xref: /netbsd-src/sys/kern/vfs_bio.c (revision e6d6e05cb173f30287ab619b21120b27baa66ad6)
1 /*	$NetBSD: vfs_bio.c,v 1.190 2008/02/29 12:10:09 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1982, 1986, 1989, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  * (c) UNIX System Laboratories, Inc.
43  * All or some portions of this file are derived from material licensed
44  * to the University of California by American Telephone and Telegraph
45  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46  * the permission of UNIX System Laboratories, Inc.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that the following conditions
50  * are met:
51  * 1. Redistributions of source code must retain the above copyright
52  *    notice, this list of conditions and the following disclaimer.
53  * 2. Redistributions in binary form must reproduce the above copyright
54  *    notice, this list of conditions and the following disclaimer in the
55  *    documentation and/or other materials provided with the distribution.
56  * 3. Neither the name of the University nor the names of its contributors
57  *    may be used to endorse or promote products derived from this software
58  *    without specific prior written permission.
59  *
60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70  * SUCH DAMAGE.
71  *
72  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
73  */
74 
75 /*-
76  * Copyright (c) 1994 Christopher G. Demetriou
77  *
78  * Redistribution and use in source and binary forms, with or without
79  * modification, are permitted provided that the following conditions
80  * are met:
81  * 1. Redistributions of source code must retain the above copyright
82  *    notice, this list of conditions and the following disclaimer.
83  * 2. Redistributions in binary form must reproduce the above copyright
84  *    notice, this list of conditions and the following disclaimer in the
85  *    documentation and/or other materials provided with the distribution.
86  * 3. All advertising materials mentioning features or use of this software
87  *    must display the following acknowledgement:
88  *	This product includes software developed by the University of
89  *	California, Berkeley and its contributors.
90  * 4. Neither the name of the University nor the names of its contributors
91  *    may be used to endorse or promote products derived from this software
92  *    without specific prior written permission.
93  *
94  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
95  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
98  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104  * SUCH DAMAGE.
105  *
106  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
107  */
108 
109 /*
110  * Some references:
111  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
112  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
113  *		UNIX Operating System (Addison Welley, 1989)
114  */
115 
116 #include <sys/cdefs.h>
117 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.190 2008/02/29 12:10:09 yamt Exp $");
118 
119 #include "fs_ffs.h"
120 #include "opt_bufcache.h"
121 
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/kernel.h>
125 #include <sys/proc.h>
126 #include <sys/buf.h>
127 #include <sys/vnode.h>
128 #include <sys/mount.h>
129 #include <sys/malloc.h>
130 #include <sys/resourcevar.h>
131 #include <sys/sysctl.h>
132 #include <sys/conf.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/cpu.h>
136 
137 #include <uvm/uvm.h>
138 
139 #include <miscfs/specfs/specdev.h>
140 
141 #ifndef	BUFPAGES
142 # define BUFPAGES 0
143 #endif
144 
145 #ifdef BUFCACHE
146 # if (BUFCACHE < 5) || (BUFCACHE > 95)
147 #  error BUFCACHE is not between 5 and 95
148 # endif
149 #else
150 # define BUFCACHE 15
151 #endif
152 
153 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
154 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
155 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
156 
157 /* Function prototypes */
158 struct bqueue;
159 
160 static void buf_setwm(void);
161 static int buf_trim(void);
162 static void *bufpool_page_alloc(struct pool *, int);
163 static void bufpool_page_free(struct pool *, void *);
164 static buf_t *bio_doread(struct vnode *, daddr_t, int,
165     kauth_cred_t, int);
166 static buf_t *getnewbuf(int, int, int);
167 static int buf_lotsfree(void);
168 static int buf_canrelease(void);
169 static u_long buf_mempoolidx(u_long);
170 static u_long buf_roundsize(u_long);
171 static void *buf_malloc(size_t);
172 static void buf_mrelease(void *, size_t);
173 static void binsheadfree(buf_t *, struct bqueue *);
174 static void binstailfree(buf_t *, struct bqueue *);
175 int count_lock_queue(void); /* XXX */
176 #ifdef DEBUG
177 static int checkfreelist(buf_t *, struct bqueue *);
178 #endif
179 static void biointr(void *);
180 static void biodone2(buf_t *);
181 static void bref(buf_t *);
182 static void brele(buf_t *);
183 
184 /*
185  * Definitions for the buffer hash lists.
186  */
187 #define	BUFHASH(dvp, lbn)	\
188 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
189 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
190 u_long	bufhash;
191 struct bqueue bufqueues[BQUEUES];
192 const struct bio_ops *bioopsp;	/* I/O operation notification */
193 
194 static kcondvar_t needbuffer_cv;
195 
196 /*
197  * Buffer queue lock.
198  */
199 kmutex_t bufcache_lock;
200 kmutex_t buffer_lock;
201 
202 /* Software ISR for completed transfers. */
203 static void *biodone_sih;
204 
205 /* Buffer pool for I/O buffers. */
206 static pool_cache_t buf_cache;
207 static pool_cache_t bufio_cache;
208 
209 /* XXX - somewhat gross.. */
210 #if MAXBSIZE == 0x2000
211 #define NMEMPOOLS 5
212 #elif MAXBSIZE == 0x4000
213 #define NMEMPOOLS 6
214 #elif MAXBSIZE == 0x8000
215 #define NMEMPOOLS 7
216 #else
217 #define NMEMPOOLS 8
218 #endif
219 
220 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
221 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
222 #error update vfs_bio buffer memory parameters
223 #endif
224 
225 /* Buffer memory pools */
226 static struct pool bmempools[NMEMPOOLS];
227 
228 struct vm_map *buf_map;
229 
230 /*
231  * Buffer memory pool allocator.
232  */
233 static void *
234 bufpool_page_alloc(struct pool *pp, int flags)
235 {
236 
237 	return (void *)uvm_km_alloc(buf_map,
238 	    MAXBSIZE, MAXBSIZE,
239 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
240 	    | UVM_KMF_WIRED);
241 }
242 
243 static void
244 bufpool_page_free(struct pool *pp, void *v)
245 {
246 
247 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
248 }
249 
250 static struct pool_allocator bufmempool_allocator = {
251 	.pa_alloc = bufpool_page_alloc,
252 	.pa_free = bufpool_page_free,
253 	.pa_pagesz = MAXBSIZE,
254 };
255 
256 /* Buffer memory management variables */
257 u_long bufmem_valimit;
258 u_long bufmem_hiwater;
259 u_long bufmem_lowater;
260 u_long bufmem;
261 
262 /*
263  * MD code can call this to set a hard limit on the amount
264  * of virtual memory used by the buffer cache.
265  */
266 int
267 buf_setvalimit(vsize_t sz)
268 {
269 
270 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
271 	if (sz < NMEMPOOLS * MAXBSIZE)
272 		return EINVAL;
273 
274 	bufmem_valimit = sz;
275 	return 0;
276 }
277 
278 static void
279 buf_setwm(void)
280 {
281 
282 	bufmem_hiwater = buf_memcalc();
283 	/* lowater is approx. 2% of memory (with bufcache = 15) */
284 #define	BUFMEM_WMSHIFT	3
285 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
286 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
287 		/* Ensure a reasonable minimum value */
288 		bufmem_hiwater = BUFMEM_HIWMMIN;
289 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
290 }
291 
292 #ifdef DEBUG
293 int debug_verify_freelist = 0;
294 static int
295 checkfreelist(buf_t *bp, struct bqueue *dp)
296 {
297 	buf_t *b;
298 
299 	if (!debug_verify_freelist)
300 		return 1;
301 
302 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
303 		if (b == bp)
304 			return 1;
305 	}
306 
307 	return 0;
308 }
309 #endif
310 
311 /*
312  * Insq/Remq for the buffer hash lists.
313  * Call with buffer queue locked.
314  */
315 static void
316 binsheadfree(buf_t *bp, struct bqueue *dp)
317 {
318 
319 	KASSERT(bp->b_freelistindex == -1);
320 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
321 	dp->bq_bytes += bp->b_bufsize;
322 	bp->b_freelistindex = dp - bufqueues;
323 }
324 
325 static void
326 binstailfree(buf_t *bp, struct bqueue *dp)
327 {
328 
329 	KASSERT(bp->b_freelistindex == -1);
330 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 	dp->bq_bytes += bp->b_bufsize;
332 	bp->b_freelistindex = dp - bufqueues;
333 }
334 
335 void
336 bremfree(buf_t *bp)
337 {
338 	struct bqueue *dp;
339 	int bqidx = bp->b_freelistindex;
340 
341 	KASSERT(mutex_owned(&bufcache_lock));
342 
343 	KASSERT(bqidx != -1);
344 	dp = &bufqueues[bqidx];
345 	KDASSERT(checkfreelist(bp, dp));
346 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 	dp->bq_bytes -= bp->b_bufsize;
349 
350 	/* For the sysctl helper. */
351 	if (bp == dp->bq_marker)
352 		dp->bq_marker = NULL;
353 
354 #if defined(DIAGNOSTIC)
355 	bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358 
359 /*
360  * Add a reference to an buffer structure that came from buf_cache.
361  */
362 static inline void
363 bref(buf_t *bp)
364 {
365 
366 	KASSERT(mutex_owned(&bufcache_lock));
367 	KASSERT(bp->b_refcnt > 0);
368 
369 	bp->b_refcnt++;
370 }
371 
372 /*
373  * Free an unused buffer structure that came from buf_cache.
374  */
375 static inline void
376 brele(buf_t *bp)
377 {
378 
379 	KASSERT(mutex_owned(&bufcache_lock));
380 	KASSERT(bp->b_refcnt > 0);
381 
382 	if (bp->b_refcnt-- == 1) {
383 		buf_destroy(bp);
384 #ifdef DEBUG
385 		memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 		pool_cache_put(buf_cache, bp);
388 	}
389 }
390 
391 u_long
392 buf_memcalc(void)
393 {
394 	u_long n;
395 
396 	/*
397 	 * Determine the upper bound of memory to use for buffers.
398 	 *
399 	 *	- If bufpages is specified, use that as the number
400 	 *	  pages.
401 	 *
402 	 *	- Otherwise, use bufcache as the percentage of
403 	 *	  physical memory.
404 	 */
405 	if (bufpages != 0) {
406 		n = bufpages;
407 	} else {
408 		if (bufcache < 5) {
409 			printf("forcing bufcache %d -> 5", bufcache);
410 			bufcache = 5;
411 		}
412 		if (bufcache > 95) {
413 			printf("forcing bufcache %d -> 95", bufcache);
414 			bufcache = 95;
415 		}
416 		n = physmem / 100 * bufcache;
417 	}
418 
419 	n <<= PAGE_SHIFT;
420 	if (bufmem_valimit != 0 && n > bufmem_valimit)
421 		n = bufmem_valimit;
422 
423 	return (n);
424 }
425 
426 /*
427  * Initialize buffers and hash links for buffers.
428  */
429 void
430 bufinit(void)
431 {
432 	struct bqueue *dp;
433 	int use_std;
434 	u_int i;
435 
436 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
437 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
438 	cv_init(&needbuffer_cv, "needbuf");
439 
440 	/*
441 	 * Initialize buffer cache memory parameters.
442 	 */
443 	bufmem = 0;
444 	buf_setwm();
445 
446 	if (bufmem_valimit != 0) {
447 		vaddr_t minaddr = 0, maxaddr;
448 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
449 					  bufmem_valimit, 0, false, 0);
450 		if (buf_map == NULL)
451 			panic("bufinit: cannot allocate submap");
452 	} else
453 		buf_map = kernel_map;
454 
455 	/* On "small" machines use small pool page sizes where possible */
456 	use_std = (physmem < atop(16*1024*1024));
457 
458 	/*
459 	 * Also use them on systems that can map the pool pages using
460 	 * a direct-mapped segment.
461 	 */
462 #ifdef PMAP_MAP_POOLPAGE
463 	use_std = 1;
464 #endif
465 
466 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
467 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
468 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
469 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
470 
471 	bufmempool_allocator.pa_backingmap = buf_map;
472 	for (i = 0; i < NMEMPOOLS; i++) {
473 		struct pool_allocator *pa;
474 		struct pool *pp = &bmempools[i];
475 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
476 		char *name = malloc(8, M_TEMP, M_WAITOK);
477 		if (__predict_true(size >= 1024))
478 			(void)snprintf(name, 8, "buf%dk", size / 1024);
479 		else
480 			(void)snprintf(name, 8, "buf%db", size);
481 		pa = (size <= PAGE_SIZE && use_std)
482 			? &pool_allocator_nointr
483 			: &bufmempool_allocator;
484 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
485 		pool_setlowat(pp, 1);
486 		pool_sethiwat(pp, 1);
487 	}
488 
489 	/* Initialize the buffer queues */
490 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
491 		TAILQ_INIT(&dp->bq_queue);
492 		dp->bq_bytes = 0;
493 	}
494 
495 	/*
496 	 * Estimate hash table size based on the amount of memory we
497 	 * intend to use for the buffer cache. The average buffer
498 	 * size is dependent on our clients (i.e. filesystems).
499 	 *
500 	 * For now, use an empirical 3K per buffer.
501 	 */
502 	nbuf = (bufmem_hiwater / 1024) / 3;
503 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
504 }
505 
506 void
507 bufinit2(void)
508 {
509 
510 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
511 	    NULL);
512 	if (biodone_sih == NULL)
513 		panic("bufinit2: can't establish soft interrupt");
514 }
515 
516 static int
517 buf_lotsfree(void)
518 {
519 	int try, thresh;
520 
521 	/* Always allocate if doing copy on write */
522 	if (curlwp->l_pflag & LP_UFSCOW)
523 		return 1;
524 
525 	/* Always allocate if less than the low water mark. */
526 	if (bufmem < bufmem_lowater)
527 		return 1;
528 
529 	/* Never allocate if greater than the high water mark. */
530 	if (bufmem > bufmem_hiwater)
531 		return 0;
532 
533 	/* If there's anything on the AGE list, it should be eaten. */
534 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
535 		return 0;
536 
537 	/*
538 	 * The probabily of getting a new allocation is inversely
539 	 * proportional to the current size of the cache, using
540 	 * a granularity of 16 steps.
541 	 */
542 	try = random() & 0x0000000fL;
543 
544 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
545 	thresh = (bufmem - bufmem_lowater) /
546 	    ((bufmem_hiwater - bufmem_lowater) / 16);
547 
548 	if (try >= thresh)
549 		return 1;
550 
551 	/* Otherwise don't allocate. */
552 	return 0;
553 }
554 
555 /*
556  * Return estimate of bytes we think need to be
557  * released to help resolve low memory conditions.
558  *
559  * => called with bufcache_lock held.
560  */
561 static int
562 buf_canrelease(void)
563 {
564 	int pagedemand, ninvalid = 0;
565 
566 	KASSERT(mutex_owned(&bufcache_lock));
567 
568 	if (bufmem < bufmem_lowater)
569 		return 0;
570 
571 	if (bufmem > bufmem_hiwater)
572 		return bufmem - bufmem_hiwater;
573 
574 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
575 
576 	pagedemand = uvmexp.freetarg - uvmexp.free;
577 	if (pagedemand < 0)
578 		return ninvalid;
579 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
580 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
581 }
582 
583 /*
584  * Buffer memory allocation helper functions
585  */
586 static u_long
587 buf_mempoolidx(u_long size)
588 {
589 	u_int n = 0;
590 
591 	size -= 1;
592 	size >>= MEMPOOL_INDEX_OFFSET;
593 	while (size) {
594 		size >>= 1;
595 		n += 1;
596 	}
597 	if (n >= NMEMPOOLS)
598 		panic("buf mem pool index %d", n);
599 	return n;
600 }
601 
602 static u_long
603 buf_roundsize(u_long size)
604 {
605 	/* Round up to nearest power of 2 */
606 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
607 }
608 
609 static void *
610 buf_malloc(size_t size)
611 {
612 	u_int n = buf_mempoolidx(size);
613 	void *addr;
614 
615 	while (1) {
616 		addr = pool_get(&bmempools[n], PR_NOWAIT);
617 		if (addr != NULL)
618 			break;
619 
620 		/* No memory, see if we can free some. If so, try again */
621 		mutex_enter(&bufcache_lock);
622 		if (buf_drain(1) > 0) {
623 			mutex_exit(&bufcache_lock);
624 			continue;
625 		}
626 
627 		if (curlwp == uvm.pagedaemon_lwp) {
628 			mutex_exit(&bufcache_lock);
629 			return NULL;
630 		}
631 
632 		/* Wait for buffers to arrive on the LRU queue */
633 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
634 		mutex_exit(&bufcache_lock);
635 	}
636 
637 	return addr;
638 }
639 
640 static void
641 buf_mrelease(void *addr, size_t size)
642 {
643 
644 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
645 }
646 
647 /*
648  * bread()/breadn() helper.
649  */
650 static buf_t *
651 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
652     int async)
653 {
654 	buf_t *bp;
655 	struct mount *mp;
656 
657 	bp = getblk(vp, blkno, size, 0, 0);
658 
659 #ifdef DIAGNOSTIC
660 	if (bp == NULL) {
661 		panic("bio_doread: no such buf");
662 	}
663 #endif
664 
665 	/*
666 	 * If buffer does not have data valid, start a read.
667 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
668 	 * Therefore, it's valid if its I/O has completed or been delayed.
669 	 */
670 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
671 		/* Start I/O for the buffer. */
672 		SET(bp->b_flags, B_READ | async);
673 		if (async)
674 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
675 		else
676 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
677 		VOP_STRATEGY(vp, bp);
678 
679 		/* Pay for the read. */
680 		curproc->p_stats->p_ru.ru_inblock++;
681 	} else if (async)
682 		brelse(bp, 0);
683 
684 	if (vp->v_type == VBLK)
685 		mp = vp->v_specmountpoint;
686 	else
687 		mp = vp->v_mount;
688 
689 	/*
690 	 * Collect statistics on synchronous and asynchronous reads.
691 	 * Reads from block devices are charged to their associated
692 	 * filesystem (if any).
693 	 */
694 	if (mp != NULL) {
695 		if (async == 0)
696 			mp->mnt_stat.f_syncreads++;
697 		else
698 			mp->mnt_stat.f_asyncreads++;
699 	}
700 
701 	return (bp);
702 }
703 
704 /*
705  * Read a disk block.
706  * This algorithm described in Bach (p.54).
707  */
708 int
709 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
710     buf_t **bpp)
711 {
712 	buf_t *bp;
713 
714 	/* Get buffer for block. */
715 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
716 
717 	/* Wait for the read to complete, and return result. */
718 	return (biowait(bp));
719 }
720 
721 /*
722  * Read-ahead multiple disk blocks. The first is sync, the rest async.
723  * Trivial modification to the breada algorithm presented in Bach (p.55).
724  */
725 int
726 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
727     int *rasizes, int nrablks, kauth_cred_t cred, buf_t **bpp)
728 {
729 	buf_t *bp;
730 	int i;
731 
732 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
733 
734 	/*
735 	 * For each of the read-ahead blocks, start a read, if necessary.
736 	 */
737 	mutex_enter(&bufcache_lock);
738 	for (i = 0; i < nrablks; i++) {
739 		/* If it's in the cache, just go on to next one. */
740 		if (incore(vp, rablks[i]))
741 			continue;
742 
743 		/* Get a buffer for the read-ahead block */
744 		mutex_exit(&bufcache_lock);
745 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
746 		mutex_enter(&bufcache_lock);
747 	}
748 	mutex_exit(&bufcache_lock);
749 
750 	/* Otherwise, we had to start a read for it; wait until it's valid. */
751 	return (biowait(bp));
752 }
753 
754 /*
755  * Read with single-block read-ahead.  Defined in Bach (p.55), but
756  * implemented as a call to breadn().
757  * XXX for compatibility with old file systems.
758  */
759 int
760 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
761     int rabsize, kauth_cred_t cred, buf_t **bpp)
762 {
763 
764 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
765 }
766 
767 /*
768  * Block write.  Described in Bach (p.56)
769  */
770 int
771 bwrite(buf_t *bp)
772 {
773 	int rv, sync, wasdelayed;
774 	struct vnode *vp;
775 	struct mount *mp;
776 
777 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
778 
779 	vp = bp->b_vp;
780 	if (vp != NULL) {
781 		KASSERT(bp->b_objlock == &vp->v_interlock);
782 		if (vp->v_type == VBLK)
783 			mp = vp->v_specmountpoint;
784 		else
785 			mp = vp->v_mount;
786 	} else {
787 		mp = NULL;
788 	}
789 
790 	/*
791 	 * Remember buffer type, to switch on it later.  If the write was
792 	 * synchronous, but the file system was mounted with MNT_ASYNC,
793 	 * convert it to a delayed write.
794 	 * XXX note that this relies on delayed tape writes being converted
795 	 * to async, not sync writes (which is safe, but ugly).
796 	 */
797 	sync = !ISSET(bp->b_flags, B_ASYNC);
798 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
799 		bdwrite(bp);
800 		return (0);
801 	}
802 
803 	/*
804 	 * Collect statistics on synchronous and asynchronous writes.
805 	 * Writes to block devices are charged to their associated
806 	 * filesystem (if any).
807 	 */
808 	if (mp != NULL) {
809 		if (sync)
810 			mp->mnt_stat.f_syncwrites++;
811 		else
812 			mp->mnt_stat.f_asyncwrites++;
813 	}
814 
815 	/*
816 	 * Pay for the I/O operation and make sure the buf is on the correct
817 	 * vnode queue.
818 	 */
819 	bp->b_error = 0;
820 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
821 	CLR(bp->b_flags, B_READ);
822 	if (wasdelayed) {
823 		mutex_enter(&bufcache_lock);
824 		mutex_enter(bp->b_objlock);
825 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
826 		reassignbuf(bp, bp->b_vp);
827 		mutex_exit(&bufcache_lock);
828 	} else {
829 		curproc->p_stats->p_ru.ru_oublock++;
830 		mutex_enter(bp->b_objlock);
831 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
832 	}
833 	if (vp != NULL)
834 		vp->v_numoutput++;
835 	mutex_exit(bp->b_objlock);
836 
837 	/* Initiate disk write. */
838 	if (sync)
839 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
840 	else
841 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
842 
843 	VOP_STRATEGY(vp, bp);
844 
845 	if (sync) {
846 		/* If I/O was synchronous, wait for it to complete. */
847 		rv = biowait(bp);
848 
849 		/* Release the buffer. */
850 		brelse(bp, 0);
851 
852 		return (rv);
853 	} else {
854 		return (0);
855 	}
856 }
857 
858 int
859 vn_bwrite(void *v)
860 {
861 	struct vop_bwrite_args *ap = v;
862 
863 	return (bwrite(ap->a_bp));
864 }
865 
866 /*
867  * Delayed write.
868  *
869  * The buffer is marked dirty, but is not queued for I/O.
870  * This routine should be used when the buffer is expected
871  * to be modified again soon, typically a small write that
872  * partially fills a buffer.
873  *
874  * NB: magnetic tapes cannot be delayed; they must be
875  * written in the order that the writes are requested.
876  *
877  * Described in Leffler, et al. (pp. 208-213).
878  */
879 void
880 bdwrite(buf_t *bp)
881 {
882 
883 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
884 
885 	/* If this is a tape block, write the block now. */
886 	if (bdev_type(bp->b_dev) == D_TAPE) {
887 		bawrite(bp);
888 		return;
889 	}
890 
891 	/*
892 	 * If the block hasn't been seen before:
893 	 *	(1) Mark it as having been seen,
894 	 *	(2) Charge for the write,
895 	 *	(3) Make sure it's on its vnode's correct block list.
896 	 */
897 	KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
898 
899 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
900 		mutex_enter(&bufcache_lock);
901 		mutex_enter(bp->b_objlock);
902 		SET(bp->b_oflags, BO_DELWRI);
903 		curproc->p_stats->p_ru.ru_oublock++;
904 		reassignbuf(bp, bp->b_vp);
905 		mutex_exit(&bufcache_lock);
906 	} else {
907 		mutex_enter(bp->b_objlock);
908 	}
909 	/* Otherwise, the "write" is done, so mark and release the buffer. */
910 	CLR(bp->b_oflags, BO_DONE);
911 	mutex_exit(bp->b_objlock);
912 
913 	brelse(bp, 0);
914 }
915 
916 /*
917  * Asynchronous block write; just an asynchronous bwrite().
918  */
919 void
920 bawrite(buf_t *bp)
921 {
922 
923 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
924 
925 	SET(bp->b_flags, B_ASYNC);
926 	VOP_BWRITE(bp);
927 }
928 
929 /*
930  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
931  * Call with the buffer interlock held.
932  *
933  * Note: called only from biodone() through ffs softdep's io_complete()
934  */
935 void
936 bdirty(buf_t *bp)
937 {
938 
939 	KASSERT(mutex_owned(&bufcache_lock));
940 	KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
941 	KASSERT(mutex_owned(bp->b_objlock));
942 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
943 
944 	CLR(bp->b_cflags, BC_AGE);
945 
946 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
947 		SET(bp->b_oflags, BO_DELWRI);
948 		curproc->p_stats->p_ru.ru_oublock++;
949 		reassignbuf(bp, bp->b_vp);
950 	}
951 }
952 
953 
954 /*
955  * Release a buffer on to the free lists.
956  * Described in Bach (p. 46).
957  */
958 void
959 brelsel(buf_t *bp, int set)
960 {
961 	struct bqueue *bufq;
962 	struct vnode *vp;
963 
964 	KASSERT(mutex_owned(&bufcache_lock));
965 
966 	SET(bp->b_cflags, set);
967 
968 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
969 	KASSERT(bp->b_iodone == NULL);
970 
971 	/* Wake up any processes waiting for any buffer to become free. */
972 	cv_signal(&needbuffer_cv);
973 
974 	/* Wake up any proceeses waiting for _this_ buffer to become */
975 	if (ISSET(bp->b_cflags, BC_WANTED) != 0) {
976 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
977 		cv_broadcast(&bp->b_busy);
978 	}
979 
980 	/*
981 	 * Determine which queue the buffer should be on, then put it there.
982 	 */
983 
984 	/* If it's locked, don't report an error; try again later. */
985 	if (ISSET(bp->b_flags, B_LOCKED))
986 		bp->b_error = 0;
987 
988 	/* If it's not cacheable, or an error, mark it invalid. */
989 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
990 		SET(bp->b_cflags, BC_INVAL);
991 
992 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
993 		/*
994 		 * This is a delayed write buffer that was just flushed to
995 		 * disk.  It is still on the LRU queue.  If it's become
996 		 * invalid, then we need to move it to a different queue;
997 		 * otherwise leave it in its current position.
998 		 */
999 		CLR(bp->b_cflags, BC_VFLUSH);
1000 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1001 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1002 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1003 			goto already_queued;
1004 		} else {
1005 			bremfree(bp);
1006 		}
1007 	}
1008 
1009 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE]));
1010 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1011 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED]));
1012 
1013 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1014 		/*
1015 		 * If it's invalid or empty, dissociate it from its vnode
1016 		 * and put on the head of the appropriate queue.
1017 		 */
1018 		if (bioopsp != NULL)
1019 			(*bioopsp->io_deallocate)(bp);
1020 
1021 		mutex_enter(bp->b_objlock);
1022 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1023 		if ((vp = bp->b_vp) != NULL) {
1024 			KASSERT(bp->b_objlock == &vp->v_interlock);
1025 			reassignbuf(bp, bp->b_vp);
1026 			brelvp(bp);
1027 			mutex_exit(&vp->v_interlock);
1028 		} else {
1029 			KASSERT(bp->b_objlock == &buffer_lock);
1030 			mutex_exit(bp->b_objlock);
1031 		}
1032 
1033 		if (bp->b_bufsize <= 0)
1034 			/* no data */
1035 			goto already_queued;
1036 		else
1037 			/* invalid data */
1038 			bufq = &bufqueues[BQ_AGE];
1039 		binsheadfree(bp, bufq);
1040 	} else  {
1041 		/*
1042 		 * It has valid data.  Put it on the end of the appropriate
1043 		 * queue, so that it'll stick around for as long as possible.
1044 		 * If buf is AGE, but has dependencies, must put it on last
1045 		 * bufqueue to be scanned, ie LRU. This protects against the
1046 		 * livelock where BQ_AGE only has buffers with dependencies,
1047 		 * and we thus never get to the dependent buffers in BQ_LRU.
1048 		 */
1049 		if (ISSET(bp->b_flags, B_LOCKED)) {
1050 			/* locked in core */
1051 			bufq = &bufqueues[BQ_LOCKED];
1052 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
1053 			/* valid data */
1054 			bufq = &bufqueues[BQ_LRU];
1055 		} else {
1056 			/* stale but valid data */
1057 			int has_deps;
1058 
1059 			if (bioopsp != NULL)
1060 				has_deps = (*bioopsp->io_countdeps)(bp, 0);
1061 			else
1062 				has_deps = 0;
1063 			bufq = has_deps ? &bufqueues[BQ_LRU] :
1064 			    &bufqueues[BQ_AGE];
1065 		}
1066 		binstailfree(bp, bufq);
1067 	}
1068 already_queued:
1069 	/* Unlock the buffer. */
1070 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1071 	CLR(bp->b_flags, B_ASYNC);
1072 
1073 	if (bp->b_bufsize <= 0)
1074 		brele(bp);
1075 }
1076 
1077 void
1078 brelse(buf_t *bp, int set)
1079 {
1080 
1081 	mutex_enter(&bufcache_lock);
1082 	brelsel(bp, set);
1083 	mutex_exit(&bufcache_lock);
1084 }
1085 
1086 /*
1087  * Determine if a block is in the cache.
1088  * Just look on what would be its hash chain.  If it's there, return
1089  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1090  * we normally don't return the buffer, unless the caller explicitly
1091  * wants us to.
1092  */
1093 buf_t *
1094 incore(struct vnode *vp, daddr_t blkno)
1095 {
1096 	buf_t *bp;
1097 
1098 	KASSERT(mutex_owned(&bufcache_lock));
1099 
1100 	/* Search hash chain */
1101 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1102 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1103 		    !ISSET(bp->b_cflags, BC_INVAL)) {
1104 		    	KASSERT(bp->b_objlock == &vp->v_interlock);
1105 		    	return (bp);
1106 		}
1107 	}
1108 
1109 	return (NULL);
1110 }
1111 
1112 /*
1113  * Get a block of requested size that is associated with
1114  * a given vnode and block offset. If it is found in the
1115  * block cache, mark it as having been found, make it busy
1116  * and return it. Otherwise, return an empty block of the
1117  * correct size. It is up to the caller to insure that the
1118  * cached blocks be of the correct size.
1119  */
1120 buf_t *
1121 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1122 {
1123 	int err, preserve;
1124 	buf_t *bp;
1125 
1126 	mutex_enter(&bufcache_lock);
1127  loop:
1128 	bp = incore(vp, blkno);
1129 	if (bp != NULL) {
1130 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1131 		if (err != 0) {
1132 			if (err == EPASSTHROUGH)
1133 				goto loop;
1134 			mutex_exit(&bufcache_lock);
1135 			return (NULL);
1136 		}
1137 #ifdef DIAGNOSTIC
1138 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1139 		    bp->b_bcount < size && vp->v_type != VBLK)
1140 			panic("getblk: block size invariant failed");
1141 #endif
1142 		bremfree(bp);
1143 		preserve = 1;
1144 	} else {
1145 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1146 			goto loop;
1147 
1148 		if (incore(vp, blkno) != NULL) {
1149 			/* The block has come into memory in the meantime. */
1150 			brelsel(bp, 0);
1151 			goto loop;
1152 		}
1153 
1154 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1155 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1156 		mutex_enter(&vp->v_interlock);
1157 		bgetvp(vp, bp);
1158 		mutex_exit(&vp->v_interlock);
1159 		preserve = 0;
1160 	}
1161 	mutex_exit(&bufcache_lock);
1162 
1163 	/*
1164 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1165 	 * if we re-size buffers here.
1166 	 */
1167 	if (ISSET(bp->b_flags, B_LOCKED)) {
1168 		KASSERT(bp->b_bufsize >= size);
1169 	} else {
1170 		if (allocbuf(bp, size, preserve)) {
1171 			mutex_enter(&bufcache_lock);
1172 			LIST_REMOVE(bp, b_hash);
1173 			mutex_exit(&bufcache_lock);
1174 			brelse(bp, BC_INVAL);
1175 			return NULL;
1176 		}
1177 	}
1178 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1179 	return (bp);
1180 }
1181 
1182 /*
1183  * Get an empty, disassociated buffer of given size.
1184  */
1185 buf_t *
1186 geteblk(int size)
1187 {
1188 	buf_t *bp;
1189 	int error;
1190 
1191 	mutex_enter(&bufcache_lock);
1192 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
1193 		;
1194 
1195 	SET(bp->b_cflags, BC_INVAL);
1196 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1197 	mutex_exit(&bufcache_lock);
1198 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1199 	error = allocbuf(bp, size, 0);
1200 	KASSERT(error == 0);
1201 	return (bp);
1202 }
1203 
1204 /*
1205  * Expand or contract the actual memory allocated to a buffer.
1206  *
1207  * If the buffer shrinks, data is lost, so it's up to the
1208  * caller to have written it out *first*; this routine will not
1209  * start a write.  If the buffer grows, it's the callers
1210  * responsibility to fill out the buffer's additional contents.
1211  */
1212 int
1213 allocbuf(buf_t *bp, int size, int preserve)
1214 {
1215 	vsize_t oldsize, desired_size;
1216 	void *addr;
1217 	int delta;
1218 
1219 	desired_size = buf_roundsize(size);
1220 	if (desired_size > MAXBSIZE)
1221 		printf("allocbuf: buffer larger than MAXBSIZE requested");
1222 
1223 	bp->b_bcount = size;
1224 
1225 	oldsize = bp->b_bufsize;
1226 	if (oldsize == desired_size)
1227 		return 0;
1228 
1229 	/*
1230 	 * If we want a buffer of a different size, re-allocate the
1231 	 * buffer's memory; copy old content only if needed.
1232 	 */
1233 	addr = buf_malloc(desired_size);
1234 	if (addr == NULL)
1235 		return ENOMEM;
1236 	if (preserve)
1237 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1238 	if (bp->b_data != NULL)
1239 		buf_mrelease(bp->b_data, oldsize);
1240 	bp->b_data = addr;
1241 	bp->b_bufsize = desired_size;
1242 
1243 	/*
1244 	 * Update overall buffer memory counter (protected by bufcache_lock)
1245 	 */
1246 	delta = (long)desired_size - (long)oldsize;
1247 
1248 	mutex_enter(&bufcache_lock);
1249 	if ((bufmem += delta) > bufmem_hiwater) {
1250 		/*
1251 		 * Need to trim overall memory usage.
1252 		 */
1253 		while (buf_canrelease()) {
1254 			if (curcpu()->ci_schedstate.spc_flags &
1255 			    SPCF_SHOULDYIELD) {
1256 				mutex_exit(&bufcache_lock);
1257 				preempt();
1258 				mutex_enter(&bufcache_lock);
1259 			}
1260 			if (buf_trim() == 0)
1261 				break;
1262 		}
1263 	}
1264 	mutex_exit(&bufcache_lock);
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Find a buffer which is available for use.
1270  * Select something from a free list.
1271  * Preference is to AGE list, then LRU list.
1272  *
1273  * Called with the buffer queues locked.
1274  * Return buffer locked.
1275  */
1276 buf_t *
1277 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1278 {
1279 	buf_t *bp;
1280 	struct vnode *vp;
1281 
1282  start:
1283 	KASSERT(mutex_owned(&bufcache_lock));
1284 
1285 	/*
1286 	 * Get a new buffer from the pool.
1287 	 */
1288 	if (!from_bufq && buf_lotsfree()) {
1289 		mutex_exit(&bufcache_lock);
1290 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
1291 		if (bp != NULL) {
1292 			memset((char *)bp, 0, sizeof(*bp));
1293 			buf_init(bp);
1294 			bp->b_dev = NODEV;
1295 			bp->b_vnbufs.le_next = NOLIST;
1296 			bp->b_cflags = BC_BUSY;
1297 			bp->b_refcnt = 1;
1298 			mutex_enter(&bufcache_lock);
1299 #if defined(DIAGNOSTIC)
1300 			bp->b_freelistindex = -1;
1301 #endif /* defined(DIAGNOSTIC) */
1302 			return (bp);
1303 		}
1304 		mutex_enter(&bufcache_lock);
1305 	}
1306 
1307 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1308 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1309 		bremfree(bp);
1310 	} else {
1311 		/*
1312 		 * XXX: !from_bufq should be removed.
1313 		 */
1314 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1315 			/* wait for a free buffer of any kind */
1316 			if ((slpflag & PCATCH) != 0)
1317 				(void)cv_timedwait_sig(&needbuffer_cv,
1318 				    &bufcache_lock, slptimeo);
1319 			else
1320 				(void)cv_timedwait(&needbuffer_cv,
1321 				    &bufcache_lock, slptimeo);
1322 		}
1323 		return (NULL);
1324 	}
1325 
1326 #ifdef DIAGNOSTIC
1327 	if (bp->b_bufsize <= 0)
1328 		panic("buffer %p: on queue but empty", bp);
1329 #endif
1330 
1331 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1332 		/*
1333 		 * This is a delayed write buffer being flushed to disk.  Make
1334 		 * sure it gets aged out of the queue when it's finished, and
1335 		 * leave it off the LRU queue.
1336 		 */
1337 		CLR(bp->b_cflags, BC_VFLUSH);
1338 		SET(bp->b_cflags, BC_AGE);
1339 		goto start;
1340 	}
1341 
1342 	/* Buffer is no longer on free lists. */
1343 	SET(bp->b_cflags, BC_BUSY);
1344 
1345 	/*
1346 	 * If buffer was a delayed write, start it and return NULL
1347 	 * (since we might sleep while starting the write).
1348 	 */
1349 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
1350 		/*
1351 		 * This buffer has gone through the LRU, so make sure it gets
1352 		 * reused ASAP.
1353 		 */
1354 		SET(bp->b_cflags, BC_AGE);
1355 		mutex_exit(&bufcache_lock);
1356 		bawrite(bp);
1357 		mutex_enter(&bufcache_lock);
1358 		return (NULL);
1359 	}
1360 
1361 	vp = bp->b_vp;
1362 	if (bioopsp != NULL)
1363 		(*bioopsp->io_deallocate)(bp);
1364 
1365 	/* clear out various other fields */
1366 	bp->b_cflags = BC_BUSY;
1367 	bp->b_oflags = 0;
1368 	bp->b_flags = 0;
1369 	bp->b_dev = NODEV;
1370 	bp->b_blkno = 0;
1371 	bp->b_lblkno = 0;
1372 	bp->b_rawblkno = 0;
1373 	bp->b_iodone = 0;
1374 	bp->b_error = 0;
1375 	bp->b_resid = 0;
1376 	bp->b_bcount = 0;
1377 
1378 	LIST_REMOVE(bp, b_hash);
1379 
1380 	/* Disassociate us from our vnode, if we had one... */
1381 	if (vp != NULL) {
1382 		mutex_enter(&vp->v_interlock);
1383 		brelvp(bp);
1384 		mutex_exit(&vp->v_interlock);
1385 	}
1386 
1387 	return (bp);
1388 }
1389 
1390 /*
1391  * Attempt to free an aged buffer off the queues.
1392  * Called with queue lock held.
1393  * Returns the amount of buffer memory freed.
1394  */
1395 static int
1396 buf_trim(void)
1397 {
1398 	buf_t *bp;
1399 	long size = 0;
1400 
1401 	KASSERT(mutex_owned(&bufcache_lock));
1402 
1403 	/* Instruct getnewbuf() to get buffers off the queues */
1404 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1405 		return 0;
1406 
1407 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
1408 	size = bp->b_bufsize;
1409 	bufmem -= size;
1410 	if (size > 0) {
1411 		buf_mrelease(bp->b_data, size);
1412 		bp->b_bcount = bp->b_bufsize = 0;
1413 	}
1414 	/* brelse() will return the buffer to the global buffer pool */
1415 	brelsel(bp, 0);
1416 	return size;
1417 }
1418 
1419 int
1420 buf_drain(int n)
1421 {
1422 	int size = 0, sz;
1423 
1424 	KASSERT(mutex_owned(&bufcache_lock));
1425 
1426 	while (size < n && bufmem > bufmem_lowater) {
1427 		sz = buf_trim();
1428 		if (sz <= 0)
1429 			break;
1430 		size += sz;
1431 	}
1432 
1433 	return size;
1434 }
1435 
1436 /*
1437  * Wait for operations on the buffer to complete.
1438  * When they do, extract and return the I/O's error value.
1439  */
1440 int
1441 biowait(buf_t *bp)
1442 {
1443 
1444 	mutex_enter(bp->b_objlock);
1445 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1446 		cv_wait(&bp->b_done, bp->b_objlock);
1447 	mutex_exit(bp->b_objlock);
1448 
1449 	return bp->b_error;
1450 }
1451 
1452 /*
1453  * Mark I/O complete on a buffer.
1454  *
1455  * If a callback has been requested, e.g. the pageout
1456  * daemon, do so. Otherwise, awaken waiting processes.
1457  *
1458  * [ Leffler, et al., says on p.247:
1459  *	"This routine wakes up the blocked process, frees the buffer
1460  *	for an asynchronous write, or, for a request by the pagedaemon
1461  *	process, invokes a procedure specified in the buffer structure" ]
1462  *
1463  * In real life, the pagedaemon (or other system processes) wants
1464  * to do async stuff to, and doesn't want the buffer brelse()'d.
1465  * (for swap pager, that puts swap buffers on the free lists (!!!),
1466  * for the vn device, that puts malloc'd buffers on the free lists!)
1467  */
1468 void
1469 biodone(buf_t *bp)
1470 {
1471 	int s;
1472 
1473 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1474 
1475 	if (cpu_intr_p()) {
1476 		/* From interrupt mode: defer to a soft interrupt. */
1477 		s = splvm();
1478 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1479 		softint_schedule(biodone_sih);
1480 		splx(s);
1481 	} else {
1482 		/* Process now - the buffer may be freed soon. */
1483 		biodone2(bp);
1484 	}
1485 }
1486 
1487 static void
1488 biodone2(buf_t *bp)
1489 {
1490 	void (*callout)(buf_t *);
1491 
1492 	if (bioopsp != NULL)
1493 		(*bioopsp->io_complete)(bp);
1494 
1495 	mutex_enter(bp->b_objlock);
1496 	/* Note that the transfer is done. */
1497 	if (ISSET(bp->b_oflags, BO_DONE))
1498 		panic("biodone2 already");
1499 	CLR(bp->b_flags, B_COWDONE);
1500 	SET(bp->b_oflags, BO_DONE);
1501 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1502 
1503 	/* Wake up waiting writers. */
1504 	if (!ISSET(bp->b_flags, B_READ))
1505 		vwakeup(bp);
1506 
1507 	if ((callout = bp->b_iodone) != NULL) {
1508 		/* Note callout done, then call out. */
1509 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1510 		bp->b_iodone = NULL;
1511 		mutex_exit(bp->b_objlock);
1512 		(*callout)(bp);
1513 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1514 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
1515 		/* If async, release. */
1516 		mutex_exit(bp->b_objlock);
1517 		brelse(bp, 0);
1518 	} else {
1519 		/* Otherwise just wake up waiters in biowait(). */
1520 		cv_broadcast(&bp->b_done);
1521 		mutex_exit(bp->b_objlock);
1522 	}
1523 }
1524 
1525 static void
1526 biointr(void *cookie)
1527 {
1528 	struct cpu_info *ci;
1529 	buf_t *bp;
1530 	int s;
1531 
1532 	ci = curcpu();
1533 
1534 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1535 		KASSERT(curcpu() == ci);
1536 
1537 		s = splvm();
1538 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1539 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1540 		splx(s);
1541 
1542 		biodone2(bp);
1543 	}
1544 }
1545 
1546 /*
1547  * Return a count of buffers on the "locked" queue.
1548  */
1549 int
1550 count_lock_queue(void)
1551 {
1552 	buf_t *bp;
1553 	int n = 0;
1554 
1555 	mutex_enter(&bufcache_lock);
1556 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1557 		n++;
1558 	mutex_exit(&bufcache_lock);
1559 	return (n);
1560 }
1561 
1562 /*
1563  * Wait for all buffers to complete I/O
1564  * Return the number of "stuck" buffers.
1565  */
1566 int
1567 buf_syncwait(void)
1568 {
1569 	buf_t *bp;
1570 	int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1571 
1572 	dcount = 10000;
1573 	for (iter = 0; iter < 20;) {
1574 		mutex_enter(&bufcache_lock);
1575 		nbusy = 0;
1576 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1577 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1578 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1579 				nbusy += ((bp->b_flags & B_READ) == 0);
1580 			/*
1581 			 * With soft updates, some buffers that are
1582 			 * written will be remarked as dirty until other
1583 			 * buffers are written.
1584 			 */
1585 			if (bp->b_vp && bp->b_vp->v_mount
1586 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1587 			    && (bp->b_oflags & BO_DELWRI)) {
1588 				bremfree(bp);
1589 				bp->b_cflags |= BC_BUSY;
1590 				nbusy++;
1591 				mutex_exit(&bufcache_lock);
1592 				bawrite(bp);
1593 				if (dcount-- <= 0) {
1594 					printf("softdep ");
1595 					goto fail;
1596 				}
1597 				mutex_enter(&bufcache_lock);
1598 			}
1599 		    }
1600 		}
1601 		mutex_exit(&bufcache_lock);
1602 
1603 		if (nbusy == 0)
1604 			break;
1605 		if (nbusy_prev == 0)
1606 			nbusy_prev = nbusy;
1607 		printf("%d ", nbusy);
1608 		tsleep(&nbusy, PRIBIO, "bflush",
1609 		    (iter == 0) ? 1 : hz / 25 * iter);
1610 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1611 			iter++;
1612 		else
1613 			nbusy_prev = nbusy;
1614 	}
1615 
1616 	if (nbusy) {
1617 fail:;
1618 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1619 		printf("giving up\nPrinting vnodes for busy buffers\n");
1620 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1621 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1622 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1623 			    (bp->b_flags & B_READ) == 0)
1624 				vprint(NULL, bp->b_vp);
1625 		    }
1626 		}
1627 #endif
1628 	}
1629 
1630 	return nbusy;
1631 }
1632 
1633 static void
1634 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1635 {
1636 
1637 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1638 	o->b_error = i->b_error;
1639 	o->b_prio = i->b_prio;
1640 	o->b_dev = i->b_dev;
1641 	o->b_bufsize = i->b_bufsize;
1642 	o->b_bcount = i->b_bcount;
1643 	o->b_resid = i->b_resid;
1644 	o->b_addr = PTRTOUINT64(i->b_data);
1645 	o->b_blkno = i->b_blkno;
1646 	o->b_rawblkno = i->b_rawblkno;
1647 	o->b_iodone = PTRTOUINT64(i->b_iodone);
1648 	o->b_proc = PTRTOUINT64(i->b_proc);
1649 	o->b_vp = PTRTOUINT64(i->b_vp);
1650 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1651 	o->b_lblkno = i->b_lblkno;
1652 }
1653 
1654 #define KERN_BUFSLOP 20
1655 static int
1656 sysctl_dobuf(SYSCTLFN_ARGS)
1657 {
1658 	buf_t *bp;
1659 	struct buf_sysctl bs;
1660 	struct bqueue *bq;
1661 	char *dp;
1662 	u_int i, op, arg;
1663 	size_t len, needed, elem_size, out_size;
1664 	int error, elem_count, retries;
1665 
1666 	if (namelen == 1 && name[0] == CTL_QUERY)
1667 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1668 
1669 	if (namelen != 4)
1670 		return (EINVAL);
1671 
1672 	retries = 100;
1673  retry:
1674 	dp = oldp;
1675 	len = (oldp != NULL) ? *oldlenp : 0;
1676 	op = name[0];
1677 	arg = name[1];
1678 	elem_size = name[2];
1679 	elem_count = name[3];
1680 	out_size = MIN(sizeof(bs), elem_size);
1681 
1682 	/*
1683 	 * at the moment, these are just "placeholders" to make the
1684 	 * API for retrieving kern.buf data more extensible in the
1685 	 * future.
1686 	 *
1687 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1688 	 * these will be resolved at a later point.
1689 	 */
1690 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1691 	    elem_size < 1 || elem_count < 0)
1692 		return (EINVAL);
1693 
1694 	error = 0;
1695 	needed = 0;
1696 	sysctl_unlock();
1697 	mutex_enter(&bufcache_lock);
1698 	for (i = 0; i < BQUEUES; i++) {
1699 		bq = &bufqueues[i];
1700 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1701 			bq->bq_marker = bp;
1702 			if (len >= elem_size && elem_count > 0) {
1703 				sysctl_fillbuf(bp, &bs);
1704 				mutex_exit(&bufcache_lock);
1705 				error = copyout(&bs, dp, out_size);
1706 				mutex_enter(&bufcache_lock);
1707 				if (error)
1708 					break;
1709 				if (bq->bq_marker != bp) {
1710 					/*
1711 					 * This sysctl node is only for
1712 					 * statistics.  Retry; if the
1713 					 * queue keeps changing, then
1714 					 * bail out.
1715 					 */
1716 					if (retries-- == 0) {
1717 						error = EAGAIN;
1718 						break;
1719 					}
1720 					mutex_exit(&bufcache_lock);
1721 					goto retry;
1722 				}
1723 				dp += elem_size;
1724 				len -= elem_size;
1725 			}
1726 			if (elem_count > 0) {
1727 				needed += elem_size;
1728 				if (elem_count != INT_MAX)
1729 					elem_count--;
1730 			}
1731 		}
1732 		if (error != 0)
1733 			break;
1734 	}
1735 	mutex_exit(&bufcache_lock);
1736 	sysctl_relock();
1737 
1738 	*oldlenp = needed;
1739 	if (oldp == NULL)
1740 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1741 
1742 	return (error);
1743 }
1744 
1745 static int
1746 sysctl_bufvm_update(SYSCTLFN_ARGS)
1747 {
1748 	int t, error, rv;
1749 	struct sysctlnode node;
1750 
1751 	node = *rnode;
1752 	node.sysctl_data = &t;
1753 	t = *(int *)rnode->sysctl_data;
1754 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1755 	if (error || newp == NULL)
1756 		return (error);
1757 
1758 	if (t < 0)
1759 		return EINVAL;
1760 	if (rnode->sysctl_data == &bufcache) {
1761 		if (t > 100)
1762 			return (EINVAL);
1763 		bufcache = t;
1764 		buf_setwm();
1765 	} else if (rnode->sysctl_data == &bufmem_lowater) {
1766 		if (bufmem_hiwater - t < 16)
1767 			return (EINVAL);
1768 		bufmem_lowater = t;
1769 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1770 		if (t - bufmem_lowater < 16)
1771 			return (EINVAL);
1772 		bufmem_hiwater = t;
1773 	} else
1774 		return (EINVAL);
1775 
1776 	/* Drain until below new high water mark */
1777 	sysctl_unlock();
1778 	mutex_enter(&bufcache_lock);
1779 	while ((t = bufmem - bufmem_hiwater) >= 0) {
1780 		rv = buf_drain(t / (2 * 1024));
1781 		if (rv <= 0)
1782 			break;
1783 	}
1784 	mutex_exit(&bufcache_lock);
1785 	sysctl_relock();
1786 
1787 	return 0;
1788 }
1789 
1790 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1791 {
1792 
1793 	sysctl_createv(clog, 0, NULL, NULL,
1794 		       CTLFLAG_PERMANENT,
1795 		       CTLTYPE_NODE, "kern", NULL,
1796 		       NULL, 0, NULL, 0,
1797 		       CTL_KERN, CTL_EOL);
1798 	sysctl_createv(clog, 0, NULL, NULL,
1799 		       CTLFLAG_PERMANENT,
1800 		       CTLTYPE_NODE, "buf",
1801 		       SYSCTL_DESCR("Kernel buffer cache information"),
1802 		       sysctl_dobuf, 0, NULL, 0,
1803 		       CTL_KERN, KERN_BUF, CTL_EOL);
1804 }
1805 
1806 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1807 {
1808 
1809 	sysctl_createv(clog, 0, NULL, NULL,
1810 		       CTLFLAG_PERMANENT,
1811 		       CTLTYPE_NODE, "vm", NULL,
1812 		       NULL, 0, NULL, 0,
1813 		       CTL_VM, CTL_EOL);
1814 
1815 	sysctl_createv(clog, 0, NULL, NULL,
1816 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1817 		       CTLTYPE_INT, "bufcache",
1818 		       SYSCTL_DESCR("Percentage of physical memory to use for "
1819 				    "buffer cache"),
1820 		       sysctl_bufvm_update, 0, &bufcache, 0,
1821 		       CTL_VM, CTL_CREATE, CTL_EOL);
1822 	sysctl_createv(clog, 0, NULL, NULL,
1823 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1824 		       CTLTYPE_INT, "bufmem",
1825 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1826 				    "cache"),
1827 		       NULL, 0, &bufmem, 0,
1828 		       CTL_VM, CTL_CREATE, CTL_EOL);
1829 	sysctl_createv(clog, 0, NULL, NULL,
1830 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1831 		       CTLTYPE_INT, "bufmem_lowater",
1832 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1833 				    "reserve for buffer cache"),
1834 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1835 		       CTL_VM, CTL_CREATE, CTL_EOL);
1836 	sysctl_createv(clog, 0, NULL, NULL,
1837 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1838 		       CTLTYPE_INT, "bufmem_hiwater",
1839 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1840 				    "for buffer cache"),
1841 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1842 		       CTL_VM, CTL_CREATE, CTL_EOL);
1843 }
1844 
1845 #ifdef DEBUG
1846 /*
1847  * Print out statistics on the current allocation of the buffer pool.
1848  * Can be enabled to print out on every ``sync'' by setting "syncprt"
1849  * in vfs_syscalls.c using sysctl.
1850  */
1851 void
1852 vfs_bufstats(void)
1853 {
1854 	int i, j, count;
1855 	buf_t *bp;
1856 	struct bqueue *dp;
1857 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1858 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1859 
1860 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1861 		count = 0;
1862 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1863 			counts[j] = 0;
1864 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1865 			counts[bp->b_bufsize/PAGE_SIZE]++;
1866 			count++;
1867 		}
1868 		printf("%s: total-%d", bname[i], count);
1869 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1870 			if (counts[j] != 0)
1871 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1872 		printf("\n");
1873 	}
1874 }
1875 #endif /* DEBUG */
1876 
1877 /* ------------------------------ */
1878 
1879 buf_t *
1880 getiobuf(struct vnode *vp, bool waitok)
1881 {
1882 	buf_t *bp;
1883 
1884 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1885 	if (bp == NULL)
1886 		return bp;
1887 
1888 	buf_init(bp);
1889 
1890 	if ((bp->b_vp = vp) == NULL)
1891 		bp->b_objlock = &buffer_lock;
1892 	else
1893 		bp->b_objlock = &vp->v_interlock;
1894 
1895 	return bp;
1896 }
1897 
1898 void
1899 putiobuf(buf_t *bp)
1900 {
1901 
1902 	buf_destroy(bp);
1903 	pool_cache_put(bufio_cache, bp);
1904 }
1905 
1906 /*
1907  * nestiobuf_iodone: b_iodone callback for nested buffers.
1908  */
1909 
1910 void
1911 nestiobuf_iodone(buf_t *bp)
1912 {
1913 	buf_t *mbp = bp->b_private;
1914 	int error;
1915 	int donebytes;
1916 
1917 	KASSERT(bp->b_bcount <= bp->b_bufsize);
1918 	KASSERT(mbp != bp);
1919 
1920 	error = 0;
1921 	if (bp->b_error == 0 &&
1922 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1923 		/*
1924 		 * Not all got transfered, raise an error. We have no way to
1925 		 * propagate these conditions to mbp.
1926 		 */
1927 		error = EIO;
1928 	}
1929 
1930 	donebytes = bp->b_bufsize;
1931 
1932 	putiobuf(bp);
1933 	nestiobuf_done(mbp, donebytes, error);
1934 }
1935 
1936 /*
1937  * nestiobuf_setup: setup a "nested" buffer.
1938  *
1939  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1940  * => 'bp' should be a buffer allocated by getiobuf.
1941  * => 'offset' is a byte offset in the master buffer.
1942  * => 'size' is a size in bytes of this nested buffer.
1943  */
1944 
1945 void
1946 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1947 {
1948 	const int b_read = mbp->b_flags & B_READ;
1949 	struct vnode *vp = mbp->b_vp;
1950 
1951 	KASSERT(mbp->b_bcount >= offset + size);
1952 	bp->b_vp = vp;
1953 	bp->b_objlock = mbp->b_objlock;
1954 	bp->b_cflags = BC_BUSY;
1955 	bp->b_flags = B_ASYNC | b_read;
1956 	bp->b_iodone = nestiobuf_iodone;
1957 	bp->b_data = (char *)mbp->b_data + offset;
1958 	bp->b_resid = bp->b_bcount = size;
1959 	bp->b_bufsize = bp->b_bcount;
1960 	bp->b_private = mbp;
1961 	BIO_COPYPRIO(bp, mbp);
1962 	if (!b_read && vp != NULL) {
1963 		mutex_enter(&vp->v_interlock);
1964 		vp->v_numoutput++;
1965 		mutex_exit(&vp->v_interlock);
1966 	}
1967 }
1968 
1969 /*
1970  * nestiobuf_done: propagate completion to the master buffer.
1971  *
1972  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1973  * => 'error' is an errno(2) that 'donebytes' has been completed with.
1974  */
1975 
1976 void
1977 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1978 {
1979 
1980 	if (donebytes == 0) {
1981 		return;
1982 	}
1983 	mutex_enter(mbp->b_objlock);
1984 	KASSERT(mbp->b_resid >= donebytes);
1985 	mbp->b_resid -= donebytes;
1986 	mbp->b_error = error;
1987 	if (mbp->b_resid == 0) {
1988 		mutex_exit(mbp->b_objlock);
1989 		biodone(mbp);
1990 	} else
1991 		mutex_exit(mbp->b_objlock);
1992 }
1993 
1994 void
1995 buf_init(buf_t *bp)
1996 {
1997 
1998 	LIST_INIT(&bp->b_dep);
1999 	cv_init(&bp->b_busy, "biolock");
2000 	cv_init(&bp->b_done, "biowait");
2001 	bp->b_dev = NODEV;
2002 	bp->b_error = 0;
2003 	bp->b_flags = 0;
2004 	bp->b_cflags = 0;
2005 	bp->b_oflags = 0;
2006 	bp->b_objlock = &buffer_lock;
2007 	bp->b_iodone = NULL;
2008 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
2009 }
2010 
2011 void
2012 buf_destroy(buf_t *bp)
2013 {
2014 
2015 	cv_destroy(&bp->b_done);
2016 	cv_destroy(&bp->b_busy);
2017 }
2018 
2019 int
2020 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2021 {
2022 	int error;
2023 
2024 	KASSERT(mutex_owned(&bufcache_lock));
2025 
2026 	if ((bp->b_cflags & BC_BUSY) != 0) {
2027 		if (curlwp == uvm.pagedaemon_lwp)
2028 			return EDEADLK;
2029 		bp->b_cflags |= BC_WANTED;
2030 		bref(bp);
2031 		if (interlock != NULL)
2032 			mutex_exit(interlock);
2033 		if (intr) {
2034 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2035 			    timo);
2036 		} else {
2037 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2038 			    timo);
2039 		}
2040 		brele(bp);
2041 		if (interlock != NULL)
2042 			mutex_enter(interlock);
2043 		if (error != 0)
2044 			return error;
2045 		return EPASSTHROUGH;
2046 	}
2047 	bp->b_cflags |= BC_BUSY;
2048 
2049 	return 0;
2050 }
2051