1 /* $NetBSD: vfs_subr.c,v 1.470 2017/10/27 12:25:15 joerg Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, by Charles M. Hannum, by Andrew Doran, 10 * by Marshall Kirk McKusick and Greg Ganger at the University of Michigan. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1989, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.470 2017/10/27 12:25:15 joerg Exp $"); 72 73 #ifdef _KERNEL_OPT 74 #include "opt_ddb.h" 75 #include "opt_compat_netbsd.h" 76 #include "opt_compat_43.h" 77 #endif 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/conf.h> 82 #include <sys/dirent.h> 83 #include <sys/filedesc.h> 84 #include <sys/kernel.h> 85 #include <sys/mount.h> 86 #include <sys/fstrans.h> 87 #include <sys/vnode_impl.h> 88 #include <sys/stat.h> 89 #include <sys/sysctl.h> 90 #include <sys/namei.h> 91 #include <sys/buf.h> 92 #include <sys/errno.h> 93 #include <sys/kmem.h> 94 #include <sys/syscallargs.h> 95 #include <sys/kauth.h> 96 #include <sys/module.h> 97 98 #include <miscfs/genfs/genfs.h> 99 #include <miscfs/specfs/specdev.h> 100 #include <uvm/uvm_ddb.h> 101 102 const enum vtype iftovt_tab[16] = { 103 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 104 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 105 }; 106 const int vttoif_tab[9] = { 107 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 108 S_IFSOCK, S_IFIFO, S_IFMT, 109 }; 110 111 /* 112 * Insq/Remq for the vnode usage lists. 113 */ 114 #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) 115 #define bufremvn(bp) { \ 116 LIST_REMOVE(bp, b_vnbufs); \ 117 (bp)->b_vnbufs.le_next = NOLIST; \ 118 } 119 120 int doforce = 1; /* 1 => permit forcible unmounting */ 121 122 extern struct mount *dead_rootmount; 123 124 /* 125 * Local declarations. 126 */ 127 128 static void vn_initialize_syncerd(void); 129 130 /* 131 * Initialize the vnode management data structures. 132 */ 133 void 134 vntblinit(void) 135 { 136 137 vn_initialize_syncerd(); 138 vfs_mount_sysinit(); 139 vfs_vnode_sysinit(); 140 } 141 142 /* 143 * Flush out and invalidate all buffers associated with a vnode. 144 * Called with the underlying vnode locked, which should prevent new dirty 145 * buffers from being queued. 146 */ 147 int 148 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l, 149 bool catch_p, int slptimeo) 150 { 151 struct buf *bp, *nbp; 152 int error; 153 int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO | 154 (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0); 155 156 /* XXXUBC this doesn't look at flags or slp* */ 157 mutex_enter(vp->v_interlock); 158 error = VOP_PUTPAGES(vp, 0, 0, flushflags); 159 if (error) { 160 return error; 161 } 162 163 if (flags & V_SAVE) { 164 error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0); 165 if (error) 166 return (error); 167 KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd)); 168 } 169 170 mutex_enter(&bufcache_lock); 171 restart: 172 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 173 KASSERT(bp->b_vp == vp); 174 nbp = LIST_NEXT(bp, b_vnbufs); 175 error = bbusy(bp, catch_p, slptimeo, NULL); 176 if (error != 0) { 177 if (error == EPASSTHROUGH) 178 goto restart; 179 mutex_exit(&bufcache_lock); 180 return (error); 181 } 182 brelsel(bp, BC_INVAL | BC_VFLUSH); 183 } 184 185 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 186 KASSERT(bp->b_vp == vp); 187 nbp = LIST_NEXT(bp, b_vnbufs); 188 error = bbusy(bp, catch_p, slptimeo, NULL); 189 if (error != 0) { 190 if (error == EPASSTHROUGH) 191 goto restart; 192 mutex_exit(&bufcache_lock); 193 return (error); 194 } 195 /* 196 * XXX Since there are no node locks for NFS, I believe 197 * there is a slight chance that a delayed write will 198 * occur while sleeping just above, so check for it. 199 */ 200 if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) { 201 #ifdef DEBUG 202 printf("buffer still DELWRI\n"); 203 #endif 204 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 205 mutex_exit(&bufcache_lock); 206 VOP_BWRITE(bp->b_vp, bp); 207 mutex_enter(&bufcache_lock); 208 goto restart; 209 } 210 brelsel(bp, BC_INVAL | BC_VFLUSH); 211 } 212 213 #ifdef DIAGNOSTIC 214 if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd)) 215 panic("vinvalbuf: flush failed, vp %p", vp); 216 #endif 217 218 mutex_exit(&bufcache_lock); 219 220 return (0); 221 } 222 223 /* 224 * Destroy any in core blocks past the truncation length. 225 * Called with the underlying vnode locked, which should prevent new dirty 226 * buffers from being queued. 227 */ 228 int 229 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch_p, int slptimeo) 230 { 231 struct buf *bp, *nbp; 232 int error; 233 voff_t off; 234 235 off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift); 236 mutex_enter(vp->v_interlock); 237 error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO); 238 if (error) { 239 return error; 240 } 241 242 mutex_enter(&bufcache_lock); 243 restart: 244 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 245 KASSERT(bp->b_vp == vp); 246 nbp = LIST_NEXT(bp, b_vnbufs); 247 if (bp->b_lblkno < lbn) 248 continue; 249 error = bbusy(bp, catch_p, slptimeo, NULL); 250 if (error != 0) { 251 if (error == EPASSTHROUGH) 252 goto restart; 253 mutex_exit(&bufcache_lock); 254 return (error); 255 } 256 brelsel(bp, BC_INVAL | BC_VFLUSH); 257 } 258 259 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 260 KASSERT(bp->b_vp == vp); 261 nbp = LIST_NEXT(bp, b_vnbufs); 262 if (bp->b_lblkno < lbn) 263 continue; 264 error = bbusy(bp, catch_p, slptimeo, NULL); 265 if (error != 0) { 266 if (error == EPASSTHROUGH) 267 goto restart; 268 mutex_exit(&bufcache_lock); 269 return (error); 270 } 271 brelsel(bp, BC_INVAL | BC_VFLUSH); 272 } 273 mutex_exit(&bufcache_lock); 274 275 return (0); 276 } 277 278 /* 279 * Flush all dirty buffers from a vnode. 280 * Called with the underlying vnode locked, which should prevent new dirty 281 * buffers from being queued. 282 */ 283 int 284 vflushbuf(struct vnode *vp, int flags) 285 { 286 struct buf *bp, *nbp; 287 int error, pflags; 288 bool dirty, sync; 289 290 sync = (flags & FSYNC_WAIT) != 0; 291 pflags = PGO_CLEANIT | PGO_ALLPAGES | 292 (sync ? PGO_SYNCIO : 0) | 293 ((flags & FSYNC_LAZY) ? PGO_LAZY : 0); 294 mutex_enter(vp->v_interlock); 295 (void) VOP_PUTPAGES(vp, 0, 0, pflags); 296 297 loop: 298 mutex_enter(&bufcache_lock); 299 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 300 KASSERT(bp->b_vp == vp); 301 nbp = LIST_NEXT(bp, b_vnbufs); 302 if ((bp->b_cflags & BC_BUSY)) 303 continue; 304 if ((bp->b_oflags & BO_DELWRI) == 0) 305 panic("vflushbuf: not dirty, bp %p", bp); 306 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 307 mutex_exit(&bufcache_lock); 308 /* 309 * Wait for I/O associated with indirect blocks to complete, 310 * since there is no way to quickly wait for them below. 311 */ 312 if (bp->b_vp == vp || !sync) 313 (void) bawrite(bp); 314 else { 315 error = bwrite(bp); 316 if (error) 317 return error; 318 } 319 goto loop; 320 } 321 mutex_exit(&bufcache_lock); 322 323 if (!sync) 324 return 0; 325 326 mutex_enter(vp->v_interlock); 327 while (vp->v_numoutput != 0) 328 cv_wait(&vp->v_cv, vp->v_interlock); 329 dirty = !LIST_EMPTY(&vp->v_dirtyblkhd); 330 mutex_exit(vp->v_interlock); 331 332 if (dirty) { 333 vprint("vflushbuf: dirty", vp); 334 goto loop; 335 } 336 337 return 0; 338 } 339 340 /* 341 * Create a vnode for a block device. 342 * Used for root filesystem and swap areas. 343 * Also used for memory file system special devices. 344 */ 345 int 346 bdevvp(dev_t dev, vnode_t **vpp) 347 { 348 struct vattr va; 349 350 vattr_null(&va); 351 va.va_type = VBLK; 352 va.va_rdev = dev; 353 354 return vcache_new(dead_rootmount, NULL, &va, NOCRED, vpp); 355 } 356 357 /* 358 * Create a vnode for a character device. 359 * Used for kernfs and some console handling. 360 */ 361 int 362 cdevvp(dev_t dev, vnode_t **vpp) 363 { 364 struct vattr va; 365 366 vattr_null(&va); 367 va.va_type = VCHR; 368 va.va_rdev = dev; 369 370 return vcache_new(dead_rootmount, NULL, &va, NOCRED, vpp); 371 } 372 373 /* 374 * Associate a buffer with a vnode. There must already be a hold on 375 * the vnode. 376 */ 377 void 378 bgetvp(struct vnode *vp, struct buf *bp) 379 { 380 381 KASSERT(bp->b_vp == NULL); 382 KASSERT(bp->b_objlock == &buffer_lock); 383 KASSERT(mutex_owned(vp->v_interlock)); 384 KASSERT(mutex_owned(&bufcache_lock)); 385 KASSERT((bp->b_cflags & BC_BUSY) != 0); 386 KASSERT(!cv_has_waiters(&bp->b_done)); 387 388 vholdl(vp); 389 bp->b_vp = vp; 390 if (vp->v_type == VBLK || vp->v_type == VCHR) 391 bp->b_dev = vp->v_rdev; 392 else 393 bp->b_dev = NODEV; 394 395 /* 396 * Insert onto list for new vnode. 397 */ 398 bufinsvn(bp, &vp->v_cleanblkhd); 399 bp->b_objlock = vp->v_interlock; 400 } 401 402 /* 403 * Disassociate a buffer from a vnode. 404 */ 405 void 406 brelvp(struct buf *bp) 407 { 408 struct vnode *vp = bp->b_vp; 409 410 KASSERT(vp != NULL); 411 KASSERT(bp->b_objlock == vp->v_interlock); 412 KASSERT(mutex_owned(vp->v_interlock)); 413 KASSERT(mutex_owned(&bufcache_lock)); 414 KASSERT((bp->b_cflags & BC_BUSY) != 0); 415 KASSERT(!cv_has_waiters(&bp->b_done)); 416 417 /* 418 * Delete from old vnode list, if on one. 419 */ 420 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 421 bufremvn(bp); 422 423 if (vp->v_uobj.uo_npages == 0 && (vp->v_iflag & VI_ONWORKLST) && 424 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 425 vp->v_iflag &= ~VI_WRMAPDIRTY; 426 vn_syncer_remove_from_worklist(vp); 427 } 428 429 bp->b_objlock = &buffer_lock; 430 bp->b_vp = NULL; 431 holdrelel(vp); 432 } 433 434 /* 435 * Reassign a buffer from one vnode list to another. 436 * The list reassignment must be within the same vnode. 437 * Used to assign file specific control information 438 * (indirect blocks) to the list to which they belong. 439 */ 440 void 441 reassignbuf(struct buf *bp, struct vnode *vp) 442 { 443 struct buflists *listheadp; 444 int delayx; 445 446 KASSERT(mutex_owned(&bufcache_lock)); 447 KASSERT(bp->b_objlock == vp->v_interlock); 448 KASSERT(mutex_owned(vp->v_interlock)); 449 KASSERT((bp->b_cflags & BC_BUSY) != 0); 450 451 /* 452 * Delete from old vnode list, if on one. 453 */ 454 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 455 bufremvn(bp); 456 457 /* 458 * If dirty, put on list of dirty buffers; 459 * otherwise insert onto list of clean buffers. 460 */ 461 if ((bp->b_oflags & BO_DELWRI) == 0) { 462 listheadp = &vp->v_cleanblkhd; 463 if (vp->v_uobj.uo_npages == 0 && 464 (vp->v_iflag & VI_ONWORKLST) && 465 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 466 vp->v_iflag &= ~VI_WRMAPDIRTY; 467 vn_syncer_remove_from_worklist(vp); 468 } 469 } else { 470 listheadp = &vp->v_dirtyblkhd; 471 if ((vp->v_iflag & VI_ONWORKLST) == 0) { 472 switch (vp->v_type) { 473 case VDIR: 474 delayx = dirdelay; 475 break; 476 case VBLK: 477 if (spec_node_getmountedfs(vp) != NULL) { 478 delayx = metadelay; 479 break; 480 } 481 /* fall through */ 482 default: 483 delayx = filedelay; 484 break; 485 } 486 if (!vp->v_mount || 487 (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) 488 vn_syncer_add_to_worklist(vp, delayx); 489 } 490 } 491 bufinsvn(bp, listheadp); 492 } 493 494 /* 495 * Lookup a vnode by device number and return it referenced. 496 */ 497 int 498 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp) 499 { 500 501 return (spec_node_lookup_by_dev(type, dev, vpp) == 0); 502 } 503 504 /* 505 * Revoke all the vnodes corresponding to the specified minor number 506 * range (endpoints inclusive) of the specified major. 507 */ 508 void 509 vdevgone(int maj, int minl, int minh, enum vtype type) 510 { 511 vnode_t *vp; 512 dev_t dev; 513 int mn; 514 515 for (mn = minl; mn <= minh; mn++) { 516 dev = makedev(maj, mn); 517 while (spec_node_lookup_by_dev(type, dev, &vp) == 0) { 518 VOP_REVOKE(vp, REVOKEALL); 519 vrele(vp); 520 } 521 } 522 } 523 524 /* 525 * The filesystem synchronizer mechanism - syncer. 526 * 527 * It is useful to delay writes of file data and filesystem metadata for 528 * a certain amount of time so that quickly created and deleted files need 529 * not waste disk bandwidth being created and removed. To implement this, 530 * vnodes are appended to a "workitem" queue. 531 * 532 * Most pending metadata should not wait for more than ten seconds. Thus, 533 * mounted on block devices are delayed only about a half the time that file 534 * data is delayed. Similarly, directory updates are more critical, so are 535 * only delayed about a third the time that file data is delayed. 536 * 537 * There are SYNCER_MAXDELAY queues that are processed in a round-robin 538 * manner at a rate of one each second (driven off the filesystem syner 539 * thread). The syncer_delayno variable indicates the next queue that is 540 * to be processed. Items that need to be processed soon are placed in 541 * this queue: 542 * 543 * syncer_workitem_pending[syncer_delayno] 544 * 545 * A delay of e.g. fifteen seconds is done by placing the request fifteen 546 * entries later in the queue: 547 * 548 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 549 * 550 * Flag VI_ONWORKLST indicates that vnode is added into the queue. 551 */ 552 553 #define SYNCER_MAXDELAY 32 554 555 typedef TAILQ_HEAD(synclist, vnode_impl) synclist_t; 556 557 static void vn_syncer_add1(struct vnode *, int); 558 static void sysctl_vfs_syncfs_setup(struct sysctllog **); 559 560 /* 561 * Defines and variables for the syncer process. 562 */ 563 int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 564 time_t syncdelay = 30; /* max time to delay syncing data */ 565 time_t filedelay = 30; /* time to delay syncing files */ 566 time_t dirdelay = 15; /* time to delay syncing directories */ 567 time_t metadelay = 10; /* time to delay syncing metadata */ 568 time_t lockdelay = 1; /* time to delay if locking fails */ 569 570 static kmutex_t syncer_data_lock; /* short term lock on data structs */ 571 572 static int syncer_delayno = 0; 573 static long syncer_last; 574 static synclist_t * syncer_workitem_pending; 575 576 static void 577 vn_initialize_syncerd(void) 578 { 579 int i; 580 581 syncer_last = SYNCER_MAXDELAY + 2; 582 583 sysctl_vfs_syncfs_setup(NULL); 584 585 syncer_workitem_pending = 586 kmem_alloc(syncer_last * sizeof (struct synclist), KM_SLEEP); 587 588 for (i = 0; i < syncer_last; i++) 589 TAILQ_INIT(&syncer_workitem_pending[i]); 590 591 mutex_init(&syncer_data_lock, MUTEX_DEFAULT, IPL_NONE); 592 } 593 594 /* 595 * Return delay factor appropriate for the given file system. For 596 * WAPBL we use the sync vnode to burst out metadata updates: sync 597 * those file systems more frequently. 598 */ 599 static inline int 600 sync_delay(struct mount *mp) 601 { 602 603 return mp->mnt_wapbl != NULL ? metadelay : syncdelay; 604 } 605 606 /* 607 * Compute the next slot index from delay. 608 */ 609 static inline int 610 sync_delay_slot(int delayx) 611 { 612 613 if (delayx > syncer_maxdelay - 2) 614 delayx = syncer_maxdelay - 2; 615 return (syncer_delayno + delayx) % syncer_last; 616 } 617 618 /* 619 * Add an item to the syncer work queue. 620 */ 621 static void 622 vn_syncer_add1(struct vnode *vp, int delayx) 623 { 624 synclist_t *slp; 625 vnode_impl_t *vip = VNODE_TO_VIMPL(vp); 626 627 KASSERT(mutex_owned(&syncer_data_lock)); 628 629 if (vp->v_iflag & VI_ONWORKLST) { 630 /* 631 * Remove in order to adjust the position of the vnode. 632 * Note: called from sched_sync(), which will not hold 633 * interlock, therefore we cannot modify v_iflag here. 634 */ 635 slp = &syncer_workitem_pending[vip->vi_synclist_slot]; 636 TAILQ_REMOVE(slp, vip, vi_synclist); 637 } else { 638 KASSERT(mutex_owned(vp->v_interlock)); 639 vp->v_iflag |= VI_ONWORKLST; 640 } 641 642 vip->vi_synclist_slot = sync_delay_slot(delayx); 643 644 slp = &syncer_workitem_pending[vip->vi_synclist_slot]; 645 TAILQ_INSERT_TAIL(slp, vip, vi_synclist); 646 } 647 648 void 649 vn_syncer_add_to_worklist(struct vnode *vp, int delayx) 650 { 651 652 KASSERT(mutex_owned(vp->v_interlock)); 653 654 mutex_enter(&syncer_data_lock); 655 vn_syncer_add1(vp, delayx); 656 mutex_exit(&syncer_data_lock); 657 } 658 659 /* 660 * Remove an item from the syncer work queue. 661 */ 662 void 663 vn_syncer_remove_from_worklist(struct vnode *vp) 664 { 665 synclist_t *slp; 666 vnode_impl_t *vip = VNODE_TO_VIMPL(vp); 667 668 KASSERT(mutex_owned(vp->v_interlock)); 669 670 mutex_enter(&syncer_data_lock); 671 if (vp->v_iflag & VI_ONWORKLST) { 672 vp->v_iflag &= ~VI_ONWORKLST; 673 slp = &syncer_workitem_pending[vip->vi_synclist_slot]; 674 TAILQ_REMOVE(slp, vip, vi_synclist); 675 } 676 mutex_exit(&syncer_data_lock); 677 } 678 679 /* 680 * Add this mount point to the syncer. 681 */ 682 void 683 vfs_syncer_add_to_worklist(struct mount *mp) 684 { 685 static int start, incr, next; 686 int vdelay; 687 688 KASSERT(mutex_owned(&mp->mnt_updating)); 689 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) == 0); 690 691 /* 692 * We attempt to scatter the mount points on the list 693 * so that they will go off at evenly distributed times 694 * even if all the filesystems are mounted at once. 695 */ 696 697 next += incr; 698 if (next == 0 || next > syncer_maxdelay) { 699 start /= 2; 700 incr /= 2; 701 if (start == 0) { 702 start = syncer_maxdelay / 2; 703 incr = syncer_maxdelay; 704 } 705 next = start; 706 } 707 mp->mnt_iflag |= IMNT_ONWORKLIST; 708 vdelay = sync_delay(mp); 709 mp->mnt_synclist_slot = vdelay > 0 ? next % vdelay : 0; 710 } 711 712 /* 713 * Remove the mount point from the syncer. 714 */ 715 void 716 vfs_syncer_remove_from_worklist(struct mount *mp) 717 { 718 719 KASSERT(mutex_owned(&mp->mnt_updating)); 720 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) != 0); 721 722 mp->mnt_iflag &= ~IMNT_ONWORKLIST; 723 } 724 725 /* 726 * Try lazy sync, return true on success. 727 */ 728 static bool 729 lazy_sync_vnode(struct vnode *vp) 730 { 731 bool synced; 732 733 KASSERT(mutex_owned(&syncer_data_lock)); 734 735 synced = false; 736 /* We are locking in the wrong direction. */ 737 if (mutex_tryenter(vp->v_interlock)) { 738 mutex_exit(&syncer_data_lock); 739 if (vcache_tryvget(vp) == 0) { 740 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 741 synced = true; 742 (void) VOP_FSYNC(vp, curlwp->l_cred, 743 FSYNC_LAZY, 0, 0); 744 vput(vp); 745 } else 746 vrele(vp); 747 } 748 mutex_enter(&syncer_data_lock); 749 } 750 return synced; 751 } 752 753 /* 754 * System filesystem synchronizer daemon. 755 */ 756 void 757 sched_sync(void *arg) 758 { 759 mount_iterator_t *iter; 760 synclist_t *slp; 761 struct vnode *vp; 762 struct mount *mp; 763 time_t starttime; 764 bool synced; 765 766 for (;;) { 767 starttime = time_second; 768 769 /* 770 * Sync mounts whose dirty time has expired. 771 */ 772 mountlist_iterator_init(&iter); 773 while ((mp = mountlist_iterator_trynext(iter)) != NULL) { 774 if ((mp->mnt_iflag & IMNT_ONWORKLIST) == 0 || 775 mp->mnt_synclist_slot != syncer_delayno) { 776 continue; 777 } 778 mp->mnt_synclist_slot = sync_delay_slot(sync_delay(mp)); 779 VFS_SYNC(mp, MNT_LAZY, curlwp->l_cred); 780 } 781 mountlist_iterator_destroy(iter); 782 783 mutex_enter(&syncer_data_lock); 784 785 /* 786 * Push files whose dirty time has expired. 787 */ 788 slp = &syncer_workitem_pending[syncer_delayno]; 789 syncer_delayno += 1; 790 if (syncer_delayno >= syncer_last) 791 syncer_delayno = 0; 792 793 while ((vp = VIMPL_TO_VNODE(TAILQ_FIRST(slp))) != NULL) { 794 synced = lazy_sync_vnode(vp); 795 796 /* 797 * XXX The vnode may have been recycled, in which 798 * case it may have a new identity. 799 */ 800 if (VIMPL_TO_VNODE(TAILQ_FIRST(slp)) == vp) { 801 /* 802 * Put us back on the worklist. The worklist 803 * routine will remove us from our current 804 * position and then add us back in at a later 805 * position. 806 * 807 * Try again sooner rather than later if 808 * we were unable to lock the vnode. Lock 809 * failure should not prevent us from doing 810 * the sync "soon". 811 * 812 * If we locked it yet arrive here, it's 813 * likely that lazy sync is in progress and 814 * so the vnode still has dirty metadata. 815 * syncdelay is mainly to get this vnode out 816 * of the way so we do not consider it again 817 * "soon" in this loop, so the delay time is 818 * not critical as long as it is not "soon". 819 * While write-back strategy is the file 820 * system's domain, we expect write-back to 821 * occur no later than syncdelay seconds 822 * into the future. 823 */ 824 vn_syncer_add1(vp, 825 synced ? syncdelay : lockdelay); 826 } 827 } 828 829 /* 830 * If it has taken us less than a second to process the 831 * current work, then wait. Otherwise start right over 832 * again. We can still lose time if any single round 833 * takes more than two seconds, but it does not really 834 * matter as we are just trying to generally pace the 835 * filesystem activity. 836 */ 837 if (time_second == starttime) { 838 kpause("syncer", false, hz, &syncer_data_lock); 839 } 840 mutex_exit(&syncer_data_lock); 841 } 842 } 843 844 static void 845 sysctl_vfs_syncfs_setup(struct sysctllog **clog) 846 { 847 const struct sysctlnode *rnode, *cnode; 848 849 sysctl_createv(clog, 0, NULL, &rnode, 850 CTLFLAG_PERMANENT, 851 CTLTYPE_NODE, "sync", 852 SYSCTL_DESCR("syncer options"), 853 NULL, 0, NULL, 0, 854 CTL_VFS, CTL_CREATE, CTL_EOL); 855 856 sysctl_createv(clog, 0, &rnode, &cnode, 857 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 858 CTLTYPE_QUAD, "delay", 859 SYSCTL_DESCR("max time to delay syncing data"), 860 NULL, 0, &syncdelay, 0, 861 CTL_CREATE, CTL_EOL); 862 863 sysctl_createv(clog, 0, &rnode, &cnode, 864 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 865 CTLTYPE_QUAD, "filedelay", 866 SYSCTL_DESCR("time to delay syncing files"), 867 NULL, 0, &filedelay, 0, 868 CTL_CREATE, CTL_EOL); 869 870 sysctl_createv(clog, 0, &rnode, &cnode, 871 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 872 CTLTYPE_QUAD, "dirdelay", 873 SYSCTL_DESCR("time to delay syncing directories"), 874 NULL, 0, &dirdelay, 0, 875 CTL_CREATE, CTL_EOL); 876 877 sysctl_createv(clog, 0, &rnode, &cnode, 878 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 879 CTLTYPE_QUAD, "metadelay", 880 SYSCTL_DESCR("time to delay syncing metadata"), 881 NULL, 0, &metadelay, 0, 882 CTL_CREATE, CTL_EOL); 883 } 884 885 /* 886 * sysctl helper routine to return list of supported fstypes 887 */ 888 int 889 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS) 890 { 891 char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)]; 892 char *where = oldp; 893 struct vfsops *v; 894 size_t needed, left, slen; 895 int error, first; 896 897 if (newp != NULL) 898 return (EPERM); 899 if (namelen != 0) 900 return (EINVAL); 901 902 first = 1; 903 error = 0; 904 needed = 0; 905 left = *oldlenp; 906 907 sysctl_unlock(); 908 mutex_enter(&vfs_list_lock); 909 LIST_FOREACH(v, &vfs_list, vfs_list) { 910 if (where == NULL) 911 needed += strlen(v->vfs_name) + 1; 912 else { 913 memset(bf, 0, sizeof(bf)); 914 if (first) { 915 strncpy(bf, v->vfs_name, sizeof(bf)); 916 first = 0; 917 } else { 918 bf[0] = ' '; 919 strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1); 920 } 921 bf[sizeof(bf)-1] = '\0'; 922 slen = strlen(bf); 923 if (left < slen + 1) 924 break; 925 v->vfs_refcount++; 926 mutex_exit(&vfs_list_lock); 927 /* +1 to copy out the trailing NUL byte */ 928 error = copyout(bf, where, slen + 1); 929 mutex_enter(&vfs_list_lock); 930 v->vfs_refcount--; 931 if (error) 932 break; 933 where += slen; 934 needed += slen; 935 left -= slen; 936 } 937 } 938 mutex_exit(&vfs_list_lock); 939 sysctl_relock(); 940 *oldlenp = needed; 941 return (error); 942 } 943 944 int kinfo_vdebug = 1; 945 int kinfo_vgetfailed; 946 947 #define KINFO_VNODESLOP 10 948 949 /* 950 * Dump vnode list (via sysctl). 951 * Copyout address of vnode followed by vnode. 952 */ 953 int 954 sysctl_kern_vnode(SYSCTLFN_ARGS) 955 { 956 char *where = oldp; 957 size_t *sizep = oldlenp; 958 struct mount *mp; 959 vnode_t *vp, vbuf; 960 mount_iterator_t *iter; 961 struct vnode_iterator *marker; 962 char *bp = where; 963 char *ewhere; 964 int error; 965 966 if (namelen != 0) 967 return (EOPNOTSUPP); 968 if (newp != NULL) 969 return (EPERM); 970 971 #define VPTRSZ sizeof(vnode_t *) 972 #define VNODESZ sizeof(vnode_t) 973 if (where == NULL) { 974 *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ); 975 return (0); 976 } 977 ewhere = where + *sizep; 978 979 sysctl_unlock(); 980 mountlist_iterator_init(&iter); 981 while ((mp = mountlist_iterator_next(iter)) != NULL) { 982 vfs_vnode_iterator_init(mp, &marker); 983 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) { 984 if (bp + VPTRSZ + VNODESZ > ewhere) { 985 vrele(vp); 986 vfs_vnode_iterator_destroy(marker); 987 mountlist_iterator_destroy(iter); 988 sysctl_relock(); 989 *sizep = bp - where; 990 return (ENOMEM); 991 } 992 memcpy(&vbuf, vp, VNODESZ); 993 if ((error = copyout(&vp, bp, VPTRSZ)) || 994 (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) { 995 vrele(vp); 996 vfs_vnode_iterator_destroy(marker); 997 mountlist_iterator_destroy(iter); 998 sysctl_relock(); 999 return (error); 1000 } 1001 vrele(vp); 1002 bp += VPTRSZ + VNODESZ; 1003 } 1004 vfs_vnode_iterator_destroy(marker); 1005 } 1006 mountlist_iterator_destroy(iter); 1007 sysctl_relock(); 1008 1009 *sizep = bp - where; 1010 return (0); 1011 } 1012 1013 /* 1014 * Set vnode attributes to VNOVAL 1015 */ 1016 void 1017 vattr_null(struct vattr *vap) 1018 { 1019 1020 memset(vap, 0, sizeof(*vap)); 1021 1022 vap->va_type = VNON; 1023 1024 /* 1025 * Assign individually so that it is safe even if size and 1026 * sign of each member are varied. 1027 */ 1028 vap->va_mode = VNOVAL; 1029 vap->va_nlink = VNOVAL; 1030 vap->va_uid = VNOVAL; 1031 vap->va_gid = VNOVAL; 1032 vap->va_fsid = VNOVAL; 1033 vap->va_fileid = VNOVAL; 1034 vap->va_size = VNOVAL; 1035 vap->va_blocksize = VNOVAL; 1036 vap->va_atime.tv_sec = 1037 vap->va_mtime.tv_sec = 1038 vap->va_ctime.tv_sec = 1039 vap->va_birthtime.tv_sec = VNOVAL; 1040 vap->va_atime.tv_nsec = 1041 vap->va_mtime.tv_nsec = 1042 vap->va_ctime.tv_nsec = 1043 vap->va_birthtime.tv_nsec = VNOVAL; 1044 vap->va_gen = VNOVAL; 1045 vap->va_flags = VNOVAL; 1046 vap->va_rdev = VNOVAL; 1047 vap->va_bytes = VNOVAL; 1048 } 1049 1050 /* 1051 * Vnode state to string. 1052 */ 1053 const char * 1054 vstate_name(enum vnode_state state) 1055 { 1056 1057 switch (state) { 1058 case VS_ACTIVE: 1059 return "ACTIVE"; 1060 case VS_MARKER: 1061 return "MARKER"; 1062 case VS_LOADING: 1063 return "LOADING"; 1064 case VS_LOADED: 1065 return "LOADED"; 1066 case VS_BLOCKED: 1067 return "BLOCKED"; 1068 case VS_RECLAIMING: 1069 return "RECLAIMING"; 1070 case VS_RECLAIMED: 1071 return "RECLAIMED"; 1072 default: 1073 return "ILLEGAL"; 1074 } 1075 } 1076 1077 /* 1078 * Print a description of a vnode (common part). 1079 */ 1080 static void 1081 vprint_common(struct vnode *vp, const char *prefix, 1082 void (*pr)(const char *, ...) __printflike(1, 2)) 1083 { 1084 int n; 1085 char bf[96]; 1086 const uint8_t *cp; 1087 vnode_impl_t *vip; 1088 const char * const vnode_tags[] = { VNODE_TAGS }; 1089 const char * const vnode_types[] = { VNODE_TYPES }; 1090 const char vnode_flagbits[] = VNODE_FLAGBITS; 1091 1092 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0])) 1093 #define ARRAY_PRINT(idx, arr) \ 1094 ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN") 1095 1096 vip = VNODE_TO_VIMPL(vp); 1097 1098 snprintb(bf, sizeof(bf), 1099 vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag); 1100 1101 (*pr)("vnode %p flags %s\n", vp, bf); 1102 (*pr)("%stag %s(%d) type %s(%d) mount %p typedata %p\n", prefix, 1103 ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, 1104 ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, 1105 vp->v_mount, vp->v_mountedhere); 1106 (*pr)("%susecount %d writecount %d holdcount %d\n", prefix, 1107 vp->v_usecount, vp->v_writecount, vp->v_holdcnt); 1108 (*pr)("%ssize %" PRIx64 " writesize %" PRIx64 " numoutput %d\n", 1109 prefix, vp->v_size, vp->v_writesize, vp->v_numoutput); 1110 (*pr)("%sdata %p lock %p\n", prefix, vp->v_data, &vip->vi_lock); 1111 1112 (*pr)("%sstate %s key(%p %zd)", prefix, vstate_name(vip->vi_state), 1113 vip->vi_key.vk_mount, vip->vi_key.vk_key_len); 1114 n = vip->vi_key.vk_key_len; 1115 cp = vip->vi_key.vk_key; 1116 while (n-- > 0) 1117 (*pr)(" %02x", *cp++); 1118 (*pr)("\n"); 1119 (*pr)("%slrulisthd %p\n", prefix, vip->vi_lrulisthd); 1120 1121 #undef ARRAY_PRINT 1122 #undef ARRAY_SIZE 1123 } 1124 1125 /* 1126 * Print out a description of a vnode. 1127 */ 1128 void 1129 vprint(const char *label, struct vnode *vp) 1130 { 1131 1132 if (label != NULL) 1133 printf("%s: ", label); 1134 vprint_common(vp, "\t", printf); 1135 if (vp->v_data != NULL) { 1136 printf("\t"); 1137 VOP_PRINT(vp); 1138 } 1139 } 1140 1141 /* Deprecated. Kept for KPI compatibility. */ 1142 int 1143 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid, 1144 mode_t acc_mode, kauth_cred_t cred) 1145 { 1146 1147 #ifdef DIAGNOSTIC 1148 printf("vaccess: deprecated interface used.\n"); 1149 #endif /* DIAGNOSTIC */ 1150 1151 return kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(acc_mode, 1152 type, file_mode), NULL /* This may panic. */, NULL, 1153 genfs_can_access(type, file_mode, uid, gid, acc_mode, cred)); 1154 } 1155 1156 /* 1157 * Given a file system name, look up the vfsops for that 1158 * file system, or return NULL if file system isn't present 1159 * in the kernel. 1160 */ 1161 struct vfsops * 1162 vfs_getopsbyname(const char *name) 1163 { 1164 struct vfsops *v; 1165 1166 mutex_enter(&vfs_list_lock); 1167 LIST_FOREACH(v, &vfs_list, vfs_list) { 1168 if (strcmp(v->vfs_name, name) == 0) 1169 break; 1170 } 1171 if (v != NULL) 1172 v->vfs_refcount++; 1173 mutex_exit(&vfs_list_lock); 1174 1175 return (v); 1176 } 1177 1178 void 1179 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp) 1180 { 1181 const struct statvfs *mbp; 1182 1183 if (sbp == (mbp = &mp->mnt_stat)) 1184 return; 1185 1186 (void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx)); 1187 sbp->f_fsid = mbp->f_fsid; 1188 sbp->f_owner = mbp->f_owner; 1189 sbp->f_flag = mbp->f_flag; 1190 sbp->f_syncwrites = mbp->f_syncwrites; 1191 sbp->f_asyncwrites = mbp->f_asyncwrites; 1192 sbp->f_syncreads = mbp->f_syncreads; 1193 sbp->f_asyncreads = mbp->f_asyncreads; 1194 (void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare)); 1195 (void)memcpy(sbp->f_fstypename, mbp->f_fstypename, 1196 sizeof(sbp->f_fstypename)); 1197 (void)memcpy(sbp->f_mntonname, mbp->f_mntonname, 1198 sizeof(sbp->f_mntonname)); 1199 (void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname, 1200 sizeof(sbp->f_mntfromname)); 1201 sbp->f_namemax = mbp->f_namemax; 1202 } 1203 1204 int 1205 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom, 1206 const char *vfsname, struct mount *mp, struct lwp *l) 1207 { 1208 int error; 1209 size_t size; 1210 struct statvfs *sfs = &mp->mnt_stat; 1211 int (*fun)(const void *, void *, size_t, size_t *); 1212 1213 (void)strlcpy(mp->mnt_stat.f_fstypename, vfsname, 1214 sizeof(mp->mnt_stat.f_fstypename)); 1215 1216 if (onp) { 1217 struct cwdinfo *cwdi = l->l_proc->p_cwdi; 1218 fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr; 1219 if (cwdi->cwdi_rdir != NULL) { 1220 size_t len; 1221 char *bp; 1222 char *path = PNBUF_GET(); 1223 1224 bp = path + MAXPATHLEN; 1225 *--bp = '\0'; 1226 rw_enter(&cwdi->cwdi_lock, RW_READER); 1227 error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp, 1228 path, MAXPATHLEN / 2, 0, l); 1229 rw_exit(&cwdi->cwdi_lock); 1230 if (error) { 1231 PNBUF_PUT(path); 1232 return error; 1233 } 1234 1235 len = strlen(bp); 1236 if (len > sizeof(sfs->f_mntonname) - 1) 1237 len = sizeof(sfs->f_mntonname) - 1; 1238 (void)strncpy(sfs->f_mntonname, bp, len); 1239 PNBUF_PUT(path); 1240 1241 if (len < sizeof(sfs->f_mntonname) - 1) { 1242 error = (*fun)(onp, &sfs->f_mntonname[len], 1243 sizeof(sfs->f_mntonname) - len - 1, &size); 1244 if (error) 1245 return error; 1246 size += len; 1247 } else { 1248 size = len; 1249 } 1250 } else { 1251 error = (*fun)(onp, &sfs->f_mntonname, 1252 sizeof(sfs->f_mntonname) - 1, &size); 1253 if (error) 1254 return error; 1255 } 1256 (void)memset(sfs->f_mntonname + size, 0, 1257 sizeof(sfs->f_mntonname) - size); 1258 } 1259 1260 if (fromp) { 1261 fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr; 1262 error = (*fun)(fromp, sfs->f_mntfromname, 1263 sizeof(sfs->f_mntfromname) - 1, &size); 1264 if (error) 1265 return error; 1266 (void)memset(sfs->f_mntfromname + size, 0, 1267 sizeof(sfs->f_mntfromname) - size); 1268 } 1269 return 0; 1270 } 1271 1272 void 1273 vfs_timestamp(struct timespec *ts) 1274 { 1275 1276 nanotime(ts); 1277 } 1278 1279 time_t rootfstime; /* recorded root fs time, if known */ 1280 void 1281 setrootfstime(time_t t) 1282 { 1283 rootfstime = t; 1284 } 1285 1286 static const uint8_t vttodt_tab[ ] = { 1287 [VNON] = DT_UNKNOWN, 1288 [VREG] = DT_REG, 1289 [VDIR] = DT_DIR, 1290 [VBLK] = DT_BLK, 1291 [VCHR] = DT_CHR, 1292 [VLNK] = DT_LNK, 1293 [VSOCK] = DT_SOCK, 1294 [VFIFO] = DT_FIFO, 1295 [VBAD] = DT_UNKNOWN 1296 }; 1297 1298 uint8_t 1299 vtype2dt(enum vtype vt) 1300 { 1301 1302 CTASSERT(VBAD == __arraycount(vttodt_tab) - 1); 1303 return vttodt_tab[vt]; 1304 } 1305 1306 int 1307 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c) 1308 { 1309 int error; 1310 1311 KERNEL_LOCK(1, NULL); 1312 error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c); 1313 KERNEL_UNLOCK_ONE(NULL); 1314 1315 return error; 1316 } 1317 1318 int 1319 VFS_START(struct mount *mp, int a) 1320 { 1321 int error; 1322 1323 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1324 KERNEL_LOCK(1, NULL); 1325 } 1326 error = (*(mp->mnt_op->vfs_start))(mp, a); 1327 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1328 KERNEL_UNLOCK_ONE(NULL); 1329 } 1330 1331 return error; 1332 } 1333 1334 int 1335 VFS_UNMOUNT(struct mount *mp, int a) 1336 { 1337 int error; 1338 1339 KERNEL_LOCK(1, NULL); 1340 error = (*(mp->mnt_op->vfs_unmount))(mp, a); 1341 KERNEL_UNLOCK_ONE(NULL); 1342 1343 return error; 1344 } 1345 1346 int 1347 VFS_ROOT(struct mount *mp, struct vnode **a) 1348 { 1349 int error; 1350 1351 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1352 KERNEL_LOCK(1, NULL); 1353 } 1354 error = (*(mp->mnt_op->vfs_root))(mp, a); 1355 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1356 KERNEL_UNLOCK_ONE(NULL); 1357 } 1358 1359 return error; 1360 } 1361 1362 int 1363 VFS_QUOTACTL(struct mount *mp, struct quotactl_args *args) 1364 { 1365 int error; 1366 1367 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1368 KERNEL_LOCK(1, NULL); 1369 } 1370 error = (*(mp->mnt_op->vfs_quotactl))(mp, args); 1371 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1372 KERNEL_UNLOCK_ONE(NULL); 1373 } 1374 1375 return error; 1376 } 1377 1378 int 1379 VFS_STATVFS(struct mount *mp, struct statvfs *a) 1380 { 1381 int error; 1382 1383 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1384 KERNEL_LOCK(1, NULL); 1385 } 1386 error = (*(mp->mnt_op->vfs_statvfs))(mp, a); 1387 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1388 KERNEL_UNLOCK_ONE(NULL); 1389 } 1390 1391 return error; 1392 } 1393 1394 int 1395 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b) 1396 { 1397 int error; 1398 1399 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1400 KERNEL_LOCK(1, NULL); 1401 } 1402 error = (*(mp->mnt_op->vfs_sync))(mp, a, b); 1403 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1404 KERNEL_UNLOCK_ONE(NULL); 1405 } 1406 1407 return error; 1408 } 1409 1410 int 1411 VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b) 1412 { 1413 int error; 1414 1415 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1416 KERNEL_LOCK(1, NULL); 1417 } 1418 error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b); 1419 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1420 KERNEL_UNLOCK_ONE(NULL); 1421 } 1422 1423 return error; 1424 } 1425 1426 int 1427 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b) 1428 { 1429 int error; 1430 1431 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1432 KERNEL_LOCK(1, NULL); 1433 } 1434 error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b); 1435 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1436 KERNEL_UNLOCK_ONE(NULL); 1437 } 1438 1439 return error; 1440 } 1441 1442 int 1443 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b) 1444 { 1445 int error; 1446 1447 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1448 KERNEL_LOCK(1, NULL); 1449 } 1450 error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b); 1451 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1452 KERNEL_UNLOCK_ONE(NULL); 1453 } 1454 1455 return error; 1456 } 1457 1458 int 1459 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d) 1460 { 1461 int error; 1462 1463 KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */ 1464 error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d); 1465 KERNEL_UNLOCK_ONE(NULL); /* XXX */ 1466 1467 return error; 1468 } 1469 1470 int 1471 VFS_SUSPENDCTL(struct mount *mp, int a) 1472 { 1473 int error; 1474 1475 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1476 KERNEL_LOCK(1, NULL); 1477 } 1478 error = (*(mp->mnt_op->vfs_suspendctl))(mp, a); 1479 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1480 KERNEL_UNLOCK_ONE(NULL); 1481 } 1482 1483 return error; 1484 } 1485 1486 #if defined(DDB) || defined(DEBUGPRINT) 1487 static const char buf_flagbits[] = BUF_FLAGBITS; 1488 1489 void 1490 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...)) 1491 { 1492 char bf[1024]; 1493 1494 (*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%" 1495 PRIx64 " dev 0x%x\n", 1496 bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev); 1497 1498 snprintb(bf, sizeof(bf), 1499 buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags); 1500 (*pr)(" error %d flags %s\n", bp->b_error, bf); 1501 1502 (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n", 1503 bp->b_bufsize, bp->b_bcount, bp->b_resid); 1504 (*pr)(" data %p saveaddr %p\n", 1505 bp->b_data, bp->b_saveaddr); 1506 (*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock); 1507 } 1508 1509 void 1510 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...)) 1511 { 1512 1513 uvm_object_printit(&vp->v_uobj, full, pr); 1514 (*pr)("\n"); 1515 vprint_common(vp, "", printf); 1516 if (full) { 1517 struct buf *bp; 1518 1519 (*pr)("clean bufs:\n"); 1520 LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) { 1521 (*pr)(" bp %p\n", bp); 1522 vfs_buf_print(bp, full, pr); 1523 } 1524 1525 (*pr)("dirty bufs:\n"); 1526 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 1527 (*pr)(" bp %p\n", bp); 1528 vfs_buf_print(bp, full, pr); 1529 } 1530 } 1531 } 1532 1533 void 1534 vfs_vnode_lock_print(void *vlock, int full, void (*pr)(const char *, ...)) 1535 { 1536 struct mount *mp; 1537 vnode_impl_t *vip; 1538 1539 for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) { 1540 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1541 if (&vip->vi_lock != vlock) 1542 continue; 1543 vfs_vnode_print(VIMPL_TO_VNODE(vip), full, pr); 1544 } 1545 } 1546 } 1547 1548 void 1549 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...)) 1550 { 1551 char sbuf[256]; 1552 1553 (*pr)("vnodecovered = %p data = %p\n", 1554 mp->mnt_vnodecovered,mp->mnt_data); 1555 1556 (*pr)("fs_bshift %d dev_bshift = %d\n", 1557 mp->mnt_fs_bshift,mp->mnt_dev_bshift); 1558 1559 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag); 1560 (*pr)("flag = %s\n", sbuf); 1561 1562 snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag); 1563 (*pr)("iflag = %s\n", sbuf); 1564 1565 (*pr)("refcnt = %d updating @ %p\n", mp->mnt_refcnt, &mp->mnt_updating); 1566 1567 (*pr)("statvfs cache:\n"); 1568 (*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize); 1569 (*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize); 1570 (*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize); 1571 1572 (*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks); 1573 (*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree); 1574 (*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail); 1575 (*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd); 1576 1577 (*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files); 1578 (*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree); 1579 (*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail); 1580 (*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd); 1581 1582 (*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n", 1583 mp->mnt_stat.f_fsidx.__fsid_val[0], 1584 mp->mnt_stat.f_fsidx.__fsid_val[1]); 1585 1586 (*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner); 1587 (*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax); 1588 1589 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag); 1590 1591 (*pr)("\tflag = %s\n",sbuf); 1592 (*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites); 1593 (*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites); 1594 (*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads); 1595 (*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads); 1596 (*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename); 1597 (*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname); 1598 (*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname); 1599 1600 { 1601 int cnt = 0; 1602 vnode_t *vp; 1603 vnode_impl_t *vip; 1604 (*pr)("locked vnodes ="); 1605 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1606 vp = VIMPL_TO_VNODE(vip); 1607 if (VOP_ISLOCKED(vp)) { 1608 if ((++cnt % 6) == 0) { 1609 (*pr)(" %p,\n\t", vp); 1610 } else { 1611 (*pr)(" %p,", vp); 1612 } 1613 } 1614 } 1615 (*pr)("\n"); 1616 } 1617 1618 if (full) { 1619 int cnt = 0; 1620 vnode_t *vp; 1621 vnode_impl_t *vip; 1622 (*pr)("all vnodes ="); 1623 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1624 vp = VIMPL_TO_VNODE(vip); 1625 if (!TAILQ_NEXT(vip, vi_mntvnodes)) { 1626 (*pr)(" %p", vp); 1627 } else if ((++cnt % 6) == 0) { 1628 (*pr)(" %p,\n\t", vp); 1629 } else { 1630 (*pr)(" %p,", vp); 1631 } 1632 } 1633 (*pr)("\n"); 1634 } 1635 } 1636 1637 /* 1638 * List all of the locked vnodes in the system. 1639 */ 1640 void printlockedvnodes(void); 1641 1642 void 1643 printlockedvnodes(void) 1644 { 1645 struct mount *mp; 1646 vnode_t *vp; 1647 vnode_impl_t *vip; 1648 1649 printf("Locked vnodes\n"); 1650 for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) { 1651 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1652 vp = VIMPL_TO_VNODE(vip); 1653 if (VOP_ISLOCKED(vp)) 1654 vprint(NULL, vp); 1655 } 1656 } 1657 } 1658 1659 #endif /* DDB || DEBUGPRINT */ 1660