xref: /netbsd-src/sys/kern/sys_pipe.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: sys_pipe.c,v 1.146 2018/06/10 17:54:51 jdolecek Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1996 John S. Dyson
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice immediately at the beginning of the file, without modification,
41  *    this list of conditions, and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Absolutely no warranty of function or purpose is made by the author
46  *    John S. Dyson.
47  * 4. Modifications may be freely made to this file if the above conditions
48  *    are met.
49  */
50 
51 /*
52  * This file contains a high-performance replacement for the socket-based
53  * pipes scheme originally used.  It does not support all features of
54  * sockets, but does do everything that pipes normally do.
55  *
56  * This code has two modes of operation, a small write mode and a large
57  * write mode.  The small write mode acts like conventional pipes with
58  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
59  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
60  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61  * using the UVM page loan facility from where the receiving process can copy
62  * the data directly from the pages in the sending process.
63  *
64  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65  * happen for small transfers so that the system will not spend all of
66  * its time context switching.  PIPE_SIZE is constrained by the
67  * amount of kernel virtual memory.
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.146 2018/06/10 17:54:51 jdolecek Exp $");
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94 
95 /*
96  * Use this to disable direct I/O and decrease the code size:
97  * #define PIPE_NODIRECT
98  */
99 
100 /* XXX Disabled for now; rare hangs switching between direct/buffered */
101 #define PIPE_NODIRECT
102 
103 #ifndef PIPE_NODIRECT
104 #include <uvm/uvm.h>
105 
106 #if !defined(PMAP_DIRECT)
107 #  define PIPE_NODIRECT		/* Direct map interface not available */
108 #endif
109 
110 bool pipe_direct = true;
111 #endif
112 
113 static int	pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
114 static int	pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
115 static int	pipe_close(file_t *);
116 static int	pipe_poll(file_t *, int);
117 static int	pipe_kqfilter(file_t *, struct knote *);
118 static int	pipe_stat(file_t *, struct stat *);
119 static int	pipe_ioctl(file_t *, u_long, void *);
120 static void	pipe_restart(file_t *);
121 
122 static const struct fileops pipeops = {
123 	.fo_name = "pipe",
124 	.fo_read = pipe_read,
125 	.fo_write = pipe_write,
126 	.fo_ioctl = pipe_ioctl,
127 	.fo_fcntl = fnullop_fcntl,
128 	.fo_poll = pipe_poll,
129 	.fo_stat = pipe_stat,
130 	.fo_close = pipe_close,
131 	.fo_kqfilter = pipe_kqfilter,
132 	.fo_restart = pipe_restart,
133 };
134 
135 /*
136  * Default pipe buffer size(s), this can be kind-of large now because pipe
137  * space is pageable.  The pipe code will try to maintain locality of
138  * reference for performance reasons, so small amounts of outstanding I/O
139  * will not wipe the cache.
140  */
141 #define	MINPIPESIZE	(PIPE_SIZE / 3)
142 #define	MAXPIPESIZE	(2 * PIPE_SIZE / 3)
143 
144 /*
145  * Limit the number of "big" pipes
146  */
147 #define	LIMITBIGPIPES	32
148 static u_int	maxbigpipes = LIMITBIGPIPES;
149 static u_int	nbigpipe = 0;
150 
151 /*
152  * Amount of KVA consumed by pipe buffers.
153  */
154 static u_int	amountpipekva = 0;
155 
156 static void	pipeclose(struct pipe *);
157 static void	pipe_free_kmem(struct pipe *);
158 static int	pipe_create(struct pipe **, pool_cache_t);
159 static int	pipelock(struct pipe *, bool);
160 static inline void pipeunlock(struct pipe *);
161 static void	pipeselwakeup(struct pipe *, struct pipe *, int);
162 #ifndef PIPE_NODIRECT
163 static int	pipe_direct_write(file_t *, struct pipe *, struct uio *);
164 #endif
165 static int	pipespace(struct pipe *, int);
166 static int	pipe_ctor(void *, void *, int);
167 static void	pipe_dtor(void *, void *);
168 
169 #ifndef PIPE_NODIRECT
170 static int	pipe_loan_alloc(struct pipe *, int);
171 static void	pipe_loan_free(struct pipe *);
172 static int	pipe_direct_process_read(void *, size_t, void *);
173 #endif /* PIPE_NODIRECT */
174 
175 static pool_cache_t	pipe_wr_cache;
176 static pool_cache_t	pipe_rd_cache;
177 
178 void
179 pipe_init(void)
180 {
181 
182 	/* Writer side is not automatically allocated KVA. */
183 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
184 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
185 	KASSERT(pipe_wr_cache != NULL);
186 
187 	/* Reader side gets preallocated KVA. */
188 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
189 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
190 	KASSERT(pipe_rd_cache != NULL);
191 }
192 
193 static int
194 pipe_ctor(void *arg, void *obj, int flags)
195 {
196 	struct pipe *pipe;
197 	vaddr_t va;
198 
199 	pipe = obj;
200 
201 	memset(pipe, 0, sizeof(struct pipe));
202 	if (arg != NULL) {
203 		/* Preallocate space. */
204 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
205 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
206 		KASSERT(va != 0);
207 		pipe->pipe_kmem = va;
208 		atomic_add_int(&amountpipekva, PIPE_SIZE);
209 	}
210 	cv_init(&pipe->pipe_rcv, "pipe_rd");
211 	cv_init(&pipe->pipe_wcv, "pipe_wr");
212 	cv_init(&pipe->pipe_draincv, "pipe_drn");
213 	cv_init(&pipe->pipe_lkcv, "pipe_lk");
214 	selinit(&pipe->pipe_sel);
215 	pipe->pipe_state = PIPE_SIGNALR;
216 
217 	return 0;
218 }
219 
220 static void
221 pipe_dtor(void *arg, void *obj)
222 {
223 	struct pipe *pipe;
224 
225 	pipe = obj;
226 
227 	cv_destroy(&pipe->pipe_rcv);
228 	cv_destroy(&pipe->pipe_wcv);
229 	cv_destroy(&pipe->pipe_draincv);
230 	cv_destroy(&pipe->pipe_lkcv);
231 	seldestroy(&pipe->pipe_sel);
232 	if (pipe->pipe_kmem != 0) {
233 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
234 		    UVM_KMF_PAGEABLE);
235 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
236 	}
237 }
238 
239 /*
240  * The pipe system call for the DTYPE_PIPE type of pipes
241  */
242 int
243 pipe1(struct lwp *l, int *fildes, int flags)
244 {
245 	struct pipe *rpipe, *wpipe;
246 	file_t *rf, *wf;
247 	int fd, error;
248 	proc_t *p;
249 
250 	if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
251 		return EINVAL;
252 	p = curproc;
253 	rpipe = wpipe = NULL;
254 	if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
255 	    (error = pipe_create(&wpipe, pipe_wr_cache))) {
256 		goto free2;
257 	}
258 	rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
259 	wpipe->pipe_lock = rpipe->pipe_lock;
260 	mutex_obj_hold(wpipe->pipe_lock);
261 
262 	error = fd_allocfile(&rf, &fd);
263 	if (error)
264 		goto free2;
265 	fildes[0] = fd;
266 
267 	error = fd_allocfile(&wf, &fd);
268 	if (error)
269 		goto free3;
270 	fildes[1] = fd;
271 
272 	rf->f_flag = FREAD | flags;
273 	rf->f_type = DTYPE_PIPE;
274 	rf->f_pipe = rpipe;
275 	rf->f_ops = &pipeops;
276 	fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0);
277 
278 	wf->f_flag = FWRITE | flags;
279 	wf->f_type = DTYPE_PIPE;
280 	wf->f_pipe = wpipe;
281 	wf->f_ops = &pipeops;
282 	fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0);
283 
284 	rpipe->pipe_peer = wpipe;
285 	wpipe->pipe_peer = rpipe;
286 
287 	fd_affix(p, rf, fildes[0]);
288 	fd_affix(p, wf, fildes[1]);
289 	return (0);
290 free3:
291 	fd_abort(p, rf, fildes[0]);
292 free2:
293 	pipeclose(wpipe);
294 	pipeclose(rpipe);
295 
296 	return (error);
297 }
298 
299 /*
300  * Allocate kva for pipe circular buffer, the space is pageable
301  * This routine will 'realloc' the size of a pipe safely, if it fails
302  * it will retain the old buffer.
303  * If it fails it will return ENOMEM.
304  */
305 static int
306 pipespace(struct pipe *pipe, int size)
307 {
308 	void *buffer;
309 
310 	/*
311 	 * Allocate pageable virtual address space.  Physical memory is
312 	 * allocated on demand.
313 	 */
314 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
315 		buffer = (void *)pipe->pipe_kmem;
316 	} else {
317 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
318 		    0, UVM_KMF_PAGEABLE);
319 		if (buffer == NULL)
320 			return (ENOMEM);
321 		atomic_add_int(&amountpipekva, size);
322 	}
323 
324 	/* free old resources if we're resizing */
325 	pipe_free_kmem(pipe);
326 	pipe->pipe_buffer.buffer = buffer;
327 	pipe->pipe_buffer.size = size;
328 	pipe->pipe_buffer.in = 0;
329 	pipe->pipe_buffer.out = 0;
330 	pipe->pipe_buffer.cnt = 0;
331 	return (0);
332 }
333 
334 /*
335  * Initialize and allocate VM and memory for pipe.
336  */
337 static int
338 pipe_create(struct pipe **pipep, pool_cache_t cache)
339 {
340 	struct pipe *pipe;
341 	int error;
342 
343 	pipe = pool_cache_get(cache, PR_WAITOK);
344 	KASSERT(pipe != NULL);
345 	*pipep = pipe;
346 	error = 0;
347 	getnanotime(&pipe->pipe_btime);
348 	pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
349 	pipe->pipe_lock = NULL;
350 	if (cache == pipe_rd_cache) {
351 		error = pipespace(pipe, PIPE_SIZE);
352 	} else {
353 		pipe->pipe_buffer.buffer = NULL;
354 		pipe->pipe_buffer.size = 0;
355 		pipe->pipe_buffer.in = 0;
356 		pipe->pipe_buffer.out = 0;
357 		pipe->pipe_buffer.cnt = 0;
358 	}
359 	return error;
360 }
361 
362 /*
363  * Lock a pipe for I/O, blocking other access
364  * Called with pipe spin lock held.
365  */
366 static int
367 pipelock(struct pipe *pipe, bool catch_p)
368 {
369 	int error;
370 
371 	KASSERT(mutex_owned(pipe->pipe_lock));
372 
373 	while (pipe->pipe_state & PIPE_LOCKFL) {
374 		pipe->pipe_state |= PIPE_LWANT;
375 		if (catch_p) {
376 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
377 			if (error != 0)
378 				return error;
379 		} else
380 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
381 	}
382 
383 	pipe->pipe_state |= PIPE_LOCKFL;
384 
385 	return 0;
386 }
387 
388 /*
389  * unlock a pipe I/O lock
390  */
391 static inline void
392 pipeunlock(struct pipe *pipe)
393 {
394 
395 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
396 
397 	pipe->pipe_state &= ~PIPE_LOCKFL;
398 	if (pipe->pipe_state & PIPE_LWANT) {
399 		pipe->pipe_state &= ~PIPE_LWANT;
400 		cv_broadcast(&pipe->pipe_lkcv);
401 	}
402 }
403 
404 /*
405  * Select/poll wakup. This also sends SIGIO to peer connected to
406  * 'sigpipe' side of pipe.
407  */
408 static void
409 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
410 {
411 	int band;
412 
413 	switch (code) {
414 	case POLL_IN:
415 		band = POLLIN|POLLRDNORM;
416 		break;
417 	case POLL_OUT:
418 		band = POLLOUT|POLLWRNORM;
419 		break;
420 	case POLL_HUP:
421 		band = POLLHUP;
422 		break;
423 	case POLL_ERR:
424 		band = POLLERR;
425 		break;
426 	default:
427 		band = 0;
428 #ifdef DIAGNOSTIC
429 		printf("bad siginfo code %d in pipe notification.\n", code);
430 #endif
431 		break;
432 	}
433 
434 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
435 
436 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
437 		return;
438 
439 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
440 }
441 
442 #ifndef PIPE_NODIRECT
443 static int
444 pipe_direct_process_read(void *va, size_t len, void *arg)
445 {
446 	struct uio *uio = (struct uio *)arg;
447 
448 	return uiomove(va, len, uio);
449 }
450 #endif
451 
452 static int
453 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
454     int flags)
455 {
456 	struct pipe *rpipe = fp->f_pipe;
457 	struct pipebuf *bp = &rpipe->pipe_buffer;
458 	kmutex_t *lock = rpipe->pipe_lock;
459 	int error;
460 	size_t nread = 0;
461 	size_t size;
462 	size_t ocnt;
463 	unsigned int wakeup_state = 0;
464 
465 	mutex_enter(lock);
466 	++rpipe->pipe_busy;
467 	ocnt = bp->cnt;
468 
469 again:
470 	error = pipelock(rpipe, true);
471 	if (error)
472 		goto unlocked_error;
473 
474 	while (uio->uio_resid) {
475 		/*
476 		 * Normal pipe buffer receive.
477 		 */
478 		if (bp->cnt > 0) {
479 			size = bp->size - bp->out;
480 			if (size > bp->cnt)
481 				size = bp->cnt;
482 			if (size > uio->uio_resid)
483 				size = uio->uio_resid;
484 
485 			mutex_exit(lock);
486 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
487 			mutex_enter(lock);
488 			if (error)
489 				break;
490 
491 			bp->out += size;
492 			if (bp->out >= bp->size)
493 				bp->out = 0;
494 
495 			bp->cnt -= size;
496 
497 			/*
498 			 * If there is no more to read in the pipe, reset
499 			 * its pointers to the beginning.  This improves
500 			 * cache hit stats.
501 			 */
502 			if (bp->cnt == 0) {
503 				bp->in = 0;
504 				bp->out = 0;
505 			}
506 			nread += size;
507 			continue;
508 		}
509 
510 #ifndef PIPE_NODIRECT
511 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
512 			struct pipemapping * const rmap = &rpipe->pipe_map;
513 			voff_t pgoff;
514 			u_int pgst, npages;
515 
516 			/*
517 			 * Direct copy, bypassing a kernel buffer.
518 			 */
519 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
520 
521 			size = MIN(rmap->cnt, uio->uio_resid);
522 
523 			if (size > 0) {
524 				KASSERT(size > 0);
525 				mutex_exit(lock);
526 
527 				pgst = rmap->pos >> PAGE_SHIFT;
528 				pgoff = rmap->pos & PAGE_MASK;
529 				npages = (size + pgoff + PAGE_SIZE - 1) >> PAGE_SHIFT;
530 				KASSERTMSG(npages > 0 && (pgst + npages) <= rmap->npages, "npages %u pgst %u rmap->npages %u", npages, pgst, rmap->npages);
531 
532 				error = uvm_direct_process(&rmap->pgs[pgst], npages,
533 				    pgoff, size, pipe_direct_process_read, uio);
534 				mutex_enter(lock);
535 
536 				nread += size;
537 				rmap->pos += size;
538 				rmap->cnt -= size;
539 			}
540 
541 			if (rmap->cnt == 0) {
542 				rpipe->pipe_state &= ~PIPE_DIRECTR;
543 				cv_broadcast(&rpipe->pipe_wcv);
544 			}
545 
546 			continue;
547 		}
548 #endif
549 		/*
550 		 * Break if some data was read.
551 		 */
552 		if (nread > 0)
553 			break;
554 
555 		/*
556 		 * Detect EOF condition.
557 		 * Read returns 0 on EOF, no need to set error.
558 		 */
559 		if (rpipe->pipe_state & PIPE_EOF)
560 			break;
561 
562 		/*
563 		 * Don't block on non-blocking I/O.
564 		 */
565 		if (fp->f_flag & FNONBLOCK) {
566 			error = EAGAIN;
567 			break;
568 		}
569 
570 		/*
571 		 * Unlock the pipe buffer for our remaining processing.
572 		 * We will either break out with an error or we will
573 		 * sleep and relock to loop.
574 		 */
575 		pipeunlock(rpipe);
576 
577 		/*
578 		 * Re-check to see if more direct writes are pending.
579 		 */
580 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
581 			goto again;
582 
583 #if 1   /* XXX (dsl) I'm sure these aren't needed here ... */
584 		/*
585 		 * We want to read more, wake up select/poll.
586 		 */
587 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
588 
589 		/*
590 		 * If the "write-side" is blocked, wake it up now.
591 		 */
592 		cv_broadcast(&rpipe->pipe_wcv);
593 #endif
594 
595 		if (wakeup_state & PIPE_RESTART) {
596 			error = ERESTART;
597 			goto unlocked_error;
598 		}
599 
600 		/* Now wait until the pipe is filled */
601 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
602 		if (error != 0)
603 			goto unlocked_error;
604 		wakeup_state = rpipe->pipe_state;
605 		goto again;
606 	}
607 
608 	if (error == 0)
609 		getnanotime(&rpipe->pipe_atime);
610 	pipeunlock(rpipe);
611 
612 unlocked_error:
613 	--rpipe->pipe_busy;
614 	if (rpipe->pipe_busy == 0) {
615 		rpipe->pipe_state &= ~PIPE_RESTART;
616 		cv_broadcast(&rpipe->pipe_draincv);
617 	}
618 	if (bp->cnt < MINPIPESIZE) {
619 		cv_broadcast(&rpipe->pipe_wcv);
620 	}
621 
622 	/*
623 	 * If anything was read off the buffer, signal to the writer it's
624 	 * possible to write more data. Also send signal if we are here for the
625 	 * first time after last write.
626 	 */
627 	if ((bp->size - bp->cnt) >= PIPE_BUF
628 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
629 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
630 		rpipe->pipe_state &= ~PIPE_SIGNALR;
631 	}
632 
633 	mutex_exit(lock);
634 	return (error);
635 }
636 
637 #ifndef PIPE_NODIRECT
638 /*
639  * Allocate structure for loan transfer.
640  */
641 static int
642 pipe_loan_alloc(struct pipe *wpipe, int npages)
643 {
644 	struct pipemapping * const wmap = &wpipe->pipe_map;
645 
646 	KASSERT(wmap->npages == 0);
647 
648 	if (npages > wmap->maxpages) {
649 		pipe_loan_free(wpipe);
650 
651 		wmap->pgs = kmem_alloc(npages * sizeof(struct vm_page *), KM_NOSLEEP);
652 		if (wmap->pgs == NULL)
653 			return ENOMEM;
654 		wmap->maxpages = npages;
655 	}
656 
657 	wmap->npages = npages;
658 
659 	return (0);
660 }
661 
662 /*
663  * Free resources allocated for loan transfer.
664  */
665 static void
666 pipe_loan_free(struct pipe *wpipe)
667 {
668 	struct pipemapping * const wmap = &wpipe->pipe_map;
669 
670 	if (wmap->maxpages > 0) {
671 		kmem_free(wmap->pgs, wmap->maxpages * sizeof(struct vm_page *));
672 		wmap->pgs = NULL;
673 		wmap->maxpages = 0;
674 	}
675 
676 	wmap->npages = 0;
677 	wmap->pos = 0;
678 	wmap->cnt = 0;
679 }
680 
681 /*
682  * NetBSD direct write, using uvm_loan() mechanism.
683  * This implements the pipe buffer write mechanism.  Note that only
684  * a direct write OR a normal pipe write can be pending at any given time.
685  * If there are any characters in the pipe buffer, the direct write will
686  * be deferred until the receiving process grabs all of the bytes from
687  * the pipe buffer.  Then the direct mapping write is set-up.
688  *
689  * Called with the long-term pipe lock held.
690  */
691 static int
692 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
693 {
694 	struct pipemapping * const wmap = &wpipe->pipe_map;
695 	kmutex_t * const lock = wpipe->pipe_lock;
696 	vaddr_t bbase, base, bend;
697 	vsize_t blen, bcnt;
698 	int error, npages;
699 	voff_t bpos;
700 
701 	KASSERT(mutex_owned(lock));
702 	KASSERT(wmap->cnt == 0);
703 
704 	mutex_exit(lock);
705 
706 	/*
707 	 * Handle first PIPE_DIRECT_CHUNK bytes of buffer. Deal with buffers
708 	 * not aligned to PAGE_SIZE.
709 	 */
710 	bbase = (vaddr_t)uio->uio_iov->iov_base;
711 	base = trunc_page(bbase);
712 	bend = round_page(bbase + uio->uio_iov->iov_len);
713 	blen = bend - base;
714 	bpos = bbase - base;
715 
716 	if (blen > PIPE_DIRECT_CHUNK) {
717 		blen = PIPE_DIRECT_CHUNK;
718 		bend = base + blen;
719 		bcnt = PIPE_DIRECT_CHUNK - bpos;
720 	} else {
721 		bcnt = uio->uio_iov->iov_len;
722 	}
723 	npages = atop(blen);
724 
725 	KASSERT((wpipe->pipe_state & (PIPE_DIRECTW | PIPE_DIRECTR)) == 0);
726 	KASSERT(wmap->npages == 0);
727 
728 	/* Make sure page array is big enough */
729 	error = pipe_loan_alloc(wpipe, npages);
730 	if (error) {
731 		mutex_enter(lock);
732 		return (error);
733 	}
734 
735 	/* Loan the write buffer memory from writer process */
736 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
737 			 wmap->pgs, UVM_LOAN_TOPAGE);
738 	if (error) {
739 		pipe_loan_free(wpipe);
740 		mutex_enter(lock);
741 		return (ENOMEM); /* so that caller fallback to ordinary write */
742 	}
743 
744 	/* Now we can put the pipe in direct write mode */
745 	wmap->pos = bpos;
746 	wmap->cnt = bcnt;
747 
748 	/*
749 	 * But before we can let someone do a direct read, we
750 	 * have to wait until the pipe is drained.  Release the
751 	 * pipe lock while we wait.
752 	 */
753 	mutex_enter(lock);
754 	wpipe->pipe_state |= PIPE_DIRECTW;
755 	pipeunlock(wpipe);
756 
757 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
758 		cv_broadcast(&wpipe->pipe_rcv);
759 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
760 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
761 			error = EPIPE;
762 	}
763 
764 	/* Pipe is drained; next read will off the direct buffer */
765 	wpipe->pipe_state |= PIPE_DIRECTR;
766 
767 	/* Wait until the reader is done */
768 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
769 		cv_broadcast(&wpipe->pipe_rcv);
770 		pipeselwakeup(wpipe, wpipe, POLL_IN);
771 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
772 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
773 			error = EPIPE;
774 	}
775 
776 	/* Take pipe out of direct write mode */
777 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
778 
779 	/* Acquire the pipe lock and cleanup */
780 	(void)pipelock(wpipe, false);
781 
782 	mutex_exit(lock);
783 	/* XXX what happens if the writer process exits without waiting for reader?
784 	 * XXX FreeBSD does a clone in this case */
785 	uvm_unloan(wmap->pgs, npages, UVM_LOAN_TOPAGE);
786 	mutex_enter(lock);
787 
788 	if (error) {
789 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
790 
791 		/*
792 		 * If nothing was read from what we offered, return error
793 		 * straight on. Otherwise update uio resid first. Caller
794 		 * will deal with the error condition, returning short
795 		 * write, error, or restarting the write(2) as appropriate.
796 		 */
797 		if (wmap->cnt == bcnt) {
798 			wmap->cnt = 0;
799 			cv_broadcast(&wpipe->pipe_wcv);
800 			return (error);
801 		}
802 
803 		bcnt -= wmap->cnt;
804 	}
805 
806 	uio->uio_resid -= bcnt;
807 	/* uio_offset not updated, not set/used for write(2) */
808 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
809 	uio->uio_iov->iov_len -= bcnt;
810 	if (uio->uio_iov->iov_len == 0) {
811 		uio->uio_iov++;
812 		uio->uio_iovcnt--;
813 	}
814 
815 	wmap->cnt = 0;
816 	return (error);
817 }
818 #endif /* !PIPE_NODIRECT */
819 
820 static int
821 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
822     int flags)
823 {
824 	struct pipe *wpipe, *rpipe;
825 	struct pipebuf *bp;
826 	kmutex_t *lock;
827 	int error;
828 	unsigned int wakeup_state = 0;
829 
830 	/* We want to write to our peer */
831 	rpipe = fp->f_pipe;
832 	lock = rpipe->pipe_lock;
833 	error = 0;
834 
835 	mutex_enter(lock);
836 	wpipe = rpipe->pipe_peer;
837 
838 	/*
839 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
840 	 */
841 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
842 		mutex_exit(lock);
843 		return EPIPE;
844 	}
845 	++wpipe->pipe_busy;
846 
847 	/* Aquire the long-term pipe lock */
848 	if ((error = pipelock(wpipe, true)) != 0) {
849 		--wpipe->pipe_busy;
850 		if (wpipe->pipe_busy == 0) {
851 			wpipe->pipe_state &= ~PIPE_RESTART;
852 			cv_broadcast(&wpipe->pipe_draincv);
853 		}
854 		mutex_exit(lock);
855 		return (error);
856 	}
857 
858 	bp = &wpipe->pipe_buffer;
859 
860 	/*
861 	 * If it is advantageous to resize the pipe buffer, do so.
862 	 */
863 	if ((uio->uio_resid > PIPE_SIZE) &&
864 	    (nbigpipe < maxbigpipes) &&
865 #ifndef PIPE_NODIRECT
866 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
867 #endif
868 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
869 
870 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
871 			atomic_inc_uint(&nbigpipe);
872 	}
873 
874 	while (uio->uio_resid) {
875 		size_t space;
876 
877 #ifndef PIPE_NODIRECT
878 		/*
879 		 * Pipe buffered writes cannot be coincidental with
880 		 * direct writes.  Also, only one direct write can be
881 		 * in progress at any one time.  We wait until the currently
882 		 * executing direct write is completed before continuing.
883 		 *
884 		 * We break out if a signal occurs or the reader goes away.
885 		 */
886 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
887 			cv_broadcast(&wpipe->pipe_rcv);
888 			pipeunlock(wpipe);
889 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
890 			(void)pipelock(wpipe, false);
891 			if (wpipe->pipe_state & PIPE_EOF)
892 				error = EPIPE;
893 		}
894 		if (error)
895 			break;
896 
897 		/*
898 		 * If the transfer is large, we can gain performance if
899 		 * we do process-to-process copies directly.
900 		 * If the write is non-blocking, we don't use the
901 		 * direct write mechanism.
902 		 *
903 		 * The direct write mechanism will detect the reader going
904 		 * away on us.
905 		 */
906 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
907 		    (fp->f_flag & FNONBLOCK) == 0 &&
908 		    pipe_direct) {
909 			error = pipe_direct_write(fp, wpipe, uio);
910 
911 			/*
912 			 * Break out if error occurred, unless it's ENOMEM.
913 			 * ENOMEM means we failed to allocate some resources
914 			 * for direct write, so we just fallback to ordinary
915 			 * write. If the direct write was successful,
916 			 * process rest of data via ordinary write.
917 			 */
918 			if (error == 0)
919 				continue;
920 
921 			if (error != ENOMEM)
922 				break;
923 		}
924 #endif /* PIPE_NODIRECT */
925 
926 		space = bp->size - bp->cnt;
927 
928 		/* Writes of size <= PIPE_BUF must be atomic. */
929 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
930 			space = 0;
931 
932 		if (space > 0) {
933 			int size;	/* Transfer size */
934 			int segsize;	/* first segment to transfer */
935 
936 			/*
937 			 * Transfer size is minimum of uio transfer
938 			 * and free space in pipe buffer.
939 			 */
940 			if (space > uio->uio_resid)
941 				size = uio->uio_resid;
942 			else
943 				size = space;
944 			/*
945 			 * First segment to transfer is minimum of
946 			 * transfer size and contiguous space in
947 			 * pipe buffer.  If first segment to transfer
948 			 * is less than the transfer size, we've got
949 			 * a wraparound in the buffer.
950 			 */
951 			segsize = bp->size - bp->in;
952 			if (segsize > size)
953 				segsize = size;
954 
955 			/* Transfer first segment */
956 			mutex_exit(lock);
957 			error = uiomove((char *)bp->buffer + bp->in, segsize,
958 			    uio);
959 
960 			if (error == 0 && segsize < size) {
961 				/*
962 				 * Transfer remaining part now, to
963 				 * support atomic writes.  Wraparound
964 				 * happened.
965 				 */
966 				KASSERT(bp->in + segsize == bp->size);
967 				error = uiomove(bp->buffer,
968 				    size - segsize, uio);
969 			}
970 			mutex_enter(lock);
971 			if (error)
972 				break;
973 
974 			bp->in += size;
975 			if (bp->in >= bp->size) {
976 				KASSERT(bp->in == size - segsize + bp->size);
977 				bp->in = size - segsize;
978 			}
979 
980 			bp->cnt += size;
981 			KASSERT(bp->cnt <= bp->size);
982 			wakeup_state = 0;
983 		} else {
984 			/*
985 			 * If the "read-side" has been blocked, wake it up now.
986 			 */
987 			cv_broadcast(&wpipe->pipe_rcv);
988 
989 			/*
990 			 * Don't block on non-blocking I/O.
991 			 */
992 			if (fp->f_flag & FNONBLOCK) {
993 				error = EAGAIN;
994 				break;
995 			}
996 
997 			/*
998 			 * We have no more space and have something to offer,
999 			 * wake up select/poll.
1000 			 */
1001 			if (bp->cnt)
1002 				pipeselwakeup(wpipe, wpipe, POLL_IN);
1003 
1004 			if (wakeup_state & PIPE_RESTART) {
1005 				error = ERESTART;
1006 				break;
1007 			}
1008 
1009 			pipeunlock(wpipe);
1010 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1011 			(void)pipelock(wpipe, false);
1012 			if (error != 0)
1013 				break;
1014 			/*
1015 			 * If read side wants to go away, we just issue a signal
1016 			 * to ourselves.
1017 			 */
1018 			if (wpipe->pipe_state & PIPE_EOF) {
1019 				error = EPIPE;
1020 				break;
1021 			}
1022 			wakeup_state = wpipe->pipe_state;
1023 		}
1024 	}
1025 
1026 	--wpipe->pipe_busy;
1027 	if (wpipe->pipe_busy == 0) {
1028 		wpipe->pipe_state &= ~PIPE_RESTART;
1029 		cv_broadcast(&wpipe->pipe_draincv);
1030 	}
1031 	if (bp->cnt > 0) {
1032 		cv_broadcast(&wpipe->pipe_rcv);
1033 	}
1034 
1035 	/*
1036 	 * Don't return EPIPE if I/O was successful
1037 	 */
1038 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1039 		error = 0;
1040 
1041 	if (error == 0)
1042 		getnanotime(&wpipe->pipe_mtime);
1043 
1044 	/*
1045 	 * We have something to offer, wake up select/poll.
1046 	 * wmap->cnt is always 0 in this point (direct write
1047 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1048 	 */
1049 	if (bp->cnt)
1050 		pipeselwakeup(wpipe, wpipe, POLL_IN);
1051 
1052 	/*
1053 	 * Arrange for next read(2) to do a signal.
1054 	 */
1055 	wpipe->pipe_state |= PIPE_SIGNALR;
1056 
1057 	pipeunlock(wpipe);
1058 	mutex_exit(lock);
1059 	return (error);
1060 }
1061 
1062 /*
1063  * We implement a very minimal set of ioctls for compatibility with sockets.
1064  */
1065 int
1066 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1067 {
1068 	struct pipe *pipe = fp->f_pipe;
1069 	kmutex_t *lock = pipe->pipe_lock;
1070 
1071 	switch (cmd) {
1072 
1073 	case FIONBIO:
1074 		return (0);
1075 
1076 	case FIOASYNC:
1077 		mutex_enter(lock);
1078 		if (*(int *)data) {
1079 			pipe->pipe_state |= PIPE_ASYNC;
1080 		} else {
1081 			pipe->pipe_state &= ~PIPE_ASYNC;
1082 		}
1083 		mutex_exit(lock);
1084 		return (0);
1085 
1086 	case FIONREAD:
1087 		mutex_enter(lock);
1088 #ifndef PIPE_NODIRECT
1089 		if (pipe->pipe_state & PIPE_DIRECTW)
1090 			*(int *)data = pipe->pipe_map.cnt;
1091 		else
1092 #endif
1093 			*(int *)data = pipe->pipe_buffer.cnt;
1094 		mutex_exit(lock);
1095 		return (0);
1096 
1097 	case FIONWRITE:
1098 		/* Look at other side */
1099 		pipe = pipe->pipe_peer;
1100 		mutex_enter(lock);
1101 #ifndef PIPE_NODIRECT
1102 		if (pipe->pipe_state & PIPE_DIRECTW)
1103 			*(int *)data = pipe->pipe_map.cnt;
1104 		else
1105 #endif
1106 			*(int *)data = pipe->pipe_buffer.cnt;
1107 		mutex_exit(lock);
1108 		return (0);
1109 
1110 	case FIONSPACE:
1111 		/* Look at other side */
1112 		pipe = pipe->pipe_peer;
1113 		mutex_enter(lock);
1114 #ifndef PIPE_NODIRECT
1115 		/*
1116 		 * If we're in direct-mode, we don't really have a
1117 		 * send queue, and any other write will block. Thus
1118 		 * zero seems like the best answer.
1119 		 */
1120 		if (pipe->pipe_state & PIPE_DIRECTW)
1121 			*(int *)data = 0;
1122 		else
1123 #endif
1124 			*(int *)data = pipe->pipe_buffer.size -
1125 			    pipe->pipe_buffer.cnt;
1126 		mutex_exit(lock);
1127 		return (0);
1128 
1129 	case TIOCSPGRP:
1130 	case FIOSETOWN:
1131 		return fsetown(&pipe->pipe_pgid, cmd, data);
1132 
1133 	case TIOCGPGRP:
1134 	case FIOGETOWN:
1135 		return fgetown(pipe->pipe_pgid, cmd, data);
1136 
1137 	}
1138 	return (EPASSTHROUGH);
1139 }
1140 
1141 int
1142 pipe_poll(file_t *fp, int events)
1143 {
1144 	struct pipe *rpipe = fp->f_pipe;
1145 	struct pipe *wpipe;
1146 	int eof = 0;
1147 	int revents = 0;
1148 
1149 	mutex_enter(rpipe->pipe_lock);
1150 	wpipe = rpipe->pipe_peer;
1151 
1152 	if (events & (POLLIN | POLLRDNORM))
1153 		if ((rpipe->pipe_buffer.cnt > 0) ||
1154 #ifndef PIPE_NODIRECT
1155 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
1156 #endif
1157 		    (rpipe->pipe_state & PIPE_EOF))
1158 			revents |= events & (POLLIN | POLLRDNORM);
1159 
1160 	eof |= (rpipe->pipe_state & PIPE_EOF);
1161 
1162 	if (wpipe == NULL)
1163 		revents |= events & (POLLOUT | POLLWRNORM);
1164 	else {
1165 		if (events & (POLLOUT | POLLWRNORM))
1166 			if ((wpipe->pipe_state & PIPE_EOF) || (
1167 #ifndef PIPE_NODIRECT
1168 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1169 #endif
1170 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1171 				revents |= events & (POLLOUT | POLLWRNORM);
1172 
1173 		eof |= (wpipe->pipe_state & PIPE_EOF);
1174 	}
1175 
1176 	if (wpipe == NULL || eof)
1177 		revents |= POLLHUP;
1178 
1179 	if (revents == 0) {
1180 		if (events & (POLLIN | POLLRDNORM))
1181 			selrecord(curlwp, &rpipe->pipe_sel);
1182 
1183 		if (events & (POLLOUT | POLLWRNORM))
1184 			selrecord(curlwp, &wpipe->pipe_sel);
1185 	}
1186 	mutex_exit(rpipe->pipe_lock);
1187 
1188 	return (revents);
1189 }
1190 
1191 static int
1192 pipe_stat(file_t *fp, struct stat *ub)
1193 {
1194 	struct pipe *pipe = fp->f_pipe;
1195 
1196 	mutex_enter(pipe->pipe_lock);
1197 	memset(ub, 0, sizeof(*ub));
1198 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1199 	ub->st_blksize = pipe->pipe_buffer.size;
1200 	if (ub->st_blksize == 0 && pipe->pipe_peer)
1201 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1202 	ub->st_size = pipe->pipe_buffer.cnt;
1203 	ub->st_blocks = (ub->st_size) ? 1 : 0;
1204 	ub->st_atimespec = pipe->pipe_atime;
1205 	ub->st_mtimespec = pipe->pipe_mtime;
1206 	ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1207 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1208 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
1209 
1210 	/*
1211 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1212 	 * XXX (st_dev, st_ino) should be unique.
1213 	 */
1214 	mutex_exit(pipe->pipe_lock);
1215 	return 0;
1216 }
1217 
1218 static int
1219 pipe_close(file_t *fp)
1220 {
1221 	struct pipe *pipe = fp->f_pipe;
1222 
1223 	fp->f_pipe = NULL;
1224 	pipeclose(pipe);
1225 	return (0);
1226 }
1227 
1228 static void
1229 pipe_restart(file_t *fp)
1230 {
1231 	struct pipe *pipe = fp->f_pipe;
1232 
1233 	/*
1234 	 * Unblock blocked reads/writes in order to allow close() to complete.
1235 	 * System calls return ERESTART so that the fd is revalidated.
1236 	 * (Partial writes return the transfer length.)
1237 	 */
1238 	mutex_enter(pipe->pipe_lock);
1239 	pipe->pipe_state |= PIPE_RESTART;
1240 	/* Wakeup both cvs, maybe we only need one, but maybe there are some
1241 	 * other paths where wakeup is needed, and it saves deciding which! */
1242 	cv_broadcast(&pipe->pipe_rcv);
1243 	cv_broadcast(&pipe->pipe_wcv);
1244 	mutex_exit(pipe->pipe_lock);
1245 }
1246 
1247 static void
1248 pipe_free_kmem(struct pipe *pipe)
1249 {
1250 
1251 	if (pipe->pipe_buffer.buffer != NULL) {
1252 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
1253 			atomic_dec_uint(&nbigpipe);
1254 		}
1255 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1256 			uvm_km_free(kernel_map,
1257 			    (vaddr_t)pipe->pipe_buffer.buffer,
1258 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1259 			atomic_add_int(&amountpipekva,
1260 			    -pipe->pipe_buffer.size);
1261 		}
1262 		pipe->pipe_buffer.buffer = NULL;
1263 	}
1264 #ifndef PIPE_NODIRECT
1265 	if (pipe->pipe_map.npages > 0)
1266 		pipe_loan_free(pipe);
1267 #endif /* !PIPE_NODIRECT */
1268 }
1269 
1270 /*
1271  * Shutdown the pipe.
1272  */
1273 static void
1274 pipeclose(struct pipe *pipe)
1275 {
1276 	kmutex_t *lock;
1277 	struct pipe *ppipe;
1278 
1279 	if (pipe == NULL)
1280 		return;
1281 
1282 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
1283 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
1284 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
1285 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1286 
1287 	lock = pipe->pipe_lock;
1288 	if (lock == NULL)
1289 		/* Must have failed during create */
1290 		goto free_resources;
1291 
1292 	mutex_enter(lock);
1293 	pipeselwakeup(pipe, pipe, POLL_HUP);
1294 
1295 	/*
1296 	 * If the other side is blocked, wake it up saying that
1297 	 * we want to close it down.
1298 	 */
1299 	pipe->pipe_state |= PIPE_EOF;
1300 	if (pipe->pipe_busy) {
1301 		while (pipe->pipe_busy) {
1302 			cv_broadcast(&pipe->pipe_wcv);
1303 			cv_wait_sig(&pipe->pipe_draincv, lock);
1304 		}
1305 	}
1306 
1307 	/*
1308 	 * Disconnect from peer.
1309 	 */
1310 	if ((ppipe = pipe->pipe_peer) != NULL) {
1311 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
1312 		ppipe->pipe_state |= PIPE_EOF;
1313 		cv_broadcast(&ppipe->pipe_rcv);
1314 		ppipe->pipe_peer = NULL;
1315 	}
1316 
1317 	/*
1318 	 * Any knote objects still left in the list are
1319 	 * the one attached by peer.  Since no one will
1320 	 * traverse this list, we just clear it.
1321 	 */
1322 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
1323 
1324 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1325 	mutex_exit(lock);
1326 	mutex_obj_free(lock);
1327 
1328 	/*
1329 	 * Free resources.
1330 	 */
1331     free_resources:
1332 	pipe->pipe_pgid = 0;
1333 	pipe->pipe_state = PIPE_SIGNALR;
1334 	pipe_free_kmem(pipe);
1335 	if (pipe->pipe_kmem != 0) {
1336 		pool_cache_put(pipe_rd_cache, pipe);
1337 	} else {
1338 		pool_cache_put(pipe_wr_cache, pipe);
1339 	}
1340 }
1341 
1342 static void
1343 filt_pipedetach(struct knote *kn)
1344 {
1345 	struct pipe *pipe;
1346 	kmutex_t *lock;
1347 
1348 	pipe = ((file_t *)kn->kn_obj)->f_pipe;
1349 	lock = pipe->pipe_lock;
1350 
1351 	mutex_enter(lock);
1352 
1353 	switch(kn->kn_filter) {
1354 	case EVFILT_WRITE:
1355 		/* Need the peer structure, not our own. */
1356 		pipe = pipe->pipe_peer;
1357 
1358 		/* If reader end already closed, just return. */
1359 		if (pipe == NULL) {
1360 			mutex_exit(lock);
1361 			return;
1362 		}
1363 
1364 		break;
1365 	default:
1366 		/* Nothing to do. */
1367 		break;
1368 	}
1369 
1370 	KASSERT(kn->kn_hook == pipe);
1371 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1372 	mutex_exit(lock);
1373 }
1374 
1375 static int
1376 filt_piperead(struct knote *kn, long hint)
1377 {
1378 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1379 	struct pipe *wpipe;
1380 
1381 	if ((hint & NOTE_SUBMIT) == 0) {
1382 		mutex_enter(rpipe->pipe_lock);
1383 	}
1384 	wpipe = rpipe->pipe_peer;
1385 	kn->kn_data = rpipe->pipe_buffer.cnt;
1386 
1387 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1388 		kn->kn_data = rpipe->pipe_map.cnt;
1389 
1390 	if ((rpipe->pipe_state & PIPE_EOF) ||
1391 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1392 		kn->kn_flags |= EV_EOF;
1393 		if ((hint & NOTE_SUBMIT) == 0) {
1394 			mutex_exit(rpipe->pipe_lock);
1395 		}
1396 		return (1);
1397 	}
1398 
1399 	if ((hint & NOTE_SUBMIT) == 0) {
1400 		mutex_exit(rpipe->pipe_lock);
1401 	}
1402 	return (kn->kn_data > 0);
1403 }
1404 
1405 static int
1406 filt_pipewrite(struct knote *kn, long hint)
1407 {
1408 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
1409 	struct pipe *wpipe;
1410 
1411 	if ((hint & NOTE_SUBMIT) == 0) {
1412 		mutex_enter(rpipe->pipe_lock);
1413 	}
1414 	wpipe = rpipe->pipe_peer;
1415 
1416 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1417 		kn->kn_data = 0;
1418 		kn->kn_flags |= EV_EOF;
1419 		if ((hint & NOTE_SUBMIT) == 0) {
1420 			mutex_exit(rpipe->pipe_lock);
1421 		}
1422 		return (1);
1423 	}
1424 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1425 	if (wpipe->pipe_state & PIPE_DIRECTW)
1426 		kn->kn_data = 0;
1427 
1428 	if ((hint & NOTE_SUBMIT) == 0) {
1429 		mutex_exit(rpipe->pipe_lock);
1430 	}
1431 	return (kn->kn_data >= PIPE_BUF);
1432 }
1433 
1434 static const struct filterops pipe_rfiltops = {
1435 	.f_isfd = 1,
1436 	.f_attach = NULL,
1437 	.f_detach = filt_pipedetach,
1438 	.f_event = filt_piperead,
1439 };
1440 
1441 static const struct filterops pipe_wfiltops = {
1442 	.f_isfd = 1,
1443 	.f_attach = NULL,
1444 	.f_detach = filt_pipedetach,
1445 	.f_event = filt_pipewrite,
1446 };
1447 
1448 static int
1449 pipe_kqfilter(file_t *fp, struct knote *kn)
1450 {
1451 	struct pipe *pipe;
1452 	kmutex_t *lock;
1453 
1454 	pipe = ((file_t *)kn->kn_obj)->f_pipe;
1455 	lock = pipe->pipe_lock;
1456 
1457 	mutex_enter(lock);
1458 
1459 	switch (kn->kn_filter) {
1460 	case EVFILT_READ:
1461 		kn->kn_fop = &pipe_rfiltops;
1462 		break;
1463 	case EVFILT_WRITE:
1464 		kn->kn_fop = &pipe_wfiltops;
1465 		pipe = pipe->pipe_peer;
1466 		if (pipe == NULL) {
1467 			/* Other end of pipe has been closed. */
1468 			mutex_exit(lock);
1469 			return (EBADF);
1470 		}
1471 		break;
1472 	default:
1473 		mutex_exit(lock);
1474 		return (EINVAL);
1475 	}
1476 
1477 	kn->kn_hook = pipe;
1478 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1479 	mutex_exit(lock);
1480 
1481 	return (0);
1482 }
1483 
1484 /*
1485  * Handle pipe sysctls.
1486  */
1487 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1488 {
1489 
1490 	sysctl_createv(clog, 0, NULL, NULL,
1491 		       CTLFLAG_PERMANENT,
1492 		       CTLTYPE_NODE, "pipe",
1493 		       SYSCTL_DESCR("Pipe settings"),
1494 		       NULL, 0, NULL, 0,
1495 		       CTL_KERN, KERN_PIPE, CTL_EOL);
1496 
1497 	sysctl_createv(clog, 0, NULL, NULL,
1498 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1499 		       CTLTYPE_INT, "maxbigpipes",
1500 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1501 		       NULL, 0, &maxbigpipes, 0,
1502 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1503 	sysctl_createv(clog, 0, NULL, NULL,
1504 		       CTLFLAG_PERMANENT,
1505 		       CTLTYPE_INT, "nbigpipes",
1506 		       SYSCTL_DESCR("Number of \"big\" pipes"),
1507 		       NULL, 0, &nbigpipe, 0,
1508 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1509 	sysctl_createv(clog, 0, NULL, NULL,
1510 		       CTLFLAG_PERMANENT,
1511 		       CTLTYPE_INT, "kvasize",
1512 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1513 				    "buffers"),
1514 		       NULL, 0, &amountpipekva, 0,
1515 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1516 }
1517