1 /* $NetBSD: vfs_bio.c,v 1.159 2006/04/05 00:52:16 uwe Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 37 */ 38 39 /*- 40 * Copyright (c) 1994 Christopher G. Demetriou 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by the University of 53 * California, Berkeley and its contributors. 54 * 4. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 71 */ 72 73 /* 74 * Some references: 75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 76 * Leffler, et al.: The Design and Implementation of the 4.3BSD 77 * UNIX Operating System (Addison Welley, 1989) 78 */ 79 80 #include "fs_ffs.h" 81 #include "opt_bufcache.h" 82 #include "opt_softdep.h" 83 84 #include <sys/cdefs.h> 85 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.159 2006/04/05 00:52:16 uwe Exp $"); 86 87 #include <sys/param.h> 88 #include <sys/systm.h> 89 #include <sys/kernel.h> 90 #include <sys/proc.h> 91 #include <sys/buf.h> 92 #include <sys/vnode.h> 93 #include <sys/mount.h> 94 #include <sys/malloc.h> 95 #include <sys/resourcevar.h> 96 #include <sys/sysctl.h> 97 #include <sys/conf.h> 98 99 #include <uvm/uvm.h> 100 101 #include <miscfs/specfs/specdev.h> 102 103 #ifndef BUFPAGES 104 # define BUFPAGES 0 105 #endif 106 107 #ifdef BUFCACHE 108 # if (BUFCACHE < 5) || (BUFCACHE > 95) 109 # error BUFCACHE is not between 5 and 95 110 # endif 111 #else 112 # define BUFCACHE 15 113 #endif 114 115 u_int nbuf; /* XXX - for softdep_lockedbufs */ 116 u_int bufpages = BUFPAGES; /* optional hardwired count */ 117 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */ 118 119 /* Function prototypes */ 120 struct bqueue; 121 122 static void buf_setwm(void); 123 static int buf_trim(void); 124 static void *bufpool_page_alloc(struct pool *, int); 125 static void bufpool_page_free(struct pool *, void *); 126 static inline struct buf *bio_doread(struct vnode *, daddr_t, int, 127 struct ucred *, int); 128 static int buf_lotsfree(void); 129 static int buf_canrelease(void); 130 static inline u_long buf_mempoolidx(u_long); 131 static inline u_long buf_roundsize(u_long); 132 static inline caddr_t buf_malloc(size_t); 133 static void buf_mrelease(caddr_t, size_t); 134 static inline void binsheadfree(struct buf *, struct bqueue *); 135 static inline void binstailfree(struct buf *, struct bqueue *); 136 int count_lock_queue(void); /* XXX */ 137 #ifdef DEBUG 138 static int checkfreelist(struct buf *, struct bqueue *); 139 #endif 140 141 /* 142 * Definitions for the buffer hash lists. 143 */ 144 #define BUFHASH(dvp, lbn) \ 145 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash]) 146 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 147 u_long bufhash; 148 #if !defined(SOFTDEP) || !defined(FFS) 149 struct bio_ops bioops; /* I/O operation notification */ 150 #endif 151 152 /* 153 * Insq/Remq for the buffer hash lists. 154 */ 155 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 156 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 157 158 /* 159 * Definitions for the buffer free lists. 160 */ 161 #define BQUEUES 3 /* number of free buffer queues */ 162 163 #define BQ_LOCKED 0 /* super-blocks &c */ 164 #define BQ_LRU 1 /* lru, useful buffers */ 165 #define BQ_AGE 2 /* rubbish */ 166 167 struct bqueue { 168 TAILQ_HEAD(, buf) bq_queue; 169 uint64_t bq_bytes; 170 } bufqueues[BQUEUES]; 171 int needbuffer; 172 173 /* 174 * Buffer queue lock. 175 * Take this lock first if also taking some buffer's b_interlock. 176 */ 177 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER; 178 179 /* 180 * Buffer pool for I/O buffers. 181 * Access to this pool must be protected with splbio(). 182 */ 183 static POOL_INIT(bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 184 185 186 /* XXX - somewhat gross.. */ 187 #if MAXBSIZE == 0x2000 188 #define NMEMPOOLS 5 189 #elif MAXBSIZE == 0x4000 190 #define NMEMPOOLS 6 191 #elif MAXBSIZE == 0x8000 192 #define NMEMPOOLS 7 193 #else 194 #define NMEMPOOLS 8 195 #endif 196 197 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */ 198 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE 199 #error update vfs_bio buffer memory parameters 200 #endif 201 202 /* Buffer memory pools */ 203 static struct pool bmempools[NMEMPOOLS]; 204 205 struct vm_map *buf_map; 206 207 /* 208 * Buffer memory pool allocator. 209 */ 210 static void * 211 bufpool_page_alloc(struct pool *pp, int flags) 212 { 213 214 return (void *)uvm_km_alloc(buf_map, 215 MAXBSIZE, MAXBSIZE, 216 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 217 | UVM_KMF_WIRED); 218 } 219 220 static void 221 bufpool_page_free(struct pool *pp, void *v) 222 { 223 224 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED); 225 } 226 227 static struct pool_allocator bufmempool_allocator = { 228 bufpool_page_alloc, bufpool_page_free, MAXBSIZE, 229 }; 230 231 /* Buffer memory management variables */ 232 u_long bufmem_valimit; 233 u_long bufmem_hiwater; 234 u_long bufmem_lowater; 235 u_long bufmem; 236 237 /* 238 * MD code can call this to set a hard limit on the amount 239 * of virtual memory used by the buffer cache. 240 */ 241 int 242 buf_setvalimit(vsize_t sz) 243 { 244 245 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */ 246 if (sz < NMEMPOOLS * MAXBSIZE) 247 return EINVAL; 248 249 bufmem_valimit = sz; 250 return 0; 251 } 252 253 static void 254 buf_setwm(void) 255 { 256 257 bufmem_hiwater = buf_memcalc(); 258 /* lowater is approx. 2% of memory (with bufcache = 15) */ 259 #define BUFMEM_WMSHIFT 3 260 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT) 261 if (bufmem_hiwater < BUFMEM_HIWMMIN) 262 /* Ensure a reasonable minimum value */ 263 bufmem_hiwater = BUFMEM_HIWMMIN; 264 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT; 265 } 266 267 #ifdef DEBUG 268 int debug_verify_freelist = 0; 269 static int 270 checkfreelist(struct buf *bp, struct bqueue *dp) 271 { 272 struct buf *b; 273 274 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) { 275 if (b == bp) 276 return 1; 277 } 278 return 0; 279 } 280 #endif 281 282 /* 283 * Insq/Remq for the buffer hash lists. 284 * Call with buffer queue locked. 285 */ 286 static inline void 287 binsheadfree(struct buf *bp, struct bqueue *dp) 288 { 289 290 KASSERT(bp->b_freelistindex == -1); 291 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist); 292 dp->bq_bytes += bp->b_bufsize; 293 bp->b_freelistindex = dp - bufqueues; 294 } 295 296 static inline void 297 binstailfree(struct buf *bp, struct bqueue *dp) 298 { 299 300 KASSERT(bp->b_freelistindex == -1); 301 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist); 302 dp->bq_bytes += bp->b_bufsize; 303 bp->b_freelistindex = dp - bufqueues; 304 } 305 306 void 307 bremfree(struct buf *bp) 308 { 309 struct bqueue *dp; 310 int bqidx = bp->b_freelistindex; 311 312 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 313 314 KASSERT(bqidx != -1); 315 dp = &bufqueues[bqidx]; 316 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp)); 317 KASSERT(dp->bq_bytes >= bp->b_bufsize); 318 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist); 319 dp->bq_bytes -= bp->b_bufsize; 320 #if defined(DIAGNOSTIC) 321 bp->b_freelistindex = -1; 322 #endif /* defined(DIAGNOSTIC) */ 323 } 324 325 u_long 326 buf_memcalc(void) 327 { 328 u_long n; 329 330 /* 331 * Determine the upper bound of memory to use for buffers. 332 * 333 * - If bufpages is specified, use that as the number 334 * pages. 335 * 336 * - Otherwise, use bufcache as the percentage of 337 * physical memory. 338 */ 339 if (bufpages != 0) { 340 n = bufpages; 341 } else { 342 if (bufcache < 5) { 343 printf("forcing bufcache %d -> 5", bufcache); 344 bufcache = 5; 345 } 346 if (bufcache > 95) { 347 printf("forcing bufcache %d -> 95", bufcache); 348 bufcache = 95; 349 } 350 n = physmem / 100 * bufcache; 351 } 352 353 n <<= PAGE_SHIFT; 354 if (bufmem_valimit != 0 && n > bufmem_valimit) 355 n = bufmem_valimit; 356 357 return (n); 358 } 359 360 /* 361 * Initialize buffers and hash links for buffers. 362 */ 363 void 364 bufinit(void) 365 { 366 struct bqueue *dp; 367 int use_std; 368 u_int i; 369 370 /* 371 * Initialize buffer cache memory parameters. 372 */ 373 bufmem = 0; 374 buf_setwm(); 375 376 if (bufmem_valimit != 0) { 377 vaddr_t minaddr = 0, maxaddr; 378 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, 379 bufmem_valimit, VM_MAP_PAGEABLE, 380 FALSE, 0); 381 if (buf_map == NULL) 382 panic("bufinit: cannot allocate submap"); 383 } else 384 buf_map = kernel_map; 385 386 /* On "small" machines use small pool page sizes where possible */ 387 use_std = (physmem < atop(16*1024*1024)); 388 389 /* 390 * Also use them on systems that can map the pool pages using 391 * a direct-mapped segment. 392 */ 393 #ifdef PMAP_MAP_POOLPAGE 394 use_std = 1; 395 #endif 396 397 for (i = 0; i < NMEMPOOLS; i++) { 398 struct pool_allocator *pa; 399 struct pool *pp = &bmempools[i]; 400 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET); 401 char *name = malloc(8, M_TEMP, M_WAITOK); 402 snprintf(name, 8, "buf%dk", 1 << i); 403 pa = (size <= PAGE_SIZE && use_std) 404 ? &pool_allocator_nointr 405 : &bufmempool_allocator; 406 pool_init(pp, size, 0, 0, 0, name, pa); 407 pool_setlowat(pp, 1); 408 pool_sethiwat(pp, 1); 409 } 410 411 /* Initialize the buffer queues */ 412 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) { 413 TAILQ_INIT(&dp->bq_queue); 414 dp->bq_bytes = 0; 415 } 416 417 /* 418 * Estimate hash table size based on the amount of memory we 419 * intend to use for the buffer cache. The average buffer 420 * size is dependent on our clients (i.e. filesystems). 421 * 422 * For now, use an empirical 3K per buffer. 423 */ 424 nbuf = (bufmem_hiwater / 1024) / 3; 425 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash); 426 } 427 428 static int 429 buf_lotsfree(void) 430 { 431 int try, thresh; 432 struct lwp *l = curlwp; 433 434 /* Always allocate if doing copy on write */ 435 if (l->l_flag & L_COWINPROGRESS) 436 return 1; 437 438 /* Always allocate if less than the low water mark. */ 439 if (bufmem < bufmem_lowater) 440 return 1; 441 442 /* Never allocate if greater than the high water mark. */ 443 if (bufmem > bufmem_hiwater) 444 return 0; 445 446 /* If there's anything on the AGE list, it should be eaten. */ 447 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL) 448 return 0; 449 450 /* 451 * The probabily of getting a new allocation is inversely 452 * proportional to the current size of the cache, using 453 * a granularity of 16 steps. 454 */ 455 try = random() & 0x0000000fL; 456 457 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */ 458 thresh = (bufmem - bufmem_lowater) / 459 ((bufmem_hiwater - bufmem_lowater) / 16); 460 461 if (try >= thresh) 462 return 1; 463 464 /* Otherwise don't allocate. */ 465 return 0; 466 } 467 468 /* 469 * Return estimate of bytes we think need to be 470 * released to help resolve low memory conditions. 471 * 472 * => called at splbio. 473 * => called with bqueue_slock held. 474 */ 475 static int 476 buf_canrelease(void) 477 { 478 int pagedemand, ninvalid = 0; 479 480 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 481 482 if (bufmem < bufmem_lowater) 483 return 0; 484 485 if (bufmem > bufmem_hiwater) 486 return bufmem - bufmem_hiwater; 487 488 ninvalid += bufqueues[BQ_AGE].bq_bytes; 489 490 pagedemand = uvmexp.freetarg - uvmexp.free; 491 if (pagedemand < 0) 492 return ninvalid; 493 return MAX(ninvalid, MIN(2 * MAXBSIZE, 494 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE))); 495 } 496 497 /* 498 * Buffer memory allocation helper functions 499 */ 500 static inline u_long 501 buf_mempoolidx(u_long size) 502 { 503 u_int n = 0; 504 505 size -= 1; 506 size >>= MEMPOOL_INDEX_OFFSET; 507 while (size) { 508 size >>= 1; 509 n += 1; 510 } 511 if (n >= NMEMPOOLS) 512 panic("buf mem pool index %d", n); 513 return n; 514 } 515 516 static inline u_long 517 buf_roundsize(u_long size) 518 { 519 /* Round up to nearest power of 2 */ 520 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET)); 521 } 522 523 static inline caddr_t 524 buf_malloc(size_t size) 525 { 526 u_int n = buf_mempoolidx(size); 527 caddr_t addr; 528 int s; 529 530 while (1) { 531 addr = pool_get(&bmempools[n], PR_NOWAIT); 532 if (addr != NULL) 533 break; 534 535 /* No memory, see if we can free some. If so, try again */ 536 if (buf_drain(1) > 0) 537 continue; 538 539 /* Wait for buffers to arrive on the LRU queue */ 540 s = splbio(); 541 simple_lock(&bqueue_slock); 542 needbuffer = 1; 543 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1), 544 "buf_malloc", 0, &bqueue_slock); 545 splx(s); 546 } 547 548 return addr; 549 } 550 551 static void 552 buf_mrelease(caddr_t addr, size_t size) 553 { 554 555 pool_put(&bmempools[buf_mempoolidx(size)], addr); 556 } 557 558 /* 559 * bread()/breadn() helper. 560 */ 561 static inline struct buf * 562 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred, 563 int async) 564 { 565 struct buf *bp; 566 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 567 struct proc *p = l->l_proc; 568 struct mount *mp; 569 570 bp = getblk(vp, blkno, size, 0, 0); 571 572 #ifdef DIAGNOSTIC 573 if (bp == NULL) { 574 panic("bio_doread: no such buf"); 575 } 576 #endif 577 578 /* 579 * If buffer does not have data valid, start a read. 580 * Note that if buffer is B_INVAL, getblk() won't return it. 581 * Therefore, it's valid if its I/O has completed or been delayed. 582 */ 583 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 584 /* Start I/O for the buffer. */ 585 SET(bp->b_flags, B_READ | async); 586 if (async) 587 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 588 else 589 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 590 VOP_STRATEGY(vp, bp); 591 592 /* Pay for the read. */ 593 p->p_stats->p_ru.ru_inblock++; 594 } else if (async) { 595 brelse(bp); 596 } 597 598 if (vp->v_type == VBLK) 599 mp = vp->v_specmountpoint; 600 else 601 mp = vp->v_mount; 602 603 /* 604 * Collect statistics on synchronous and asynchronous reads. 605 * Reads from block devices are charged to their associated 606 * filesystem (if any). 607 */ 608 if (mp != NULL) { 609 if (async == 0) 610 mp->mnt_stat.f_syncreads++; 611 else 612 mp->mnt_stat.f_asyncreads++; 613 } 614 615 return (bp); 616 } 617 618 /* 619 * Read a disk block. 620 * This algorithm described in Bach (p.54). 621 */ 622 int 623 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred, 624 struct buf **bpp) 625 { 626 struct buf *bp; 627 628 /* Get buffer for block. */ 629 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 630 631 /* Wait for the read to complete, and return result. */ 632 return (biowait(bp)); 633 } 634 635 /* 636 * Read-ahead multiple disk blocks. The first is sync, the rest async. 637 * Trivial modification to the breada algorithm presented in Bach (p.55). 638 */ 639 int 640 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks, 641 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp) 642 { 643 struct buf *bp; 644 int i; 645 646 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 647 648 /* 649 * For each of the read-ahead blocks, start a read, if necessary. 650 */ 651 for (i = 0; i < nrablks; i++) { 652 /* If it's in the cache, just go on to next one. */ 653 if (incore(vp, rablks[i])) 654 continue; 655 656 /* Get a buffer for the read-ahead block */ 657 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC); 658 } 659 660 /* Otherwise, we had to start a read for it; wait until it's valid. */ 661 return (biowait(bp)); 662 } 663 664 /* 665 * Read with single-block read-ahead. Defined in Bach (p.55), but 666 * implemented as a call to breadn(). 667 * XXX for compatibility with old file systems. 668 */ 669 int 670 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno, 671 int rabsize, struct ucred *cred, struct buf **bpp) 672 { 673 674 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp)); 675 } 676 677 /* 678 * Block write. Described in Bach (p.56) 679 */ 680 int 681 bwrite(struct buf *bp) 682 { 683 int rv, sync, wasdelayed, s; 684 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 685 struct proc *p = l->l_proc; 686 struct vnode *vp; 687 struct mount *mp; 688 689 KASSERT(ISSET(bp->b_flags, B_BUSY)); 690 691 vp = bp->b_vp; 692 if (vp != NULL) { 693 if (vp->v_type == VBLK) 694 mp = vp->v_specmountpoint; 695 else 696 mp = vp->v_mount; 697 } else { 698 mp = NULL; 699 } 700 701 /* 702 * Remember buffer type, to switch on it later. If the write was 703 * synchronous, but the file system was mounted with MNT_ASYNC, 704 * convert it to a delayed write. 705 * XXX note that this relies on delayed tape writes being converted 706 * to async, not sync writes (which is safe, but ugly). 707 */ 708 sync = !ISSET(bp->b_flags, B_ASYNC); 709 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) { 710 bdwrite(bp); 711 return (0); 712 } 713 714 /* 715 * Collect statistics on synchronous and asynchronous writes. 716 * Writes to block devices are charged to their associated 717 * filesystem (if any). 718 */ 719 if (mp != NULL) { 720 if (sync) 721 mp->mnt_stat.f_syncwrites++; 722 else 723 mp->mnt_stat.f_asyncwrites++; 724 } 725 726 s = splbio(); 727 simple_lock(&bp->b_interlock); 728 729 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 730 731 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 732 733 /* 734 * Pay for the I/O operation and make sure the buf is on the correct 735 * vnode queue. 736 */ 737 if (wasdelayed) 738 reassignbuf(bp, bp->b_vp); 739 else 740 p->p_stats->p_ru.ru_oublock++; 741 742 /* Initiate disk write. Make sure the appropriate party is charged. */ 743 V_INCR_NUMOUTPUT(bp->b_vp); 744 simple_unlock(&bp->b_interlock); 745 splx(s); 746 747 if (sync) 748 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 749 else 750 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 751 752 VOP_STRATEGY(vp, bp); 753 754 if (sync) { 755 /* If I/O was synchronous, wait for it to complete. */ 756 rv = biowait(bp); 757 758 /* Release the buffer. */ 759 brelse(bp); 760 761 return (rv); 762 } else { 763 return (0); 764 } 765 } 766 767 int 768 vn_bwrite(void *v) 769 { 770 struct vop_bwrite_args *ap = v; 771 772 return (bwrite(ap->a_bp)); 773 } 774 775 /* 776 * Delayed write. 777 * 778 * The buffer is marked dirty, but is not queued for I/O. 779 * This routine should be used when the buffer is expected 780 * to be modified again soon, typically a small write that 781 * partially fills a buffer. 782 * 783 * NB: magnetic tapes cannot be delayed; they must be 784 * written in the order that the writes are requested. 785 * 786 * Described in Leffler, et al. (pp. 208-213). 787 */ 788 void 789 bdwrite(struct buf *bp) 790 { 791 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 792 struct proc *p = l->l_proc; 793 const struct bdevsw *bdev; 794 int s; 795 796 /* If this is a tape block, write the block now. */ 797 bdev = bdevsw_lookup(bp->b_dev); 798 if (bdev != NULL && bdev->d_type == D_TAPE) { 799 bawrite(bp); 800 return; 801 } 802 803 /* 804 * If the block hasn't been seen before: 805 * (1) Mark it as having been seen, 806 * (2) Charge for the write, 807 * (3) Make sure it's on its vnode's correct block list. 808 */ 809 s = splbio(); 810 simple_lock(&bp->b_interlock); 811 812 KASSERT(ISSET(bp->b_flags, B_BUSY)); 813 814 if (!ISSET(bp->b_flags, B_DELWRI)) { 815 SET(bp->b_flags, B_DELWRI); 816 p->p_stats->p_ru.ru_oublock++; 817 reassignbuf(bp, bp->b_vp); 818 } 819 820 /* Otherwise, the "write" is done, so mark and release the buffer. */ 821 CLR(bp->b_flags, B_DONE); 822 simple_unlock(&bp->b_interlock); 823 splx(s); 824 825 brelse(bp); 826 } 827 828 /* 829 * Asynchronous block write; just an asynchronous bwrite(). 830 */ 831 void 832 bawrite(struct buf *bp) 833 { 834 int s; 835 836 s = splbio(); 837 simple_lock(&bp->b_interlock); 838 839 KASSERT(ISSET(bp->b_flags, B_BUSY)); 840 841 SET(bp->b_flags, B_ASYNC); 842 simple_unlock(&bp->b_interlock); 843 splx(s); 844 VOP_BWRITE(bp); 845 } 846 847 /* 848 * Same as first half of bdwrite, mark buffer dirty, but do not release it. 849 * Call at splbio() and with the buffer interlock locked. 850 * Note: called only from biodone() through ffs softdep's bioops.io_complete() 851 */ 852 void 853 bdirty(struct buf *bp) 854 { 855 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 856 struct proc *p = l->l_proc; 857 858 LOCK_ASSERT(simple_lock_held(&bp->b_interlock)); 859 KASSERT(ISSET(bp->b_flags, B_BUSY)); 860 861 CLR(bp->b_flags, B_AGE); 862 863 if (!ISSET(bp->b_flags, B_DELWRI)) { 864 SET(bp->b_flags, B_DELWRI); 865 p->p_stats->p_ru.ru_oublock++; 866 reassignbuf(bp, bp->b_vp); 867 } 868 } 869 870 /* 871 * Release a buffer on to the free lists. 872 * Described in Bach (p. 46). 873 */ 874 void 875 brelse(struct buf *bp) 876 { 877 struct bqueue *bufq; 878 int s; 879 880 /* Block disk interrupts. */ 881 s = splbio(); 882 simple_lock(&bqueue_slock); 883 simple_lock(&bp->b_interlock); 884 885 KASSERT(ISSET(bp->b_flags, B_BUSY)); 886 KASSERT(!ISSET(bp->b_flags, B_CALL)); 887 888 /* Wake up any processes waiting for any buffer to become free. */ 889 if (needbuffer) { 890 needbuffer = 0; 891 wakeup(&needbuffer); 892 } 893 894 /* Wake up any proceeses waiting for _this_ buffer to become free. */ 895 if (ISSET(bp->b_flags, B_WANTED)) { 896 CLR(bp->b_flags, B_WANTED|B_AGE); 897 wakeup(bp); 898 } 899 900 /* 901 * Determine which queue the buffer should be on, then put it there. 902 */ 903 904 /* If it's locked, don't report an error; try again later. */ 905 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR)) 906 CLR(bp->b_flags, B_ERROR); 907 908 /* If it's not cacheable, or an error, mark it invalid. */ 909 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 910 SET(bp->b_flags, B_INVAL); 911 912 if (ISSET(bp->b_flags, B_VFLUSH)) { 913 /* 914 * This is a delayed write buffer that was just flushed to 915 * disk. It is still on the LRU queue. If it's become 916 * invalid, then we need to move it to a different queue; 917 * otherwise leave it in its current position. 918 */ 919 CLR(bp->b_flags, B_VFLUSH); 920 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) { 921 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU])); 922 goto already_queued; 923 } else { 924 bremfree(bp); 925 } 926 } 927 928 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE])); 929 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU])); 930 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED])); 931 932 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) { 933 /* 934 * If it's invalid or empty, dissociate it from its vnode 935 * and put on the head of the appropriate queue. 936 */ 937 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 938 (*bioops.io_deallocate)(bp); 939 CLR(bp->b_flags, B_DONE|B_DELWRI); 940 if (bp->b_vp) { 941 reassignbuf(bp, bp->b_vp); 942 brelvp(bp); 943 } 944 if (bp->b_bufsize <= 0) 945 /* no data */ 946 goto already_queued; 947 else 948 /* invalid data */ 949 bufq = &bufqueues[BQ_AGE]; 950 binsheadfree(bp, bufq); 951 } else { 952 /* 953 * It has valid data. Put it on the end of the appropriate 954 * queue, so that it'll stick around for as long as possible. 955 * If buf is AGE, but has dependencies, must put it on last 956 * bufqueue to be scanned, ie LRU. This protects against the 957 * livelock where BQ_AGE only has buffers with dependencies, 958 * and we thus never get to the dependent buffers in BQ_LRU. 959 */ 960 if (ISSET(bp->b_flags, B_LOCKED)) 961 /* locked in core */ 962 bufq = &bufqueues[BQ_LOCKED]; 963 else if (!ISSET(bp->b_flags, B_AGE)) 964 /* valid data */ 965 bufq = &bufqueues[BQ_LRU]; 966 else { 967 /* stale but valid data */ 968 int has_deps; 969 970 if (LIST_FIRST(&bp->b_dep) != NULL && 971 bioops.io_countdeps) 972 has_deps = (*bioops.io_countdeps)(bp, 0); 973 else 974 has_deps = 0; 975 bufq = has_deps ? &bufqueues[BQ_LRU] : 976 &bufqueues[BQ_AGE]; 977 } 978 binstailfree(bp, bufq); 979 } 980 981 already_queued: 982 /* Unlock the buffer. */ 983 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE); 984 SET(bp->b_flags, B_CACHE); 985 986 /* Allow disk interrupts. */ 987 simple_unlock(&bp->b_interlock); 988 simple_unlock(&bqueue_slock); 989 if (bp->b_bufsize <= 0) { 990 #ifdef DEBUG 991 memset((char *)bp, 0, sizeof(*bp)); 992 #endif 993 pool_put(&bufpool, bp); 994 } 995 splx(s); 996 } 997 998 /* 999 * Determine if a block is in the cache. 1000 * Just look on what would be its hash chain. If it's there, return 1001 * a pointer to it, unless it's marked invalid. If it's marked invalid, 1002 * we normally don't return the buffer, unless the caller explicitly 1003 * wants us to. 1004 */ 1005 struct buf * 1006 incore(struct vnode *vp, daddr_t blkno) 1007 { 1008 struct buf *bp; 1009 1010 /* Search hash chain */ 1011 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 1012 if (bp->b_lblkno == blkno && bp->b_vp == vp && 1013 !ISSET(bp->b_flags, B_INVAL)) 1014 return (bp); 1015 } 1016 1017 return (NULL); 1018 } 1019 1020 /* 1021 * Get a block of requested size that is associated with 1022 * a given vnode and block offset. If it is found in the 1023 * block cache, mark it as having been found, make it busy 1024 * and return it. Otherwise, return an empty block of the 1025 * correct size. It is up to the caller to insure that the 1026 * cached blocks be of the correct size. 1027 */ 1028 struct buf * 1029 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo) 1030 { 1031 struct buf *bp; 1032 int s, err; 1033 int preserve; 1034 1035 start: 1036 s = splbio(); 1037 simple_lock(&bqueue_slock); 1038 bp = incore(vp, blkno); 1039 if (bp != NULL) { 1040 simple_lock(&bp->b_interlock); 1041 if (ISSET(bp->b_flags, B_BUSY)) { 1042 simple_unlock(&bqueue_slock); 1043 if (curproc == uvm.pagedaemon_proc) { 1044 simple_unlock(&bp->b_interlock); 1045 splx(s); 1046 return NULL; 1047 } 1048 SET(bp->b_flags, B_WANTED); 1049 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK, 1050 "getblk", slptimeo, &bp->b_interlock); 1051 splx(s); 1052 if (err) 1053 return (NULL); 1054 goto start; 1055 } 1056 #ifdef DIAGNOSTIC 1057 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) && 1058 bp->b_bcount < size && vp->v_type != VBLK) 1059 panic("getblk: block size invariant failed"); 1060 #endif 1061 SET(bp->b_flags, B_BUSY); 1062 bremfree(bp); 1063 preserve = 1; 1064 } else { 1065 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) { 1066 simple_unlock(&bqueue_slock); 1067 splx(s); 1068 goto start; 1069 } 1070 1071 binshash(bp, BUFHASH(vp, blkno)); 1072 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno; 1073 bgetvp(vp, bp); 1074 preserve = 0; 1075 } 1076 simple_unlock(&bp->b_interlock); 1077 simple_unlock(&bqueue_slock); 1078 splx(s); 1079 /* 1080 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes) 1081 * if we re-size buffers here. 1082 */ 1083 if (ISSET(bp->b_flags, B_LOCKED)) { 1084 KASSERT(bp->b_bufsize >= size); 1085 } else { 1086 allocbuf(bp, size, preserve); 1087 } 1088 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1089 return (bp); 1090 } 1091 1092 /* 1093 * Get an empty, disassociated buffer of given size. 1094 */ 1095 struct buf * 1096 geteblk(int size) 1097 { 1098 struct buf *bp; 1099 int s; 1100 1101 s = splbio(); 1102 simple_lock(&bqueue_slock); 1103 while ((bp = getnewbuf(0, 0, 0)) == 0) 1104 ; 1105 1106 SET(bp->b_flags, B_INVAL); 1107 binshash(bp, &invalhash); 1108 simple_unlock(&bqueue_slock); 1109 simple_unlock(&bp->b_interlock); 1110 splx(s); 1111 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1112 allocbuf(bp, size, 0); 1113 return (bp); 1114 } 1115 1116 /* 1117 * Expand or contract the actual memory allocated to a buffer. 1118 * 1119 * If the buffer shrinks, data is lost, so it's up to the 1120 * caller to have written it out *first*; this routine will not 1121 * start a write. If the buffer grows, it's the callers 1122 * responsibility to fill out the buffer's additional contents. 1123 */ 1124 void 1125 allocbuf(struct buf *bp, int size, int preserve) 1126 { 1127 vsize_t oldsize, desired_size; 1128 caddr_t addr; 1129 int s, delta; 1130 1131 desired_size = buf_roundsize(size); 1132 if (desired_size > MAXBSIZE) 1133 printf("allocbuf: buffer larger than MAXBSIZE requested"); 1134 1135 bp->b_bcount = size; 1136 1137 oldsize = bp->b_bufsize; 1138 if (oldsize == desired_size) 1139 return; 1140 1141 /* 1142 * If we want a buffer of a different size, re-allocate the 1143 * buffer's memory; copy old content only if needed. 1144 */ 1145 addr = buf_malloc(desired_size); 1146 if (preserve) 1147 memcpy(addr, bp->b_data, MIN(oldsize,desired_size)); 1148 if (bp->b_data != NULL) 1149 buf_mrelease(bp->b_data, oldsize); 1150 bp->b_data = addr; 1151 bp->b_bufsize = desired_size; 1152 1153 /* 1154 * Update overall buffer memory counter (protected by bqueue_slock) 1155 */ 1156 delta = (long)desired_size - (long)oldsize; 1157 1158 s = splbio(); 1159 simple_lock(&bqueue_slock); 1160 if ((bufmem += delta) > bufmem_hiwater) { 1161 /* 1162 * Need to trim overall memory usage. 1163 */ 1164 while (buf_canrelease()) { 1165 if (curcpu()->ci_schedstate.spc_flags & 1166 SPCF_SHOULDYIELD) { 1167 simple_unlock(&bqueue_slock); 1168 splx(s); 1169 preempt(1); 1170 s = splbio(); 1171 simple_lock(&bqueue_slock); 1172 } 1173 1174 if (buf_trim() == 0) 1175 break; 1176 } 1177 } 1178 1179 simple_unlock(&bqueue_slock); 1180 splx(s); 1181 } 1182 1183 /* 1184 * Find a buffer which is available for use. 1185 * Select something from a free list. 1186 * Preference is to AGE list, then LRU list. 1187 * 1188 * Called at splbio and with buffer queues locked. 1189 * Return buffer locked. 1190 */ 1191 struct buf * 1192 getnewbuf(int slpflag, int slptimeo, int from_bufq) 1193 { 1194 struct buf *bp; 1195 1196 start: 1197 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 1198 1199 /* 1200 * Get a new buffer from the pool; but use NOWAIT because 1201 * we have the buffer queues locked. 1202 */ 1203 if (!from_bufq && buf_lotsfree() && 1204 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) { 1205 memset((char *)bp, 0, sizeof(*bp)); 1206 BUF_INIT(bp); 1207 bp->b_dev = NODEV; 1208 bp->b_vnbufs.le_next = NOLIST; 1209 bp->b_flags = B_BUSY; 1210 simple_lock(&bp->b_interlock); 1211 #if defined(DIAGNOSTIC) 1212 bp->b_freelistindex = -1; 1213 #endif /* defined(DIAGNOSTIC) */ 1214 return (bp); 1215 } 1216 1217 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL || 1218 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) { 1219 simple_lock(&bp->b_interlock); 1220 bremfree(bp); 1221 } else { 1222 /* 1223 * XXX: !from_bufq should be removed. 1224 */ 1225 if (!from_bufq || curproc != uvm.pagedaemon_proc) { 1226 /* wait for a free buffer of any kind */ 1227 needbuffer = 1; 1228 ltsleep(&needbuffer, slpflag|(PRIBIO + 1), 1229 "getnewbuf", slptimeo, &bqueue_slock); 1230 } 1231 return (NULL); 1232 } 1233 1234 #ifdef DIAGNOSTIC 1235 if (bp->b_bufsize <= 0) 1236 panic("buffer %p: on queue but empty", bp); 1237 #endif 1238 1239 if (ISSET(bp->b_flags, B_VFLUSH)) { 1240 /* 1241 * This is a delayed write buffer being flushed to disk. Make 1242 * sure it gets aged out of the queue when it's finished, and 1243 * leave it off the LRU queue. 1244 */ 1245 CLR(bp->b_flags, B_VFLUSH); 1246 SET(bp->b_flags, B_AGE); 1247 simple_unlock(&bp->b_interlock); 1248 goto start; 1249 } 1250 1251 /* Buffer is no longer on free lists. */ 1252 SET(bp->b_flags, B_BUSY); 1253 1254 /* 1255 * If buffer was a delayed write, start it and return NULL 1256 * (since we might sleep while starting the write). 1257 */ 1258 if (ISSET(bp->b_flags, B_DELWRI)) { 1259 /* 1260 * This buffer has gone through the LRU, so make sure it gets 1261 * reused ASAP. 1262 */ 1263 SET(bp->b_flags, B_AGE); 1264 simple_unlock(&bp->b_interlock); 1265 simple_unlock(&bqueue_slock); 1266 bawrite(bp); 1267 simple_lock(&bqueue_slock); 1268 return (NULL); 1269 } 1270 1271 /* disassociate us from our vnode, if we had one... */ 1272 if (bp->b_vp) 1273 brelvp(bp); 1274 1275 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1276 (*bioops.io_deallocate)(bp); 1277 1278 /* clear out various other fields */ 1279 bp->b_flags = B_BUSY; 1280 bp->b_dev = NODEV; 1281 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0; 1282 bp->b_iodone = 0; 1283 bp->b_error = 0; 1284 bp->b_resid = 0; 1285 bp->b_bcount = 0; 1286 1287 bremhash(bp); 1288 return (bp); 1289 } 1290 1291 /* 1292 * Attempt to free an aged buffer off the queues. 1293 * Called at splbio and with queue lock held. 1294 * Returns the amount of buffer memory freed. 1295 */ 1296 static int 1297 buf_trim(void) 1298 { 1299 struct buf *bp; 1300 long size = 0; 1301 1302 /* Instruct getnewbuf() to get buffers off the queues */ 1303 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL) 1304 return 0; 1305 1306 KASSERT(!ISSET(bp->b_flags, B_WANTED)); 1307 simple_unlock(&bp->b_interlock); 1308 size = bp->b_bufsize; 1309 bufmem -= size; 1310 simple_unlock(&bqueue_slock); 1311 if (size > 0) { 1312 buf_mrelease(bp->b_data, size); 1313 bp->b_bcount = bp->b_bufsize = 0; 1314 } 1315 /* brelse() will return the buffer to the global buffer pool */ 1316 brelse(bp); 1317 simple_lock(&bqueue_slock); 1318 return size; 1319 } 1320 1321 int 1322 buf_drain(int n) 1323 { 1324 int s, size = 0, sz; 1325 1326 s = splbio(); 1327 simple_lock(&bqueue_slock); 1328 1329 while (size < n && bufmem > bufmem_lowater) { 1330 sz = buf_trim(); 1331 if (sz <= 0) 1332 break; 1333 size += sz; 1334 } 1335 1336 simple_unlock(&bqueue_slock); 1337 splx(s); 1338 return size; 1339 } 1340 1341 /* 1342 * Wait for operations on the buffer to complete. 1343 * When they do, extract and return the I/O's error value. 1344 */ 1345 int 1346 biowait(struct buf *bp) 1347 { 1348 int s, error; 1349 1350 s = splbio(); 1351 simple_lock(&bp->b_interlock); 1352 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI)) 1353 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock); 1354 1355 /* check errors. */ 1356 if (ISSET(bp->b_flags, B_ERROR)) 1357 error = bp->b_error ? bp->b_error : EIO; 1358 else 1359 error = 0; 1360 1361 simple_unlock(&bp->b_interlock); 1362 splx(s); 1363 return (error); 1364 } 1365 1366 /* 1367 * Mark I/O complete on a buffer. 1368 * 1369 * If a callback has been requested, e.g. the pageout 1370 * daemon, do so. Otherwise, awaken waiting processes. 1371 * 1372 * [ Leffler, et al., says on p.247: 1373 * "This routine wakes up the blocked process, frees the buffer 1374 * for an asynchronous write, or, for a request by the pagedaemon 1375 * process, invokes a procedure specified in the buffer structure" ] 1376 * 1377 * In real life, the pagedaemon (or other system processes) wants 1378 * to do async stuff to, and doesn't want the buffer brelse()'d. 1379 * (for swap pager, that puts swap buffers on the free lists (!!!), 1380 * for the vn device, that puts malloc'd buffers on the free lists!) 1381 */ 1382 void 1383 biodone(struct buf *bp) 1384 { 1385 int s = splbio(); 1386 1387 simple_lock(&bp->b_interlock); 1388 if (ISSET(bp->b_flags, B_DONE)) 1389 panic("biodone already"); 1390 SET(bp->b_flags, B_DONE); /* note that it's done */ 1391 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1392 1393 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 1394 (*bioops.io_complete)(bp); 1395 1396 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */ 1397 vwakeup(bp); 1398 1399 /* 1400 * If necessary, call out. Unlock the buffer before calling 1401 * iodone() as the buffer isn't valid any more when it return. 1402 */ 1403 if (ISSET(bp->b_flags, B_CALL)) { 1404 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1405 simple_unlock(&bp->b_interlock); 1406 (*bp->b_iodone)(bp); 1407 } else { 1408 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */ 1409 simple_unlock(&bp->b_interlock); 1410 brelse(bp); 1411 } else { /* or just wakeup the buffer */ 1412 CLR(bp->b_flags, B_WANTED); 1413 wakeup(bp); 1414 simple_unlock(&bp->b_interlock); 1415 } 1416 } 1417 1418 splx(s); 1419 } 1420 1421 /* 1422 * Return a count of buffers on the "locked" queue. 1423 */ 1424 int 1425 count_lock_queue(void) 1426 { 1427 struct buf *bp; 1428 int n = 0; 1429 1430 simple_lock(&bqueue_slock); 1431 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist) 1432 n++; 1433 simple_unlock(&bqueue_slock); 1434 return (n); 1435 } 1436 1437 /* 1438 * Wait for all buffers to complete I/O 1439 * Return the number of "stuck" buffers. 1440 */ 1441 int 1442 buf_syncwait(void) 1443 { 1444 struct buf *bp; 1445 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash; 1446 1447 dcount = 10000; 1448 for (iter = 0; iter < 20;) { 1449 s = splbio(); 1450 simple_lock(&bqueue_slock); 1451 nbusy = 0; 1452 for (ihash = 0; ihash < bufhash+1; ihash++) { 1453 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1454 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) 1455 nbusy++; 1456 /* 1457 * With soft updates, some buffers that are 1458 * written will be remarked as dirty until other 1459 * buffers are written. 1460 */ 1461 if (bp->b_vp && bp->b_vp->v_mount 1462 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP) 1463 && (bp->b_flags & B_DELWRI)) { 1464 simple_lock(&bp->b_interlock); 1465 bremfree(bp); 1466 bp->b_flags |= B_BUSY; 1467 nbusy++; 1468 simple_unlock(&bp->b_interlock); 1469 simple_unlock(&bqueue_slock); 1470 bawrite(bp); 1471 if (dcount-- <= 0) { 1472 printf("softdep "); 1473 splx(s); 1474 goto fail; 1475 } 1476 simple_lock(&bqueue_slock); 1477 } 1478 } 1479 } 1480 1481 simple_unlock(&bqueue_slock); 1482 splx(s); 1483 1484 if (nbusy == 0) 1485 break; 1486 if (nbusy_prev == 0) 1487 nbusy_prev = nbusy; 1488 printf("%d ", nbusy); 1489 tsleep(&nbusy, PRIBIO, "bflush", 1490 (iter == 0) ? 1 : hz / 25 * iter); 1491 if (nbusy >= nbusy_prev) /* we didn't flush anything */ 1492 iter++; 1493 else 1494 nbusy_prev = nbusy; 1495 } 1496 1497 if (nbusy) { 1498 fail:; 1499 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY) 1500 printf("giving up\nPrinting vnodes for busy buffers\n"); 1501 s = splbio(); 1502 for (ihash = 0; ihash < bufhash+1; ihash++) { 1503 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1504 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) 1505 vprint(NULL, bp->b_vp); 1506 } 1507 } 1508 splx(s); 1509 #endif 1510 } 1511 1512 return nbusy; 1513 } 1514 1515 static void 1516 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o) 1517 { 1518 1519 o->b_flags = i->b_flags; 1520 o->b_error = i->b_error; 1521 o->b_prio = i->b_prio; 1522 o->b_dev = i->b_dev; 1523 o->b_bufsize = i->b_bufsize; 1524 o->b_bcount = i->b_bcount; 1525 o->b_resid = i->b_resid; 1526 o->b_addr = PTRTOUINT64(i->b_un.b_addr); 1527 o->b_blkno = i->b_blkno; 1528 o->b_rawblkno = i->b_rawblkno; 1529 o->b_iodone = PTRTOUINT64(i->b_iodone); 1530 o->b_proc = PTRTOUINT64(i->b_proc); 1531 o->b_vp = PTRTOUINT64(i->b_vp); 1532 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr); 1533 o->b_lblkno = i->b_lblkno; 1534 } 1535 1536 #define KERN_BUFSLOP 20 1537 static int 1538 sysctl_dobuf(SYSCTLFN_ARGS) 1539 { 1540 struct buf *bp; 1541 struct buf_sysctl bs; 1542 char *dp; 1543 u_int i, op, arg; 1544 size_t len, needed, elem_size, out_size; 1545 int error, s, elem_count; 1546 1547 if (namelen == 1 && name[0] == CTL_QUERY) 1548 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1549 1550 if (namelen != 4) 1551 return (EINVAL); 1552 1553 dp = oldp; 1554 len = (oldp != NULL) ? *oldlenp : 0; 1555 op = name[0]; 1556 arg = name[1]; 1557 elem_size = name[2]; 1558 elem_count = name[3]; 1559 out_size = MIN(sizeof(bs), elem_size); 1560 1561 /* 1562 * at the moment, these are just "placeholders" to make the 1563 * API for retrieving kern.buf data more extensible in the 1564 * future. 1565 * 1566 * XXX kern.buf currently has "netbsd32" issues. hopefully 1567 * these will be resolved at a later point. 1568 */ 1569 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL || 1570 elem_size < 1 || elem_count < 0) 1571 return (EINVAL); 1572 1573 error = 0; 1574 needed = 0; 1575 s = splbio(); 1576 simple_lock(&bqueue_slock); 1577 for (i = 0; i < BQUEUES; i++) { 1578 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) { 1579 if (len >= elem_size && elem_count > 0) { 1580 sysctl_fillbuf(bp, &bs); 1581 error = copyout(&bs, dp, out_size); 1582 if (error) 1583 goto cleanup; 1584 dp += elem_size; 1585 len -= elem_size; 1586 } 1587 if (elem_count > 0) { 1588 needed += elem_size; 1589 if (elem_count != INT_MAX) 1590 elem_count--; 1591 } 1592 } 1593 } 1594 cleanup: 1595 simple_unlock(&bqueue_slock); 1596 splx(s); 1597 1598 *oldlenp = needed; 1599 if (oldp == NULL) 1600 *oldlenp += KERN_BUFSLOP * sizeof(struct buf); 1601 1602 return (error); 1603 } 1604 1605 static int 1606 sysctl_bufvm_update(SYSCTLFN_ARGS) 1607 { 1608 int t, error; 1609 struct sysctlnode node; 1610 1611 node = *rnode; 1612 node.sysctl_data = &t; 1613 t = *(int *)rnode->sysctl_data; 1614 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1615 if (error || newp == NULL) 1616 return (error); 1617 1618 if (t < 0) 1619 return EINVAL; 1620 if (rnode->sysctl_data == &bufcache) { 1621 if (t > 100) 1622 return (EINVAL); 1623 bufcache = t; 1624 buf_setwm(); 1625 } else if (rnode->sysctl_data == &bufmem_lowater) { 1626 if (bufmem_hiwater - t < 16) 1627 return (EINVAL); 1628 bufmem_lowater = t; 1629 } else if (rnode->sysctl_data == &bufmem_hiwater) { 1630 if (t - bufmem_lowater < 16) 1631 return (EINVAL); 1632 bufmem_hiwater = t; 1633 } else 1634 return (EINVAL); 1635 1636 /* Drain until below new high water mark */ 1637 while ((t = bufmem - bufmem_hiwater) >= 0) { 1638 if (buf_drain(t / (2 * 1024)) <= 0) 1639 break; 1640 } 1641 1642 return 0; 1643 } 1644 1645 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup") 1646 { 1647 1648 sysctl_createv(clog, 0, NULL, NULL, 1649 CTLFLAG_PERMANENT, 1650 CTLTYPE_NODE, "kern", NULL, 1651 NULL, 0, NULL, 0, 1652 CTL_KERN, CTL_EOL); 1653 sysctl_createv(clog, 0, NULL, NULL, 1654 CTLFLAG_PERMANENT, 1655 CTLTYPE_NODE, "buf", 1656 SYSCTL_DESCR("Kernel buffer cache information"), 1657 sysctl_dobuf, 0, NULL, 0, 1658 CTL_KERN, KERN_BUF, CTL_EOL); 1659 } 1660 1661 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup") 1662 { 1663 1664 sysctl_createv(clog, 0, NULL, NULL, 1665 CTLFLAG_PERMANENT, 1666 CTLTYPE_NODE, "vm", NULL, 1667 NULL, 0, NULL, 0, 1668 CTL_VM, CTL_EOL); 1669 1670 sysctl_createv(clog, 0, NULL, NULL, 1671 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1672 CTLTYPE_INT, "bufcache", 1673 SYSCTL_DESCR("Percentage of physical memory to use for " 1674 "buffer cache"), 1675 sysctl_bufvm_update, 0, &bufcache, 0, 1676 CTL_VM, CTL_CREATE, CTL_EOL); 1677 sysctl_createv(clog, 0, NULL, NULL, 1678 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 1679 CTLTYPE_INT, "bufmem", 1680 SYSCTL_DESCR("Amount of kernel memory used by buffer " 1681 "cache"), 1682 NULL, 0, &bufmem, 0, 1683 CTL_VM, CTL_CREATE, CTL_EOL); 1684 sysctl_createv(clog, 0, NULL, NULL, 1685 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1686 CTLTYPE_INT, "bufmem_lowater", 1687 SYSCTL_DESCR("Minimum amount of kernel memory to " 1688 "reserve for buffer cache"), 1689 sysctl_bufvm_update, 0, &bufmem_lowater, 0, 1690 CTL_VM, CTL_CREATE, CTL_EOL); 1691 sysctl_createv(clog, 0, NULL, NULL, 1692 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1693 CTLTYPE_INT, "bufmem_hiwater", 1694 SYSCTL_DESCR("Maximum amount of kernel memory to use " 1695 "for buffer cache"), 1696 sysctl_bufvm_update, 0, &bufmem_hiwater, 0, 1697 CTL_VM, CTL_CREATE, CTL_EOL); 1698 } 1699 1700 #ifdef DEBUG 1701 /* 1702 * Print out statistics on the current allocation of the buffer pool. 1703 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1704 * in vfs_syscalls.c using sysctl. 1705 */ 1706 void 1707 vfs_bufstats(void) 1708 { 1709 int s, i, j, count; 1710 struct buf *bp; 1711 struct bqueue *dp; 1712 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 1713 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" }; 1714 1715 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1716 count = 0; 1717 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1718 counts[j] = 0; 1719 s = splbio(); 1720 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) { 1721 counts[bp->b_bufsize/PAGE_SIZE]++; 1722 count++; 1723 } 1724 splx(s); 1725 printf("%s: total-%d", bname[i], count); 1726 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1727 if (counts[j] != 0) 1728 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 1729 printf("\n"); 1730 } 1731 } 1732 #endif /* DEBUG */ 1733 1734 /* ------------------------------ */ 1735 1736 static POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL); 1737 1738 static struct buf * 1739 getiobuf1(int prflags) 1740 { 1741 struct buf *bp; 1742 int s; 1743 1744 s = splbio(); 1745 bp = pool_get(&bufiopool, prflags); 1746 splx(s); 1747 if (bp != NULL) { 1748 BUF_INIT(bp); 1749 } 1750 return bp; 1751 } 1752 1753 struct buf * 1754 getiobuf(void) 1755 { 1756 1757 return getiobuf1(PR_WAITOK); 1758 } 1759 1760 struct buf * 1761 getiobuf_nowait(void) 1762 { 1763 1764 return getiobuf1(PR_NOWAIT); 1765 } 1766 1767 void 1768 putiobuf(struct buf *bp) 1769 { 1770 int s; 1771 1772 s = splbio(); 1773 pool_put(&bufiopool, bp); 1774 splx(s); 1775 } 1776 1777 /* 1778 * nestiobuf_iodone: b_iodone callback for nested buffers. 1779 */ 1780 1781 static void 1782 nestiobuf_iodone(struct buf *bp) 1783 { 1784 struct buf *mbp = bp->b_private; 1785 int error; 1786 int donebytes; 1787 1788 KASSERT(bp->b_bcount <= bp->b_bufsize); 1789 KASSERT(mbp != bp); 1790 1791 error = 0; 1792 if ((bp->b_flags & B_ERROR) != 0) { 1793 error = EIO; 1794 /* check if an error code was returned */ 1795 if (bp->b_error) 1796 error = bp->b_error; 1797 } else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) { 1798 /* 1799 * Not all got transfered, raise an error. We have no way to 1800 * propagate these conditions to mbp. 1801 */ 1802 error = EIO; 1803 } 1804 1805 donebytes = bp->b_bufsize; 1806 1807 putiobuf(bp); 1808 nestiobuf_done(mbp, donebytes, error); 1809 } 1810 1811 /* 1812 * nestiobuf_setup: setup a "nested" buffer. 1813 * 1814 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 1815 * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait. 1816 * => 'offset' is a byte offset in the master buffer. 1817 * => 'size' is a size in bytes of this nested buffer. 1818 */ 1819 1820 void 1821 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size) 1822 { 1823 const int b_read = mbp->b_flags & B_READ; 1824 struct vnode *vp = mbp->b_vp; 1825 1826 KASSERT(mbp->b_bcount >= offset + size); 1827 bp->b_vp = vp; 1828 bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read; 1829 bp->b_iodone = nestiobuf_iodone; 1830 bp->b_data = mbp->b_data + offset; 1831 bp->b_resid = bp->b_bcount = size; 1832 bp->b_bufsize = bp->b_bcount; 1833 bp->b_private = mbp; 1834 BIO_COPYPRIO(bp, mbp); 1835 if (!b_read && vp != NULL) { 1836 int s; 1837 1838 s = splbio(); 1839 V_INCR_NUMOUTPUT(vp); 1840 splx(s); 1841 } 1842 } 1843 1844 /* 1845 * nestiobuf_done: propagate completion to the master buffer. 1846 * 1847 * => 'donebytes' specifies how many bytes in the 'mbp' is completed. 1848 * => 'error' is an errno(2) that 'donebytes' has been completed with. 1849 */ 1850 1851 void 1852 nestiobuf_done(struct buf *mbp, int donebytes, int error) 1853 { 1854 int s; 1855 1856 if (donebytes == 0) { 1857 return; 1858 } 1859 s = splbio(); 1860 KASSERT(mbp->b_resid >= donebytes); 1861 if (error) { 1862 mbp->b_flags |= B_ERROR; 1863 mbp->b_error = error; 1864 } 1865 mbp->b_resid -= donebytes; 1866 if (mbp->b_resid == 0) { 1867 if ((mbp->b_flags & B_ERROR) != 0) { 1868 mbp->b_resid = mbp->b_bcount; /* be conservative */ 1869 } 1870 biodone(mbp); 1871 } 1872 splx(s); 1873 } 1874