1 /* $NetBSD: uipc_socket.c,v 1.281 2019/07/16 22:57:55 pgoyette Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 /* 66 * Socket operation routines. 67 * 68 * These routines are called by the routines in sys_socket.c or from a 69 * system process, and implement the semantics of socket operations by 70 * switching out to the protocol specific routines. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.281 2019/07/16 22:57:55 pgoyette Exp $"); 75 76 #ifdef _KERNEL_OPT 77 #include "opt_compat_netbsd.h" 78 #include "opt_sock_counters.h" 79 #include "opt_sosend_loan.h" 80 #include "opt_mbuftrace.h" 81 #include "opt_somaxkva.h" 82 #include "opt_multiprocessor.h" /* XXX */ 83 #include "opt_sctp.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/systm.h> 88 #include <sys/proc.h> 89 #include <sys/file.h> 90 #include <sys/filedesc.h> 91 #include <sys/kmem.h> 92 #include <sys/mbuf.h> 93 #include <sys/domain.h> 94 #include <sys/kernel.h> 95 #include <sys/protosw.h> 96 #include <sys/socket.h> 97 #include <sys/socketvar.h> 98 #include <sys/signalvar.h> 99 #include <sys/resourcevar.h> 100 #include <sys/uidinfo.h> 101 #include <sys/event.h> 102 #include <sys/poll.h> 103 #include <sys/kauth.h> 104 #include <sys/mutex.h> 105 #include <sys/condvar.h> 106 #include <sys/kthread.h> 107 #include <sys/compat_stub.h> 108 109 #include <compat/sys/time.h> 110 #include <compat/sys/socket.h> 111 112 #include <uvm/uvm_extern.h> 113 #include <uvm/uvm_loan.h> 114 #include <uvm/uvm_page.h> 115 116 #ifdef SCTP 117 #include <netinet/sctp_route.h> 118 #endif 119 120 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 121 122 extern const struct fileops socketops; 123 124 static int sooptions; 125 extern int somaxconn; /* patchable (XXX sysctl) */ 126 int somaxconn = SOMAXCONN; 127 kmutex_t *softnet_lock; 128 129 #ifdef SOSEND_COUNTERS 130 #include <sys/device.h> 131 132 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 133 NULL, "sosend", "loan big"); 134 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 135 NULL, "sosend", "copy big"); 136 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 137 NULL, "sosend", "copy small"); 138 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 139 NULL, "sosend", "kva limit"); 140 141 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 142 143 EVCNT_ATTACH_STATIC(sosend_loan_big); 144 EVCNT_ATTACH_STATIC(sosend_copy_big); 145 EVCNT_ATTACH_STATIC(sosend_copy_small); 146 EVCNT_ATTACH_STATIC(sosend_kvalimit); 147 #else 148 149 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 150 151 #endif /* SOSEND_COUNTERS */ 152 153 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 154 int sock_loan_thresh = -1; 155 #else 156 int sock_loan_thresh = 4096; 157 #endif 158 159 static kmutex_t so_pendfree_lock; 160 static struct mbuf *so_pendfree = NULL; 161 162 #ifndef SOMAXKVA 163 #define SOMAXKVA (16 * 1024 * 1024) 164 #endif 165 int somaxkva = SOMAXKVA; 166 static int socurkva; 167 static kcondvar_t socurkva_cv; 168 169 static kauth_listener_t socket_listener; 170 171 #define SOCK_LOAN_CHUNK 65536 172 173 static void sopendfree_thread(void *); 174 static kcondvar_t pendfree_thread_cv; 175 static lwp_t *sopendfree_lwp; 176 177 static void sysctl_kern_socket_setup(void); 178 static struct sysctllog *socket_sysctllog; 179 180 static vsize_t 181 sokvareserve(struct socket *so, vsize_t len) 182 { 183 int error; 184 185 mutex_enter(&so_pendfree_lock); 186 while (socurkva + len > somaxkva) { 187 SOSEND_COUNTER_INCR(&sosend_kvalimit); 188 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 189 if (error) { 190 len = 0; 191 break; 192 } 193 } 194 socurkva += len; 195 mutex_exit(&so_pendfree_lock); 196 return len; 197 } 198 199 static void 200 sokvaunreserve(vsize_t len) 201 { 202 203 mutex_enter(&so_pendfree_lock); 204 socurkva -= len; 205 cv_broadcast(&socurkva_cv); 206 mutex_exit(&so_pendfree_lock); 207 } 208 209 /* 210 * sokvaalloc: allocate kva for loan. 211 */ 212 vaddr_t 213 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so) 214 { 215 vaddr_t lva; 216 217 if (sokvareserve(so, len) == 0) 218 return 0; 219 220 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask, 221 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 222 if (lva == 0) { 223 sokvaunreserve(len); 224 return 0; 225 } 226 227 return lva; 228 } 229 230 /* 231 * sokvafree: free kva for loan. 232 */ 233 void 234 sokvafree(vaddr_t sva, vsize_t len) 235 { 236 237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 238 sokvaunreserve(len); 239 } 240 241 static void 242 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 243 { 244 vaddr_t sva, eva; 245 vsize_t len; 246 int npgs; 247 248 KASSERT(pgs != NULL); 249 250 eva = round_page((vaddr_t) buf + size); 251 sva = trunc_page((vaddr_t) buf); 252 len = eva - sva; 253 npgs = len >> PAGE_SHIFT; 254 255 pmap_kremove(sva, len); 256 pmap_update(pmap_kernel()); 257 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 258 sokvafree(sva, len); 259 } 260 261 /* 262 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock 263 * so_pendfree_lock when freeing mbufs. 264 */ 265 static void 266 sopendfree_thread(void *v) 267 { 268 struct mbuf *m, *next; 269 size_t rv; 270 271 mutex_enter(&so_pendfree_lock); 272 273 for (;;) { 274 rv = 0; 275 while (so_pendfree != NULL) { 276 m = so_pendfree; 277 so_pendfree = NULL; 278 mutex_exit(&so_pendfree_lock); 279 280 for (; m != NULL; m = next) { 281 next = m->m_next; 282 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 283 0); 284 KASSERT(m->m_ext.ext_refcnt == 0); 285 286 rv += m->m_ext.ext_size; 287 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 288 m->m_ext.ext_size); 289 pool_cache_put(mb_cache, m); 290 } 291 292 mutex_enter(&so_pendfree_lock); 293 } 294 if (rv) 295 cv_broadcast(&socurkva_cv); 296 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 297 } 298 panic("sopendfree_thread"); 299 /* NOTREACHED */ 300 } 301 302 void 303 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 304 { 305 306 KASSERT(m != NULL); 307 308 /* 309 * postpone freeing mbuf. 310 * 311 * we can't do it in interrupt context 312 * because we need to put kva back to kernel_map. 313 */ 314 315 mutex_enter(&so_pendfree_lock); 316 m->m_next = so_pendfree; 317 so_pendfree = m; 318 cv_signal(&pendfree_thread_cv); 319 mutex_exit(&so_pendfree_lock); 320 } 321 322 static long 323 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 324 { 325 struct iovec *iov = uio->uio_iov; 326 vaddr_t sva, eva; 327 vsize_t len; 328 vaddr_t lva; 329 int npgs, error; 330 vaddr_t va; 331 int i; 332 333 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 334 return 0; 335 336 if (iov->iov_len < (size_t) space) 337 space = iov->iov_len; 338 if (space > SOCK_LOAN_CHUNK) 339 space = SOCK_LOAN_CHUNK; 340 341 eva = round_page((vaddr_t) iov->iov_base + space); 342 sva = trunc_page((vaddr_t) iov->iov_base); 343 len = eva - sva; 344 npgs = len >> PAGE_SHIFT; 345 346 KASSERT(npgs <= M_EXT_MAXPAGES); 347 348 lva = sokvaalloc(sva, len, so); 349 if (lva == 0) 350 return 0; 351 352 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 353 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 354 if (error) { 355 sokvafree(lva, len); 356 return 0; 357 } 358 359 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 360 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 361 VM_PROT_READ, 0); 362 pmap_update(pmap_kernel()); 363 364 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 365 366 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 367 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 368 369 uio->uio_resid -= space; 370 /* uio_offset not updated, not set/used for write(2) */ 371 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 372 uio->uio_iov->iov_len -= space; 373 if (uio->uio_iov->iov_len == 0) { 374 uio->uio_iov++; 375 uio->uio_iovcnt--; 376 } 377 378 return space; 379 } 380 381 static int 382 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 383 void *arg0, void *arg1, void *arg2, void *arg3) 384 { 385 int result; 386 enum kauth_network_req req; 387 388 result = KAUTH_RESULT_DEFER; 389 req = (enum kauth_network_req)arg0; 390 391 if ((action != KAUTH_NETWORK_SOCKET) && 392 (action != KAUTH_NETWORK_BIND)) 393 return result; 394 395 switch (req) { 396 case KAUTH_REQ_NETWORK_BIND_PORT: 397 result = KAUTH_RESULT_ALLOW; 398 break; 399 400 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 401 /* Normal users can only drop their own connections. */ 402 struct socket *so = (struct socket *)arg1; 403 404 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0) 405 result = KAUTH_RESULT_ALLOW; 406 407 break; 408 } 409 410 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 411 /* We allow "raw" routing/bluetooth sockets to anyone. */ 412 switch ((u_long)arg1) { 413 case PF_ROUTE: 414 case PF_OROUTE: 415 case PF_BLUETOOTH: 416 case PF_CAN: 417 result = KAUTH_RESULT_ALLOW; 418 break; 419 default: 420 /* Privileged, let secmodel handle this. */ 421 if ((u_long)arg2 == SOCK_RAW) 422 break; 423 result = KAUTH_RESULT_ALLOW; 424 break; 425 } 426 break; 427 428 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 429 result = KAUTH_RESULT_ALLOW; 430 431 break; 432 433 default: 434 break; 435 } 436 437 return result; 438 } 439 440 void 441 soinit(void) 442 { 443 444 sysctl_kern_socket_setup(); 445 446 #ifdef SCTP 447 /* Update the SCTP function hooks if necessary*/ 448 449 vec_sctp_add_ip_address = sctp_add_ip_address; 450 vec_sctp_delete_ip_address = sctp_delete_ip_address; 451 #endif 452 453 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 454 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 455 cv_init(&socurkva_cv, "sokva"); 456 cv_init(&pendfree_thread_cv, "sopendfr"); 457 soinit2(); 458 459 /* Set the initial adjusted socket buffer size. */ 460 if (sb_max_set(sb_max)) 461 panic("bad initial sb_max value: %lu", sb_max); 462 463 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 464 socket_listener_cb, NULL); 465 } 466 467 void 468 soinit1(void) 469 { 470 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 471 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 472 if (error) 473 panic("soinit1 %d", error); 474 } 475 476 /* 477 * socreate: create a new socket of the specified type and the protocol. 478 * 479 * => Caller may specify another socket for lock sharing (must not be held). 480 * => Returns the new socket without lock held. 481 */ 482 int 483 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 484 struct socket *lockso) 485 { 486 const struct protosw *prp; 487 struct socket *so; 488 uid_t uid; 489 int error; 490 kmutex_t *lock; 491 492 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 493 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 494 KAUTH_ARG(proto)); 495 if (error != 0) 496 return error; 497 498 if (proto) 499 prp = pffindproto(dom, proto, type); 500 else 501 prp = pffindtype(dom, type); 502 if (prp == NULL) { 503 /* no support for domain */ 504 if (pffinddomain(dom) == 0) 505 return EAFNOSUPPORT; 506 /* no support for socket type */ 507 if (proto == 0 && type != 0) 508 return EPROTOTYPE; 509 return EPROTONOSUPPORT; 510 } 511 if (prp->pr_usrreqs == NULL) 512 return EPROTONOSUPPORT; 513 if (prp->pr_type != type) 514 return EPROTOTYPE; 515 516 so = soget(true); 517 so->so_type = type; 518 so->so_proto = prp; 519 so->so_send = sosend; 520 so->so_receive = soreceive; 521 so->so_options = sooptions; 522 #ifdef MBUFTRACE 523 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 524 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 525 so->so_mowner = &prp->pr_domain->dom_mowner; 526 #endif 527 uid = kauth_cred_geteuid(l->l_cred); 528 so->so_uidinfo = uid_find(uid); 529 so->so_cpid = l->l_proc->p_pid; 530 531 /* 532 * Lock assigned and taken during PCB attach, unless we share 533 * the lock with another socket, e.g. socketpair(2) case. 534 */ 535 if (lockso) { 536 lock = lockso->so_lock; 537 so->so_lock = lock; 538 mutex_obj_hold(lock); 539 mutex_enter(lock); 540 } 541 542 /* Attach the PCB (returns with the socket lock held). */ 543 error = (*prp->pr_usrreqs->pr_attach)(so, proto); 544 KASSERT(solocked(so)); 545 546 if (error) { 547 KASSERT(so->so_pcb == NULL); 548 so->so_state |= SS_NOFDREF; 549 sofree(so); 550 return error; 551 } 552 so->so_cred = kauth_cred_dup(l->l_cred); 553 sounlock(so); 554 555 *aso = so; 556 return 0; 557 } 558 559 /* 560 * fsocreate: create a socket and a file descriptor associated with it. 561 * 562 * => On success, write file descriptor to fdout and return zero. 563 * => On failure, return non-zero; *fdout will be undefined. 564 */ 565 int 566 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout) 567 { 568 lwp_t *l = curlwp; 569 int error, fd, flags; 570 struct socket *so; 571 struct file *fp; 572 573 if ((error = fd_allocfile(&fp, &fd)) != 0) { 574 return error; 575 } 576 flags = type & SOCK_FLAGS_MASK; 577 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 578 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)| 579 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0); 580 fp->f_type = DTYPE_SOCKET; 581 fp->f_ops = &socketops; 582 583 type &= ~SOCK_FLAGS_MASK; 584 error = socreate(domain, &so, type, proto, l, NULL); 585 if (error) { 586 fd_abort(curproc, fp, fd); 587 return error; 588 } 589 if (flags & SOCK_NONBLOCK) { 590 so->so_state |= SS_NBIO; 591 } 592 fp->f_socket = so; 593 fd_affix(curproc, fp, fd); 594 595 if (sop != NULL) { 596 *sop = so; 597 } 598 *fdout = fd; 599 return error; 600 } 601 602 int 603 sofamily(const struct socket *so) 604 { 605 const struct protosw *pr; 606 const struct domain *dom; 607 608 if ((pr = so->so_proto) == NULL) 609 return AF_UNSPEC; 610 if ((dom = pr->pr_domain) == NULL) 611 return AF_UNSPEC; 612 return dom->dom_family; 613 } 614 615 int 616 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l) 617 { 618 int error; 619 620 solock(so); 621 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 622 sounlock(so); 623 return EAFNOSUPPORT; 624 } 625 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l); 626 sounlock(so); 627 return error; 628 } 629 630 int 631 solisten(struct socket *so, int backlog, struct lwp *l) 632 { 633 int error; 634 short oldopt, oldqlimit; 635 636 solock(so); 637 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 638 SS_ISDISCONNECTING)) != 0) { 639 sounlock(so); 640 return EINVAL; 641 } 642 oldopt = so->so_options; 643 oldqlimit = so->so_qlimit; 644 if (TAILQ_EMPTY(&so->so_q)) 645 so->so_options |= SO_ACCEPTCONN; 646 if (backlog < 0) 647 backlog = 0; 648 so->so_qlimit = uimin(backlog, somaxconn); 649 650 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l); 651 if (error != 0) { 652 so->so_options = oldopt; 653 so->so_qlimit = oldqlimit; 654 sounlock(so); 655 return error; 656 } 657 sounlock(so); 658 return 0; 659 } 660 661 void 662 sofree(struct socket *so) 663 { 664 u_int refs; 665 666 KASSERT(solocked(so)); 667 668 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 669 sounlock(so); 670 return; 671 } 672 if (so->so_head) { 673 /* 674 * We must not decommission a socket that's on the accept(2) 675 * queue. If we do, then accept(2) may hang after select(2) 676 * indicated that the listening socket was ready. 677 */ 678 if (!soqremque(so, 0)) { 679 sounlock(so); 680 return; 681 } 682 } 683 if (so->so_rcv.sb_hiwat) 684 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 685 RLIM_INFINITY); 686 if (so->so_snd.sb_hiwat) 687 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 688 RLIM_INFINITY); 689 sbrelease(&so->so_snd, so); 690 KASSERT(!cv_has_waiters(&so->so_cv)); 691 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 692 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 693 sorflush(so); 694 refs = so->so_aborting; /* XXX */ 695 /* Remove acccept filter if one is present. */ 696 if (so->so_accf != NULL) 697 (void)accept_filt_clear(so); 698 sounlock(so); 699 if (refs == 0) /* XXX */ 700 soput(so); 701 } 702 703 /* 704 * soclose: close a socket on last file table reference removal. 705 * Initiate disconnect if connected. Free socket when disconnect complete. 706 */ 707 int 708 soclose(struct socket *so) 709 { 710 struct socket *so2; 711 int error = 0; 712 713 solock(so); 714 if (so->so_options & SO_ACCEPTCONN) { 715 for (;;) { 716 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 717 KASSERT(solocked2(so, so2)); 718 (void) soqremque(so2, 0); 719 /* soabort drops the lock. */ 720 (void) soabort(so2); 721 solock(so); 722 continue; 723 } 724 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 725 KASSERT(solocked2(so, so2)); 726 (void) soqremque(so2, 1); 727 /* soabort drops the lock. */ 728 (void) soabort(so2); 729 solock(so); 730 continue; 731 } 732 break; 733 } 734 } 735 if (so->so_pcb == NULL) 736 goto discard; 737 if (so->so_state & SS_ISCONNECTED) { 738 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 739 error = sodisconnect(so); 740 if (error) 741 goto drop; 742 } 743 if (so->so_options & SO_LINGER) { 744 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 745 (SS_ISDISCONNECTING|SS_NBIO)) 746 goto drop; 747 while (so->so_state & SS_ISCONNECTED) { 748 error = sowait(so, true, so->so_linger * hz); 749 if (error) 750 break; 751 } 752 } 753 } 754 drop: 755 if (so->so_pcb) { 756 KASSERT(solocked(so)); 757 (*so->so_proto->pr_usrreqs->pr_detach)(so); 758 } 759 discard: 760 KASSERT((so->so_state & SS_NOFDREF) == 0); 761 kauth_cred_free(so->so_cred); 762 so->so_cred = NULL; 763 so->so_state |= SS_NOFDREF; 764 sofree(so); 765 return error; 766 } 767 768 /* 769 * Must be called with the socket locked.. Will return with it unlocked. 770 */ 771 int 772 soabort(struct socket *so) 773 { 774 u_int refs; 775 int error; 776 777 KASSERT(solocked(so)); 778 KASSERT(so->so_head == NULL); 779 780 so->so_aborting++; /* XXX */ 781 error = (*so->so_proto->pr_usrreqs->pr_abort)(so); 782 refs = --so->so_aborting; /* XXX */ 783 if (error || (refs == 0)) { 784 sofree(so); 785 } else { 786 sounlock(so); 787 } 788 return error; 789 } 790 791 int 792 soaccept(struct socket *so, struct sockaddr *nam) 793 { 794 int error; 795 796 KASSERT(solocked(so)); 797 KASSERT((so->so_state & SS_NOFDREF) != 0); 798 799 so->so_state &= ~SS_NOFDREF; 800 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 801 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 802 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam); 803 else 804 error = ECONNABORTED; 805 806 return error; 807 } 808 809 int 810 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l) 811 { 812 int error; 813 814 KASSERT(solocked(so)); 815 816 if (so->so_options & SO_ACCEPTCONN) 817 return EOPNOTSUPP; 818 /* 819 * If protocol is connection-based, can only connect once. 820 * Otherwise, if connected, try to disconnect first. 821 * This allows user to disconnect by connecting to, e.g., 822 * a null address. 823 */ 824 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 825 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 826 (error = sodisconnect(so)))) { 827 error = EISCONN; 828 } else { 829 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 830 return EAFNOSUPPORT; 831 } 832 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l); 833 } 834 835 return error; 836 } 837 838 int 839 soconnect2(struct socket *so1, struct socket *so2) 840 { 841 KASSERT(solocked2(so1, so2)); 842 843 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2); 844 } 845 846 int 847 sodisconnect(struct socket *so) 848 { 849 int error; 850 851 KASSERT(solocked(so)); 852 853 if ((so->so_state & SS_ISCONNECTED) == 0) { 854 error = ENOTCONN; 855 } else if (so->so_state & SS_ISDISCONNECTING) { 856 error = EALREADY; 857 } else { 858 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so); 859 } 860 return error; 861 } 862 863 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 864 /* 865 * Send on a socket. 866 * If send must go all at once and message is larger than 867 * send buffering, then hard error. 868 * Lock against other senders. 869 * If must go all at once and not enough room now, then 870 * inform user that this would block and do nothing. 871 * Otherwise, if nonblocking, send as much as possible. 872 * The data to be sent is described by "uio" if nonzero, 873 * otherwise by the mbuf chain "top" (which must be null 874 * if uio is not). Data provided in mbuf chain must be small 875 * enough to send all at once. 876 * 877 * Returns nonzero on error, timeout or signal; callers 878 * must check for short counts if EINTR/ERESTART are returned. 879 * Data and control buffers are freed on return. 880 */ 881 int 882 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 883 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l) 884 { 885 struct mbuf **mp, *m; 886 long space, len, resid, clen, mlen; 887 int error, s, dontroute, atomic; 888 short wakeup_state = 0; 889 890 clen = 0; 891 892 /* 893 * solock() provides atomicity of access. splsoftnet() prevents 894 * protocol processing soft interrupts from interrupting us and 895 * blocking (expensive). 896 */ 897 s = splsoftnet(); 898 solock(so); 899 atomic = sosendallatonce(so) || top; 900 if (uio) 901 resid = uio->uio_resid; 902 else 903 resid = top->m_pkthdr.len; 904 /* 905 * In theory resid should be unsigned. 906 * However, space must be signed, as it might be less than 0 907 * if we over-committed, and we must use a signed comparison 908 * of space and resid. On the other hand, a negative resid 909 * causes us to loop sending 0-length segments to the protocol. 910 */ 911 if (resid < 0) { 912 error = EINVAL; 913 goto out; 914 } 915 dontroute = 916 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 917 (so->so_proto->pr_flags & PR_ATOMIC); 918 l->l_ru.ru_msgsnd++; 919 if (control) 920 clen = control->m_len; 921 restart: 922 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 923 goto out; 924 do { 925 if (so->so_state & SS_CANTSENDMORE) { 926 error = EPIPE; 927 goto release; 928 } 929 if (so->so_error) { 930 error = so->so_error; 931 so->so_error = 0; 932 goto release; 933 } 934 if ((so->so_state & SS_ISCONNECTED) == 0) { 935 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 936 if (resid || clen == 0) { 937 error = ENOTCONN; 938 goto release; 939 } 940 } else if (addr == NULL) { 941 error = EDESTADDRREQ; 942 goto release; 943 } 944 } 945 space = sbspace(&so->so_snd); 946 if (flags & MSG_OOB) 947 space += 1024; 948 if ((atomic && resid > so->so_snd.sb_hiwat) || 949 clen > so->so_snd.sb_hiwat) { 950 error = EMSGSIZE; 951 goto release; 952 } 953 if (space < resid + clen && 954 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 955 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 956 error = EWOULDBLOCK; 957 goto release; 958 } 959 sbunlock(&so->so_snd); 960 if (wakeup_state & SS_RESTARTSYS) { 961 error = ERESTART; 962 goto out; 963 } 964 error = sbwait(&so->so_snd); 965 if (error) 966 goto out; 967 wakeup_state = so->so_state; 968 goto restart; 969 } 970 wakeup_state = 0; 971 mp = ⊤ 972 space -= clen; 973 do { 974 if (uio == NULL) { 975 /* 976 * Data is prepackaged in "top". 977 */ 978 resid = 0; 979 if (flags & MSG_EOR) 980 top->m_flags |= M_EOR; 981 } else do { 982 sounlock(so); 983 splx(s); 984 if (top == NULL) { 985 m = m_gethdr(M_WAIT, MT_DATA); 986 mlen = MHLEN; 987 m->m_pkthdr.len = 0; 988 m_reset_rcvif(m); 989 } else { 990 m = m_get(M_WAIT, MT_DATA); 991 mlen = MLEN; 992 } 993 MCLAIM(m, so->so_snd.sb_mowner); 994 if (sock_loan_thresh >= 0 && 995 uio->uio_iov->iov_len >= sock_loan_thresh && 996 space >= sock_loan_thresh && 997 (len = sosend_loan(so, uio, m, 998 space)) != 0) { 999 SOSEND_COUNTER_INCR(&sosend_loan_big); 1000 space -= len; 1001 goto have_data; 1002 } 1003 if (resid >= MINCLSIZE && space >= MCLBYTES) { 1004 SOSEND_COUNTER_INCR(&sosend_copy_big); 1005 m_clget(m, M_DONTWAIT); 1006 if ((m->m_flags & M_EXT) == 0) 1007 goto nopages; 1008 mlen = MCLBYTES; 1009 if (atomic && top == 0) { 1010 len = lmin(MCLBYTES - max_hdr, 1011 resid); 1012 m->m_data += max_hdr; 1013 } else 1014 len = lmin(MCLBYTES, resid); 1015 space -= len; 1016 } else { 1017 nopages: 1018 SOSEND_COUNTER_INCR(&sosend_copy_small); 1019 len = lmin(lmin(mlen, resid), space); 1020 space -= len; 1021 /* 1022 * For datagram protocols, leave room 1023 * for protocol headers in first mbuf. 1024 */ 1025 if (atomic && top == 0 && len < mlen) 1026 m_align(m, len); 1027 } 1028 error = uiomove(mtod(m, void *), (int)len, uio); 1029 have_data: 1030 resid = uio->uio_resid; 1031 m->m_len = len; 1032 *mp = m; 1033 top->m_pkthdr.len += len; 1034 s = splsoftnet(); 1035 solock(so); 1036 if (error != 0) 1037 goto release; 1038 mp = &m->m_next; 1039 if (resid <= 0) { 1040 if (flags & MSG_EOR) 1041 top->m_flags |= M_EOR; 1042 break; 1043 } 1044 } while (space > 0 && atomic); 1045 1046 if (so->so_state & SS_CANTSENDMORE) { 1047 error = EPIPE; 1048 goto release; 1049 } 1050 if (dontroute) 1051 so->so_options |= SO_DONTROUTE; 1052 if (resid > 0) 1053 so->so_state |= SS_MORETOCOME; 1054 if (flags & MSG_OOB) { 1055 error = (*so->so_proto->pr_usrreqs->pr_sendoob)( 1056 so, top, control); 1057 } else { 1058 error = (*so->so_proto->pr_usrreqs->pr_send)(so, 1059 top, addr, control, l); 1060 } 1061 if (dontroute) 1062 so->so_options &= ~SO_DONTROUTE; 1063 if (resid > 0) 1064 so->so_state &= ~SS_MORETOCOME; 1065 clen = 0; 1066 control = NULL; 1067 top = NULL; 1068 mp = ⊤ 1069 if (error != 0) 1070 goto release; 1071 } while (resid && space > 0); 1072 } while (resid); 1073 1074 release: 1075 sbunlock(&so->so_snd); 1076 out: 1077 sounlock(so); 1078 splx(s); 1079 if (top) 1080 m_freem(top); 1081 if (control) 1082 m_freem(control); 1083 return error; 1084 } 1085 1086 /* 1087 * Following replacement or removal of the first mbuf on the first 1088 * mbuf chain of a socket buffer, push necessary state changes back 1089 * into the socket buffer so that other consumers see the values 1090 * consistently. 'nextrecord' is the caller's locally stored value of 1091 * the original value of sb->sb_mb->m_nextpkt which must be restored 1092 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1093 */ 1094 static void 1095 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1096 { 1097 1098 KASSERT(solocked(sb->sb_so)); 1099 1100 /* 1101 * First, update for the new value of nextrecord. If necessary, 1102 * make it the first record. 1103 */ 1104 if (sb->sb_mb != NULL) 1105 sb->sb_mb->m_nextpkt = nextrecord; 1106 else 1107 sb->sb_mb = nextrecord; 1108 1109 /* 1110 * Now update any dependent socket buffer fields to reflect 1111 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1112 * the addition of a second clause that takes care of the 1113 * case where sb_mb has been updated, but remains the last 1114 * record. 1115 */ 1116 if (sb->sb_mb == NULL) { 1117 sb->sb_mbtail = NULL; 1118 sb->sb_lastrecord = NULL; 1119 } else if (sb->sb_mb->m_nextpkt == NULL) 1120 sb->sb_lastrecord = sb->sb_mb; 1121 } 1122 1123 /* 1124 * Implement receive operations on a socket. 1125 * 1126 * We depend on the way that records are added to the sockbuf by sbappend*. In 1127 * particular, each record (mbufs linked through m_next) must begin with an 1128 * address if the protocol so specifies, followed by an optional mbuf or mbufs 1129 * containing ancillary data, and then zero or more mbufs of data. 1130 * 1131 * In order to avoid blocking network interrupts for the entire time here, we 1132 * splx() while doing the actual copy to user space. Although the sockbuf is 1133 * locked, new data may still be appended, and thus we must maintain 1134 * consistency of the sockbuf during that time. 1135 * 1136 * The caller may receive the data as a single mbuf chain by supplying an mbuf 1137 * **mp0 for use in returning the chain. The uio is then used only for the 1138 * count in uio_resid. 1139 */ 1140 int 1141 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1142 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1143 { 1144 struct lwp *l = curlwp; 1145 struct mbuf *m, **mp, *mt; 1146 size_t len, offset, moff, orig_resid; 1147 int atomic, flags, error, s, type; 1148 const struct protosw *pr; 1149 struct mbuf *nextrecord; 1150 int mbuf_removed = 0; 1151 const struct domain *dom; 1152 short wakeup_state = 0; 1153 1154 pr = so->so_proto; 1155 atomic = pr->pr_flags & PR_ATOMIC; 1156 dom = pr->pr_domain; 1157 mp = mp0; 1158 type = 0; 1159 orig_resid = uio->uio_resid; 1160 1161 if (paddr != NULL) 1162 *paddr = NULL; 1163 if (controlp != NULL) 1164 *controlp = NULL; 1165 if (flagsp != NULL) 1166 flags = *flagsp &~ MSG_EOR; 1167 else 1168 flags = 0; 1169 1170 if (flags & MSG_OOB) { 1171 m = m_get(M_WAIT, MT_DATA); 1172 solock(so); 1173 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK); 1174 sounlock(so); 1175 if (error) 1176 goto bad; 1177 do { 1178 error = uiomove(mtod(m, void *), 1179 MIN(uio->uio_resid, m->m_len), uio); 1180 m = m_free(m); 1181 } while (uio->uio_resid > 0 && error == 0 && m); 1182 bad: 1183 if (m != NULL) 1184 m_freem(m); 1185 return error; 1186 } 1187 if (mp != NULL) 1188 *mp = NULL; 1189 1190 /* 1191 * solock() provides atomicity of access. splsoftnet() prevents 1192 * protocol processing soft interrupts from interrupting us and 1193 * blocking (expensive). 1194 */ 1195 s = splsoftnet(); 1196 solock(so); 1197 restart: 1198 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1199 sounlock(so); 1200 splx(s); 1201 return error; 1202 } 1203 m = so->so_rcv.sb_mb; 1204 1205 /* 1206 * If we have less data than requested, block awaiting more 1207 * (subject to any timeout) if: 1208 * 1. the current count is less than the low water mark, 1209 * 2. MSG_WAITALL is set, and it is possible to do the entire 1210 * receive operation at once if we block (resid <= hiwat), or 1211 * 3. MSG_DONTWAIT is not set. 1212 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1213 * we have to do the receive in sections, and thus risk returning 1214 * a short count if a timeout or signal occurs after we start. 1215 */ 1216 if (m == NULL || 1217 ((flags & MSG_DONTWAIT) == 0 && 1218 so->so_rcv.sb_cc < uio->uio_resid && 1219 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1220 ((flags & MSG_WAITALL) && 1221 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1222 m->m_nextpkt == NULL && !atomic)) { 1223 #ifdef DIAGNOSTIC 1224 if (m == NULL && so->so_rcv.sb_cc) 1225 panic("receive 1"); 1226 #endif 1227 if (so->so_error || so->so_rerror) { 1228 if (m != NULL) 1229 goto dontblock; 1230 if (so->so_error) { 1231 error = so->so_error; 1232 so->so_error = 0; 1233 } else { 1234 error = so->so_rerror; 1235 so->so_rerror = 0; 1236 } 1237 goto release; 1238 } 1239 if (so->so_state & SS_CANTRCVMORE) { 1240 if (m != NULL) 1241 goto dontblock; 1242 else 1243 goto release; 1244 } 1245 for (; m != NULL; m = m->m_next) 1246 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1247 m = so->so_rcv.sb_mb; 1248 goto dontblock; 1249 } 1250 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1251 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1252 error = ENOTCONN; 1253 goto release; 1254 } 1255 if (uio->uio_resid == 0) 1256 goto release; 1257 if ((so->so_state & SS_NBIO) || 1258 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1259 error = EWOULDBLOCK; 1260 goto release; 1261 } 1262 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1263 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1264 sbunlock(&so->so_rcv); 1265 if (wakeup_state & SS_RESTARTSYS) 1266 error = ERESTART; 1267 else 1268 error = sbwait(&so->so_rcv); 1269 if (error != 0) { 1270 sounlock(so); 1271 splx(s); 1272 return error; 1273 } 1274 wakeup_state = so->so_state; 1275 goto restart; 1276 } 1277 1278 dontblock: 1279 /* 1280 * On entry here, m points to the first record of the socket buffer. 1281 * From this point onward, we maintain 'nextrecord' as a cache of the 1282 * pointer to the next record in the socket buffer. We must keep the 1283 * various socket buffer pointers and local stack versions of the 1284 * pointers in sync, pushing out modifications before dropping the 1285 * socket lock, and re-reading them when picking it up. 1286 * 1287 * Otherwise, we will race with the network stack appending new data 1288 * or records onto the socket buffer by using inconsistent/stale 1289 * versions of the field, possibly resulting in socket buffer 1290 * corruption. 1291 * 1292 * By holding the high-level sblock(), we prevent simultaneous 1293 * readers from pulling off the front of the socket buffer. 1294 */ 1295 if (l != NULL) 1296 l->l_ru.ru_msgrcv++; 1297 KASSERT(m == so->so_rcv.sb_mb); 1298 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1299 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1300 nextrecord = m->m_nextpkt; 1301 1302 if (pr->pr_flags & PR_ADDR) { 1303 KASSERT(m->m_type == MT_SONAME); 1304 orig_resid = 0; 1305 if (flags & MSG_PEEK) { 1306 if (paddr) 1307 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT); 1308 m = m->m_next; 1309 } else { 1310 sbfree(&so->so_rcv, m); 1311 mbuf_removed = 1; 1312 if (paddr != NULL) { 1313 *paddr = m; 1314 so->so_rcv.sb_mb = m->m_next; 1315 m->m_next = NULL; 1316 m = so->so_rcv.sb_mb; 1317 } else { 1318 m = so->so_rcv.sb_mb = m_free(m); 1319 } 1320 sbsync(&so->so_rcv, nextrecord); 1321 } 1322 } 1323 1324 if (pr->pr_flags & PR_ADDR_OPT) { 1325 /* 1326 * For SCTP we may be getting a whole message OR a partial 1327 * delivery. 1328 */ 1329 if (m->m_type == MT_SONAME) { 1330 orig_resid = 0; 1331 if (flags & MSG_PEEK) { 1332 if (paddr) 1333 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT); 1334 m = m->m_next; 1335 } else { 1336 sbfree(&so->so_rcv, m); 1337 /* XXX XXX XXX: should set mbuf_removed? */ 1338 if (paddr) { 1339 *paddr = m; 1340 so->so_rcv.sb_mb = m->m_next; 1341 m->m_next = 0; 1342 m = so->so_rcv.sb_mb; 1343 } else { 1344 m = so->so_rcv.sb_mb = m_free(m); 1345 } 1346 /* XXX XXX XXX: isn't there an sbsync() 1347 * missing here? */ 1348 } 1349 } 1350 } 1351 1352 /* 1353 * Process one or more MT_CONTROL mbufs present before any data mbufs 1354 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1355 * just copy the data; if !MSG_PEEK, we call into the protocol to 1356 * perform externalization (or freeing if controlp == NULL). 1357 */ 1358 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1359 struct mbuf *cm = NULL, *cmn; 1360 struct mbuf **cme = &cm; 1361 1362 do { 1363 if (flags & MSG_PEEK) { 1364 if (controlp != NULL) { 1365 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT); 1366 controlp = &(*controlp)->m_next; 1367 } 1368 m = m->m_next; 1369 } else { 1370 sbfree(&so->so_rcv, m); 1371 so->so_rcv.sb_mb = m->m_next; 1372 m->m_next = NULL; 1373 *cme = m; 1374 cme = &(*cme)->m_next; 1375 m = so->so_rcv.sb_mb; 1376 } 1377 } while (m != NULL && m->m_type == MT_CONTROL); 1378 if ((flags & MSG_PEEK) == 0) 1379 sbsync(&so->so_rcv, nextrecord); 1380 1381 for (; cm != NULL; cm = cmn) { 1382 cmn = cm->m_next; 1383 cm->m_next = NULL; 1384 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1385 if (controlp != NULL) { 1386 if (dom->dom_externalize != NULL && 1387 type == SCM_RIGHTS) { 1388 sounlock(so); 1389 splx(s); 1390 error = (*dom->dom_externalize)(cm, l, 1391 (flags & MSG_CMSG_CLOEXEC) ? 1392 O_CLOEXEC : 0); 1393 s = splsoftnet(); 1394 solock(so); 1395 } 1396 *controlp = cm; 1397 while (*controlp != NULL) 1398 controlp = &(*controlp)->m_next; 1399 } else { 1400 /* 1401 * Dispose of any SCM_RIGHTS message that went 1402 * through the read path rather than recv. 1403 */ 1404 if (dom->dom_dispose != NULL && 1405 type == SCM_RIGHTS) { 1406 sounlock(so); 1407 (*dom->dom_dispose)(cm); 1408 solock(so); 1409 } 1410 m_freem(cm); 1411 } 1412 } 1413 if (m != NULL) 1414 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1415 else 1416 nextrecord = so->so_rcv.sb_mb; 1417 orig_resid = 0; 1418 } 1419 1420 /* If m is non-NULL, we have some data to read. */ 1421 if (__predict_true(m != NULL)) { 1422 type = m->m_type; 1423 if (type == MT_OOBDATA) 1424 flags |= MSG_OOB; 1425 } 1426 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1427 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1428 1429 moff = 0; 1430 offset = 0; 1431 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1432 /* 1433 * If the type of mbuf has changed, end the receive 1434 * operation and do a short read. 1435 */ 1436 if (m->m_type == MT_OOBDATA) { 1437 if (type != MT_OOBDATA) 1438 break; 1439 } else if (type == MT_OOBDATA) { 1440 break; 1441 } else if (m->m_type == MT_CONTROL) { 1442 break; 1443 } 1444 #ifdef DIAGNOSTIC 1445 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) { 1446 panic("%s: m_type=%d", __func__, m->m_type); 1447 } 1448 #endif 1449 1450 so->so_state &= ~SS_RCVATMARK; 1451 wakeup_state = 0; 1452 len = uio->uio_resid; 1453 if (so->so_oobmark && len > so->so_oobmark - offset) 1454 len = so->so_oobmark - offset; 1455 if (len > m->m_len - moff) 1456 len = m->m_len - moff; 1457 1458 /* 1459 * If mp is set, just pass back the mbufs. 1460 * Otherwise copy them out via the uio, then free. 1461 * Sockbuf must be consistent here (points to current mbuf, 1462 * it points to next record) when we drop priority; 1463 * we must note any additions to the sockbuf when we 1464 * block interrupts again. 1465 */ 1466 if (mp == NULL) { 1467 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1468 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1469 sounlock(so); 1470 splx(s); 1471 error = uiomove(mtod(m, char *) + moff, len, uio); 1472 s = splsoftnet(); 1473 solock(so); 1474 if (error != 0) { 1475 /* 1476 * If any part of the record has been removed 1477 * (such as the MT_SONAME mbuf, which will 1478 * happen when PR_ADDR, and thus also 1479 * PR_ATOMIC, is set), then drop the entire 1480 * record to maintain the atomicity of the 1481 * receive operation. 1482 * 1483 * This avoids a later panic("receive 1a") 1484 * when compiled with DIAGNOSTIC. 1485 */ 1486 if (m && mbuf_removed && atomic) 1487 (void) sbdroprecord(&so->so_rcv); 1488 1489 goto release; 1490 } 1491 } else { 1492 uio->uio_resid -= len; 1493 } 1494 1495 if (len == m->m_len - moff) { 1496 if (m->m_flags & M_EOR) 1497 flags |= MSG_EOR; 1498 #ifdef SCTP 1499 if (m->m_flags & M_NOTIFICATION) 1500 flags |= MSG_NOTIFICATION; 1501 #endif 1502 if (flags & MSG_PEEK) { 1503 m = m->m_next; 1504 moff = 0; 1505 } else { 1506 nextrecord = m->m_nextpkt; 1507 sbfree(&so->so_rcv, m); 1508 if (mp) { 1509 *mp = m; 1510 mp = &m->m_next; 1511 so->so_rcv.sb_mb = m = m->m_next; 1512 *mp = NULL; 1513 } else { 1514 m = so->so_rcv.sb_mb = m_free(m); 1515 } 1516 /* 1517 * If m != NULL, we also know that 1518 * so->so_rcv.sb_mb != NULL. 1519 */ 1520 KASSERT(so->so_rcv.sb_mb == m); 1521 if (m) { 1522 m->m_nextpkt = nextrecord; 1523 if (nextrecord == NULL) 1524 so->so_rcv.sb_lastrecord = m; 1525 } else { 1526 so->so_rcv.sb_mb = nextrecord; 1527 SB_EMPTY_FIXUP(&so->so_rcv); 1528 } 1529 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1530 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1531 } 1532 } else if (flags & MSG_PEEK) { 1533 moff += len; 1534 } else { 1535 if (mp != NULL) { 1536 mt = m_copym(m, 0, len, M_NOWAIT); 1537 if (__predict_false(mt == NULL)) { 1538 sounlock(so); 1539 mt = m_copym(m, 0, len, M_WAIT); 1540 solock(so); 1541 } 1542 *mp = mt; 1543 } 1544 m->m_data += len; 1545 m->m_len -= len; 1546 so->so_rcv.sb_cc -= len; 1547 } 1548 1549 if (so->so_oobmark) { 1550 if ((flags & MSG_PEEK) == 0) { 1551 so->so_oobmark -= len; 1552 if (so->so_oobmark == 0) { 1553 so->so_state |= SS_RCVATMARK; 1554 break; 1555 } 1556 } else { 1557 offset += len; 1558 if (offset == so->so_oobmark) 1559 break; 1560 } 1561 } 1562 if (flags & MSG_EOR) 1563 break; 1564 1565 /* 1566 * If the MSG_WAITALL flag is set (for non-atomic socket), 1567 * we must not quit until "uio->uio_resid == 0" or an error 1568 * termination. If a signal/timeout occurs, return 1569 * with a short count but without error. 1570 * Keep sockbuf locked against other readers. 1571 */ 1572 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1573 !sosendallatonce(so) && !nextrecord) { 1574 if (so->so_error || so->so_rerror || 1575 so->so_state & SS_CANTRCVMORE) 1576 break; 1577 /* 1578 * If we are peeking and the socket receive buffer is 1579 * full, stop since we can't get more data to peek at. 1580 */ 1581 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1582 break; 1583 /* 1584 * If we've drained the socket buffer, tell the 1585 * protocol in case it needs to do something to 1586 * get it filled again. 1587 */ 1588 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1589 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1590 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1591 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1592 if (wakeup_state & SS_RESTARTSYS) 1593 error = ERESTART; 1594 else 1595 error = sbwait(&so->so_rcv); 1596 if (error != 0) { 1597 sbunlock(&so->so_rcv); 1598 sounlock(so); 1599 splx(s); 1600 return 0; 1601 } 1602 if ((m = so->so_rcv.sb_mb) != NULL) 1603 nextrecord = m->m_nextpkt; 1604 wakeup_state = so->so_state; 1605 } 1606 } 1607 1608 if (m && atomic) { 1609 flags |= MSG_TRUNC; 1610 if ((flags & MSG_PEEK) == 0) 1611 (void) sbdroprecord(&so->so_rcv); 1612 } 1613 if ((flags & MSG_PEEK) == 0) { 1614 if (m == NULL) { 1615 /* 1616 * First part is an inline SB_EMPTY_FIXUP(). Second 1617 * part makes sure sb_lastrecord is up-to-date if 1618 * there is still data in the socket buffer. 1619 */ 1620 so->so_rcv.sb_mb = nextrecord; 1621 if (so->so_rcv.sb_mb == NULL) { 1622 so->so_rcv.sb_mbtail = NULL; 1623 so->so_rcv.sb_lastrecord = NULL; 1624 } else if (nextrecord->m_nextpkt == NULL) 1625 so->so_rcv.sb_lastrecord = nextrecord; 1626 } 1627 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1628 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1629 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1630 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1631 } 1632 if (orig_resid == uio->uio_resid && orig_resid && 1633 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1634 sbunlock(&so->so_rcv); 1635 goto restart; 1636 } 1637 1638 if (flagsp != NULL) 1639 *flagsp |= flags; 1640 release: 1641 sbunlock(&so->so_rcv); 1642 sounlock(so); 1643 splx(s); 1644 return error; 1645 } 1646 1647 int 1648 soshutdown(struct socket *so, int how) 1649 { 1650 const struct protosw *pr; 1651 int error; 1652 1653 KASSERT(solocked(so)); 1654 1655 pr = so->so_proto; 1656 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1657 return EINVAL; 1658 1659 if (how == SHUT_RD || how == SHUT_RDWR) { 1660 sorflush(so); 1661 error = 0; 1662 } 1663 if (how == SHUT_WR || how == SHUT_RDWR) 1664 error = (*pr->pr_usrreqs->pr_shutdown)(so); 1665 1666 return error; 1667 } 1668 1669 void 1670 sorestart(struct socket *so) 1671 { 1672 /* 1673 * An application has called close() on an fd on which another 1674 * of its threads has called a socket system call. 1675 * Mark this and wake everyone up, and code that would block again 1676 * instead returns ERESTART. 1677 * On system call re-entry the fd is validated and EBADF returned. 1678 * Any other fd will block again on the 2nd syscall. 1679 */ 1680 solock(so); 1681 so->so_state |= SS_RESTARTSYS; 1682 cv_broadcast(&so->so_cv); 1683 cv_broadcast(&so->so_snd.sb_cv); 1684 cv_broadcast(&so->so_rcv.sb_cv); 1685 sounlock(so); 1686 } 1687 1688 void 1689 sorflush(struct socket *so) 1690 { 1691 struct sockbuf *sb, asb; 1692 const struct protosw *pr; 1693 1694 KASSERT(solocked(so)); 1695 1696 sb = &so->so_rcv; 1697 pr = so->so_proto; 1698 socantrcvmore(so); 1699 sb->sb_flags |= SB_NOINTR; 1700 (void )sblock(sb, M_WAITOK); 1701 sbunlock(sb); 1702 asb = *sb; 1703 /* 1704 * Clear most of the sockbuf structure, but leave some of the 1705 * fields valid. 1706 */ 1707 memset(&sb->sb_startzero, 0, 1708 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1709 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1710 sounlock(so); 1711 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1712 solock(so); 1713 } 1714 sbrelease(&asb, so); 1715 } 1716 1717 /* 1718 * internal set SOL_SOCKET options 1719 */ 1720 static int 1721 sosetopt1(struct socket *so, const struct sockopt *sopt) 1722 { 1723 int error, opt; 1724 int optval = 0; /* XXX: gcc */ 1725 struct linger l; 1726 struct timeval tv; 1727 1728 opt = sopt->sopt_name; 1729 1730 switch (opt) { 1731 1732 case SO_ACCEPTFILTER: 1733 error = accept_filt_setopt(so, sopt); 1734 KASSERT(solocked(so)); 1735 break; 1736 1737 case SO_LINGER: 1738 error = sockopt_get(sopt, &l, sizeof(l)); 1739 solock(so); 1740 if (error) 1741 break; 1742 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1743 l.l_linger > (INT_MAX / hz)) { 1744 error = EDOM; 1745 break; 1746 } 1747 so->so_linger = l.l_linger; 1748 if (l.l_onoff) 1749 so->so_options |= SO_LINGER; 1750 else 1751 so->so_options &= ~SO_LINGER; 1752 break; 1753 1754 case SO_DEBUG: 1755 case SO_KEEPALIVE: 1756 case SO_DONTROUTE: 1757 case SO_USELOOPBACK: 1758 case SO_BROADCAST: 1759 case SO_REUSEADDR: 1760 case SO_REUSEPORT: 1761 case SO_OOBINLINE: 1762 case SO_TIMESTAMP: 1763 case SO_NOSIGPIPE: 1764 case SO_RERROR: 1765 error = sockopt_getint(sopt, &optval); 1766 solock(so); 1767 if (error) 1768 break; 1769 if (optval) 1770 so->so_options |= opt; 1771 else 1772 so->so_options &= ~opt; 1773 break; 1774 1775 case SO_SNDBUF: 1776 case SO_RCVBUF: 1777 case SO_SNDLOWAT: 1778 case SO_RCVLOWAT: 1779 error = sockopt_getint(sopt, &optval); 1780 solock(so); 1781 if (error) 1782 break; 1783 1784 /* 1785 * Values < 1 make no sense for any of these 1786 * options, so disallow them. 1787 */ 1788 if (optval < 1) { 1789 error = EINVAL; 1790 break; 1791 } 1792 1793 switch (opt) { 1794 case SO_SNDBUF: 1795 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1796 error = ENOBUFS; 1797 break; 1798 } 1799 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1800 break; 1801 1802 case SO_RCVBUF: 1803 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1804 error = ENOBUFS; 1805 break; 1806 } 1807 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1808 break; 1809 1810 /* 1811 * Make sure the low-water is never greater than 1812 * the high-water. 1813 */ 1814 case SO_SNDLOWAT: 1815 if (optval > so->so_snd.sb_hiwat) 1816 optval = so->so_snd.sb_hiwat; 1817 1818 so->so_snd.sb_lowat = optval; 1819 break; 1820 1821 case SO_RCVLOWAT: 1822 if (optval > so->so_rcv.sb_hiwat) 1823 optval = so->so_rcv.sb_hiwat; 1824 1825 so->so_rcv.sb_lowat = optval; 1826 break; 1827 } 1828 break; 1829 1830 case SO_SNDTIMEO: 1831 case SO_RCVTIMEO: 1832 solock(so); 1833 error = sockopt_get(sopt, &tv, sizeof(tv)); 1834 if (error) 1835 break; 1836 1837 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1838 error = EDOM; 1839 break; 1840 } 1841 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1842 error = EDOM; 1843 break; 1844 } 1845 1846 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1847 if (optval == 0 && tv.tv_usec != 0) 1848 optval = 1; 1849 1850 switch (opt) { 1851 case SO_SNDTIMEO: 1852 so->so_snd.sb_timeo = optval; 1853 break; 1854 case SO_RCVTIMEO: 1855 so->so_rcv.sb_timeo = optval; 1856 break; 1857 } 1858 break; 1859 1860 default: 1861 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook, 1862 (opt, so, sopt), enosys(), error); 1863 if (error == ENOSYS || error == EPASSTHROUGH) { 1864 solock(so); 1865 error = ENOPROTOOPT; 1866 } 1867 break; 1868 } 1869 KASSERT(solocked(so)); 1870 return error; 1871 } 1872 1873 int 1874 sosetopt(struct socket *so, struct sockopt *sopt) 1875 { 1876 int error, prerr; 1877 1878 if (sopt->sopt_level == SOL_SOCKET) { 1879 error = sosetopt1(so, sopt); 1880 KASSERT(solocked(so)); 1881 } else { 1882 error = ENOPROTOOPT; 1883 solock(so); 1884 } 1885 1886 if ((error == 0 || error == ENOPROTOOPT) && 1887 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1888 /* give the protocol stack a shot */ 1889 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1890 if (prerr == 0) 1891 error = 0; 1892 else if (prerr != ENOPROTOOPT) 1893 error = prerr; 1894 } 1895 sounlock(so); 1896 return error; 1897 } 1898 1899 /* 1900 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1901 */ 1902 int 1903 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1904 const void *val, size_t valsize) 1905 { 1906 struct sockopt sopt; 1907 int error; 1908 1909 KASSERT(valsize == 0 || val != NULL); 1910 1911 sockopt_init(&sopt, level, name, valsize); 1912 sockopt_set(&sopt, val, valsize); 1913 1914 error = sosetopt(so, &sopt); 1915 1916 sockopt_destroy(&sopt); 1917 1918 return error; 1919 } 1920 1921 /* 1922 * internal get SOL_SOCKET options 1923 */ 1924 static int 1925 sogetopt1(struct socket *so, struct sockopt *sopt) 1926 { 1927 int error, optval, opt; 1928 struct linger l; 1929 struct timeval tv; 1930 1931 switch ((opt = sopt->sopt_name)) { 1932 1933 case SO_ACCEPTFILTER: 1934 error = accept_filt_getopt(so, sopt); 1935 break; 1936 1937 case SO_LINGER: 1938 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1939 l.l_linger = so->so_linger; 1940 1941 error = sockopt_set(sopt, &l, sizeof(l)); 1942 break; 1943 1944 case SO_USELOOPBACK: 1945 case SO_DONTROUTE: 1946 case SO_DEBUG: 1947 case SO_KEEPALIVE: 1948 case SO_REUSEADDR: 1949 case SO_REUSEPORT: 1950 case SO_BROADCAST: 1951 case SO_OOBINLINE: 1952 case SO_TIMESTAMP: 1953 case SO_NOSIGPIPE: 1954 case SO_RERROR: 1955 case SO_ACCEPTCONN: 1956 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1957 break; 1958 1959 case SO_TYPE: 1960 error = sockopt_setint(sopt, so->so_type); 1961 break; 1962 1963 case SO_ERROR: 1964 if (so->so_error == 0) { 1965 so->so_error = so->so_rerror; 1966 so->so_rerror = 0; 1967 } 1968 error = sockopt_setint(sopt, so->so_error); 1969 so->so_error = 0; 1970 break; 1971 1972 case SO_SNDBUF: 1973 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1974 break; 1975 1976 case SO_RCVBUF: 1977 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1978 break; 1979 1980 case SO_SNDLOWAT: 1981 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1982 break; 1983 1984 case SO_RCVLOWAT: 1985 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1986 break; 1987 1988 case SO_SNDTIMEO: 1989 case SO_RCVTIMEO: 1990 optval = (opt == SO_SNDTIMEO ? 1991 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1992 1993 tv.tv_sec = optval / hz; 1994 tv.tv_usec = (optval % hz) * tick; 1995 1996 error = sockopt_set(sopt, &tv, sizeof(tv)); 1997 break; 1998 1999 case SO_OVERFLOWED: 2000 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 2001 break; 2002 2003 default: 2004 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook, 2005 (opt, so, sopt), enosys(), error); 2006 if (error) 2007 error = ENOPROTOOPT; 2008 break; 2009 } 2010 2011 return error; 2012 } 2013 2014 int 2015 sogetopt(struct socket *so, struct sockopt *sopt) 2016 { 2017 int error; 2018 2019 solock(so); 2020 if (sopt->sopt_level != SOL_SOCKET) { 2021 if (so->so_proto && so->so_proto->pr_ctloutput) { 2022 error = ((*so->so_proto->pr_ctloutput) 2023 (PRCO_GETOPT, so, sopt)); 2024 } else 2025 error = (ENOPROTOOPT); 2026 } else { 2027 error = sogetopt1(so, sopt); 2028 } 2029 sounlock(so); 2030 return error; 2031 } 2032 2033 /* 2034 * alloc sockopt data buffer buffer 2035 * - will be released at destroy 2036 */ 2037 static int 2038 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2039 { 2040 2041 KASSERT(sopt->sopt_size == 0); 2042 2043 if (len > sizeof(sopt->sopt_buf)) { 2044 sopt->sopt_data = kmem_zalloc(len, kmflag); 2045 if (sopt->sopt_data == NULL) 2046 return ENOMEM; 2047 } else 2048 sopt->sopt_data = sopt->sopt_buf; 2049 2050 sopt->sopt_size = len; 2051 return 0; 2052 } 2053 2054 /* 2055 * initialise sockopt storage 2056 * - MAY sleep during allocation 2057 */ 2058 void 2059 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2060 { 2061 2062 memset(sopt, 0, sizeof(*sopt)); 2063 2064 sopt->sopt_level = level; 2065 sopt->sopt_name = name; 2066 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2067 } 2068 2069 /* 2070 * destroy sockopt storage 2071 * - will release any held memory references 2072 */ 2073 void 2074 sockopt_destroy(struct sockopt *sopt) 2075 { 2076 2077 if (sopt->sopt_data != sopt->sopt_buf) 2078 kmem_free(sopt->sopt_data, sopt->sopt_size); 2079 2080 memset(sopt, 0, sizeof(*sopt)); 2081 } 2082 2083 /* 2084 * set sockopt value 2085 * - value is copied into sockopt 2086 * - memory is allocated when necessary, will not sleep 2087 */ 2088 int 2089 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2090 { 2091 int error; 2092 2093 if (sopt->sopt_size == 0) { 2094 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2095 if (error) 2096 return error; 2097 } 2098 2099 sopt->sopt_retsize = MIN(sopt->sopt_size, len); 2100 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize); 2101 2102 return 0; 2103 } 2104 2105 /* 2106 * common case of set sockopt integer value 2107 */ 2108 int 2109 sockopt_setint(struct sockopt *sopt, int val) 2110 { 2111 2112 return sockopt_set(sopt, &val, sizeof(int)); 2113 } 2114 2115 /* 2116 * get sockopt value 2117 * - correct size must be given 2118 */ 2119 int 2120 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2121 { 2122 2123 if (sopt->sopt_size != len) 2124 return EINVAL; 2125 2126 memcpy(buf, sopt->sopt_data, len); 2127 return 0; 2128 } 2129 2130 /* 2131 * common case of get sockopt integer value 2132 */ 2133 int 2134 sockopt_getint(const struct sockopt *sopt, int *valp) 2135 { 2136 2137 return sockopt_get(sopt, valp, sizeof(int)); 2138 } 2139 2140 /* 2141 * set sockopt value from mbuf 2142 * - ONLY for legacy code 2143 * - mbuf is released by sockopt 2144 * - will not sleep 2145 */ 2146 int 2147 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2148 { 2149 size_t len; 2150 int error; 2151 2152 len = m_length(m); 2153 2154 if (sopt->sopt_size == 0) { 2155 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2156 if (error) 2157 return error; 2158 } 2159 2160 sopt->sopt_retsize = MIN(sopt->sopt_size, len); 2161 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data); 2162 m_freem(m); 2163 2164 return 0; 2165 } 2166 2167 /* 2168 * get sockopt value into mbuf 2169 * - ONLY for legacy code 2170 * - mbuf to be released by the caller 2171 * - will not sleep 2172 */ 2173 struct mbuf * 2174 sockopt_getmbuf(const struct sockopt *sopt) 2175 { 2176 struct mbuf *m; 2177 2178 if (sopt->sopt_size > MCLBYTES) 2179 return NULL; 2180 2181 m = m_get(M_DONTWAIT, MT_SOOPTS); 2182 if (m == NULL) 2183 return NULL; 2184 2185 if (sopt->sopt_size > MLEN) { 2186 MCLGET(m, M_DONTWAIT); 2187 if ((m->m_flags & M_EXT) == 0) { 2188 m_free(m); 2189 return NULL; 2190 } 2191 } 2192 2193 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2194 m->m_len = sopt->sopt_size; 2195 2196 return m; 2197 } 2198 2199 void 2200 sohasoutofband(struct socket *so) 2201 { 2202 2203 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2204 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2205 } 2206 2207 static void 2208 filt_sordetach(struct knote *kn) 2209 { 2210 struct socket *so; 2211 2212 so = ((file_t *)kn->kn_obj)->f_socket; 2213 solock(so); 2214 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2215 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2216 so->so_rcv.sb_flags &= ~SB_KNOTE; 2217 sounlock(so); 2218 } 2219 2220 /*ARGSUSED*/ 2221 static int 2222 filt_soread(struct knote *kn, long hint) 2223 { 2224 struct socket *so; 2225 int rv; 2226 2227 so = ((file_t *)kn->kn_obj)->f_socket; 2228 if (hint != NOTE_SUBMIT) 2229 solock(so); 2230 kn->kn_data = so->so_rcv.sb_cc; 2231 if (so->so_state & SS_CANTRCVMORE) { 2232 kn->kn_flags |= EV_EOF; 2233 kn->kn_fflags = so->so_error; 2234 rv = 1; 2235 } else if (so->so_error || so->so_rerror) 2236 rv = 1; 2237 else if (kn->kn_sfflags & NOTE_LOWAT) 2238 rv = (kn->kn_data >= kn->kn_sdata); 2239 else 2240 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2241 if (hint != NOTE_SUBMIT) 2242 sounlock(so); 2243 return rv; 2244 } 2245 2246 static void 2247 filt_sowdetach(struct knote *kn) 2248 { 2249 struct socket *so; 2250 2251 so = ((file_t *)kn->kn_obj)->f_socket; 2252 solock(so); 2253 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2254 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2255 so->so_snd.sb_flags &= ~SB_KNOTE; 2256 sounlock(so); 2257 } 2258 2259 /*ARGSUSED*/ 2260 static int 2261 filt_sowrite(struct knote *kn, long hint) 2262 { 2263 struct socket *so; 2264 int rv; 2265 2266 so = ((file_t *)kn->kn_obj)->f_socket; 2267 if (hint != NOTE_SUBMIT) 2268 solock(so); 2269 kn->kn_data = sbspace(&so->so_snd); 2270 if (so->so_state & SS_CANTSENDMORE) { 2271 kn->kn_flags |= EV_EOF; 2272 kn->kn_fflags = so->so_error; 2273 rv = 1; 2274 } else if (so->so_error) 2275 rv = 1; 2276 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2277 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2278 rv = 0; 2279 else if (kn->kn_sfflags & NOTE_LOWAT) 2280 rv = (kn->kn_data >= kn->kn_sdata); 2281 else 2282 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2283 if (hint != NOTE_SUBMIT) 2284 sounlock(so); 2285 return rv; 2286 } 2287 2288 /*ARGSUSED*/ 2289 static int 2290 filt_solisten(struct knote *kn, long hint) 2291 { 2292 struct socket *so; 2293 int rv; 2294 2295 so = ((file_t *)kn->kn_obj)->f_socket; 2296 2297 /* 2298 * Set kn_data to number of incoming connections, not 2299 * counting partial (incomplete) connections. 2300 */ 2301 if (hint != NOTE_SUBMIT) 2302 solock(so); 2303 kn->kn_data = so->so_qlen; 2304 rv = (kn->kn_data > 0); 2305 if (hint != NOTE_SUBMIT) 2306 sounlock(so); 2307 return rv; 2308 } 2309 2310 static const struct filterops solisten_filtops = { 2311 .f_isfd = 1, 2312 .f_attach = NULL, 2313 .f_detach = filt_sordetach, 2314 .f_event = filt_solisten, 2315 }; 2316 2317 static const struct filterops soread_filtops = { 2318 .f_isfd = 1, 2319 .f_attach = NULL, 2320 .f_detach = filt_sordetach, 2321 .f_event = filt_soread, 2322 }; 2323 2324 static const struct filterops sowrite_filtops = { 2325 .f_isfd = 1, 2326 .f_attach = NULL, 2327 .f_detach = filt_sowdetach, 2328 .f_event = filt_sowrite, 2329 }; 2330 2331 int 2332 soo_kqfilter(struct file *fp, struct knote *kn) 2333 { 2334 struct socket *so; 2335 struct sockbuf *sb; 2336 2337 so = ((file_t *)kn->kn_obj)->f_socket; 2338 solock(so); 2339 switch (kn->kn_filter) { 2340 case EVFILT_READ: 2341 if (so->so_options & SO_ACCEPTCONN) 2342 kn->kn_fop = &solisten_filtops; 2343 else 2344 kn->kn_fop = &soread_filtops; 2345 sb = &so->so_rcv; 2346 break; 2347 case EVFILT_WRITE: 2348 kn->kn_fop = &sowrite_filtops; 2349 sb = &so->so_snd; 2350 break; 2351 default: 2352 sounlock(so); 2353 return EINVAL; 2354 } 2355 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2356 sb->sb_flags |= SB_KNOTE; 2357 sounlock(so); 2358 return 0; 2359 } 2360 2361 static int 2362 sodopoll(struct socket *so, int events) 2363 { 2364 int revents; 2365 2366 revents = 0; 2367 2368 if (events & (POLLIN | POLLRDNORM)) 2369 if (soreadable(so)) 2370 revents |= events & (POLLIN | POLLRDNORM); 2371 2372 if (events & (POLLOUT | POLLWRNORM)) 2373 if (sowritable(so)) 2374 revents |= events & (POLLOUT | POLLWRNORM); 2375 2376 if (events & (POLLPRI | POLLRDBAND)) 2377 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2378 revents |= events & (POLLPRI | POLLRDBAND); 2379 2380 return revents; 2381 } 2382 2383 int 2384 sopoll(struct socket *so, int events) 2385 { 2386 int revents = 0; 2387 2388 #ifndef DIAGNOSTIC 2389 /* 2390 * Do a quick, unlocked check in expectation that the socket 2391 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2392 * as the solocked() assertions will fail. 2393 */ 2394 if ((revents = sodopoll(so, events)) != 0) 2395 return revents; 2396 #endif 2397 2398 solock(so); 2399 if ((revents = sodopoll(so, events)) == 0) { 2400 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2401 selrecord(curlwp, &so->so_rcv.sb_sel); 2402 so->so_rcv.sb_flags |= SB_NOTIFY; 2403 } 2404 2405 if (events & (POLLOUT | POLLWRNORM)) { 2406 selrecord(curlwp, &so->so_snd.sb_sel); 2407 so->so_snd.sb_flags |= SB_NOTIFY; 2408 } 2409 } 2410 sounlock(so); 2411 2412 return revents; 2413 } 2414 2415 struct mbuf ** 2416 sbsavetimestamp(int opt, struct mbuf **mp) 2417 { 2418 struct timeval tv; 2419 int error; 2420 2421 microtime(&tv); 2422 2423 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, mp), enosys(), error); 2424 if (error == 0) 2425 return mp; 2426 2427 if (opt & SO_TIMESTAMP) { 2428 *mp = sbcreatecontrol(&tv, sizeof(tv), 2429 SCM_TIMESTAMP, SOL_SOCKET); 2430 if (*mp) 2431 mp = &(*mp)->m_next; 2432 } 2433 return mp; 2434 } 2435 2436 2437 #include <sys/sysctl.h> 2438 2439 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2440 static int sysctl_kern_sbmax(SYSCTLFN_PROTO); 2441 2442 /* 2443 * sysctl helper routine for kern.somaxkva. ensures that the given 2444 * value is not too small. 2445 * (XXX should we maybe make sure it's not too large as well?) 2446 */ 2447 static int 2448 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2449 { 2450 int error, new_somaxkva; 2451 struct sysctlnode node; 2452 2453 new_somaxkva = somaxkva; 2454 node = *rnode; 2455 node.sysctl_data = &new_somaxkva; 2456 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2457 if (error || newp == NULL) 2458 return error; 2459 2460 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2461 return EINVAL; 2462 2463 mutex_enter(&so_pendfree_lock); 2464 somaxkva = new_somaxkva; 2465 cv_broadcast(&socurkva_cv); 2466 mutex_exit(&so_pendfree_lock); 2467 2468 return error; 2469 } 2470 2471 /* 2472 * sysctl helper routine for kern.sbmax. Basically just ensures that 2473 * any new value is not too small. 2474 */ 2475 static int 2476 sysctl_kern_sbmax(SYSCTLFN_ARGS) 2477 { 2478 int error, new_sbmax; 2479 struct sysctlnode node; 2480 2481 new_sbmax = sb_max; 2482 node = *rnode; 2483 node.sysctl_data = &new_sbmax; 2484 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2485 if (error || newp == NULL) 2486 return error; 2487 2488 KERNEL_LOCK(1, NULL); 2489 error = sb_max_set(new_sbmax); 2490 KERNEL_UNLOCK_ONE(NULL); 2491 2492 return error; 2493 } 2494 2495 /* 2496 * sysctl helper routine for kern.sooptions. Ensures that only allowed 2497 * options can be set. 2498 */ 2499 static int 2500 sysctl_kern_sooptions(SYSCTLFN_ARGS) 2501 { 2502 int error, new_options; 2503 struct sysctlnode node; 2504 2505 new_options = sooptions; 2506 node = *rnode; 2507 node.sysctl_data = &new_options; 2508 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2509 if (error || newp == NULL) 2510 return error; 2511 2512 if (new_options & ~SO_DEFOPTS) 2513 return EINVAL; 2514 2515 sooptions = new_options; 2516 2517 return 0; 2518 } 2519 2520 static void 2521 sysctl_kern_socket_setup(void) 2522 { 2523 2524 KASSERT(socket_sysctllog == NULL); 2525 2526 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2527 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2528 CTLTYPE_INT, "somaxkva", 2529 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2530 "used for socket buffers"), 2531 sysctl_kern_somaxkva, 0, NULL, 0, 2532 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2533 2534 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2535 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2536 CTLTYPE_INT, "sbmax", 2537 SYSCTL_DESCR("Maximum socket buffer size"), 2538 sysctl_kern_sbmax, 0, NULL, 0, 2539 CTL_KERN, KERN_SBMAX, CTL_EOL); 2540 2541 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2542 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2543 CTLTYPE_INT, "sooptions", 2544 SYSCTL_DESCR("Default socket options"), 2545 sysctl_kern_sooptions, 0, NULL, 0, 2546 CTL_KERN, CTL_CREATE, CTL_EOL); 2547 } 2548