xref: /netbsd-src/sys/kern/uipc_socket2.c (revision e6d6e05cb173f30287ab619b21120b27baa66ad6)
1 /*	$NetBSD: uipc_socket2.c,v 1.90 2008/03/01 14:16:51 rmind Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.90 2008/03/01 14:16:51 rmind Exp $");
36 
37 #include "opt_mbuftrace.h"
38 #include "opt_sb_max.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/file.h>
44 #include <sys/buf.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/poll.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52 #include <sys/kauth.h>
53 
54 /*
55  * Primitive routines for operating on sockets and socket buffers
56  */
57 
58 /* strings for sleep message: */
59 const char	netcon[] = "netcon";
60 const char	netcls[] = "netcls";
61 const char	netio[] = "netio";
62 const char	netlck[] = "netlck";
63 
64 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
65 static u_long sb_max_adj;	/* adjusted sb_max */
66 
67 /*
68  * Procedures to manipulate state flags of socket
69  * and do appropriate wakeups.  Normal sequence from the
70  * active (originating) side is that soisconnecting() is
71  * called during processing of connect() call,
72  * resulting in an eventual call to soisconnected() if/when the
73  * connection is established.  When the connection is torn down
74  * soisdisconnecting() is called during processing of disconnect() call,
75  * and soisdisconnected() is called when the connection to the peer
76  * is totally severed.  The semantics of these routines are such that
77  * connectionless protocols can call soisconnected() and soisdisconnected()
78  * only, bypassing the in-progress calls when setting up a ``connection''
79  * takes no time.
80  *
81  * From the passive side, a socket is created with
82  * two queues of sockets: so_q0 for connections in progress
83  * and so_q for connections already made and awaiting user acceptance.
84  * As a protocol is preparing incoming connections, it creates a socket
85  * structure queued on so_q0 by calling sonewconn().  When the connection
86  * is established, soisconnected() is called, and transfers the
87  * socket structure to so_q, making it available to accept().
88  *
89  * If a socket is closed with sockets on either
90  * so_q0 or so_q, these sockets are dropped.
91  *
92  * If higher level protocols are implemented in
93  * the kernel, the wakeups done here will sometimes
94  * cause software-interrupt process scheduling.
95  */
96 
97 void
98 soisconnecting(struct socket *so)
99 {
100 
101 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
102 	so->so_state |= SS_ISCONNECTING;
103 }
104 
105 void
106 soisconnected(struct socket *so)
107 {
108 	struct socket	*head;
109 
110 	head = so->so_head;
111 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
112 	so->so_state |= SS_ISCONNECTED;
113 	if (head && soqremque(so, 0)) {
114 		soqinsque(head, so, 1);
115 		sorwakeup(head);
116 		wakeup((void *)&head->so_timeo);
117 	} else {
118 		wakeup((void *)&so->so_timeo);
119 		sorwakeup(so);
120 		sowwakeup(so);
121 	}
122 }
123 
124 void
125 soisdisconnecting(struct socket *so)
126 {
127 
128 	so->so_state &= ~SS_ISCONNECTING;
129 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
130 	wakeup((void *)&so->so_timeo);
131 	sowwakeup(so);
132 	sorwakeup(so);
133 }
134 
135 void
136 soisdisconnected(struct socket *so)
137 {
138 
139 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
140 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
141 	wakeup((void *)&so->so_timeo);
142 	sowwakeup(so);
143 	sorwakeup(so);
144 }
145 
146 /*
147  * When an attempt at a new connection is noted on a socket
148  * which accepts connections, sonewconn is called.  If the
149  * connection is possible (subject to space constraints, etc.)
150  * then we allocate a new structure, propoerly linked into the
151  * data structure of the original socket, and return this.
152  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
153  */
154 struct socket *
155 sonewconn(struct socket *head, int connstatus)
156 {
157 	struct socket	*so;
158 	int		soqueue;
159 
160 	soqueue = connstatus ? 1 : 0;
161 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
162 		return ((struct socket *)0);
163 	so = pool_get(&socket_pool, PR_NOWAIT);
164 	if (so == NULL)
165 		return (NULL);
166 	memset((void *)so, 0, sizeof(*so));
167 	so->so_type = head->so_type;
168 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
169 	so->so_linger = head->so_linger;
170 	so->so_state = head->so_state | SS_NOFDREF;
171 	so->so_nbio = head->so_nbio;
172 	so->so_proto = head->so_proto;
173 	so->so_timeo = head->so_timeo;
174 	so->so_pgid = head->so_pgid;
175 	so->so_send = head->so_send;
176 	so->so_receive = head->so_receive;
177 	so->so_uidinfo = head->so_uidinfo;
178 #ifdef MBUFTRACE
179 	so->so_mowner = head->so_mowner;
180 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
181 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
182 #endif
183 	selinit(&so->so_rcv.sb_sel);
184 	selinit(&so->so_snd.sb_sel);
185 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
186 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
187 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
188 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
189 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
190 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
191 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
192 	soqinsque(head, so, soqueue);
193 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
194 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
195 	    (struct lwp *)0)) {
196 		(void) soqremque(so, soqueue);
197 		seldestroy(&so->so_rcv.sb_sel);
198 		seldestroy(&so->so_snd.sb_sel);
199 		pool_put(&socket_pool, so);
200 		return (NULL);
201 	}
202 	if (connstatus) {
203 		sorwakeup(head);
204 		wakeup((void *)&head->so_timeo);
205 		so->so_state |= connstatus;
206 	}
207 	return (so);
208 }
209 
210 void
211 soqinsque(struct socket *head, struct socket *so, int q)
212 {
213 
214 #ifdef DIAGNOSTIC
215 	if (so->so_onq != NULL)
216 		panic("soqinsque");
217 #endif
218 
219 	so->so_head = head;
220 	if (q == 0) {
221 		head->so_q0len++;
222 		so->so_onq = &head->so_q0;
223 	} else {
224 		head->so_qlen++;
225 		so->so_onq = &head->so_q;
226 	}
227 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
228 }
229 
230 int
231 soqremque(struct socket *so, int q)
232 {
233 	struct socket	*head;
234 
235 	head = so->so_head;
236 	if (q == 0) {
237 		if (so->so_onq != &head->so_q0)
238 			return (0);
239 		head->so_q0len--;
240 	} else {
241 		if (so->so_onq != &head->so_q)
242 			return (0);
243 		head->so_qlen--;
244 	}
245 	TAILQ_REMOVE(so->so_onq, so, so_qe);
246 	so->so_onq = NULL;
247 	so->so_head = NULL;
248 	return (1);
249 }
250 
251 /*
252  * Socantsendmore indicates that no more data will be sent on the
253  * socket; it would normally be applied to a socket when the user
254  * informs the system that no more data is to be sent, by the protocol
255  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
256  * will be received, and will normally be applied to the socket by a
257  * protocol when it detects that the peer will send no more data.
258  * Data queued for reading in the socket may yet be read.
259  */
260 
261 void
262 socantsendmore(struct socket *so)
263 {
264 
265 	so->so_state |= SS_CANTSENDMORE;
266 	sowwakeup(so);
267 }
268 
269 void
270 socantrcvmore(struct socket *so)
271 {
272 
273 	so->so_state |= SS_CANTRCVMORE;
274 	sorwakeup(so);
275 }
276 
277 /*
278  * Wait for data to arrive at/drain from a socket buffer.
279  */
280 int
281 sbwait(struct sockbuf *sb)
282 {
283 
284 	sb->sb_flags |= SB_WAIT;
285 	return (tsleep((void *)&sb->sb_cc,
286 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
287 	    sb->sb_timeo));
288 }
289 
290 /*
291  * Lock a sockbuf already known to be locked;
292  * return any error returned from sleep (EINTR).
293  */
294 int
295 sb_lock(struct sockbuf *sb)
296 {
297 	int	error;
298 
299 	while (sb->sb_flags & SB_LOCK) {
300 		sb->sb_flags |= SB_WANT;
301 		error = tsleep((void *)&sb->sb_flags,
302 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
303 		    netlck, 0);
304 		if (error)
305 			return (error);
306 	}
307 	sb->sb_flags |= SB_LOCK;
308 	return (0);
309 }
310 
311 /*
312  * Wakeup processes waiting on a socket buffer.
313  * Do asynchronous notification via SIGIO
314  * if the socket buffer has the SB_ASYNC flag set.
315  */
316 void
317 sowakeup(struct socket *so, struct sockbuf *sb, int code)
318 {
319 	int band;
320 
321 	if (code == POLL_IN)
322 		band = POLLIN|POLLRDNORM;
323 	else
324 		band = POLLOUT|POLLWRNORM;
325 	selnotify(&sb->sb_sel, band, 0);
326 
327 	sb->sb_flags &= ~SB_SEL;
328 	if (sb->sb_flags & SB_WAIT) {
329 		sb->sb_flags &= ~SB_WAIT;
330 		wakeup((void *)&sb->sb_cc);
331 	}
332 	if (sb->sb_flags & SB_ASYNC)
333 		fownsignal(so->so_pgid, SIGIO, code, band, so);
334 	if (sb->sb_flags & SB_UPCALL)
335 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
336 }
337 
338 /*
339  * Socket buffer (struct sockbuf) utility routines.
340  *
341  * Each socket contains two socket buffers: one for sending data and
342  * one for receiving data.  Each buffer contains a queue of mbufs,
343  * information about the number of mbufs and amount of data in the
344  * queue, and other fields allowing poll() statements and notification
345  * on data availability to be implemented.
346  *
347  * Data stored in a socket buffer is maintained as a list of records.
348  * Each record is a list of mbufs chained together with the m_next
349  * field.  Records are chained together with the m_nextpkt field. The upper
350  * level routine soreceive() expects the following conventions to be
351  * observed when placing information in the receive buffer:
352  *
353  * 1. If the protocol requires each message be preceded by the sender's
354  *    name, then a record containing that name must be present before
355  *    any associated data (mbuf's must be of type MT_SONAME).
356  * 2. If the protocol supports the exchange of ``access rights'' (really
357  *    just additional data associated with the message), and there are
358  *    ``rights'' to be received, then a record containing this data
359  *    should be present (mbuf's must be of type MT_CONTROL).
360  * 3. If a name or rights record exists, then it must be followed by
361  *    a data record, perhaps of zero length.
362  *
363  * Before using a new socket structure it is first necessary to reserve
364  * buffer space to the socket, by calling sbreserve().  This should commit
365  * some of the available buffer space in the system buffer pool for the
366  * socket (currently, it does nothing but enforce limits).  The space
367  * should be released by calling sbrelease() when the socket is destroyed.
368  */
369 
370 int
371 sb_max_set(u_long new_sbmax)
372 {
373 	int s;
374 
375 	if (new_sbmax < (16 * 1024))
376 		return (EINVAL);
377 
378 	s = splsoftnet();
379 	sb_max = new_sbmax;
380 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
381 	splx(s);
382 
383 	return (0);
384 }
385 
386 int
387 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
388 {
389 	/*
390 	 * there's at least one application (a configure script of screen)
391 	 * which expects a fifo is writable even if it has "some" bytes
392 	 * in its buffer.
393 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
394 	 *
395 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
396 	 * we expect it's large enough for such applications.
397 	 */
398 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
399 	u_long  hiwat = lowat + PIPE_BUF;
400 
401 	if (sndcc < hiwat)
402 		sndcc = hiwat;
403 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
404 		goto bad;
405 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
406 		goto bad2;
407 	if (so->so_rcv.sb_lowat == 0)
408 		so->so_rcv.sb_lowat = 1;
409 	if (so->so_snd.sb_lowat == 0)
410 		so->so_snd.sb_lowat = lowat;
411 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
412 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
413 	return (0);
414  bad2:
415 	sbrelease(&so->so_snd, so);
416  bad:
417 	return (ENOBUFS);
418 }
419 
420 /*
421  * Allot mbufs to a sockbuf.
422  * Attempt to scale mbmax so that mbcnt doesn't become limiting
423  * if buffering efficiency is near the normal case.
424  */
425 int
426 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
427 {
428 	struct lwp *l = curlwp; /* XXX */
429 	rlim_t maxcc;
430 	struct uidinfo *uidinfo;
431 
432 	KDASSERT(sb_max_adj != 0);
433 	if (cc == 0 || cc > sb_max_adj)
434 		return (0);
435 	if (so) {
436 		if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
437 			maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
438 		else
439 			maxcc = RLIM_INFINITY;
440 		uidinfo = so->so_uidinfo;
441 	} else {
442 		uidinfo = uid_find(0);	/* XXX: nothing better */
443 		maxcc = RLIM_INFINITY;
444 	}
445 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
446 		return 0;
447 	sb->sb_mbmax = min(cc * 2, sb_max);
448 	if (sb->sb_lowat > sb->sb_hiwat)
449 		sb->sb_lowat = sb->sb_hiwat;
450 	return (1);
451 }
452 
453 /*
454  * Free mbufs held by a socket, and reserved mbuf space.
455  */
456 void
457 sbrelease(struct sockbuf *sb, struct socket *so)
458 {
459 
460 	sbflush(sb);
461 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
462 	sb->sb_mbmax = 0;
463 }
464 
465 /*
466  * Routines to add and remove
467  * data from an mbuf queue.
468  *
469  * The routines sbappend() or sbappendrecord() are normally called to
470  * append new mbufs to a socket buffer, after checking that adequate
471  * space is available, comparing the function sbspace() with the amount
472  * of data to be added.  sbappendrecord() differs from sbappend() in
473  * that data supplied is treated as the beginning of a new record.
474  * To place a sender's address, optional access rights, and data in a
475  * socket receive buffer, sbappendaddr() should be used.  To place
476  * access rights and data in a socket receive buffer, sbappendrights()
477  * should be used.  In either case, the new data begins a new record.
478  * Note that unlike sbappend() and sbappendrecord(), these routines check
479  * for the caller that there will be enough space to store the data.
480  * Each fails if there is not enough space, or if it cannot find mbufs
481  * to store additional information in.
482  *
483  * Reliable protocols may use the socket send buffer to hold data
484  * awaiting acknowledgement.  Data is normally copied from a socket
485  * send buffer in a protocol with m_copy for output to a peer,
486  * and then removing the data from the socket buffer with sbdrop()
487  * or sbdroprecord() when the data is acknowledged by the peer.
488  */
489 
490 #ifdef SOCKBUF_DEBUG
491 void
492 sblastrecordchk(struct sockbuf *sb, const char *where)
493 {
494 	struct mbuf *m = sb->sb_mb;
495 
496 	while (m && m->m_nextpkt)
497 		m = m->m_nextpkt;
498 
499 	if (m != sb->sb_lastrecord) {
500 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
501 		    sb->sb_mb, sb->sb_lastrecord, m);
502 		printf("packet chain:\n");
503 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
504 			printf("\t%p\n", m);
505 		panic("sblastrecordchk from %s", where);
506 	}
507 }
508 
509 void
510 sblastmbufchk(struct sockbuf *sb, const char *where)
511 {
512 	struct mbuf *m = sb->sb_mb;
513 	struct mbuf *n;
514 
515 	while (m && m->m_nextpkt)
516 		m = m->m_nextpkt;
517 
518 	while (m && m->m_next)
519 		m = m->m_next;
520 
521 	if (m != sb->sb_mbtail) {
522 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
523 		    sb->sb_mb, sb->sb_mbtail, m);
524 		printf("packet tree:\n");
525 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
526 			printf("\t");
527 			for (n = m; n != NULL; n = n->m_next)
528 				printf("%p ", n);
529 			printf("\n");
530 		}
531 		panic("sblastmbufchk from %s", where);
532 	}
533 }
534 #endif /* SOCKBUF_DEBUG */
535 
536 /*
537  * Link a chain of records onto a socket buffer
538  */
539 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
540 do {									\
541 	if ((sb)->sb_lastrecord != NULL)				\
542 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
543 	else								\
544 		(sb)->sb_mb = (m0);					\
545 	(sb)->sb_lastrecord = (mlast);					\
546 } while (/*CONSTCOND*/0)
547 
548 
549 #define	SBLINKRECORD(sb, m0)						\
550     SBLINKRECORDCHAIN(sb, m0, m0)
551 
552 /*
553  * Append mbuf chain m to the last record in the
554  * socket buffer sb.  The additional space associated
555  * the mbuf chain is recorded in sb.  Empty mbufs are
556  * discarded and mbufs are compacted where possible.
557  */
558 void
559 sbappend(struct sockbuf *sb, struct mbuf *m)
560 {
561 	struct mbuf	*n;
562 
563 	if (m == 0)
564 		return;
565 
566 #ifdef MBUFTRACE
567 	m_claimm(m, sb->sb_mowner);
568 #endif
569 
570 	SBLASTRECORDCHK(sb, "sbappend 1");
571 
572 	if ((n = sb->sb_lastrecord) != NULL) {
573 		/*
574 		 * XXX Would like to simply use sb_mbtail here, but
575 		 * XXX I need to verify that I won't miss an EOR that
576 		 * XXX way.
577 		 */
578 		do {
579 			if (n->m_flags & M_EOR) {
580 				sbappendrecord(sb, m); /* XXXXXX!!!! */
581 				return;
582 			}
583 		} while (n->m_next && (n = n->m_next));
584 	} else {
585 		/*
586 		 * If this is the first record in the socket buffer, it's
587 		 * also the last record.
588 		 */
589 		sb->sb_lastrecord = m;
590 	}
591 	sbcompress(sb, m, n);
592 	SBLASTRECORDCHK(sb, "sbappend 2");
593 }
594 
595 /*
596  * This version of sbappend() should only be used when the caller
597  * absolutely knows that there will never be more than one record
598  * in the socket buffer, that is, a stream protocol (such as TCP).
599  */
600 void
601 sbappendstream(struct sockbuf *sb, struct mbuf *m)
602 {
603 
604 	KDASSERT(m->m_nextpkt == NULL);
605 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
606 
607 	SBLASTMBUFCHK(sb, __func__);
608 
609 #ifdef MBUFTRACE
610 	m_claimm(m, sb->sb_mowner);
611 #endif
612 
613 	sbcompress(sb, m, sb->sb_mbtail);
614 
615 	sb->sb_lastrecord = sb->sb_mb;
616 	SBLASTRECORDCHK(sb, __func__);
617 }
618 
619 #ifdef SOCKBUF_DEBUG
620 void
621 sbcheck(struct sockbuf *sb)
622 {
623 	struct mbuf	*m;
624 	u_long		len, mbcnt;
625 
626 	len = 0;
627 	mbcnt = 0;
628 	for (m = sb->sb_mb; m; m = m->m_next) {
629 		len += m->m_len;
630 		mbcnt += MSIZE;
631 		if (m->m_flags & M_EXT)
632 			mbcnt += m->m_ext.ext_size;
633 		if (m->m_nextpkt)
634 			panic("sbcheck nextpkt");
635 	}
636 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
637 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
638 		    mbcnt, sb->sb_mbcnt);
639 		panic("sbcheck");
640 	}
641 }
642 #endif
643 
644 /*
645  * As above, except the mbuf chain
646  * begins a new record.
647  */
648 void
649 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
650 {
651 	struct mbuf	*m;
652 
653 	if (m0 == 0)
654 		return;
655 
656 #ifdef MBUFTRACE
657 	m_claimm(m0, sb->sb_mowner);
658 #endif
659 	/*
660 	 * Put the first mbuf on the queue.
661 	 * Note this permits zero length records.
662 	 */
663 	sballoc(sb, m0);
664 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
665 	SBLINKRECORD(sb, m0);
666 	m = m0->m_next;
667 	m0->m_next = 0;
668 	if (m && (m0->m_flags & M_EOR)) {
669 		m0->m_flags &= ~M_EOR;
670 		m->m_flags |= M_EOR;
671 	}
672 	sbcompress(sb, m, m0);
673 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
674 }
675 
676 /*
677  * As above except that OOB data
678  * is inserted at the beginning of the sockbuf,
679  * but after any other OOB data.
680  */
681 void
682 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
683 {
684 	struct mbuf	*m, **mp;
685 
686 	if (m0 == 0)
687 		return;
688 
689 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
690 
691 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
692 	    again:
693 		switch (m->m_type) {
694 
695 		case MT_OOBDATA:
696 			continue;		/* WANT next train */
697 
698 		case MT_CONTROL:
699 			if ((m = m->m_next) != NULL)
700 				goto again;	/* inspect THIS train further */
701 		}
702 		break;
703 	}
704 	/*
705 	 * Put the first mbuf on the queue.
706 	 * Note this permits zero length records.
707 	 */
708 	sballoc(sb, m0);
709 	m0->m_nextpkt = *mp;
710 	if (*mp == NULL) {
711 		/* m0 is actually the new tail */
712 		sb->sb_lastrecord = m0;
713 	}
714 	*mp = m0;
715 	m = m0->m_next;
716 	m0->m_next = 0;
717 	if (m && (m0->m_flags & M_EOR)) {
718 		m0->m_flags &= ~M_EOR;
719 		m->m_flags |= M_EOR;
720 	}
721 	sbcompress(sb, m, m0);
722 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
723 }
724 
725 /*
726  * Append address and data, and optionally, control (ancillary) data
727  * to the receive queue of a socket.  If present,
728  * m0 must include a packet header with total length.
729  * Returns 0 if no space in sockbuf or insufficient mbufs.
730  */
731 int
732 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
733 	struct mbuf *control)
734 {
735 	struct mbuf	*m, *n, *nlast;
736 	int		space, len;
737 
738 	space = asa->sa_len;
739 
740 	if (m0 != NULL) {
741 		if ((m0->m_flags & M_PKTHDR) == 0)
742 			panic("sbappendaddr");
743 		space += m0->m_pkthdr.len;
744 #ifdef MBUFTRACE
745 		m_claimm(m0, sb->sb_mowner);
746 #endif
747 	}
748 	for (n = control; n; n = n->m_next) {
749 		space += n->m_len;
750 		MCLAIM(n, sb->sb_mowner);
751 		if (n->m_next == 0)	/* keep pointer to last control buf */
752 			break;
753 	}
754 	if (space > sbspace(sb))
755 		return (0);
756 	MGET(m, M_DONTWAIT, MT_SONAME);
757 	if (m == 0)
758 		return (0);
759 	MCLAIM(m, sb->sb_mowner);
760 	/*
761 	 * XXX avoid 'comparison always true' warning which isn't easily
762 	 * avoided.
763 	 */
764 	len = asa->sa_len;
765 	if (len > MLEN) {
766 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
767 		if ((m->m_flags & M_EXT) == 0) {
768 			m_free(m);
769 			return (0);
770 		}
771 	}
772 	m->m_len = asa->sa_len;
773 	memcpy(mtod(m, void *), asa, asa->sa_len);
774 	if (n)
775 		n->m_next = m0;		/* concatenate data to control */
776 	else
777 		control = m0;
778 	m->m_next = control;
779 
780 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
781 
782 	for (n = m; n->m_next != NULL; n = n->m_next)
783 		sballoc(sb, n);
784 	sballoc(sb, n);
785 	nlast = n;
786 	SBLINKRECORD(sb, m);
787 
788 	sb->sb_mbtail = nlast;
789 	SBLASTMBUFCHK(sb, "sbappendaddr");
790 
791 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
792 
793 	return (1);
794 }
795 
796 /*
797  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
798  * an mbuf chain.
799  */
800 static inline struct mbuf *
801 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
802 		   const struct sockaddr *asa)
803 {
804 	struct mbuf *m;
805 	const int salen = asa->sa_len;
806 
807 	/* only the first in each chain need be a pkthdr */
808 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
809 	if (m == 0)
810 		return (0);
811 	MCLAIM(m, sb->sb_mowner);
812 #ifdef notyet
813 	if (salen > MHLEN) {
814 		MEXTMALLOC(m, salen, M_NOWAIT);
815 		if ((m->m_flags & M_EXT) == 0) {
816 			m_free(m);
817 			return (0);
818 		}
819 	}
820 #else
821 	KASSERT(salen <= MHLEN);
822 #endif
823 	m->m_len = salen;
824 	memcpy(mtod(m, void *), asa, salen);
825 	m->m_next = m0;
826 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
827 
828 	return m;
829 }
830 
831 int
832 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
833 		  struct mbuf *m0, int sbprio)
834 {
835 	int space;
836 	struct mbuf *m, *n, *n0, *nlast;
837 	int error;
838 
839 	/*
840 	 * XXX sbprio reserved for encoding priority of this* request:
841 	 *  SB_PRIO_NONE --> honour normal sb limits
842 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
843 	 *	take whole chain. Intended for large requests
844 	 *      that should be delivered atomically (all, or none).
845 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
846 	 *       over normal socket limits, for messages indicating
847 	 *       buffer overflow in earlier normal/lower-priority messages
848 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
849 	 *       Intended for  kernel-generated messages only.
850 	 *        Up to generator to avoid total mbuf resource exhaustion.
851 	 */
852 	(void)sbprio;
853 
854 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
855 		panic("sbappendaddrchain");
856 
857 	space = sbspace(sb);
858 
859 #ifdef notyet
860 	/*
861 	 * Enforce SB_PRIO_* limits as described above.
862 	 */
863 #endif
864 
865 	n0 = NULL;
866 	nlast = NULL;
867 	for (m = m0; m; m = m->m_nextpkt) {
868 		struct mbuf *np;
869 
870 #ifdef MBUFTRACE
871 		m_claimm(m, sb->sb_mowner);
872 #endif
873 
874 		/* Prepend sockaddr to this record (m) of input chain m0 */
875 	  	n = m_prepend_sockaddr(sb, m, asa);
876 		if (n == NULL) {
877 			error = ENOBUFS;
878 			goto bad;
879 		}
880 
881 		/* Append record (asa+m) to end of new chain n0 */
882 		if (n0 == NULL) {
883 			n0 = n;
884 		} else {
885 			nlast->m_nextpkt = n;
886 		}
887 		/* Keep track of last record on new chain */
888 		nlast = n;
889 
890 		for (np = n; np; np = np->m_next)
891 			sballoc(sb, np);
892 	}
893 
894 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
895 
896 	/* Drop the entire chain of (asa+m) records onto the socket */
897 	SBLINKRECORDCHAIN(sb, n0, nlast);
898 
899 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
900 
901 	for (m = nlast; m->m_next; m = m->m_next)
902 		;
903 	sb->sb_mbtail = m;
904 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
905 
906 	return (1);
907 
908 bad:
909 	/*
910 	 * On error, free the prepended addreseses. For consistency
911 	 * with sbappendaddr(), leave it to our caller to free
912 	 * the input record chain passed to us as m0.
913 	 */
914 	while ((n = n0) != NULL) {
915 	  	struct mbuf *np;
916 
917 		/* Undo the sballoc() of this record */
918 		for (np = n; np; np = np->m_next)
919 			sbfree(sb, np);
920 
921 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
922 		MFREE(n, np);		/* free prepended address (not data) */
923 	}
924 	return 0;
925 }
926 
927 
928 int
929 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
930 {
931 	struct mbuf	*m, *mlast, *n;
932 	int		space;
933 
934 	space = 0;
935 	if (control == 0)
936 		panic("sbappendcontrol");
937 	for (m = control; ; m = m->m_next) {
938 		space += m->m_len;
939 		MCLAIM(m, sb->sb_mowner);
940 		if (m->m_next == 0)
941 			break;
942 	}
943 	n = m;			/* save pointer to last control buffer */
944 	for (m = m0; m; m = m->m_next) {
945 		MCLAIM(m, sb->sb_mowner);
946 		space += m->m_len;
947 	}
948 	if (space > sbspace(sb))
949 		return (0);
950 	n->m_next = m0;			/* concatenate data to control */
951 
952 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
953 
954 	for (m = control; m->m_next != NULL; m = m->m_next)
955 		sballoc(sb, m);
956 	sballoc(sb, m);
957 	mlast = m;
958 	SBLINKRECORD(sb, control);
959 
960 	sb->sb_mbtail = mlast;
961 	SBLASTMBUFCHK(sb, "sbappendcontrol");
962 
963 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
964 
965 	return (1);
966 }
967 
968 /*
969  * Compress mbuf chain m into the socket
970  * buffer sb following mbuf n.  If n
971  * is null, the buffer is presumed empty.
972  */
973 void
974 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
975 {
976 	int		eor;
977 	struct mbuf	*o;
978 
979 	eor = 0;
980 	while (m) {
981 		eor |= m->m_flags & M_EOR;
982 		if (m->m_len == 0 &&
983 		    (eor == 0 ||
984 		     (((o = m->m_next) || (o = n)) &&
985 		      o->m_type == m->m_type))) {
986 			if (sb->sb_lastrecord == m)
987 				sb->sb_lastrecord = m->m_next;
988 			m = m_free(m);
989 			continue;
990 		}
991 		if (n && (n->m_flags & M_EOR) == 0 &&
992 		    /* M_TRAILINGSPACE() checks buffer writeability */
993 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
994 		    m->m_len <= M_TRAILINGSPACE(n) &&
995 		    n->m_type == m->m_type) {
996 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
997 			    (unsigned)m->m_len);
998 			n->m_len += m->m_len;
999 			sb->sb_cc += m->m_len;
1000 			m = m_free(m);
1001 			continue;
1002 		}
1003 		if (n)
1004 			n->m_next = m;
1005 		else
1006 			sb->sb_mb = m;
1007 		sb->sb_mbtail = m;
1008 		sballoc(sb, m);
1009 		n = m;
1010 		m->m_flags &= ~M_EOR;
1011 		m = m->m_next;
1012 		n->m_next = 0;
1013 	}
1014 	if (eor) {
1015 		if (n)
1016 			n->m_flags |= eor;
1017 		else
1018 			printf("semi-panic: sbcompress\n");
1019 	}
1020 	SBLASTMBUFCHK(sb, __func__);
1021 }
1022 
1023 /*
1024  * Free all mbufs in a sockbuf.
1025  * Check that all resources are reclaimed.
1026  */
1027 void
1028 sbflush(struct sockbuf *sb)
1029 {
1030 
1031 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1032 
1033 	while (sb->sb_mbcnt)
1034 		sbdrop(sb, (int)sb->sb_cc);
1035 
1036 	KASSERT(sb->sb_cc == 0);
1037 	KASSERT(sb->sb_mb == NULL);
1038 	KASSERT(sb->sb_mbtail == NULL);
1039 	KASSERT(sb->sb_lastrecord == NULL);
1040 }
1041 
1042 /*
1043  * Drop data from (the front of) a sockbuf.
1044  */
1045 void
1046 sbdrop(struct sockbuf *sb, int len)
1047 {
1048 	struct mbuf	*m, *mn, *next;
1049 
1050 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1051 	while (len > 0) {
1052 		if (m == 0) {
1053 			if (next == 0)
1054 				panic("sbdrop");
1055 			m = next;
1056 			next = m->m_nextpkt;
1057 			continue;
1058 		}
1059 		if (m->m_len > len) {
1060 			m->m_len -= len;
1061 			m->m_data += len;
1062 			sb->sb_cc -= len;
1063 			break;
1064 		}
1065 		len -= m->m_len;
1066 		sbfree(sb, m);
1067 		MFREE(m, mn);
1068 		m = mn;
1069 	}
1070 	while (m && m->m_len == 0) {
1071 		sbfree(sb, m);
1072 		MFREE(m, mn);
1073 		m = mn;
1074 	}
1075 	if (m) {
1076 		sb->sb_mb = m;
1077 		m->m_nextpkt = next;
1078 	} else
1079 		sb->sb_mb = next;
1080 	/*
1081 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1082 	 * makes sure sb_lastrecord is up-to-date if we dropped
1083 	 * part of the last record.
1084 	 */
1085 	m = sb->sb_mb;
1086 	if (m == NULL) {
1087 		sb->sb_mbtail = NULL;
1088 		sb->sb_lastrecord = NULL;
1089 	} else if (m->m_nextpkt == NULL)
1090 		sb->sb_lastrecord = m;
1091 }
1092 
1093 /*
1094  * Drop a record off the front of a sockbuf
1095  * and move the next record to the front.
1096  */
1097 void
1098 sbdroprecord(struct sockbuf *sb)
1099 {
1100 	struct mbuf	*m, *mn;
1101 
1102 	m = sb->sb_mb;
1103 	if (m) {
1104 		sb->sb_mb = m->m_nextpkt;
1105 		do {
1106 			sbfree(sb, m);
1107 			MFREE(m, mn);
1108 		} while ((m = mn) != NULL);
1109 	}
1110 	SB_EMPTY_FIXUP(sb);
1111 }
1112 
1113 /*
1114  * Create a "control" mbuf containing the specified data
1115  * with the specified type for presentation on a socket buffer.
1116  */
1117 struct mbuf *
1118 sbcreatecontrol(void *p, int size, int type, int level)
1119 {
1120 	struct cmsghdr	*cp;
1121 	struct mbuf	*m;
1122 
1123 	if (CMSG_SPACE(size) > MCLBYTES) {
1124 		printf("sbcreatecontrol: message too large %d\n", size);
1125 		return NULL;
1126 	}
1127 
1128 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1129 		return ((struct mbuf *) NULL);
1130 	if (CMSG_SPACE(size) > MLEN) {
1131 		MCLGET(m, M_DONTWAIT);
1132 		if ((m->m_flags & M_EXT) == 0) {
1133 			m_free(m);
1134 			return NULL;
1135 		}
1136 	}
1137 	cp = mtod(m, struct cmsghdr *);
1138 	memcpy(CMSG_DATA(cp), p, size);
1139 	m->m_len = CMSG_SPACE(size);
1140 	cp->cmsg_len = CMSG_LEN(size);
1141 	cp->cmsg_level = level;
1142 	cp->cmsg_type = type;
1143 	return (m);
1144 }
1145