE(q, i, v) \ 2223 do { \ 2224 (q) &= ~LQ_MASK((i)); \ 2225 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2226 } while (0 /* CONSTCOND */) 2227 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2228 #define LQ_POP(q, v) \ 2229 do { \ 2230 (v) = LQ_ITEM((q), 0); \ 2231 (q) >>= LQ_ITEM_BITS; \ 2232 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2233 } while (0 /* CONSTCOND */) 2234 #define LQ_PUSH(q, v) \ 2235 do { \ 2236 (q) >>= LQ_ITEM_BITS; \ 2237 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2238 } while (0 /* CONSTCOND */) 2239 #define LQ_FIND_UNSET(q, i) \ 2240 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2241 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2242 break; \ 2243 } 2244 2245 /* 2246 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 2247 * for each ifnet. It doesn't matter because: 2248 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 2249 * ifq_lock don't happen 2250 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 2251 * because if_snd, if_link_state_change and if_link_state_change_softint 2252 * are all called with KERNEL_LOCK 2253 */ 2254 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 2255 mutex_enter((ifp)->if_snd.ifq_lock) 2256 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 2257 mutex_exit((ifp)->if_snd.ifq_lock) 2258 2259 /* 2260 * Handle a change in the interface link state and 2261 * queue notifications. 2262 */ 2263 void 2264 if_link_state_change(struct ifnet *ifp, int link_state) 2265 { 2266 int idx; 2267 2268 KASSERTMSG(if_is_link_state_changeable(ifp), 2269 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x", 2270 ifp->if_xname, ifp->if_extflags); 2271 2272 /* Ensure change is to a valid state */ 2273 switch (link_state) { 2274 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2275 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2276 case LINK_STATE_UP: 2277 break; 2278 default: 2279 #ifdef DEBUG 2280 printf("%s: invalid link state %d\n", 2281 ifp->if_xname, link_state); 2282 #endif 2283 return; 2284 } 2285 2286 IF_LINK_STATE_CHANGE_LOCK(ifp); 2287 2288 /* Find the last unset event in the queue. */ 2289 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2290 2291 /* 2292 * Ensure link_state doesn't match the last event in the queue. 2293 * ifp->if_link_state is not checked and set here because 2294 * that would present an inconsistent picture to the system. 2295 */ 2296 if (idx != 0 && 2297 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2298 goto out; 2299 2300 /* Handle queue overflow. */ 2301 if (idx == LQ_MAX(ifp->if_link_queue)) { 2302 uint8_t lost; 2303 2304 /* 2305 * The DOWN state must be protected from being pushed off 2306 * the queue to ensure that userland will always be 2307 * in a sane state. 2308 * Because DOWN is protected, there is no need to protect 2309 * UNKNOWN. 2310 * It should be invalid to change from any other state to 2311 * UNKNOWN anyway ... 2312 */ 2313 lost = LQ_ITEM(ifp->if_link_queue, 0); 2314 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2315 if (lost == LINK_STATE_DOWN) { 2316 lost = LQ_ITEM(ifp->if_link_queue, 0); 2317 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2318 } 2319 printf("%s: lost link state change %s\n", 2320 ifp->if_xname, 2321 lost == LINK_STATE_UP ? "UP" : 2322 lost == LINK_STATE_DOWN ? "DOWN" : 2323 "UNKNOWN"); 2324 } else 2325 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2326 2327 softint_schedule(ifp->if_link_si); 2328 2329 out: 2330 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2331 } 2332 2333 /* 2334 * Handle interface link state change notifications. 2335 */ 2336 void 2337 if_link_state_change_softint(struct ifnet *ifp, int link_state) 2338 { 2339 struct domain *dp; 2340 int s = splnet(); 2341 bool notify; 2342 2343 KASSERT(!cpu_intr_p()); 2344 2345 IF_LINK_STATE_CHANGE_LOCK(ifp); 2346 2347 /* Ensure the change is still valid. */ 2348 if (ifp->if_link_state == link_state) { 2349 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2350 splx(s); 2351 return; 2352 } 2353 2354 #ifdef DEBUG 2355 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2356 link_state == LINK_STATE_UP ? "UP" : 2357 link_state == LINK_STATE_DOWN ? "DOWN" : 2358 "UNKNOWN", 2359 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2360 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2361 "UNKNOWN"); 2362 #endif 2363 2364 /* 2365 * When going from UNKNOWN to UP, we need to mark existing 2366 * addresses as tentative and restart DAD as we may have 2367 * erroneously not found a duplicate. 2368 * 2369 * This needs to happen before rt_ifmsg to avoid a race where 2370 * listeners would have an address and expect it to work right 2371 * away. 2372 */ 2373 notify = (link_state == LINK_STATE_UP && 2374 ifp->if_link_state == LINK_STATE_UNKNOWN); 2375 ifp->if_link_state = link_state; 2376 /* The following routines may sleep so release the spin mutex */ 2377 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2378 2379 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2380 if (notify) { 2381 DOMAIN_FOREACH(dp) { 2382 if (dp->dom_if_link_state_change != NULL) 2383 dp->dom_if_link_state_change(ifp, 2384 LINK_STATE_DOWN); 2385 } 2386 } 2387 2388 /* Notify that the link state has changed. */ 2389 rt_ifmsg(ifp); 2390 2391 #if NCARP > 0 2392 if (ifp->if_carp) 2393 carp_carpdev_state(ifp); 2394 #endif 2395 2396 DOMAIN_FOREACH(dp) { 2397 if (dp->dom_if_link_state_change != NULL) 2398 dp->dom_if_link_state_change(ifp, link_state); 2399 } 2400 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2401 splx(s); 2402 } 2403 2404 /* 2405 * Process the interface link state change queue. 2406 */ 2407 static void 2408 if_link_state_change_si(void *arg) 2409 { 2410 struct ifnet *ifp = arg; 2411 int s; 2412 uint8_t state; 2413 bool schedule; 2414 2415 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2416 s = splnet(); 2417 2418 /* Pop a link state change from the queue and process it. */ 2419 IF_LINK_STATE_CHANGE_LOCK(ifp); 2420 LQ_POP(ifp->if_link_queue, state); 2421 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2422 2423 if_link_state_change_softint(ifp, state); 2424 2425 /* If there is a link state change to come, schedule it. */ 2426 IF_LINK_STATE_CHANGE_LOCK(ifp); 2427 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET); 2428 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2429 if (schedule) 2430 softint_schedule(ifp->if_link_si); 2431 2432 splx(s); 2433 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2434 } 2435 2436 /* 2437 * Default action when installing a local route on a point-to-point 2438 * interface. 2439 */ 2440 void 2441 p2p_rtrequest(int req, struct rtentry *rt, 2442 __unused const struct rt_addrinfo *info) 2443 { 2444 struct ifnet *ifp = rt->rt_ifp; 2445 struct ifaddr *ifa, *lo0ifa; 2446 int s = pserialize_read_enter(); 2447 2448 switch (req) { 2449 case RTM_ADD: 2450 if ((rt->rt_flags & RTF_LOCAL) == 0) 2451 break; 2452 2453 rt->rt_ifp = lo0ifp; 2454 2455 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2456 break; 2457 2458 IFADDR_READER_FOREACH(ifa, ifp) { 2459 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2460 break; 2461 } 2462 if (ifa == NULL) 2463 break; 2464 2465 /* 2466 * Ensure lo0 has an address of the same family. 2467 */ 2468 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2469 if (lo0ifa->ifa_addr->sa_family == 2470 ifa->ifa_addr->sa_family) 2471 break; 2472 } 2473 if (lo0ifa == NULL) 2474 break; 2475 2476 /* 2477 * Make sure to set rt->rt_ifa to the interface 2478 * address we are using, otherwise we will have trouble 2479 * with source address selection. 2480 */ 2481 if (ifa != rt->rt_ifa) 2482 rt_replace_ifa(rt, ifa); 2483 break; 2484 case RTM_DELETE: 2485 default: 2486 break; 2487 } 2488 pserialize_read_exit(s); 2489 } 2490 2491 static void 2492 _if_down(struct ifnet *ifp) 2493 { 2494 struct ifaddr *ifa; 2495 struct domain *dp; 2496 int s, bound; 2497 struct psref psref; 2498 2499 ifp->if_flags &= ~IFF_UP; 2500 nanotime(&ifp->if_lastchange); 2501 2502 bound = curlwp_bind(); 2503 s = pserialize_read_enter(); 2504 IFADDR_READER_FOREACH(ifa, ifp) { 2505 ifa_acquire(ifa, &psref); 2506 pserialize_read_exit(s); 2507 2508 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2509 2510 s = pserialize_read_enter(); 2511 ifa_release(ifa, &psref); 2512 } 2513 pserialize_read_exit(s); 2514 curlwp_bindx(bound); 2515 2516 IFQ_PURGE(&ifp->if_snd); 2517 #if NCARP > 0 2518 if (ifp->if_carp) 2519 carp_carpdev_state(ifp); 2520 #endif 2521 rt_ifmsg(ifp); 2522 DOMAIN_FOREACH(dp) { 2523 if (dp->dom_if_down) 2524 dp->dom_if_down(ifp); 2525 } 2526 } 2527 2528 static void 2529 if_down_deactivated(struct ifnet *ifp) 2530 { 2531 2532 KASSERT(if_is_deactivated(ifp)); 2533 _if_down(ifp); 2534 } 2535 2536 void 2537 if_down_locked(struct ifnet *ifp) 2538 { 2539 2540 KASSERT(IFNET_LOCKED(ifp)); 2541 _if_down(ifp); 2542 } 2543 2544 /* 2545 * Mark an interface down and notify protocols of 2546 * the transition. 2547 * NOTE: must be called at splsoftnet or equivalent. 2548 */ 2549 void 2550 if_down(struct ifnet *ifp) 2551 { 2552 2553 IFNET_LOCK(ifp); 2554 if_down_locked(ifp); 2555 IFNET_UNLOCK(ifp); 2556 } 2557 2558 /* 2559 * Must be called with holding if_ioctl_lock. 2560 */ 2561 static void 2562 if_up_locked(struct ifnet *ifp) 2563 { 2564 #ifdef notyet 2565 struct ifaddr *ifa; 2566 #endif 2567 struct domain *dp; 2568 2569 KASSERT(IFNET_LOCKED(ifp)); 2570 2571 KASSERT(!if_is_deactivated(ifp)); 2572 ifp->if_flags |= IFF_UP; 2573 nanotime(&ifp->if_lastchange); 2574 #ifdef notyet 2575 /* this has no effect on IP, and will kill all ISO connections XXX */ 2576 IFADDR_READER_FOREACH(ifa, ifp) 2577 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2578 #endif 2579 #if NCARP > 0 2580 if (ifp->if_carp) 2581 carp_carpdev_state(ifp); 2582 #endif 2583 rt_ifmsg(ifp); 2584 DOMAIN_FOREACH(dp) { 2585 if (dp->dom_if_up) 2586 dp->dom_if_up(ifp); 2587 } 2588 } 2589 2590 /* 2591 * Handle interface slowtimo timer routine. Called 2592 * from softclock, we decrement timer (if set) and 2593 * call the appropriate interface routine on expiration. 2594 */ 2595 static void 2596 if_slowtimo(void *arg) 2597 { 2598 void (*slowtimo)(struct ifnet *); 2599 struct ifnet *ifp = arg; 2600 int s; 2601 2602 slowtimo = ifp->if_slowtimo; 2603 if (__predict_false(slowtimo == NULL)) 2604 return; 2605 2606 s = splnet(); 2607 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2608 (*slowtimo)(ifp); 2609 2610 splx(s); 2611 2612 if (__predict_true(ifp->if_slowtimo != NULL)) 2613 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2614 } 2615 2616 /* 2617 * Mark an interface up and notify protocols of 2618 * the transition. 2619 * NOTE: must be called at splsoftnet or equivalent. 2620 */ 2621 void 2622 if_up(struct ifnet *ifp) 2623 { 2624 2625 IFNET_LOCK(ifp); 2626 if_up_locked(ifp); 2627 IFNET_UNLOCK(ifp); 2628 } 2629 2630 /* 2631 * Set/clear promiscuous mode on interface ifp based on the truth value 2632 * of pswitch. The calls are reference counted so that only the first 2633 * "on" request actually has an effect, as does the final "off" request. 2634 * Results are undefined if the "off" and "on" requests are not matched. 2635 */ 2636 int 2637 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2638 { 2639 int pcount, ret = 0; 2640 u_short nflags; 2641 2642 KASSERT(IFNET_LOCKED(ifp)); 2643 2644 pcount = ifp->if_pcount; 2645 if (pswitch) { 2646 /* 2647 * Allow the device to be "placed" into promiscuous 2648 * mode even if it is not configured up. It will 2649 * consult IFF_PROMISC when it is brought up. 2650 */ 2651 if (ifp->if_pcount++ != 0) 2652 goto out; 2653 nflags = ifp->if_flags | IFF_PROMISC; 2654 } else { 2655 if (--ifp->if_pcount > 0) 2656 goto out; 2657 nflags = ifp->if_flags & ~IFF_PROMISC; 2658 } 2659 ret = if_flags_set(ifp, nflags); 2660 /* Restore interface state if not successful. */ 2661 if (ret != 0) { 2662 ifp->if_pcount = pcount; 2663 } 2664 out: 2665 return ret; 2666 } 2667 2668 int 2669 ifpromisc(struct ifnet *ifp, int pswitch) 2670 { 2671 int e; 2672 2673 IFNET_LOCK(ifp); 2674 e = ifpromisc_locked(ifp, pswitch); 2675 IFNET_UNLOCK(ifp); 2676 2677 return e; 2678 } 2679 2680 /* 2681 * Map interface name to 2682 * interface structure pointer. 2683 */ 2684 struct ifnet * 2685 ifunit(const char *name) 2686 { 2687 struct ifnet *ifp; 2688 const char *cp = name; 2689 u_int unit = 0; 2690 u_int i; 2691 int s; 2692 2693 /* 2694 * If the entire name is a number, treat it as an ifindex. 2695 */ 2696 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2697 unit = unit * 10 + (*cp - '0'); 2698 } 2699 2700 /* 2701 * If the number took all of the name, then it's a valid ifindex. 2702 */ 2703 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2704 return if_byindex(unit); 2705 2706 ifp = NULL; 2707 s = pserialize_read_enter(); 2708 IFNET_READER_FOREACH(ifp) { 2709 if (if_is_deactivated(ifp)) 2710 continue; 2711 if (strcmp(ifp->if_xname, name) == 0) 2712 goto out; 2713 } 2714 out: 2715 pserialize_read_exit(s); 2716 return ifp; 2717 } 2718 2719 /* 2720 * Get a reference of an ifnet object by an interface name. 2721 * The returned reference is protected by psref(9). The caller 2722 * must release a returned reference by if_put after use. 2723 */ 2724 struct ifnet * 2725 if_get(const char *name, struct psref *psref) 2726 { 2727 struct ifnet *ifp; 2728 const char *cp = name; 2729 u_int unit = 0; 2730 u_int i; 2731 int s; 2732 2733 /* 2734 * If the entire name is a number, treat it as an ifindex. 2735 */ 2736 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2737 unit = unit * 10 + (*cp - '0'); 2738 } 2739 2740 /* 2741 * If the number took all of the name, then it's a valid ifindex. 2742 */ 2743 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2744 return if_get_byindex(unit, psref); 2745 2746 ifp = NULL; 2747 s = pserialize_read_enter(); 2748 IFNET_READER_FOREACH(ifp) { 2749 if (if_is_deactivated(ifp)) 2750 continue; 2751 if (strcmp(ifp->if_xname, name) == 0) { 2752 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2753 psref_acquire(psref, &ifp->if_psref, 2754 ifnet_psref_class); 2755 goto out; 2756 } 2757 } 2758 out: 2759 pserialize_read_exit(s); 2760 return ifp; 2761 } 2762 2763 /* 2764 * Release a reference of an ifnet object given by if_get, if_get_byindex 2765 * or if_get_bylla. 2766 */ 2767 void 2768 if_put(const struct ifnet *ifp, struct psref *psref) 2769 { 2770 2771 if (ifp == NULL) 2772 return; 2773 2774 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2775 } 2776 2777 /* 2778 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2779 * should be used. 2780 */ 2781 ifnet_t * 2782 _if_byindex(u_int idx) 2783 { 2784 2785 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2786 } 2787 2788 /* 2789 * Return ifp having idx. Return NULL if not found or the found ifp is 2790 * already deactivated. 2791 */ 2792 ifnet_t * 2793 if_byindex(u_int idx) 2794 { 2795 ifnet_t *ifp; 2796 2797 ifp = _if_byindex(idx); 2798 if (ifp != NULL && if_is_deactivated(ifp)) 2799 ifp = NULL; 2800 return ifp; 2801 } 2802 2803 /* 2804 * Get a reference of an ifnet object by an interface index. 2805 * The returned reference is protected by psref(9). The caller 2806 * must release a returned reference by if_put after use. 2807 */ 2808 ifnet_t * 2809 if_get_byindex(u_int idx, struct psref *psref) 2810 { 2811 ifnet_t *ifp; 2812 int s; 2813 2814 s = pserialize_read_enter(); 2815 ifp = if_byindex(idx); 2816 if (__predict_true(ifp != NULL)) { 2817 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2818 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2819 } 2820 pserialize_read_exit(s); 2821 2822 return ifp; 2823 } 2824 2825 ifnet_t * 2826 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 2827 { 2828 ifnet_t *ifp; 2829 int s; 2830 2831 s = pserialize_read_enter(); 2832 IFNET_READER_FOREACH(ifp) { 2833 if (if_is_deactivated(ifp)) 2834 continue; 2835 if (ifp->if_addrlen != lla_len) 2836 continue; 2837 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 2838 psref_acquire(psref, &ifp->if_psref, 2839 ifnet_psref_class); 2840 break; 2841 } 2842 } 2843 pserialize_read_exit(s); 2844 2845 return ifp; 2846 } 2847 2848 /* 2849 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 2850 * for example using pserialize or the ifp is already held or some other 2851 * object is held which guarantes the ifp to not be freed indirectly. 2852 */ 2853 void 2854 if_acquire(struct ifnet *ifp, struct psref *psref) 2855 { 2856 2857 KASSERT(ifp->if_index != 0); 2858 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2859 } 2860 2861 bool 2862 if_held(struct ifnet *ifp) 2863 { 2864 2865 return psref_held(&ifp->if_psref, ifnet_psref_class); 2866 } 2867 2868 /* 2869 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4. 2870 * Check the tunnel nesting count. 2871 * Return > 0, if tunnel nesting count is more than limit. 2872 * Return 0, if tunnel nesting count is equal or less than limit. 2873 */ 2874 int 2875 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 2876 { 2877 struct m_tag *mtag; 2878 int *count; 2879 2880 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO); 2881 if (mtag != NULL) { 2882 count = (int *)(mtag + 1); 2883 if (++(*count) > limit) { 2884 log(LOG_NOTICE, 2885 "%s: recursively called too many times(%d)\n", 2886 ifp->if_xname, *count); 2887 return EIO; 2888 } 2889 } else { 2890 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 2891 M_NOWAIT); 2892 if (mtag != NULL) { 2893 m_tag_prepend(m, mtag); 2894 count = (int *)(mtag + 1); 2895 *count = 0; 2896 } else { 2897 log(LOG_DEBUG, 2898 "%s: m_tag_get() failed, recursion calls are not prevented.\n", 2899 ifp->if_xname); 2900 } 2901 } 2902 2903 return 0; 2904 } 2905 2906 static void 2907 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 2908 { 2909 struct tunnel_ro *tro = p; 2910 2911 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP); 2912 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2913 } 2914 2915 percpu_t * 2916 if_tunnel_alloc_ro_percpu(void) 2917 { 2918 percpu_t *ro_percpu; 2919 2920 ro_percpu = percpu_alloc(sizeof(struct tunnel_ro)); 2921 percpu_foreach(ro_percpu, if_tunnel_ro_init_pc, NULL); 2922 2923 return ro_percpu; 2924 } 2925 2926 static void 2927 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 2928 { 2929 struct tunnel_ro *tro = p; 2930 2931 rtcache_free(tro->tr_ro); 2932 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro)); 2933 2934 mutex_obj_free(tro->tr_lock); 2935 } 2936 2937 void 2938 if_tunnel_free_ro_percpu(percpu_t *ro_percpu) 2939 { 2940 2941 percpu_foreach(ro_percpu, if_tunnel_ro_fini_pc, NULL); 2942 percpu_free(ro_percpu, sizeof(struct tunnel_ro)); 2943 } 2944 2945 2946 static void 2947 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 2948 { 2949 struct tunnel_ro *tro = p; 2950 2951 mutex_enter(tro->tr_lock); 2952 rtcache_free(tro->tr_ro); 2953 mutex_exit(tro->tr_lock); 2954 } 2955 2956 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu) 2957 { 2958 2959 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL); 2960 } 2961 2962 2963 /* common */ 2964 int 2965 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 2966 { 2967 int s; 2968 struct ifreq *ifr; 2969 struct ifcapreq *ifcr; 2970 struct ifdatareq *ifdr; 2971 unsigned short flags; 2972 char *descr; 2973 int error; 2974 2975 switch (cmd) { 2976 case SIOCSIFCAP: 2977 ifcr = data; 2978 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 2979 return EINVAL; 2980 2981 if (ifcr->ifcr_capenable == ifp->if_capenable) 2982 return 0; 2983 2984 ifp->if_capenable = ifcr->ifcr_capenable; 2985 2986 /* Pre-compute the checksum flags mask. */ 2987 ifp->if_csum_flags_tx = 0; 2988 ifp->if_csum_flags_rx = 0; 2989 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) 2990 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 2991 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 2992 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 2993 2994 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) 2995 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 2996 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) 2997 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 2998 2999 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) 3000 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 3001 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) 3002 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 3003 3004 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) 3005 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 3006 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) 3007 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 3008 3009 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) 3010 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 3011 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) 3012 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 3013 3014 if (ifp->if_capenable & IFCAP_TSOv4) 3015 ifp->if_csum_flags_tx |= M_CSUM_TSOv4; 3016 if (ifp->if_capenable & IFCAP_TSOv6) 3017 ifp->if_csum_flags_tx |= M_CSUM_TSOv6; 3018 3019 #if NBRIDGE > 0 3020 if (ifp->if_bridge != NULL) 3021 bridge_calc_csum_flags(ifp->if_bridge); 3022 #endif 3023 3024 if (ifp->if_flags & IFF_UP) 3025 return ENETRESET; 3026 return 0; 3027 case SIOCSIFFLAGS: 3028 ifr = data; 3029 /* 3030 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 3031 * and if_down aren't MP-safe yet, so we must hold the lock. 3032 */ 3033 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3034 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 3035 s = splsoftnet(); 3036 if_down_locked(ifp); 3037 splx(s); 3038 } 3039 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 3040 s = splsoftnet(); 3041 if_up_locked(ifp); 3042 splx(s); 3043 } 3044 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3045 flags = (ifp->if_flags & IFF_CANTCHANGE) | 3046 (ifr->ifr_flags &~ IFF_CANTCHANGE); 3047 if (ifp->if_flags != flags) { 3048 ifp->if_flags = flags; 3049 /* Notify that the flags have changed. */ 3050 rt_ifmsg(ifp); 3051 } 3052 break; 3053 case SIOCGIFFLAGS: 3054 ifr = data; 3055 ifr->ifr_flags = ifp->if_flags; 3056 break; 3057 3058 case SIOCGIFMETRIC: 3059 ifr = data; 3060 ifr->ifr_metric = ifp->if_metric; 3061 break; 3062 3063 case SIOCGIFMTU: 3064 ifr = data; 3065 ifr->ifr_mtu = ifp->if_mtu; 3066 break; 3067 3068 case SIOCGIFDLT: 3069 ifr = data; 3070 ifr->ifr_dlt = ifp->if_dlt; 3071 break; 3072 3073 case SIOCGIFCAP: 3074 ifcr = data; 3075 ifcr->ifcr_capabilities = ifp->if_capabilities; 3076 ifcr->ifcr_capenable = ifp->if_capenable; 3077 break; 3078 3079 case SIOCSIFMETRIC: 3080 ifr = data; 3081 ifp->if_metric = ifr->ifr_metric; 3082 break; 3083 3084 case SIOCGIFDATA: 3085 ifdr = data; 3086 ifdr->ifdr_data = ifp->if_data; 3087 break; 3088 3089 case SIOCGIFINDEX: 3090 ifr = data; 3091 ifr->ifr_index = ifp->if_index; 3092 break; 3093 3094 case SIOCZIFDATA: 3095 ifdr = data; 3096 ifdr->ifdr_data = ifp->if_data; 3097 /* 3098 * Assumes that the volatile counters that can be 3099 * zero'ed are at the end of if_data. 3100 */ 3101 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 3102 offsetof(struct if_data, ifi_ipackets)); 3103 /* 3104 * The memset() clears to the bottm of if_data. In the area, 3105 * if_lastchange is included. Please be careful if new entry 3106 * will be added into if_data or rewite this. 3107 * 3108 * And also, update if_lastchnage. 3109 */ 3110 getnanotime(&ifp->if_lastchange); 3111 break; 3112 case SIOCSIFMTU: 3113 ifr = data; 3114 if (ifp->if_mtu == ifr->ifr_mtu) 3115 break; 3116 ifp->if_mtu = ifr->ifr_mtu; 3117 /* 3118 * If the link MTU changed, do network layer specific procedure. 3119 */ 3120 #ifdef INET6 3121 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3122 if (in6_present) 3123 nd6_setmtu(ifp); 3124 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3125 #endif 3126 return ENETRESET; 3127 case SIOCSIFDESCR: 3128 error = kauth_authorize_network(curlwp->l_cred, 3129 KAUTH_NETWORK_INTERFACE, 3130 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3131 NULL); 3132 if (error) 3133 return error; 3134 3135 ifr = data; 3136 3137 if (ifr->ifr_buflen > IFDESCRSIZE) 3138 return ENAMETOOLONG; 3139 3140 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) { 3141 /* unset description */ 3142 descr = NULL; 3143 } else { 3144 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP); 3145 /* 3146 * copy (IFDESCRSIZE - 1) bytes to ensure 3147 * terminating nul 3148 */ 3149 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1); 3150 if (error) { 3151 kmem_free(descr, IFDESCRSIZE); 3152 return error; 3153 } 3154 } 3155 3156 if (ifp->if_description != NULL) 3157 kmem_free(ifp->if_description, IFDESCRSIZE); 3158 3159 ifp->if_description = descr; 3160 break; 3161 3162 case SIOCGIFDESCR: 3163 ifr = data; 3164 descr = ifp->if_description; 3165 3166 if (descr == NULL) 3167 return ENOMSG; 3168 3169 if (ifr->ifr_buflen < IFDESCRSIZE) 3170 return EINVAL; 3171 3172 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE); 3173 if (error) 3174 return error; 3175 break; 3176 3177 default: 3178 return ENOTTY; 3179 } 3180 return 0; 3181 } 3182 3183 int 3184 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3185 { 3186 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3187 struct ifaddr *ifa; 3188 const struct sockaddr *any, *sa; 3189 union { 3190 struct sockaddr sa; 3191 struct sockaddr_storage ss; 3192 } u, v; 3193 int s, error = 0; 3194 3195 switch (cmd) { 3196 case SIOCSIFADDRPREF: 3197 error = kauth_authorize_network(curlwp->l_cred, 3198 KAUTH_NETWORK_INTERFACE, 3199 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3200 NULL); 3201 if (error) 3202 return error; 3203 break; 3204 case SIOCGIFADDRPREF: 3205 break; 3206 default: 3207 return EOPNOTSUPP; 3208 } 3209 3210 /* sanity checks */ 3211 if (data == NULL || ifp == NULL) { 3212 panic("invalid argument to %s", __func__); 3213 /*NOTREACHED*/ 3214 } 3215 3216 /* address must be specified on ADD and DELETE */ 3217 sa = sstocsa(&ifap->ifap_addr); 3218 if (sa->sa_family != sofamily(so)) 3219 return EINVAL; 3220 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3221 return EINVAL; 3222 3223 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3224 3225 s = pserialize_read_enter(); 3226 IFADDR_READER_FOREACH(ifa, ifp) { 3227 if (ifa->ifa_addr->sa_family != sa->sa_family) 3228 continue; 3229 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3230 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3231 break; 3232 } 3233 if (ifa == NULL) { 3234 error = EADDRNOTAVAIL; 3235 goto out; 3236 } 3237 3238 switch (cmd) { 3239 case SIOCSIFADDRPREF: 3240 ifa->ifa_preference = ifap->ifap_preference; 3241 goto out; 3242 case SIOCGIFADDRPREF: 3243 /* fill in the if_laddrreq structure */ 3244 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3245 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3246 ifap->ifap_preference = ifa->ifa_preference; 3247 goto out; 3248 default: 3249 error = EOPNOTSUPP; 3250 } 3251 out: 3252 pserialize_read_exit(s); 3253 return error; 3254 } 3255 3256 /* 3257 * Interface ioctls. 3258 */ 3259 static int 3260 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3261 { 3262 struct ifnet *ifp; 3263 struct ifreq *ifr; 3264 int error = 0; 3265 u_long ocmd = cmd; 3266 u_short oif_flags; 3267 struct ifreq ifrb; 3268 struct oifreq *oifr = NULL; 3269 int r; 3270 struct psref psref; 3271 int bound; 3272 bool do_if43_post = false; 3273 bool do_ifm80_post = false; 3274 3275 switch (cmd) { 3276 case SIOCGIFCONF: 3277 return ifconf(cmd, data); 3278 case SIOCINITIFADDR: 3279 return EPERM; 3280 default: 3281 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(), 3282 error); 3283 if (error != ENOSYS) 3284 return error; 3285 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data), 3286 enosys(), error); 3287 if (error != ENOSYS) 3288 return error; 3289 error = 0; 3290 break; 3291 } 3292 3293 ifr = data; 3294 /* Pre-conversion */ 3295 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error); 3296 if (cmd != ocmd) { 3297 oifr = data; 3298 data = ifr = &ifrb; 3299 IFREQO2N_43(oifr, ifr); 3300 do_if43_post = true; 3301 } 3302 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post), 3303 enosys(), error); 3304 3305 switch (cmd) { 3306 case SIOCIFCREATE: 3307 case SIOCIFDESTROY: 3308 bound = curlwp_bind(); 3309 if (l != NULL) { 3310 ifp = if_get(ifr->ifr_name, &psref); 3311 error = kauth_authorize_network(l->l_cred, 3312 KAUTH_NETWORK_INTERFACE, 3313 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3314 KAUTH_ARG(cmd), NULL); 3315 if (ifp != NULL) 3316 if_put(ifp, &psref); 3317 if (error != 0) { 3318 curlwp_bindx(bound); 3319 return error; 3320 } 3321 } 3322 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3323 mutex_enter(&if_clone_mtx); 3324 r = (cmd == SIOCIFCREATE) ? 3325 if_clone_create(ifr->ifr_name) : 3326 if_clone_destroy(ifr->ifr_name); 3327 mutex_exit(&if_clone_mtx); 3328 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3329 curlwp_bindx(bound); 3330 return r; 3331 3332 case SIOCIFGCLONERS: 3333 { 3334 struct if_clonereq *req = (struct if_clonereq *)data; 3335 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3336 &req->ifcr_total); 3337 } 3338 } 3339 3340 bound = curlwp_bind(); 3341 ifp = if_get(ifr->ifr_name, &psref); 3342 if (ifp == NULL) { 3343 curlwp_bindx(bound); 3344 return ENXIO; 3345 } 3346 3347 switch (cmd) { 3348 case SIOCALIFADDR: 3349 case SIOCDLIFADDR: 3350 case SIOCSIFADDRPREF: 3351 case SIOCSIFFLAGS: 3352 case SIOCSIFCAP: 3353 case SIOCSIFMETRIC: 3354 case SIOCZIFDATA: 3355 case SIOCSIFMTU: 3356 case SIOCSIFPHYADDR: 3357 case SIOCDIFPHYADDR: 3358 #ifdef INET6 3359 case SIOCSIFPHYADDR_IN6: 3360 #endif 3361 case SIOCSLIFPHYADDR: 3362 case SIOCADDMULTI: 3363 case SIOCDELMULTI: 3364 case SIOCSETHERCAP: 3365 case SIOCSIFMEDIA: 3366 case SIOCSDRVSPEC: 3367 case SIOCG80211: 3368 case SIOCS80211: 3369 case SIOCS80211NWID: 3370 case SIOCS80211NWKEY: 3371 case SIOCS80211POWER: 3372 case SIOCS80211BSSID: 3373 case SIOCS80211CHANNEL: 3374 case SIOCSLINKSTR: 3375 if (l != NULL) { 3376 error = kauth_authorize_network(l->l_cred, 3377 KAUTH_NETWORK_INTERFACE, 3378 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3379 KAUTH_ARG(cmd), NULL); 3380 if (error != 0) 3381 goto out; 3382 } 3383 } 3384 3385 oif_flags = ifp->if_flags; 3386 3387 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3388 IFNET_LOCK(ifp); 3389 3390 error = (*ifp->if_ioctl)(ifp, cmd, data); 3391 if (error != ENOTTY) 3392 ; 3393 else if (so->so_proto == NULL) 3394 error = EOPNOTSUPP; 3395 else { 3396 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3397 MODULE_HOOK_CALL(if_ifioctl_43_hook, 3398 (so, ocmd, cmd, data, l), enosys(), error); 3399 if (error == ENOSYS) 3400 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3401 cmd, data, ifp); 3402 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3403 } 3404 3405 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3406 if ((ifp->if_flags & IFF_UP) != 0) { 3407 int s = splsoftnet(); 3408 if_up_locked(ifp); 3409 splx(s); 3410 } 3411 } 3412 3413 /* Post-conversion */ 3414 if (do_ifm80_post && (error == 0)) 3415 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd), 3416 enosys(), error); 3417 if (do_if43_post) 3418 IFREQN2O_43(oifr, ifr); 3419 3420 IFNET_UNLOCK(ifp); 3421 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3422 out: 3423 if_put(ifp, &psref); 3424 curlwp_bindx(bound); 3425 return error; 3426 } 3427 3428 /* 3429 * Return interface configuration 3430 * of system. List may be used 3431 * in later ioctl's (above) to get 3432 * other information. 3433 * 3434 * Each record is a struct ifreq. Before the addition of 3435 * sockaddr_storage, the API rule was that sockaddr flavors that did 3436 * not fit would extend beyond the struct ifreq, with the next struct 3437 * ifreq starting sa_len beyond the struct sockaddr. Because the 3438 * union in struct ifreq includes struct sockaddr_storage, every kind 3439 * of sockaddr must fit. Thus, there are no longer any overlength 3440 * records. 3441 * 3442 * Records are added to the user buffer if they fit, and ifc_len is 3443 * adjusted to the length that was written. Thus, the user is only 3444 * assured of getting the complete list if ifc_len on return is at 3445 * least sizeof(struct ifreq) less than it was on entry. 3446 * 3447 * If the user buffer pointer is NULL, this routine copies no data and 3448 * returns the amount of space that would be needed. 3449 * 3450 * Invariants: 3451 * ifrp points to the next part of the user's buffer to be used. If 3452 * ifrp != NULL, space holds the number of bytes remaining that we may 3453 * write at ifrp. Otherwise, space holds the number of bytes that 3454 * would have been written had there been adequate space. 3455 */ 3456 /*ARGSUSED*/ 3457 static int 3458 ifconf(u_long cmd, void *data) 3459 { 3460 struct ifconf *ifc = (struct ifconf *)data; 3461 struct ifnet *ifp; 3462 struct ifaddr *ifa; 3463 struct ifreq ifr, *ifrp = NULL; 3464 int space = 0, error = 0; 3465 const int sz = (int)sizeof(struct ifreq); 3466 const bool docopy = ifc->ifc_req != NULL; 3467 int s; 3468 int bound; 3469 struct psref psref; 3470 3471 memset(&ifr, 0, sizeof(ifr)); 3472 if (docopy) { 3473 space = ifc->ifc_len; 3474 ifrp = ifc->ifc_req; 3475 } 3476 3477 bound = curlwp_bind(); 3478 s = pserialize_read_enter(); 3479 IFNET_READER_FOREACH(ifp) { 3480 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3481 pserialize_read_exit(s); 3482 3483 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3484 sizeof(ifr.ifr_name)); 3485 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3486 error = ENAMETOOLONG; 3487 goto release_exit; 3488 } 3489 if (IFADDR_READER_EMPTY(ifp)) { 3490 /* Interface with no addresses - send zero sockaddr. */ 3491 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3492 if (!docopy) { 3493 space += sz; 3494 goto next; 3495 } 3496 if (space >= sz) { 3497 error = copyout(&ifr, ifrp, sz); 3498 if (error != 0) 3499 goto release_exit; 3500 ifrp++; 3501 space -= sz; 3502 } 3503 } 3504 3505 s = pserialize_read_enter(); 3506 IFADDR_READER_FOREACH(ifa, ifp) { 3507 struct sockaddr *sa = ifa->ifa_addr; 3508 /* all sockaddrs must fit in sockaddr_storage */ 3509 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3510 3511 if (!docopy) { 3512 space += sz; 3513 continue; 3514 } 3515 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3516 pserialize_read_exit(s); 3517 3518 if (space >= sz) { 3519 error = copyout(&ifr, ifrp, sz); 3520 if (error != 0) 3521 goto release_exit; 3522 ifrp++; space -= sz; 3523 } 3524 s = pserialize_read_enter(); 3525 } 3526 pserialize_read_exit(s); 3527 3528 next: 3529 s = pserialize_read_enter(); 3530 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3531 } 3532 pserialize_read_exit(s); 3533 curlwp_bindx(bound); 3534 3535 if (docopy) { 3536 KASSERT(0 <= space && space <= ifc->ifc_len); 3537 ifc->ifc_len -= space; 3538 } else { 3539 KASSERT(space >= 0); 3540 ifc->ifc_len = space; 3541 } 3542 return (0); 3543 3544 release_exit: 3545 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3546 curlwp_bindx(bound); 3547 return error; 3548 } 3549 3550 int 3551 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3552 { 3553 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); 3554 struct ifreq ifrb; 3555 struct oifreq *oifr = NULL; 3556 u_long ocmd = cmd; 3557 int hook; 3558 3559 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook); 3560 if (hook != ENOSYS) { 3561 if (cmd != ocmd) { 3562 oifr = (struct oifreq *)(void *)ifr; 3563 ifr = &ifrb; 3564 IFREQO2N_43(oifr, ifr); 3565 len = sizeof(oifr->ifr_addr); 3566 } 3567 } 3568 3569 if (len < sa->sa_len) 3570 return EFBIG; 3571 3572 memset(&ifr->ifr_addr, 0, len); 3573 sockaddr_copy(&ifr->ifr_addr, len, sa); 3574 3575 if (cmd != ocmd) 3576 IFREQN2O_43(oifr, ifr); 3577 return 0; 3578 } 3579 3580 /* 3581 * wrapper function for the drivers which doesn't have if_transmit(). 3582 */ 3583 static int 3584 if_transmit(struct ifnet *ifp, struct mbuf *m) 3585 { 3586 int s, error; 3587 size_t pktlen = m->m_pkthdr.len; 3588 bool mcast = (m->m_flags & M_MCAST) != 0; 3589 3590 s = splnet(); 3591 3592 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3593 if (error != 0) { 3594 /* mbuf is already freed */ 3595 goto out; 3596 } 3597 3598 ifp->if_obytes += pktlen; 3599 if (mcast) 3600 ifp->if_omcasts++; 3601 3602 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3603 if_start_lock(ifp); 3604 out: 3605 splx(s); 3606 3607 return error; 3608 } 3609 3610 int 3611 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3612 { 3613 int error; 3614 3615 kmsan_check_mbuf(m); 3616 3617 #ifdef ALTQ 3618 KERNEL_LOCK(1, NULL); 3619 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3620 error = if_transmit(ifp, m); 3621 KERNEL_UNLOCK_ONE(NULL); 3622 } else { 3623 KERNEL_UNLOCK_ONE(NULL); 3624 error = (*ifp->if_transmit)(ifp, m); 3625 /* mbuf is alredy freed */ 3626 } 3627 #else /* !ALTQ */ 3628 error = (*ifp->if_transmit)(ifp, m); 3629 /* mbuf is alredy freed */ 3630 #endif /* !ALTQ */ 3631 3632 return error; 3633 } 3634 3635 /* 3636 * Queue message on interface, and start output if interface 3637 * not yet active. 3638 */ 3639 int 3640 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3641 { 3642 3643 return if_transmit_lock(ifp, m); 3644 } 3645 3646 /* 3647 * Queue message on interface, possibly using a second fast queue 3648 */ 3649 int 3650 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3651 { 3652 int error = 0; 3653 3654 if (ifq != NULL 3655 #ifdef ALTQ 3656 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3657 #endif 3658 ) { 3659 if (IF_QFULL(ifq)) { 3660 IF_DROP(&ifp->if_snd); 3661 m_freem(m); 3662 if (error == 0) 3663 error = ENOBUFS; 3664 } else 3665 IF_ENQUEUE(ifq, m); 3666 } else 3667 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3668 if (error != 0) { 3669 ++ifp->if_oerrors; 3670 return error; 3671 } 3672 return 0; 3673 } 3674 3675 int 3676 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3677 { 3678 int rc; 3679 3680 KASSERT(IFNET_LOCKED(ifp)); 3681 if (ifp->if_initaddr != NULL) 3682 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3683 else if (src || 3684 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3685 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3686 3687 return rc; 3688 } 3689 3690 int 3691 if_do_dad(struct ifnet *ifp) 3692 { 3693 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3694 return 0; 3695 3696 switch (ifp->if_type) { 3697 case IFT_FAITH: 3698 /* 3699 * These interfaces do not have the IFF_LOOPBACK flag, 3700 * but loop packets back. We do not have to do DAD on such 3701 * interfaces. We should even omit it, because loop-backed 3702 * responses would confuse the DAD procedure. 3703 */ 3704 return 0; 3705 default: 3706 /* 3707 * Our DAD routine requires the interface up and running. 3708 * However, some interfaces can be up before the RUNNING 3709 * status. Additionaly, users may try to assign addresses 3710 * before the interface becomes up (or running). 3711 * We simply skip DAD in such a case as a work around. 3712 * XXX: we should rather mark "tentative" on such addresses, 3713 * and do DAD after the interface becomes ready. 3714 */ 3715 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 3716 (IFF_UP | IFF_RUNNING)) 3717 return 0; 3718 3719 return 1; 3720 } 3721 } 3722 3723 int 3724 if_flags_set(ifnet_t *ifp, const u_short flags) 3725 { 3726 int rc; 3727 3728 KASSERT(IFNET_LOCKED(ifp)); 3729 3730 if (ifp->if_setflags != NULL) 3731 rc = (*ifp->if_setflags)(ifp, flags); 3732 else { 3733 u_short cantflags, chgdflags; 3734 struct ifreq ifr; 3735 3736 chgdflags = ifp->if_flags ^ flags; 3737 cantflags = chgdflags & IFF_CANTCHANGE; 3738 3739 if (cantflags != 0) 3740 ifp->if_flags ^= cantflags; 3741 3742 /* Traditionally, we do not call if_ioctl after 3743 * setting/clearing only IFF_PROMISC if the interface 3744 * isn't IFF_UP. Uphold that tradition. 3745 */ 3746 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3747 return 0; 3748 3749 memset(&ifr, 0, sizeof(ifr)); 3750 3751 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3752 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3753 3754 if (rc != 0 && cantflags != 0) 3755 ifp->if_flags ^= cantflags; 3756 } 3757 3758 return rc; 3759 } 3760 3761 int 3762 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3763 { 3764 int rc; 3765 struct ifreq ifr; 3766 3767 if (ifp->if_mcastop != NULL) 3768 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 3769 else { 3770 ifreq_setaddr(cmd, &ifr, sa); 3771 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3772 } 3773 3774 return rc; 3775 } 3776 3777 static void 3778 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3779 struct ifaltq *ifq) 3780 { 3781 const struct sysctlnode *cnode, *rnode; 3782 3783 if (sysctl_createv(clog, 0, NULL, &rnode, 3784 CTLFLAG_PERMANENT, 3785 CTLTYPE_NODE, "interfaces", 3786 SYSCTL_DESCR("Per-interface controls"), 3787 NULL, 0, NULL, 0, 3788 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3789 goto bad; 3790 3791 if (sysctl_createv(clog, 0, &rnode, &rnode, 3792 CTLFLAG_PERMANENT, 3793 CTLTYPE_NODE, ifname, 3794 SYSCTL_DESCR("Interface controls"), 3795 NULL, 0, NULL, 0, 3796 CTL_CREATE, CTL_EOL) != 0) 3797 goto bad; 3798 3799 if (sysctl_createv(clog, 0, &rnode, &rnode, 3800 CTLFLAG_PERMANENT, 3801 CTLTYPE_NODE, "sndq", 3802 SYSCTL_DESCR("Interface output queue controls"), 3803 NULL, 0, NULL, 0, 3804 CTL_CREATE, CTL_EOL) != 0) 3805 goto bad; 3806 3807 if (sysctl_createv(clog, 0, &rnode, &cnode, 3808 CTLFLAG_PERMANENT, 3809 CTLTYPE_INT, "len", 3810 SYSCTL_DESCR("Current output queue length"), 3811 NULL, 0, &ifq->ifq_len, 0, 3812 CTL_CREATE, CTL_EOL) != 0) 3813 goto bad; 3814 3815 if (sysctl_createv(clog, 0, &rnode, &cnode, 3816 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3817 CTLTYPE_INT, "maxlen", 3818 SYSCTL_DESCR("Maximum allowed output queue length"), 3819 NULL, 0, &ifq->ifq_maxlen, 0, 3820 CTL_CREATE, CTL_EOL) != 0) 3821 goto bad; 3822 3823 if (sysctl_createv(clog, 0, &rnode, &cnode, 3824 CTLFLAG_PERMANENT, 3825 CTLTYPE_INT, "drops", 3826 SYSCTL_DESCR("Packets dropped due to full output queue"), 3827 NULL, 0, &ifq->ifq_drops, 0, 3828 CTL_CREATE, CTL_EOL) != 0) 3829 goto bad; 3830 3831 return; 3832 bad: 3833 printf("%s: could not attach sysctl nodes\n", ifname); 3834 return; 3835 } 3836 3837 #if defined(INET) || defined(INET6) 3838 3839 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3840 static int \ 3841 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3842 { \ 3843 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3844 } 3845 3846 #if defined(INET) 3847 static int 3848 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3849 { 3850 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3851 } 3852 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3853 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3854 #endif 3855 3856 #if defined(INET6) 3857 static int 3858 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3859 { 3860 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3861 } 3862 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3863 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3864 #endif 3865 3866 static void 3867 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3868 { 3869 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3870 const char *pfname = NULL, *ipname = NULL; 3871 int ipn = 0, qid = 0; 3872 3873 switch (pf) { 3874 #if defined(INET) 3875 case PF_INET: 3876 len_func = sysctl_net_ip_pktq_items; 3877 maxlen_func = sysctl_net_ip_pktq_maxlen; 3878 drops_func = sysctl_net_ip_pktq_drops; 3879 pfname = "inet", ipn = IPPROTO_IP; 3880 ipname = "ip", qid = IPCTL_IFQ; 3881 break; 3882 #endif 3883 #if defined(INET6) 3884 case PF_INET6: 3885 len_func = sysctl_net_ip6_pktq_items; 3886 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3887 drops_func = sysctl_net_ip6_pktq_drops; 3888 pfname = "inet6", ipn = IPPROTO_IPV6; 3889 ipname = "ip6", qid = IPV6CTL_IFQ; 3890 break; 3891 #endif 3892 default: 3893 KASSERT(false); 3894 } 3895 3896 sysctl_createv(clog, 0, NULL, NULL, 3897 CTLFLAG_PERMANENT, 3898 CTLTYPE_NODE, pfname, NULL, 3899 NULL, 0, NULL, 0, 3900 CTL_NET, pf, CTL_EOL); 3901 sysctl_createv(clog, 0, NULL, NULL, 3902 CTLFLAG_PERMANENT, 3903 CTLTYPE_NODE, ipname, NULL, 3904 NULL, 0, NULL, 0, 3905 CTL_NET, pf, ipn, CTL_EOL); 3906 sysctl_createv(clog, 0, NULL, NULL, 3907 CTLFLAG_PERMANENT, 3908 CTLTYPE_NODE, "ifq", 3909 SYSCTL_DESCR("Protocol input queue controls"), 3910 NULL, 0, NULL, 0, 3911 CTL_NET, pf, ipn, qid, CTL_EOL); 3912 3913 sysctl_createv(clog, 0, NULL, NULL, 3914 CTLFLAG_PERMANENT, 3915 CTLTYPE_QUAD, "len", 3916 SYSCTL_DESCR("Current input queue length"), 3917 len_func, 0, NULL, 0, 3918 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3919 sysctl_createv(clog, 0, NULL, NULL, 3920 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3921 CTLTYPE_INT, "maxlen", 3922 SYSCTL_DESCR("Maximum allowed input queue length"), 3923 maxlen_func, 0, NULL, 0, 3924 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3925 sysctl_createv(clog, 0, NULL, NULL, 3926 CTLFLAG_PERMANENT, 3927 CTLTYPE_QUAD, "drops", 3928 SYSCTL_DESCR("Packets dropped due to full input queue"), 3929 drops_func, 0, NULL, 0, 3930 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3931 } 3932 #endif /* INET || INET6 */ 3933 3934 static int 3935 if_sdl_sysctl(SYSCTLFN_ARGS) 3936 { 3937 struct ifnet *ifp; 3938 const struct sockaddr_dl *sdl; 3939 struct psref psref; 3940 int error = 0; 3941 int bound; 3942 3943 if (namelen != 1) 3944 return EINVAL; 3945 3946 bound = curlwp_bind(); 3947 ifp = if_get_byindex(name[0], &psref); 3948 if (ifp == NULL) { 3949 error = ENODEV; 3950 goto out0; 3951 } 3952 3953 sdl = ifp->if_sadl; 3954 if (sdl == NULL) { 3955 *oldlenp = 0; 3956 goto out1; 3957 } 3958 3959 if (oldp == NULL) { 3960 *oldlenp = sdl->sdl_alen; 3961 goto out1; 3962 } 3963 3964 if (*oldlenp >= sdl->sdl_alen) 3965 *oldlenp = sdl->sdl_alen; 3966 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 3967 out1: 3968 if_put(ifp, &psref); 3969 out0: 3970 curlwp_bindx(bound); 3971 return error; 3972 } 3973 3974 static void 3975 if_sysctl_setup(struct sysctllog **clog) 3976 { 3977 const struct sysctlnode *rnode = NULL; 3978 3979 sysctl_createv(clog, 0, NULL, &rnode, 3980 CTLFLAG_PERMANENT, 3981 CTLTYPE_NODE, "sdl", 3982 SYSCTL_DESCR("Get active link-layer address"), 3983 if_sdl_sysctl, 0, NULL, 0, 3984 CTL_NET, CTL_CREATE, CTL_EOL); 3985 3986 #if defined(INET) 3987 sysctl_net_pktq_setup(NULL, PF_INET); 3988 #endif 3989 #ifdef INET6 3990 if (in6_present) 3991 sysctl_net_pktq_setup(NULL, PF_INET6); 3992 #endif 3993 } 3994