xref: /netbsd-src/sys/miscfs/kernfs/kernfs_vnops.c (revision ecf6466c633518f478c293c388551b29e46729cc)
1 /*	$NetBSD: kernfs_vnops.c,v 1.162 2020/01/02 15:42:27 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software donated to Berkeley by
8  * Jan-Simon Pendry.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kernfs_vnops.c	8.15 (Berkeley) 5/21/95
35  */
36 
37 /*
38  * Kernel parameter filesystem (/kern)
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.162 2020/01/02 15:42:27 thorpej Exp $");
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/vmmeter.h>
48 #include <sys/time.h>
49 #include <sys/proc.h>
50 #include <sys/vnode.h>
51 #include <sys/malloc.h>
52 #include <sys/file.h>
53 #include <sys/stat.h>
54 #include <sys/mount.h>
55 #include <sys/namei.h>
56 #include <sys/buf.h>
57 #include <sys/dirent.h>
58 #include <sys/msgbuf.h>
59 
60 #include <miscfs/genfs/genfs.h>
61 #include <miscfs/kernfs/kernfs.h>
62 #include <miscfs/specfs/specdev.h>
63 
64 #include <uvm/uvm_extern.h>
65 
66 #define KSTRING	256		/* Largest I/O available via this filesystem */
67 #define	UIO_MX 32
68 
69 #define	READ_MODE	(S_IRUSR|S_IRGRP|S_IROTH)
70 #define	WRITE_MODE	(S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
71 #define	UREAD_MODE	(S_IRUSR)
72 #define	DIR_MODE	(S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
73 #define	UDIR_MODE	(S_IRUSR|S_IXUSR)
74 
75 #define N(s) sizeof(s)-1, s
76 const struct kern_target kern_targets[] = {
77 /* NOTE: The name must be less than UIO_MX-16 chars in length */
78      /*        name            data          tag           type  ro/rw */
79      { DT_DIR, N("."),         0,            KFSkern,        VDIR, DIR_MODE   },
80      { DT_DIR, N(".."),        0,            KFSroot,        VDIR, DIR_MODE   },
81      { DT_REG, N("boottime"),  0,            KFSboottime,    VREG, READ_MODE  },
82 			/* XXXUNCONST */
83      { DT_REG, N("copyright"), __UNCONST(copyright),
84      					     KFSstring,      VREG, READ_MODE  },
85      { DT_REG, N("hostname"),  0,            KFShostname,    VREG, WRITE_MODE },
86      { DT_REG, N("hz"),        &hz,          KFSint,         VREG, READ_MODE  },
87      { DT_REG, N("loadavg"),   0,            KFSavenrun,     VREG, READ_MODE  },
88      { DT_REG, N("msgbuf"),    0,	     KFSmsgbuf,      VREG, READ_MODE  },
89      { DT_REG, N("pagesize"),  &uvmexp.pagesize, KFSint,     VREG, READ_MODE  },
90      { DT_REG, N("physmem"),   &physmem,     KFSint,         VREG, READ_MODE  },
91 #if 0
92      { DT_DIR, N("root"),      0,            KFSnull,        VDIR, DIR_MODE   },
93 #endif
94      { DT_BLK, N("rootdev"),   &rootdev,     KFSdevice,      VBLK, READ_MODE  },
95      { DT_CHR, N("rrootdev"),  &rrootdev,    KFSdevice,      VCHR, READ_MODE  },
96      { DT_REG, N("time"),      0,            KFStime,        VREG, READ_MODE  },
97 			/* XXXUNCONST */
98      { DT_REG, N("version"),   __UNCONST(version),
99      					     KFSstring,      VREG, READ_MODE  },
100 };
101 const struct kern_target subdir_targets[] = {
102 /* NOTE: The name must be less than UIO_MX-16 chars in length */
103      /*        name            data          tag           type  ro/rw */
104      { DT_DIR, N("."),         0,            KFSsubdir,      VDIR, DIR_MODE   },
105      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
106 };
107 #undef N
108 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
109 	SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
110 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
111 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
112 int nkern_dirs = 2;
113 
114 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
115 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
116     size_t, int);
117 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
118     size_t, int);
119 
120 static int kernfs_default_xread(void *v);
121 static int kernfs_default_xwrite(void *v);
122 static int kernfs_default_fileop_getattr(void *);
123 
124 /* must include all fileop's */
125 const struct kernfs_fileop kernfs_default_fileops[] = {
126   { .kf_fileop = KERNFS_XREAD },
127   { .kf_fileop = KERNFS_XWRITE },
128   { .kf_fileop = KERNFS_FILEOP_OPEN },
129   { .kf_fileop = KERNFS_FILEOP_GETATTR,
130     .kf_vop = kernfs_default_fileop_getattr },
131   { .kf_fileop = KERNFS_FILEOP_IOCTL },
132   { .kf_fileop = KERNFS_FILEOP_CLOSE },
133   { .kf_fileop = KERNFS_FILEOP_READ,
134     .kf_vop = kernfs_default_xread },
135   { .kf_fileop = KERNFS_FILEOP_WRITE,
136     .kf_vop = kernfs_default_xwrite },
137 };
138 
139 int	kernfs_lookup(void *);
140 #define	kernfs_create	genfs_eopnotsupp
141 #define	kernfs_mknod	genfs_eopnotsupp
142 int	kernfs_open(void *);
143 int	kernfs_close(void *);
144 int	kernfs_access(void *);
145 int	kernfs_getattr(void *);
146 int	kernfs_setattr(void *);
147 int	kernfs_read(void *);
148 int	kernfs_write(void *);
149 #define	kernfs_fcntl	genfs_fcntl
150 int	kernfs_ioctl(void *);
151 #define	kernfs_poll	genfs_poll
152 #define kernfs_revoke	genfs_revoke
153 #define	kernfs_fsync	genfs_nullop
154 #define	kernfs_seek	genfs_nullop
155 #define	kernfs_remove	genfs_eopnotsupp
156 int	kernfs_link(void *);
157 #define	kernfs_rename	genfs_eopnotsupp
158 #define	kernfs_mkdir	genfs_eopnotsupp
159 #define	kernfs_rmdir	genfs_eopnotsupp
160 int	kernfs_symlink(void *);
161 int	kernfs_readdir(void *);
162 #define	kernfs_readlink	genfs_eopnotsupp
163 #define	kernfs_abortop	genfs_abortop
164 int	kernfs_inactive(void *);
165 int	kernfs_reclaim(void *);
166 #define	kernfs_lock	genfs_lock
167 #define	kernfs_unlock	genfs_unlock
168 #define	kernfs_bmap	genfs_badop
169 #define	kernfs_strategy	genfs_badop
170 int	kernfs_print(void *);
171 #define	kernfs_islocked	genfs_islocked
172 int	kernfs_pathconf(void *);
173 #define	kernfs_advlock	genfs_einval
174 #define	kernfs_bwrite	genfs_eopnotsupp
175 int	kernfs_getpages(void *);
176 #define	kernfs_putpages	genfs_putpages
177 
178 static int	kernfs_xread(struct kernfs_node *, int, char **,
179 				size_t, size_t *);
180 static int	kernfs_xwrite(const struct kernfs_node *, char *, size_t);
181 
182 int (**kernfs_vnodeop_p)(void *);
183 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
184 	{ &vop_default_desc, vn_default_error },
185 	{ &vop_lookup_desc, kernfs_lookup },		/* lookup */
186 	{ &vop_create_desc, kernfs_create },		/* create */
187 	{ &vop_mknod_desc, kernfs_mknod },		/* mknod */
188 	{ &vop_open_desc, kernfs_open },		/* open */
189 	{ &vop_close_desc, kernfs_close },		/* close */
190 	{ &vop_access_desc, kernfs_access },		/* access */
191 	{ &vop_getattr_desc, kernfs_getattr },		/* getattr */
192 	{ &vop_setattr_desc, kernfs_setattr },		/* setattr */
193 	{ &vop_read_desc, kernfs_read },		/* read */
194 	{ &vop_write_desc, kernfs_write },		/* write */
195 	{ &vop_fallocate_desc, genfs_eopnotsupp },	/* fallocate */
196 	{ &vop_fdiscard_desc, genfs_eopnotsupp },	/* fdiscard */
197 	{ &vop_fcntl_desc, kernfs_fcntl },		/* fcntl */
198 	{ &vop_ioctl_desc, kernfs_ioctl },		/* ioctl */
199 	{ &vop_poll_desc, kernfs_poll },		/* poll */
200 	{ &vop_revoke_desc, kernfs_revoke },		/* revoke */
201 	{ &vop_fsync_desc, kernfs_fsync },		/* fsync */
202 	{ &vop_seek_desc, kernfs_seek },		/* seek */
203 	{ &vop_remove_desc, kernfs_remove },		/* remove */
204 	{ &vop_link_desc, kernfs_link },		/* link */
205 	{ &vop_rename_desc, kernfs_rename },		/* rename */
206 	{ &vop_mkdir_desc, kernfs_mkdir },		/* mkdir */
207 	{ &vop_rmdir_desc, kernfs_rmdir },		/* rmdir */
208 	{ &vop_symlink_desc, kernfs_symlink },		/* symlink */
209 	{ &vop_readdir_desc, kernfs_readdir },		/* readdir */
210 	{ &vop_readlink_desc, kernfs_readlink },	/* readlink */
211 	{ &vop_abortop_desc, kernfs_abortop },		/* abortop */
212 	{ &vop_inactive_desc, kernfs_inactive },	/* inactive */
213 	{ &vop_reclaim_desc, kernfs_reclaim },		/* reclaim */
214 	{ &vop_lock_desc, kernfs_lock },		/* lock */
215 	{ &vop_unlock_desc, kernfs_unlock },		/* unlock */
216 	{ &vop_bmap_desc, kernfs_bmap },		/* bmap */
217 	{ &vop_strategy_desc, kernfs_strategy },	/* strategy */
218 	{ &vop_print_desc, kernfs_print },		/* print */
219 	{ &vop_islocked_desc, kernfs_islocked },	/* islocked */
220 	{ &vop_pathconf_desc, kernfs_pathconf },	/* pathconf */
221 	{ &vop_advlock_desc, kernfs_advlock },		/* advlock */
222 	{ &vop_bwrite_desc, kernfs_bwrite },		/* bwrite */
223 	{ &vop_getpages_desc, kernfs_getpages },	/* getpages */
224 	{ &vop_putpages_desc, kernfs_putpages },	/* putpages */
225 	{ NULL, NULL }
226 };
227 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
228 	{ &kernfs_vnodeop_p, kernfs_vnodeop_entries };
229 
230 static inline int
231 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
232 {
233 	if (a->kf_type < b->kf_type)
234 		return -1;
235 	if (a->kf_type > b->kf_type)
236 		return 1;
237 	if (a->kf_fileop < b->kf_fileop)
238 		return -1;
239 	if (a->kf_fileop > b->kf_fileop)
240 		return 1;
241 	return (0);
242 }
243 
244 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
245 	SPLAY_INITIALIZER(kfsfileoptree);
246 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
247 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
248 
249 kfstype
250 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
251 {
252 	static u_char nextfreetype = KFSlasttype;
253 	struct kernfs_fileop *dkf, *fkf, skf;
254 	int i;
255 
256 	/* XXX need to keep track of dkf's memory if we support
257            deallocating types */
258 	dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
259 	memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
260 
261 	for (i = 0; i < sizeof(kernfs_default_fileops) /
262 		     sizeof(kernfs_default_fileops[0]); i++) {
263 		dkf[i].kf_type = nextfreetype;
264 		SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
265 	}
266 
267 	for (i = 0; i < nkf; i++) {
268 		skf.kf_type = nextfreetype;
269 		skf.kf_fileop = kf[i].kf_fileop;
270 		if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
271 			fkf->kf_vop = kf[i].kf_vop;
272 	}
273 
274 	return nextfreetype++;
275 }
276 
277 int
278 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
279 {
280 	struct kernfs_fileop *kf, skf;
281 
282 	skf.kf_type = type;
283 	skf.kf_fileop = fileop;
284 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
285 		if (kf->kf_vop)
286 			return kf->kf_vop(v);
287 	return error;
288 }
289 
290 int
291 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
292     size_t len, int error)
293 {
294 	struct kernfs_fileop *kf, skf;
295 
296 	skf.kf_type = type;
297 	skf.kf_fileop = KERNFS_XREAD;
298 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
299 		if (kf->kf_xread)
300 			return kf->kf_xread(kfs, bfp, len);
301 	return error;
302 }
303 
304 int
305 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
306     size_t len, int error)
307 {
308 	struct kernfs_fileop *kf, skf;
309 
310 	skf.kf_type = type;
311 	skf.kf_fileop = KERNFS_XWRITE;
312 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
313 		if (kf->kf_xwrite)
314 			return kf->kf_xwrite(kfs, bf, len);
315 	return error;
316 }
317 
318 int
319 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
320 {
321 	struct kernfs_subdir *ks, *parent;
322 
323 	if (pkt == NULL) {
324 		SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
325 		nkern_targets++;
326 		if (dkt->dkt_kt.kt_vtype == VDIR)
327 			nkern_dirs++;
328 	} else {
329 		parent = (struct kernfs_subdir *)pkt->kt_data;
330 		SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
331 		parent->ks_nentries++;
332 		if (dkt->dkt_kt.kt_vtype == VDIR)
333 			parent->ks_dirs++;
334 	}
335 	if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
336 		ks = malloc(sizeof(struct kernfs_subdir),
337 		    M_TEMP, M_WAITOK);
338 		SIMPLEQ_INIT(&ks->ks_entries);
339 		ks->ks_nentries = 2; /* . and .. */
340 		ks->ks_dirs = 2;
341 		ks->ks_parent = pkt ? pkt : &kern_targets[0];
342 		dkt->dkt_kt.kt_data = ks;
343 	}
344 	return 0;
345 }
346 
347 static int
348 kernfs_xread(struct kernfs_node *kfs, int off, char **bufp, size_t len, size_t *wrlen)
349 {
350 	const struct kern_target *kt;
351 	int err;
352 
353 	kt = kfs->kfs_kt;
354 
355 	switch (kfs->kfs_type) {
356 	case KFStime: {
357 		struct timeval tv;
358 
359 		microtime(&tv);
360 		snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec,
361 		    (long)tv.tv_usec);
362 		break;
363 	}
364 
365 	case KFSboottime: {
366 		struct timeval tv;
367 
368 		/*
369 		 * Historically, /kern/boottime only contained seconds.
370 		 */
371 		getmicroboottime(&tv);
372 		snprintf(*bufp, len, "%lld\n", (long long)tv.tv_sec);
373 		break;
374 	}
375 
376 	case KFSint: {
377 		int *ip = kt->kt_data;
378 
379 		snprintf(*bufp, len, "%d\n", *ip);
380 		break;
381 	}
382 
383 	case KFSstring: {
384 		char *cp = kt->kt_data;
385 
386 		*bufp = cp;
387 		break;
388 	}
389 
390 	case KFSmsgbuf: {
391 		long n;
392 
393 		/*
394 		 * deal with cases where the message buffer has
395 		 * become corrupted.
396 		 */
397 		if (!logenabled(msgbufp)) {
398 			msgbufenabled = 0;
399 			return (ENXIO);
400 		}
401 
402 		/*
403 		 * Note that reads of /kern/msgbuf won't necessarily yield
404 		 * consistent results, if the message buffer is modified
405 		 * while the read is in progress.  The worst that can happen
406 		 * is that incorrect data will be read.  There's no way
407 		 * that this can crash the system unless the values in the
408 		 * message buffer header are corrupted, but that'll cause
409 		 * the system to die anyway.
410 		 */
411 		if (off >= msgbufp->msg_bufs) {
412 			*wrlen = 0;
413 			return (0);
414 		}
415 		n = msgbufp->msg_bufx + off;
416 		if (n >= msgbufp->msg_bufs)
417 			n -= msgbufp->msg_bufs;
418 		len = uimin(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
419 		*bufp = msgbufp->msg_bufc + n;
420 		*wrlen = len;
421 		return (0);
422 	}
423 
424 	case KFShostname: {
425 		char *cp = hostname;
426 		size_t xlen = hostnamelen;
427 
428 		if (xlen >= (len - 2))
429 			return (EINVAL);
430 
431 		memcpy(*bufp, cp, xlen);
432 		(*bufp)[xlen] = '\n';
433 		(*bufp)[xlen+1] = '\0';
434 		break;
435 	}
436 
437 	case KFSavenrun:
438 		averunnable.fscale = FSCALE;
439 		snprintf(*bufp, len, "%d %d %d %ld\n",
440 		    averunnable.ldavg[0], averunnable.ldavg[1],
441 		    averunnable.ldavg[2], averunnable.fscale);
442 		break;
443 
444 	default:
445 		err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
446 		    EOPNOTSUPP);
447 		if (err)
448 			return err;
449 	}
450 
451 	len = strlen(*bufp);
452 	if (len <= off)
453 		*wrlen = 0;
454 	else {
455 		*bufp += off;
456 		*wrlen = len - off;
457 	}
458 	return (0);
459 }
460 
461 static int
462 kernfs_xwrite(const struct kernfs_node *kfs, char *bf, size_t len)
463 {
464 
465 	switch (kfs->kfs_type) {
466 	case KFShostname:
467 		if (bf[len-1] == '\n')
468 			--len;
469 		memcpy(hostname, bf, len);
470 		hostname[len] = '\0';
471 		hostnamelen = (size_t) len;
472 		return (0);
473 
474 	default:
475 		return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
476 	}
477 }
478 
479 
480 /*
481  * vp is the current namei directory
482  * ndp is the name to locate in that directory...
483  */
484 int
485 kernfs_lookup(void *v)
486 {
487 	struct vop_lookup_v2_args /* {
488 		struct vnode * a_dvp;
489 		struct vnode ** a_vpp;
490 		struct componentname * a_cnp;
491 	} */ *ap = v;
492 	struct componentname *cnp = ap->a_cnp;
493 	struct vnode **vpp = ap->a_vpp;
494 	struct vnode *dvp = ap->a_dvp;
495 	const char *pname = cnp->cn_nameptr;
496 	const struct kernfs_node *kfs;
497 	const struct kern_target *kt;
498 	const struct dyn_kern_target *dkt;
499 	const struct kernfs_subdir *ks;
500 	int error, i;
501 
502 	*vpp = NULLVP;
503 
504 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
505 		return (EROFS);
506 
507 	if (cnp->cn_namelen == 1 && *pname == '.') {
508 		*vpp = dvp;
509 		vref(dvp);
510 		return (0);
511 	}
512 
513 	kfs = VTOKERN(dvp);
514 	switch (kfs->kfs_type) {
515 	case KFSkern:
516 		/*
517 		 * Shouldn't get here with .. in the root node.
518 		 */
519 		if (cnp->cn_flags & ISDOTDOT)
520 			return (EIO);
521 
522 		for (i = 0; i < static_nkern_targets; i++) {
523 			kt = &kern_targets[i];
524 			if (cnp->cn_namelen == kt->kt_namlen &&
525 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
526 				goto found;
527 		}
528 		SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
529 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
530 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
531 				kt = &dkt->dkt_kt;
532 				goto found;
533 			}
534 		}
535 		break;
536 
537 	found:
538 		error = vcache_get(dvp->v_mount, &kt, sizeof(kt), vpp);
539 		return error;
540 
541 	case KFSsubdir:
542 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
543 		if (cnp->cn_flags & ISDOTDOT) {
544 			kt = ks->ks_parent;
545 			goto found;
546 		}
547 
548 		SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
549 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
550 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
551 				kt = &dkt->dkt_kt;
552 				goto found;
553 			}
554 		}
555 		break;
556 
557 	default:
558 		return (ENOTDIR);
559 	}
560 
561 	return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
562 }
563 
564 int
565 kernfs_open(void *v)
566 {
567 	struct vop_open_args /* {
568 		struct vnode *a_vp;
569 		int a_mode;
570 		kauth_cred_t a_cred;
571 	} */ *ap = v;
572 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
573 
574 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN, v, 0);
575 }
576 
577 int
578 kernfs_close(void *v)
579 {
580 	struct vop_close_args /* {
581 		struct vnode *a_vp;
582 		int a_fflag;
583 		kauth_cred_t a_cred;
584 	} */ *ap = v;
585 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
586 
587 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE, v, 0);
588 }
589 
590 int
591 kernfs_access(void *v)
592 {
593 	struct vop_access_args /* {
594 		struct vnode *a_vp;
595 		int a_mode;
596 		kauth_cred_t a_cred;
597 	} */ *ap = v;
598 	struct vattr va;
599 	int error;
600 
601 	if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
602 		return (error);
603 
604 	return kauth_authorize_vnode(ap->a_cred,
605 	    KAUTH_ACCESS_ACTION(ap->a_mode, ap->a_vp->v_type, va.va_mode),
606 	    ap->a_vp, NULL, genfs_can_access(va.va_type, va.va_mode,
607 	    va.va_uid, va.va_gid, ap->a_mode, ap->a_cred));
608 }
609 
610 static int
611 kernfs_default_fileop_getattr(void *v)
612 {
613 	struct vop_getattr_args /* {
614 		struct vnode *a_vp;
615 		struct vattr *a_vap;
616 		kauth_cred_t a_cred;
617 	} */ *ap = v;
618 	struct vattr *vap = ap->a_vap;
619 
620 	vap->va_nlink = 1;
621 	vap->va_bytes = vap->va_size = 0;
622 
623 	return 0;
624 }
625 
626 int
627 kernfs_getattr(void *v)
628 {
629 	struct vop_getattr_args /* {
630 		struct vnode *a_vp;
631 		struct vattr *a_vap;
632 		kauth_cred_t a_cred;
633 	} */ *ap = v;
634 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
635 	struct kernfs_subdir *ks;
636 	struct vattr *vap = ap->a_vap;
637 	int error = 0;
638 	char strbuf[KSTRING], *bf;
639 	size_t nread, total;
640 
641 	vattr_null(vap);
642 	vap->va_type = ap->a_vp->v_type;
643 	vap->va_uid = 0;
644 	vap->va_gid = 0;
645 	vap->va_mode = kfs->kfs_mode;
646 	vap->va_fileid = kfs->kfs_fileno;
647 	vap->va_flags = 0;
648 	vap->va_size = 0;
649 	vap->va_blocksize = DEV_BSIZE;
650 	/* Make all times be current TOD, except for the "boottime" node. */
651 	if (kfs->kfs_kt->kt_namlen == 8 &&
652 	    !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
653 		getnanoboottime(&vap->va_ctime);
654 	} else {
655 		getnanotime(&vap->va_ctime);
656 	}
657 	vap->va_atime = vap->va_mtime = vap->va_ctime;
658 	vap->va_gen = 0;
659 	vap->va_flags = 0;
660 	vap->va_rdev = 0;
661 	vap->va_bytes = 0;
662 
663 	switch (kfs->kfs_type) {
664 	case KFSkern:
665 		vap->va_nlink = nkern_dirs;
666 		vap->va_bytes = vap->va_size = DEV_BSIZE;
667 		break;
668 
669 	case KFSdevice:
670 		vap->va_nlink = 1;
671 		vap->va_rdev = ap->a_vp->v_rdev;
672 		break;
673 
674 	case KFSroot:
675 		vap->va_nlink = 1;
676 		vap->va_bytes = vap->va_size = DEV_BSIZE;
677 		break;
678 
679 	case KFSsubdir:
680 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
681 		vap->va_nlink = ks->ks_dirs;
682 		vap->va_bytes = vap->va_size = DEV_BSIZE;
683 		break;
684 
685 	case KFSnull:
686 	case KFStime:
687 	case KFSboottime:
688 	case KFSint:
689 	case KFSstring:
690 	case KFShostname:
691 	case KFSavenrun:
692 	case KFSmsgbuf:
693 		vap->va_nlink = 1;
694 		total = 0;
695 		do {
696 			bf = strbuf;
697 			error = kernfs_xread(kfs, total, &bf,
698 			    sizeof(strbuf), &nread);
699 			total += nread;
700 		} while (error == 0 && nread != 0);
701 		vap->va_bytes = vap->va_size = total;
702 		break;
703 
704 	default:
705 		error = kernfs_try_fileop(kfs->kfs_type,
706 		    KERNFS_FILEOP_GETATTR, v, EINVAL);
707 		break;
708 	}
709 
710 	return (error);
711 }
712 
713 /*ARGSUSED*/
714 int
715 kernfs_setattr(void *v)
716 {
717 
718 	/*
719 	 * Silently ignore attribute changes.
720 	 * This allows for open with truncate to have no
721 	 * effect until some data is written.  I want to
722 	 * do it this way because all writes are atomic.
723 	 */
724 	return (0);
725 }
726 
727 int
728 kernfs_default_xread(void *v)
729 {
730 	struct vop_read_args /* {
731 		struct vnode *a_vp;
732 		struct uio *a_uio;
733 		int  a_ioflag;
734 		kauth_cred_t a_cred;
735 	} */ *ap = v;
736 	struct uio *uio = ap->a_uio;
737 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
738 	char strbuf[KSTRING], *bf;
739 	int off;
740 	size_t len;
741 	int error;
742 
743 	if (ap->a_vp->v_type == VDIR)
744 		return EISDIR;
745 
746 	off = (int)uio->uio_offset;
747 	/* Don't allow negative offsets */
748 	if (off < 0)
749 		return EINVAL;
750 
751 	bf = strbuf;
752 	if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
753 		error = uiomove(bf, len, uio);
754 	return (error);
755 }
756 
757 int
758 kernfs_read(void *v)
759 {
760 	struct vop_read_args /* {
761 		struct vnode *a_vp;
762 		struct uio *a_uio;
763 		int  a_ioflag;
764 		struct ucred *a_cred;
765 	} */ *ap = v;
766 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
767 
768 	if (kfs->kfs_type < KFSlasttype) {
769 		/* use default function */
770 		return kernfs_default_xread(v);
771 	}
772 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
773 	   EOPNOTSUPP);
774 }
775 
776 static int
777 kernfs_default_xwrite(void *v)
778 {
779 	struct vop_write_args /* {
780 		struct vnode *a_vp;
781 		struct uio *a_uio;
782 		int  a_ioflag;
783 		kauth_cred_t a_cred;
784 	} */ *ap = v;
785 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
786 	struct uio *uio = ap->a_uio;
787 	int error;
788 	size_t xlen;
789 	char strbuf[KSTRING];
790 
791 	if (uio->uio_offset != 0)
792 		return (EINVAL);
793 
794 	xlen = uimin(uio->uio_resid, KSTRING-1);
795 	if ((error = uiomove(strbuf, xlen, uio)) != 0)
796 		return (error);
797 
798 	if (uio->uio_resid != 0)
799 		return (EIO);
800 
801 	strbuf[xlen] = '\0';
802 	xlen = strlen(strbuf);
803 	return (kernfs_xwrite(kfs, strbuf, xlen));
804 }
805 
806 int
807 kernfs_write(void *v)
808 {
809 	struct vop_write_args /* {
810 		struct vnode *a_vp;
811 		struct uio *a_uio;
812 		int  a_ioflag;
813 		kauth_cred_t a_cred;
814 	} */ *ap = v;
815 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
816 
817 	if (kfs->kfs_type < KFSlasttype) {
818 		/* use default function */
819 		return kernfs_default_xwrite(v);
820 	}
821 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
822 	    EOPNOTSUPP);
823 }
824 
825 int
826 kernfs_ioctl(void *v)
827 {
828 	struct vop_ioctl_args /* {
829 		const struct vnodeop_desc *a_desc;
830 		struct vnode *a_vp;
831 		u_long a_command;
832 		void *a_data;
833 		int a_fflag;
834 		kauth_cred_t a_cred;
835 	} */ *ap = v;
836 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
837 
838 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
839 	    EPASSTHROUGH);
840 }
841 
842 static int
843 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
844     struct vop_readdir_args *ap)
845 {
846 	struct kernfs_node *kfs;
847 	struct vnode *vp;
848 	int error;
849 
850 	if ((error = vcache_get(ap->a_vp->v_mount, &kt, sizeof(kt), &vp)) != 0)
851 		return error;
852 	kfs = VTOKERN(vp);
853 	d->d_fileno = kfs->kfs_fileno;
854 	vrele(vp);
855 	return 0;
856 }
857 
858 static int
859 kernfs_setdirentfileno(struct dirent *d, off_t entry,
860     struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
861     const struct kern_target *kt, struct vop_readdir_args *ap)
862 {
863 	const struct kern_target *ikt;
864 	int error;
865 
866 	switch (entry) {
867 	case 0:
868 		d->d_fileno = thisdir_kfs->kfs_fileno;
869 		return 0;
870 	case 1:
871 		ikt = parent_kt;
872 		break;
873 	default:
874 		ikt = kt;
875 		break;
876 	}
877 	if (ikt != thisdir_kfs->kfs_kt) {
878 		if ((error = kernfs_setdirentfileno_kt(d, ikt, ap)) != 0)
879 			return error;
880 	} else
881 		d->d_fileno = thisdir_kfs->kfs_fileno;
882 	return 0;
883 }
884 
885 int
886 kernfs_readdir(void *v)
887 {
888 	struct vop_readdir_args /* {
889 		struct vnode *a_vp;
890 		struct uio *a_uio;
891 		kauth_cred_t a_cred;
892 		int *a_eofflag;
893 		off_t **a_cookies;
894 		int a_*ncookies;
895 	} */ *ap = v;
896 	struct uio *uio = ap->a_uio;
897 	struct dirent d;
898 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
899 	const struct kern_target *kt;
900 	const struct dyn_kern_target *dkt = NULL;
901 	const struct kernfs_subdir *ks;
902 	off_t i, j;
903 	int error;
904 	off_t *cookies = NULL;
905 	int ncookies = 0, n;
906 
907 	if (uio->uio_resid < UIO_MX)
908 		return (EINVAL);
909 	if (uio->uio_offset < 0)
910 		return (EINVAL);
911 
912 	error = 0;
913 	i = uio->uio_offset;
914 	memset(&d, 0, sizeof(d));
915 	d.d_reclen = UIO_MX;
916 	ncookies = uio->uio_resid / UIO_MX;
917 
918 	switch (kfs->kfs_type) {
919 	case KFSkern:
920 		if (i >= nkern_targets)
921 			return (0);
922 
923 		if (ap->a_ncookies) {
924 			ncookies = uimin(ncookies, (nkern_targets - i));
925 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
926 			    M_WAITOK);
927 			*ap->a_cookies = cookies;
928 		}
929 
930 		n = 0;
931 		for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
932 			if (i < static_nkern_targets)
933 				kt = &kern_targets[i];
934 			else {
935 				if (dkt == NULL) {
936 					dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
937 					for (j = static_nkern_targets; j < i &&
938 						     dkt != NULL; j++)
939 						dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
940 					if (j != i)
941 						break;
942 				} else {
943 					dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
944 				}
945 				if (dkt == NULL)
946 					break;
947 				kt = &dkt->dkt_kt;
948 			}
949 			if (kt->kt_tag == KFSdevice) {
950 				dev_t *dp = kt->kt_data;
951 				struct vnode *fvp;
952 
953 				if (*dp == NODEV ||
954 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
955 					continue;
956 				vrele(fvp);
957 			}
958 			if (kt->kt_tag == KFSmsgbuf) {
959 				if (!logenabled(msgbufp)) {
960 					continue;
961 				}
962 			}
963 			d.d_namlen = kt->kt_namlen;
964 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
965 			    &kern_targets[0], kt, ap)) != 0)
966 				break;
967 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
968 			d.d_type = kt->kt_type;
969 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
970 				break;
971 			if (cookies)
972 				*cookies++ = i + 1;
973 			n++;
974 		}
975 		ncookies = n;
976 		break;
977 
978 	case KFSroot:
979 		if (i >= 2)
980 			return 0;
981 
982 		if (ap->a_ncookies) {
983 			ncookies = uimin(ncookies, (2 - i));
984 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
985 			    M_WAITOK);
986 			*ap->a_cookies = cookies;
987 		}
988 
989 		n = 0;
990 		for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
991 			kt = &kern_targets[i];
992 			d.d_namlen = kt->kt_namlen;
993 			d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
994 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
995 			d.d_type = kt->kt_type;
996 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
997 				break;
998 			if (cookies)
999 				*cookies++ = i + 1;
1000 			n++;
1001 		}
1002 		ncookies = n;
1003 		break;
1004 
1005 	case KFSsubdir:
1006 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1007 		if (i >= ks->ks_nentries)
1008 			return (0);
1009 
1010 		if (ap->a_ncookies) {
1011 			ncookies = uimin(ncookies, (ks->ks_nentries - i));
1012 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1013 			    M_WAITOK);
1014 			*ap->a_cookies = cookies;
1015 		}
1016 
1017 		dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1018 		for (j = 0; j < i && dkt != NULL; j++)
1019 			dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1020 		n = 0;
1021 		for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1022 			if (i < 2)
1023 				kt = &subdir_targets[i];
1024 			else {
1025 				/* check if ks_nentries lied to us */
1026 				if (dkt == NULL)
1027 					break;
1028 				kt = &dkt->dkt_kt;
1029 				dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1030 			}
1031 			if (kt->kt_tag == KFSdevice) {
1032 				dev_t *dp = kt->kt_data;
1033 				struct vnode *fvp;
1034 
1035 				if (*dp == NODEV ||
1036 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
1037 					continue;
1038 				vrele(fvp);
1039 			}
1040 			d.d_namlen = kt->kt_namlen;
1041 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1042 			    ks->ks_parent, kt, ap)) != 0)
1043 				break;
1044 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1045 			d.d_type = kt->kt_type;
1046 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1047 				break;
1048 			if (cookies)
1049 				*cookies++ = i + 1;
1050 			n++;
1051 		}
1052 		ncookies = n;
1053 		break;
1054 
1055 	default:
1056 		error = ENOTDIR;
1057 		break;
1058 	}
1059 
1060 	if (ap->a_ncookies) {
1061 		if (error) {
1062 			if (cookies)
1063 				free(*ap->a_cookies, M_TEMP);
1064 			*ap->a_ncookies = 0;
1065 			*ap->a_cookies = NULL;
1066 		} else
1067 			*ap->a_ncookies = ncookies;
1068 	}
1069 
1070 	uio->uio_offset = i;
1071 	return (error);
1072 }
1073 
1074 int
1075 kernfs_inactive(void *v)
1076 {
1077 	struct vop_inactive_v2_args /* {
1078 		struct vnode *a_vp;
1079 		bool *a_recycle;
1080 	} */ *ap = v;
1081 
1082 	*ap->a_recycle = false;
1083 
1084 	return (0);
1085 }
1086 
1087 int
1088 kernfs_reclaim(void *v)
1089 {
1090 	struct vop_reclaim_v2_args /* {
1091 		struct vnode *a_vp;
1092 	} */ *ap = v;
1093 	struct vnode *vp = ap->a_vp;
1094 	struct kernfs_node *kfs = VTOKERN(vp);
1095 
1096 	VOP_UNLOCK(vp);
1097 
1098 	vp->v_data = NULL;
1099 	mutex_enter(&kfs_lock);
1100 	TAILQ_REMOVE(&VFSTOKERNFS(vp->v_mount)->nodelist, kfs, kfs_list);
1101 	mutex_exit(&kfs_lock);
1102 	kmem_free(kfs, sizeof(struct kernfs_node));
1103 
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Return POSIX pathconf information applicable to special devices.
1109  */
1110 int
1111 kernfs_pathconf(void *v)
1112 {
1113 	struct vop_pathconf_args /* {
1114 		struct vnode *a_vp;
1115 		int a_name;
1116 		register_t *a_retval;
1117 	} */ *ap = v;
1118 
1119 	switch (ap->a_name) {
1120 	case _PC_LINK_MAX:
1121 		*ap->a_retval = LINK_MAX;
1122 		return (0);
1123 	case _PC_MAX_CANON:
1124 		*ap->a_retval = MAX_CANON;
1125 		return (0);
1126 	case _PC_MAX_INPUT:
1127 		*ap->a_retval = MAX_INPUT;
1128 		return (0);
1129 	case _PC_PIPE_BUF:
1130 		*ap->a_retval = PIPE_BUF;
1131 		return (0);
1132 	case _PC_CHOWN_RESTRICTED:
1133 		*ap->a_retval = 1;
1134 		return (0);
1135 	case _PC_VDISABLE:
1136 		*ap->a_retval = _POSIX_VDISABLE;
1137 		return (0);
1138 	case _PC_SYNC_IO:
1139 		*ap->a_retval = 1;
1140 		return (0);
1141 	default:
1142 		return (EINVAL);
1143 	}
1144 	/* NOTREACHED */
1145 }
1146 
1147 /*
1148  * Print out the contents of a /dev/fd vnode.
1149  */
1150 /* ARGSUSED */
1151 int
1152 kernfs_print(void *v)
1153 {
1154 
1155 	printf("tag VT_KERNFS, kernfs vnode\n");
1156 	return (0);
1157 }
1158 
1159 int
1160 kernfs_link(void *v)
1161 {
1162 	struct vop_link_v2_args /* {
1163 		struct vnode *a_dvp;
1164 		struct vnode *a_vp;
1165 		struct componentname *a_cnp;
1166 	} */ *ap = v;
1167 
1168 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1169 	return (EROFS);
1170 }
1171 
1172 int
1173 kernfs_symlink(void *v)
1174 {
1175 	struct vop_symlink_v3_args /* {
1176 		struct vnode *a_dvp;
1177 		struct vnode **a_vpp;
1178 		struct componentname *a_cnp;
1179 		struct vattr *a_vap;
1180 		char *a_target;
1181 	} */ *ap = v;
1182 
1183 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1184 	return (EROFS);
1185 }
1186 
1187 int
1188 kernfs_getpages(void *v)
1189 {
1190 	struct vop_getpages_args /* {
1191 		struct vnode *a_vp;
1192 		voff_t a_offset;
1193 		struct vm_page **a_m;
1194 		int *a_count;
1195 		int a_centeridx;
1196 		vm_prot_t a_access_type;
1197 		int a_advice;
1198 		int a_flags;
1199 	} */ *ap = v;
1200 
1201 	if ((ap->a_flags & PGO_LOCKED) == 0)
1202 		mutex_exit(ap->a_vp->v_interlock);
1203 
1204 	return (EFAULT);
1205 }
1206