1 /* $NetBSD: sys_pipe.c,v 1.70 2005/12/24 19:12:23 perry Exp $ */ 2 3 /*- 4 * Copyright (c) 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1996 John S. Dyson 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice immediately at the beginning of the file, without modification, 48 * this list of conditions, and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Absolutely no warranty of function or purpose is made by the author 53 * John S. Dyson. 54 * 4. Modifications may be freely made to this file if the above conditions 55 * are met. 56 * 57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $ 58 */ 59 60 /* 61 * This file contains a high-performance replacement for the socket-based 62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 63 * all features of sockets, but does do everything that pipes normally 64 * do. 65 * 66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was 67 * written by Jaromir Dolecek. 68 */ 69 70 /* 71 * This code has two modes of operation, a small write mode and a large 72 * write mode. The small write mode acts like conventional pipes with 73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space 76 * using the UVM page loan facility from where the receiving process can copy 77 * the data directly from the pages in the sending process. 78 * 79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 80 * happen for small transfers so that the system will not spend all of 81 * its time context switching. PIPE_SIZE is constrained by the 82 * amount of kernel virtual memory. 83 */ 84 85 #include <sys/cdefs.h> 86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.70 2005/12/24 19:12:23 perry Exp $"); 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/proc.h> 91 #include <sys/fcntl.h> 92 #include <sys/file.h> 93 #include <sys/filedesc.h> 94 #include <sys/filio.h> 95 #include <sys/kernel.h> 96 #include <sys/lock.h> 97 #include <sys/ttycom.h> 98 #include <sys/stat.h> 99 #include <sys/malloc.h> 100 #include <sys/poll.h> 101 #include <sys/signalvar.h> 102 #include <sys/vnode.h> 103 #include <sys/uio.h> 104 #include <sys/lock.h> 105 #include <sys/select.h> 106 #include <sys/mount.h> 107 #include <sys/sa.h> 108 #include <sys/syscallargs.h> 109 #include <uvm/uvm.h> 110 #include <sys/sysctl.h> 111 #include <sys/kernel.h> 112 113 #include <sys/pipe.h> 114 115 /* 116 * Avoid microtime(9), it's slow. We don't guard the read from time(9) 117 * with splclock(9) since we don't actually need to be THAT sure the access 118 * is atomic. 119 */ 120 #define PIPE_TIMESTAMP(tvp) (*(tvp) = time) 121 122 123 /* 124 * Use this define if you want to disable *fancy* VM things. Expect an 125 * approx 30% decrease in transfer rate. 126 */ 127 /* #define PIPE_NODIRECT */ 128 129 /* 130 * interfaces to the outside world 131 */ 132 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio, 133 struct ucred *cred, int flags); 134 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio, 135 struct ucred *cred, int flags); 136 static int pipe_close(struct file *fp, struct lwp *l); 137 static int pipe_poll(struct file *fp, int events, struct lwp *l); 138 static int pipe_kqfilter(struct file *fp, struct knote *kn); 139 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l); 140 static int pipe_ioctl(struct file *fp, u_long cmd, void *data, 141 struct lwp *l); 142 143 static const struct fileops pipeops = { 144 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll, 145 pipe_stat, pipe_close, pipe_kqfilter 146 }; 147 148 /* 149 * Default pipe buffer size(s), this can be kind-of large now because pipe 150 * space is pageable. The pipe code will try to maintain locality of 151 * reference for performance reasons, so small amounts of outstanding I/O 152 * will not wipe the cache. 153 */ 154 #define MINPIPESIZE (PIPE_SIZE/3) 155 #define MAXPIPESIZE (2*PIPE_SIZE/3) 156 157 /* 158 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 159 * is there so that on large systems, we don't exhaust it. 160 */ 161 #define MAXPIPEKVA (8*1024*1024) 162 static int maxpipekva = MAXPIPEKVA; 163 164 /* 165 * Limit for direct transfers, we cannot, of course limit 166 * the amount of kva for pipes in general though. 167 */ 168 #define LIMITPIPEKVA (16*1024*1024) 169 static int limitpipekva = LIMITPIPEKVA; 170 171 /* 172 * Limit the number of "big" pipes 173 */ 174 #define LIMITBIGPIPES 32 175 static int maxbigpipes = LIMITBIGPIPES; 176 static int nbigpipe = 0; 177 178 /* 179 * Amount of KVA consumed by pipe buffers. 180 */ 181 static int amountpipekva = 0; 182 183 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures"); 184 185 static void pipeclose(struct file *fp, struct pipe *pipe); 186 static void pipe_free_kmem(struct pipe *pipe); 187 static int pipe_create(struct pipe **pipep, int allockva); 188 static int pipelock(struct pipe *pipe, int catch); 189 static inline void pipeunlock(struct pipe *pipe); 190 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code); 191 #ifndef PIPE_NODIRECT 192 static int pipe_direct_write(struct file *fp, struct pipe *wpipe, 193 struct uio *uio); 194 #endif 195 static int pipespace(struct pipe *pipe, int size); 196 197 #ifndef PIPE_NODIRECT 198 static int pipe_loan_alloc(struct pipe *, int); 199 static void pipe_loan_free(struct pipe *); 200 #endif /* PIPE_NODIRECT */ 201 202 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl", 203 &pool_allocator_nointr); 204 205 /* 206 * The pipe system call for the DTYPE_PIPE type of pipes 207 */ 208 209 /* ARGSUSED */ 210 int 211 sys_pipe(struct lwp *l, void *v, register_t *retval) 212 { 213 struct file *rf, *wf; 214 struct pipe *rpipe, *wpipe; 215 int fd, error; 216 struct proc *p; 217 218 p = l->l_proc; 219 rpipe = wpipe = NULL; 220 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) { 221 pipeclose(NULL, rpipe); 222 pipeclose(NULL, wpipe); 223 return (ENFILE); 224 } 225 226 /* 227 * Note: the file structure returned from falloc() is marked 228 * as 'larval' initially. Unless we mark it as 'mature' by 229 * FILE_SET_MATURE(), any attempt to do anything with it would 230 * return EBADF, including e.g. dup(2) or close(2). This avoids 231 * file descriptor races if we block in the second falloc(). 232 */ 233 234 error = falloc(p, &rf, &fd); 235 if (error) 236 goto free2; 237 retval[0] = fd; 238 rf->f_flag = FREAD; 239 rf->f_type = DTYPE_PIPE; 240 rf->f_data = (caddr_t)rpipe; 241 rf->f_ops = &pipeops; 242 243 error = falloc(p, &wf, &fd); 244 if (error) 245 goto free3; 246 retval[1] = fd; 247 wf->f_flag = FWRITE; 248 wf->f_type = DTYPE_PIPE; 249 wf->f_data = (caddr_t)wpipe; 250 wf->f_ops = &pipeops; 251 252 rpipe->pipe_peer = wpipe; 253 wpipe->pipe_peer = rpipe; 254 255 FILE_SET_MATURE(rf); 256 FILE_SET_MATURE(wf); 257 FILE_UNUSE(rf, l); 258 FILE_UNUSE(wf, l); 259 return (0); 260 free3: 261 FILE_UNUSE(rf, l); 262 ffree(rf); 263 fdremove(p->p_fd, retval[0]); 264 free2: 265 pipeclose(NULL, wpipe); 266 pipeclose(NULL, rpipe); 267 268 return (error); 269 } 270 271 /* 272 * Allocate kva for pipe circular buffer, the space is pageable 273 * This routine will 'realloc' the size of a pipe safely, if it fails 274 * it will retain the old buffer. 275 * If it fails it will return ENOMEM. 276 */ 277 static int 278 pipespace(struct pipe *pipe, int size) 279 { 280 caddr_t buffer; 281 /* 282 * Allocate pageable virtual address space. Physical memory is 283 * allocated on demand. 284 */ 285 buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0, 286 UVM_KMF_PAGEABLE); 287 if (buffer == NULL) 288 return (ENOMEM); 289 290 /* free old resources if we're resizing */ 291 pipe_free_kmem(pipe); 292 pipe->pipe_buffer.buffer = buffer; 293 pipe->pipe_buffer.size = size; 294 pipe->pipe_buffer.in = 0; 295 pipe->pipe_buffer.out = 0; 296 pipe->pipe_buffer.cnt = 0; 297 amountpipekva += pipe->pipe_buffer.size; 298 return (0); 299 } 300 301 /* 302 * Initialize and allocate VM and memory for pipe. 303 */ 304 static int 305 pipe_create(struct pipe **pipep, int allockva) 306 { 307 struct pipe *pipe; 308 int error; 309 310 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK); 311 312 /* Initialize */ 313 memset(pipe, 0, sizeof(struct pipe)); 314 pipe->pipe_state = PIPE_SIGNALR; 315 316 PIPE_TIMESTAMP(&pipe->pipe_ctime); 317 pipe->pipe_atime = pipe->pipe_ctime; 318 pipe->pipe_mtime = pipe->pipe_ctime; 319 simple_lock_init(&pipe->pipe_slock); 320 321 if (allockva && (error = pipespace(pipe, PIPE_SIZE))) 322 return (error); 323 324 return (0); 325 } 326 327 328 /* 329 * Lock a pipe for I/O, blocking other access 330 * Called with pipe spin lock held. 331 * Return with pipe spin lock released on success. 332 */ 333 static int 334 pipelock(struct pipe *pipe, int catch) 335 { 336 337 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock)); 338 339 while (pipe->pipe_state & PIPE_LOCKFL) { 340 int error; 341 const int pcatch = catch ? PCATCH : 0; 342 343 pipe->pipe_state |= PIPE_LWANT; 344 error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0, 345 &pipe->pipe_slock); 346 if (error != 0) 347 return error; 348 } 349 350 pipe->pipe_state |= PIPE_LOCKFL; 351 simple_unlock(&pipe->pipe_slock); 352 353 return 0; 354 } 355 356 /* 357 * unlock a pipe I/O lock 358 */ 359 static inline void 360 pipeunlock(struct pipe *pipe) 361 { 362 363 KASSERT(pipe->pipe_state & PIPE_LOCKFL); 364 365 pipe->pipe_state &= ~PIPE_LOCKFL; 366 if (pipe->pipe_state & PIPE_LWANT) { 367 pipe->pipe_state &= ~PIPE_LWANT; 368 wakeup(pipe); 369 } 370 } 371 372 /* 373 * Select/poll wakup. This also sends SIGIO to peer connected to 374 * 'sigpipe' side of pipe. 375 */ 376 static void 377 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code) 378 { 379 int band; 380 381 selnotify(&selp->pipe_sel, NOTE_SUBMIT); 382 383 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0) 384 return; 385 386 switch (code) { 387 case POLL_IN: 388 band = POLLIN|POLLRDNORM; 389 break; 390 case POLL_OUT: 391 band = POLLOUT|POLLWRNORM; 392 break; 393 case POLL_HUP: 394 band = POLLHUP; 395 break; 396 #if POLL_HUP != POLL_ERR 397 case POLL_ERR: 398 band = POLLERR; 399 break; 400 #endif 401 default: 402 band = 0; 403 #ifdef DIAGNOSTIC 404 printf("bad siginfo code %d in pipe notification.\n", code); 405 #endif 406 break; 407 } 408 409 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp); 410 } 411 412 /* ARGSUSED */ 413 static int 414 pipe_read(struct file *fp, off_t *offset, struct uio *uio, struct ucred *cred, 415 int flags) 416 { 417 struct pipe *rpipe = (struct pipe *) fp->f_data; 418 struct pipebuf *bp = &rpipe->pipe_buffer; 419 int error; 420 size_t nread = 0; 421 size_t size; 422 size_t ocnt; 423 424 PIPE_LOCK(rpipe); 425 ++rpipe->pipe_busy; 426 ocnt = bp->cnt; 427 428 again: 429 error = pipelock(rpipe, 1); 430 if (error) 431 goto unlocked_error; 432 433 while (uio->uio_resid) { 434 /* 435 * normal pipe buffer receive 436 */ 437 if (bp->cnt > 0) { 438 size = bp->size - bp->out; 439 if (size > bp->cnt) 440 size = bp->cnt; 441 if (size > uio->uio_resid) 442 size = uio->uio_resid; 443 444 error = uiomove(&bp->buffer[bp->out], size, uio); 445 if (error) 446 break; 447 448 bp->out += size; 449 if (bp->out >= bp->size) 450 bp->out = 0; 451 452 bp->cnt -= size; 453 454 /* 455 * If there is no more to read in the pipe, reset 456 * its pointers to the beginning. This improves 457 * cache hit stats. 458 */ 459 if (bp->cnt == 0) { 460 bp->in = 0; 461 bp->out = 0; 462 } 463 nread += size; 464 #ifndef PIPE_NODIRECT 465 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) { 466 /* 467 * Direct copy, bypassing a kernel buffer. 468 */ 469 caddr_t va; 470 471 KASSERT(rpipe->pipe_state & PIPE_DIRECTW); 472 473 size = rpipe->pipe_map.cnt; 474 if (size > uio->uio_resid) 475 size = uio->uio_resid; 476 477 va = (caddr_t) rpipe->pipe_map.kva + 478 rpipe->pipe_map.pos; 479 error = uiomove(va, size, uio); 480 if (error) 481 break; 482 nread += size; 483 rpipe->pipe_map.pos += size; 484 rpipe->pipe_map.cnt -= size; 485 if (rpipe->pipe_map.cnt == 0) { 486 PIPE_LOCK(rpipe); 487 rpipe->pipe_state &= ~PIPE_DIRECTR; 488 wakeup(rpipe); 489 PIPE_UNLOCK(rpipe); 490 } 491 #endif 492 } else { 493 /* 494 * Break if some data was read. 495 */ 496 if (nread > 0) 497 break; 498 499 PIPE_LOCK(rpipe); 500 501 /* 502 * detect EOF condition 503 * read returns 0 on EOF, no need to set error 504 */ 505 if (rpipe->pipe_state & PIPE_EOF) { 506 PIPE_UNLOCK(rpipe); 507 break; 508 } 509 510 /* 511 * don't block on non-blocking I/O 512 */ 513 if (fp->f_flag & FNONBLOCK) { 514 PIPE_UNLOCK(rpipe); 515 error = EAGAIN; 516 break; 517 } 518 519 /* 520 * Unlock the pipe buffer for our remaining processing. 521 * We will either break out with an error or we will 522 * sleep and relock to loop. 523 */ 524 pipeunlock(rpipe); 525 526 /* 527 * The PIPE_DIRECTR flag is not under the control 528 * of the long-term lock (see pipe_direct_write()), 529 * so re-check now while holding the spin lock. 530 */ 531 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) 532 goto again; 533 534 /* 535 * We want to read more, wake up select/poll. 536 */ 537 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN); 538 539 /* 540 * If the "write-side" is blocked, wake it up now. 541 */ 542 if (rpipe->pipe_state & PIPE_WANTW) { 543 rpipe->pipe_state &= ~PIPE_WANTW; 544 wakeup(rpipe); 545 } 546 547 /* Now wait until the pipe is filled */ 548 rpipe->pipe_state |= PIPE_WANTR; 549 error = ltsleep(rpipe, PSOCK | PCATCH, 550 "piperd", 0, &rpipe->pipe_slock); 551 if (error != 0) 552 goto unlocked_error; 553 goto again; 554 } 555 } 556 557 if (error == 0) 558 PIPE_TIMESTAMP(&rpipe->pipe_atime); 559 560 PIPE_LOCK(rpipe); 561 pipeunlock(rpipe); 562 563 unlocked_error: 564 --rpipe->pipe_busy; 565 566 /* 567 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0. 568 */ 569 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) { 570 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW); 571 wakeup(rpipe); 572 } else if (bp->cnt < MINPIPESIZE) { 573 /* 574 * Handle write blocking hysteresis. 575 */ 576 if (rpipe->pipe_state & PIPE_WANTW) { 577 rpipe->pipe_state &= ~PIPE_WANTW; 578 wakeup(rpipe); 579 } 580 } 581 582 /* 583 * If anything was read off the buffer, signal to the writer it's 584 * possible to write more data. Also send signal if we are here for the 585 * first time after last write. 586 */ 587 if ((bp->size - bp->cnt) >= PIPE_BUF 588 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) { 589 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 590 rpipe->pipe_state &= ~PIPE_SIGNALR; 591 } 592 593 PIPE_UNLOCK(rpipe); 594 return (error); 595 } 596 597 #ifndef PIPE_NODIRECT 598 /* 599 * Allocate structure for loan transfer. 600 */ 601 static int 602 pipe_loan_alloc(struct pipe *wpipe, int npages) 603 { 604 vsize_t len; 605 606 len = (vsize_t)npages << PAGE_SHIFT; 607 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0, 608 UVM_KMF_VAONLY | UVM_KMF_WAITVA); 609 if (wpipe->pipe_map.kva == 0) 610 return (ENOMEM); 611 612 amountpipekva += len; 613 wpipe->pipe_map.npages = npages; 614 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE, 615 M_WAITOK); 616 return (0); 617 } 618 619 /* 620 * Free resources allocated for loan transfer. 621 */ 622 static void 623 pipe_loan_free(struct pipe *wpipe) 624 { 625 vsize_t len; 626 627 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT; 628 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY); 629 wpipe->pipe_map.kva = 0; 630 amountpipekva -= len; 631 free(wpipe->pipe_map.pgs, M_PIPE); 632 wpipe->pipe_map.pgs = NULL; 633 } 634 635 /* 636 * NetBSD direct write, using uvm_loan() mechanism. 637 * This implements the pipe buffer write mechanism. Note that only 638 * a direct write OR a normal pipe write can be pending at any given time. 639 * If there are any characters in the pipe buffer, the direct write will 640 * be deferred until the receiving process grabs all of the bytes from 641 * the pipe buffer. Then the direct mapping write is set-up. 642 * 643 * Called with the long-term pipe lock held. 644 */ 645 static int 646 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio) 647 { 648 int error, npages, j; 649 struct vm_page **pgs; 650 vaddr_t bbase, kva, base, bend; 651 vsize_t blen, bcnt; 652 voff_t bpos; 653 654 KASSERT(wpipe->pipe_map.cnt == 0); 655 656 /* 657 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers 658 * not aligned to PAGE_SIZE. 659 */ 660 bbase = (vaddr_t)uio->uio_iov->iov_base; 661 base = trunc_page(bbase); 662 bend = round_page(bbase + uio->uio_iov->iov_len); 663 blen = bend - base; 664 bpos = bbase - base; 665 666 if (blen > PIPE_DIRECT_CHUNK) { 667 blen = PIPE_DIRECT_CHUNK; 668 bend = base + blen; 669 bcnt = PIPE_DIRECT_CHUNK - bpos; 670 } else { 671 bcnt = uio->uio_iov->iov_len; 672 } 673 npages = blen >> PAGE_SHIFT; 674 675 /* 676 * Free the old kva if we need more pages than we have 677 * allocated. 678 */ 679 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages) 680 pipe_loan_free(wpipe); 681 682 /* Allocate new kva. */ 683 if (wpipe->pipe_map.kva == 0) { 684 error = pipe_loan_alloc(wpipe, npages); 685 if (error) 686 return (error); 687 } 688 689 /* Loan the write buffer memory from writer process */ 690 pgs = wpipe->pipe_map.pgs; 691 error = uvm_loan(&uio->uio_lwp->l_proc->p_vmspace->vm_map, base, blen, 692 pgs, UVM_LOAN_TOPAGE); 693 if (error) { 694 pipe_loan_free(wpipe); 695 return (ENOMEM); /* so that caller fallback to ordinary write */ 696 } 697 698 /* Enter the loaned pages to kva */ 699 kva = wpipe->pipe_map.kva; 700 for (j = 0; j < npages; j++, kva += PAGE_SIZE) { 701 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ); 702 } 703 pmap_update(pmap_kernel()); 704 705 /* Now we can put the pipe in direct write mode */ 706 wpipe->pipe_map.pos = bpos; 707 wpipe->pipe_map.cnt = bcnt; 708 wpipe->pipe_state |= PIPE_DIRECTW; 709 710 /* 711 * But before we can let someone do a direct read, 712 * we have to wait until the pipe is drained. 713 */ 714 715 /* Relase the pipe lock while we wait */ 716 PIPE_LOCK(wpipe); 717 pipeunlock(wpipe); 718 719 while (error == 0 && wpipe->pipe_buffer.cnt > 0) { 720 if (wpipe->pipe_state & PIPE_WANTR) { 721 wpipe->pipe_state &= ~PIPE_WANTR; 722 wakeup(wpipe); 723 } 724 725 wpipe->pipe_state |= PIPE_WANTW; 726 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0, 727 &wpipe->pipe_slock); 728 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 729 error = EPIPE; 730 } 731 732 /* Pipe is drained; next read will off the direct buffer */ 733 wpipe->pipe_state |= PIPE_DIRECTR; 734 735 /* Wait until the reader is done */ 736 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) { 737 if (wpipe->pipe_state & PIPE_WANTR) { 738 wpipe->pipe_state &= ~PIPE_WANTR; 739 wakeup(wpipe); 740 } 741 pipeselwakeup(wpipe, wpipe, POLL_IN); 742 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0, 743 &wpipe->pipe_slock); 744 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 745 error = EPIPE; 746 } 747 748 /* Take pipe out of direct write mode */ 749 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR); 750 751 /* Acquire the pipe lock and cleanup */ 752 (void)pipelock(wpipe, 0); 753 if (pgs != NULL) { 754 pmap_kremove(wpipe->pipe_map.kva, blen); 755 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE); 756 } 757 if (error || amountpipekva > maxpipekva) 758 pipe_loan_free(wpipe); 759 760 if (error) { 761 pipeselwakeup(wpipe, wpipe, POLL_ERR); 762 763 /* 764 * If nothing was read from what we offered, return error 765 * straight on. Otherwise update uio resid first. Caller 766 * will deal with the error condition, returning short 767 * write, error, or restarting the write(2) as appropriate. 768 */ 769 if (wpipe->pipe_map.cnt == bcnt) { 770 wpipe->pipe_map.cnt = 0; 771 wakeup(wpipe); 772 return (error); 773 } 774 775 bcnt -= wpipe->pipe_map.cnt; 776 } 777 778 uio->uio_resid -= bcnt; 779 /* uio_offset not updated, not set/used for write(2) */ 780 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt; 781 uio->uio_iov->iov_len -= bcnt; 782 if (uio->uio_iov->iov_len == 0) { 783 uio->uio_iov++; 784 uio->uio_iovcnt--; 785 } 786 787 wpipe->pipe_map.cnt = 0; 788 return (error); 789 } 790 #endif /* !PIPE_NODIRECT */ 791 792 static int 793 pipe_write(struct file *fp, off_t *offset, struct uio *uio, struct ucred *cred, 794 int flags) 795 { 796 struct pipe *wpipe, *rpipe; 797 struct pipebuf *bp; 798 int error; 799 800 /* We want to write to our peer */ 801 rpipe = (struct pipe *) fp->f_data; 802 803 retry: 804 error = 0; 805 PIPE_LOCK(rpipe); 806 wpipe = rpipe->pipe_peer; 807 808 /* 809 * Detect loss of pipe read side, issue SIGPIPE if lost. 810 */ 811 if (wpipe == NULL) 812 error = EPIPE; 813 else if (simple_lock_try(&wpipe->pipe_slock) == 0) { 814 /* Deal with race for peer */ 815 PIPE_UNLOCK(rpipe); 816 goto retry; 817 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) { 818 PIPE_UNLOCK(wpipe); 819 error = EPIPE; 820 } 821 822 PIPE_UNLOCK(rpipe); 823 if (error != 0) 824 return (error); 825 826 ++wpipe->pipe_busy; 827 828 /* Aquire the long-term pipe lock */ 829 if ((error = pipelock(wpipe,1)) != 0) { 830 --wpipe->pipe_busy; 831 if (wpipe->pipe_busy == 0 832 && (wpipe->pipe_state & PIPE_WANTCLOSE)) { 833 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR); 834 wakeup(wpipe); 835 } 836 PIPE_UNLOCK(wpipe); 837 return (error); 838 } 839 840 bp = &wpipe->pipe_buffer; 841 842 /* 843 * If it is advantageous to resize the pipe buffer, do so. 844 */ 845 if ((uio->uio_resid > PIPE_SIZE) && 846 (nbigpipe < maxbigpipes) && 847 #ifndef PIPE_NODIRECT 848 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 849 #endif 850 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) { 851 852 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0) 853 nbigpipe++; 854 } 855 856 while (uio->uio_resid) { 857 size_t space; 858 859 #ifndef PIPE_NODIRECT 860 /* 861 * Pipe buffered writes cannot be coincidental with 862 * direct writes. Also, only one direct write can be 863 * in progress at any one time. We wait until the currently 864 * executing direct write is completed before continuing. 865 * 866 * We break out if a signal occurs or the reader goes away. 867 */ 868 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) { 869 PIPE_LOCK(wpipe); 870 if (wpipe->pipe_state & PIPE_WANTR) { 871 wpipe->pipe_state &= ~PIPE_WANTR; 872 wakeup(wpipe); 873 } 874 pipeunlock(wpipe); 875 error = ltsleep(wpipe, PSOCK | PCATCH, 876 "pipbww", 0, &wpipe->pipe_slock); 877 878 (void)pipelock(wpipe, 0); 879 if (wpipe->pipe_state & PIPE_EOF) 880 error = EPIPE; 881 } 882 if (error) 883 break; 884 885 /* 886 * If the transfer is large, we can gain performance if 887 * we do process-to-process copies directly. 888 * If the write is non-blocking, we don't use the 889 * direct write mechanism. 890 * 891 * The direct write mechanism will detect the reader going 892 * away on us. 893 */ 894 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 895 (fp->f_flag & FNONBLOCK) == 0 && 896 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) { 897 error = pipe_direct_write(fp, wpipe, uio); 898 899 /* 900 * Break out if error occurred, unless it's ENOMEM. 901 * ENOMEM means we failed to allocate some resources 902 * for direct write, so we just fallback to ordinary 903 * write. If the direct write was successful, 904 * process rest of data via ordinary write. 905 */ 906 if (error == 0) 907 continue; 908 909 if (error != ENOMEM) 910 break; 911 } 912 #endif /* PIPE_NODIRECT */ 913 914 space = bp->size - bp->cnt; 915 916 /* Writes of size <= PIPE_BUF must be atomic. */ 917 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF)) 918 space = 0; 919 920 if (space > 0) { 921 int size; /* Transfer size */ 922 int segsize; /* first segment to transfer */ 923 924 /* 925 * Transfer size is minimum of uio transfer 926 * and free space in pipe buffer. 927 */ 928 if (space > uio->uio_resid) 929 size = uio->uio_resid; 930 else 931 size = space; 932 /* 933 * First segment to transfer is minimum of 934 * transfer size and contiguous space in 935 * pipe buffer. If first segment to transfer 936 * is less than the transfer size, we've got 937 * a wraparound in the buffer. 938 */ 939 segsize = bp->size - bp->in; 940 if (segsize > size) 941 segsize = size; 942 943 /* Transfer first segment */ 944 error = uiomove(&bp->buffer[bp->in], segsize, uio); 945 946 if (error == 0 && segsize < size) { 947 /* 948 * Transfer remaining part now, to 949 * support atomic writes. Wraparound 950 * happened. 951 */ 952 #ifdef DEBUG 953 if (bp->in + segsize != bp->size) 954 panic("Expected pipe buffer wraparound disappeared"); 955 #endif 956 957 error = uiomove(&bp->buffer[0], 958 size - segsize, uio); 959 } 960 if (error) 961 break; 962 963 bp->in += size; 964 if (bp->in >= bp->size) { 965 #ifdef DEBUG 966 if (bp->in != size - segsize + bp->size) 967 panic("Expected wraparound bad"); 968 #endif 969 bp->in = size - segsize; 970 } 971 972 bp->cnt += size; 973 #ifdef DEBUG 974 if (bp->cnt > bp->size) 975 panic("Pipe buffer overflow"); 976 #endif 977 } else { 978 /* 979 * If the "read-side" has been blocked, wake it up now. 980 */ 981 PIPE_LOCK(wpipe); 982 if (wpipe->pipe_state & PIPE_WANTR) { 983 wpipe->pipe_state &= ~PIPE_WANTR; 984 wakeup(wpipe); 985 } 986 PIPE_UNLOCK(wpipe); 987 988 /* 989 * don't block on non-blocking I/O 990 */ 991 if (fp->f_flag & FNONBLOCK) { 992 error = EAGAIN; 993 break; 994 } 995 996 /* 997 * We have no more space and have something to offer, 998 * wake up select/poll. 999 */ 1000 if (bp->cnt) 1001 pipeselwakeup(wpipe, wpipe, POLL_OUT); 1002 1003 PIPE_LOCK(wpipe); 1004 pipeunlock(wpipe); 1005 wpipe->pipe_state |= PIPE_WANTW; 1006 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0, 1007 &wpipe->pipe_slock); 1008 (void)pipelock(wpipe, 0); 1009 if (error != 0) 1010 break; 1011 /* 1012 * If read side wants to go away, we just issue a signal 1013 * to ourselves. 1014 */ 1015 if (wpipe->pipe_state & PIPE_EOF) { 1016 error = EPIPE; 1017 break; 1018 } 1019 } 1020 } 1021 1022 PIPE_LOCK(wpipe); 1023 --wpipe->pipe_busy; 1024 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) { 1025 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR); 1026 wakeup(wpipe); 1027 } else if (bp->cnt > 0) { 1028 /* 1029 * If we have put any characters in the buffer, we wake up 1030 * the reader. 1031 */ 1032 if (wpipe->pipe_state & PIPE_WANTR) { 1033 wpipe->pipe_state &= ~PIPE_WANTR; 1034 wakeup(wpipe); 1035 } 1036 } 1037 1038 /* 1039 * Don't return EPIPE if I/O was successful 1040 */ 1041 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0) 1042 error = 0; 1043 1044 if (error == 0) 1045 PIPE_TIMESTAMP(&wpipe->pipe_mtime); 1046 1047 /* 1048 * We have something to offer, wake up select/poll. 1049 * wpipe->pipe_map.cnt is always 0 in this point (direct write 1050 * is only done synchronously), so check only wpipe->pipe_buffer.cnt 1051 */ 1052 if (bp->cnt) 1053 pipeselwakeup(wpipe, wpipe, POLL_OUT); 1054 1055 /* 1056 * Arrange for next read(2) to do a signal. 1057 */ 1058 wpipe->pipe_state |= PIPE_SIGNALR; 1059 1060 pipeunlock(wpipe); 1061 PIPE_UNLOCK(wpipe); 1062 return (error); 1063 } 1064 1065 /* 1066 * we implement a very minimal set of ioctls for compatibility with sockets. 1067 */ 1068 int 1069 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l) 1070 { 1071 struct pipe *pipe = (struct pipe *)fp->f_data; 1072 struct proc *p = l->l_proc; 1073 1074 switch (cmd) { 1075 1076 case FIONBIO: 1077 return (0); 1078 1079 case FIOASYNC: 1080 PIPE_LOCK(pipe); 1081 if (*(int *)data) { 1082 pipe->pipe_state |= PIPE_ASYNC; 1083 } else { 1084 pipe->pipe_state &= ~PIPE_ASYNC; 1085 } 1086 PIPE_UNLOCK(pipe); 1087 return (0); 1088 1089 case FIONREAD: 1090 PIPE_LOCK(pipe); 1091 #ifndef PIPE_NODIRECT 1092 if (pipe->pipe_state & PIPE_DIRECTW) 1093 *(int *)data = pipe->pipe_map.cnt; 1094 else 1095 #endif 1096 *(int *)data = pipe->pipe_buffer.cnt; 1097 PIPE_UNLOCK(pipe); 1098 return (0); 1099 1100 case FIONWRITE: 1101 /* Look at other side */ 1102 pipe = pipe->pipe_peer; 1103 PIPE_LOCK(pipe); 1104 #ifndef PIPE_NODIRECT 1105 if (pipe->pipe_state & PIPE_DIRECTW) 1106 *(int *)data = pipe->pipe_map.cnt; 1107 else 1108 #endif 1109 *(int *)data = pipe->pipe_buffer.cnt; 1110 PIPE_UNLOCK(pipe); 1111 return (0); 1112 1113 case FIONSPACE: 1114 /* Look at other side */ 1115 pipe = pipe->pipe_peer; 1116 PIPE_LOCK(pipe); 1117 #ifndef PIPE_NODIRECT 1118 /* 1119 * If we're in direct-mode, we don't really have a 1120 * send queue, and any other write will block. Thus 1121 * zero seems like the best answer. 1122 */ 1123 if (pipe->pipe_state & PIPE_DIRECTW) 1124 *(int *)data = 0; 1125 else 1126 #endif 1127 *(int *)data = pipe->pipe_buffer.size - 1128 pipe->pipe_buffer.cnt; 1129 PIPE_UNLOCK(pipe); 1130 return (0); 1131 1132 case TIOCSPGRP: 1133 case FIOSETOWN: 1134 return fsetown(p, &pipe->pipe_pgid, cmd, data); 1135 1136 case TIOCGPGRP: 1137 case FIOGETOWN: 1138 return fgetown(p, pipe->pipe_pgid, cmd, data); 1139 1140 } 1141 return (EPASSTHROUGH); 1142 } 1143 1144 int 1145 pipe_poll(struct file *fp, int events, struct lwp *l) 1146 { 1147 struct pipe *rpipe = (struct pipe *)fp->f_data; 1148 struct pipe *wpipe; 1149 int eof = 0; 1150 int revents = 0; 1151 1152 retry: 1153 PIPE_LOCK(rpipe); 1154 wpipe = rpipe->pipe_peer; 1155 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) { 1156 /* Deal with race for peer */ 1157 PIPE_UNLOCK(rpipe); 1158 goto retry; 1159 } 1160 1161 if (events & (POLLIN | POLLRDNORM)) 1162 if ((rpipe->pipe_buffer.cnt > 0) || 1163 #ifndef PIPE_NODIRECT 1164 (rpipe->pipe_state & PIPE_DIRECTR) || 1165 #endif 1166 (rpipe->pipe_state & PIPE_EOF)) 1167 revents |= events & (POLLIN | POLLRDNORM); 1168 1169 eof |= (rpipe->pipe_state & PIPE_EOF); 1170 PIPE_UNLOCK(rpipe); 1171 1172 if (wpipe == NULL) 1173 revents |= events & (POLLOUT | POLLWRNORM); 1174 else { 1175 if (events & (POLLOUT | POLLWRNORM)) 1176 if ((wpipe->pipe_state & PIPE_EOF) || ( 1177 #ifndef PIPE_NODIRECT 1178 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1179 #endif 1180 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1181 revents |= events & (POLLOUT | POLLWRNORM); 1182 1183 eof |= (wpipe->pipe_state & PIPE_EOF); 1184 PIPE_UNLOCK(wpipe); 1185 } 1186 1187 if (wpipe == NULL || eof) 1188 revents |= POLLHUP; 1189 1190 if (revents == 0) { 1191 if (events & (POLLIN | POLLRDNORM)) 1192 selrecord(l, &rpipe->pipe_sel); 1193 1194 if (events & (POLLOUT | POLLWRNORM)) 1195 selrecord(l, &wpipe->pipe_sel); 1196 } 1197 1198 return (revents); 1199 } 1200 1201 static int 1202 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l) 1203 { 1204 struct pipe *pipe = (struct pipe *)fp->f_data; 1205 1206 memset((caddr_t)ub, 0, sizeof(*ub)); 1207 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 1208 ub->st_blksize = pipe->pipe_buffer.size; 1209 if (ub->st_blksize == 0 && pipe->pipe_peer) 1210 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size; 1211 ub->st_size = pipe->pipe_buffer.cnt; 1212 ub->st_blocks = (ub->st_size) ? 1 : 0; 1213 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec); 1214 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec); 1215 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec); 1216 ub->st_uid = fp->f_cred->cr_uid; 1217 ub->st_gid = fp->f_cred->cr_gid; 1218 /* 1219 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1220 * XXX (st_dev, st_ino) should be unique. 1221 */ 1222 return (0); 1223 } 1224 1225 /* ARGSUSED */ 1226 static int 1227 pipe_close(struct file *fp, struct lwp *l) 1228 { 1229 struct pipe *pipe = (struct pipe *)fp->f_data; 1230 1231 fp->f_data = NULL; 1232 pipeclose(fp, pipe); 1233 return (0); 1234 } 1235 1236 static void 1237 pipe_free_kmem(struct pipe *pipe) 1238 { 1239 1240 if (pipe->pipe_buffer.buffer != NULL) { 1241 if (pipe->pipe_buffer.size > PIPE_SIZE) 1242 --nbigpipe; 1243 amountpipekva -= pipe->pipe_buffer.size; 1244 uvm_km_free(kernel_map, 1245 (vaddr_t)pipe->pipe_buffer.buffer, 1246 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE); 1247 pipe->pipe_buffer.buffer = NULL; 1248 } 1249 #ifndef PIPE_NODIRECT 1250 if (pipe->pipe_map.kva != 0) { 1251 pipe_loan_free(pipe); 1252 pipe->pipe_map.cnt = 0; 1253 pipe->pipe_map.kva = 0; 1254 pipe->pipe_map.pos = 0; 1255 pipe->pipe_map.npages = 0; 1256 } 1257 #endif /* !PIPE_NODIRECT */ 1258 } 1259 1260 /* 1261 * shutdown the pipe 1262 */ 1263 static void 1264 pipeclose(struct file *fp, struct pipe *pipe) 1265 { 1266 struct pipe *ppipe; 1267 1268 if (pipe == NULL) 1269 return; 1270 1271 retry: 1272 PIPE_LOCK(pipe); 1273 1274 pipeselwakeup(pipe, pipe, POLL_HUP); 1275 1276 /* 1277 * If the other side is blocked, wake it up saying that 1278 * we want to close it down. 1279 */ 1280 pipe->pipe_state |= PIPE_EOF; 1281 while (pipe->pipe_busy) { 1282 wakeup(pipe); 1283 pipe->pipe_state |= PIPE_WANTCLOSE; 1284 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock); 1285 } 1286 1287 /* 1288 * Disconnect from peer 1289 */ 1290 if ((ppipe = pipe->pipe_peer) != NULL) { 1291 /* Deal with race for peer */ 1292 if (simple_lock_try(&ppipe->pipe_slock) == 0) { 1293 PIPE_UNLOCK(pipe); 1294 goto retry; 1295 } 1296 pipeselwakeup(ppipe, ppipe, POLL_HUP); 1297 1298 ppipe->pipe_state |= PIPE_EOF; 1299 wakeup(ppipe); 1300 ppipe->pipe_peer = NULL; 1301 PIPE_UNLOCK(ppipe); 1302 } 1303 1304 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0); 1305 1306 PIPE_UNLOCK(pipe); 1307 1308 /* 1309 * free resources 1310 */ 1311 pipe_free_kmem(pipe); 1312 pool_put(&pipe_pool, pipe); 1313 } 1314 1315 static void 1316 filt_pipedetach(struct knote *kn) 1317 { 1318 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data; 1319 1320 switch(kn->kn_filter) { 1321 case EVFILT_WRITE: 1322 /* need the peer structure, not our own */ 1323 pipe = pipe->pipe_peer; 1324 /* XXXSMP: race for peer */ 1325 1326 /* if reader end already closed, just return */ 1327 if (pipe == NULL) 1328 return; 1329 1330 break; 1331 default: 1332 /* nothing to do */ 1333 break; 1334 } 1335 1336 #ifdef DIAGNOSTIC 1337 if (kn->kn_hook != pipe) 1338 panic("filt_pipedetach: inconsistent knote"); 1339 #endif 1340 1341 PIPE_LOCK(pipe); 1342 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext); 1343 PIPE_UNLOCK(pipe); 1344 } 1345 1346 /*ARGSUSED*/ 1347 static int 1348 filt_piperead(struct knote *kn, long hint) 1349 { 1350 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1351 struct pipe *wpipe = rpipe->pipe_peer; 1352 1353 if ((hint & NOTE_SUBMIT) == 0) 1354 PIPE_LOCK(rpipe); 1355 kn->kn_data = rpipe->pipe_buffer.cnt; 1356 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1357 kn->kn_data = rpipe->pipe_map.cnt; 1358 1359 /* XXXSMP: race for peer */ 1360 if ((rpipe->pipe_state & PIPE_EOF) || 1361 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1362 kn->kn_flags |= EV_EOF; 1363 if ((hint & NOTE_SUBMIT) == 0) 1364 PIPE_UNLOCK(rpipe); 1365 return (1); 1366 } 1367 if ((hint & NOTE_SUBMIT) == 0) 1368 PIPE_UNLOCK(rpipe); 1369 return (kn->kn_data > 0); 1370 } 1371 1372 /*ARGSUSED*/ 1373 static int 1374 filt_pipewrite(struct knote *kn, long hint) 1375 { 1376 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1377 struct pipe *wpipe = rpipe->pipe_peer; 1378 1379 if ((hint & NOTE_SUBMIT) == 0) 1380 PIPE_LOCK(rpipe); 1381 /* XXXSMP: race for peer */ 1382 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1383 kn->kn_data = 0; 1384 kn->kn_flags |= EV_EOF; 1385 if ((hint & NOTE_SUBMIT) == 0) 1386 PIPE_UNLOCK(rpipe); 1387 return (1); 1388 } 1389 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1390 if (wpipe->pipe_state & PIPE_DIRECTW) 1391 kn->kn_data = 0; 1392 1393 if ((hint & NOTE_SUBMIT) == 0) 1394 PIPE_UNLOCK(rpipe); 1395 return (kn->kn_data >= PIPE_BUF); 1396 } 1397 1398 static const struct filterops pipe_rfiltops = 1399 { 1, NULL, filt_pipedetach, filt_piperead }; 1400 static const struct filterops pipe_wfiltops = 1401 { 1, NULL, filt_pipedetach, filt_pipewrite }; 1402 1403 /*ARGSUSED*/ 1404 static int 1405 pipe_kqfilter(struct file *fp, struct knote *kn) 1406 { 1407 struct pipe *pipe; 1408 1409 pipe = (struct pipe *)kn->kn_fp->f_data; 1410 switch (kn->kn_filter) { 1411 case EVFILT_READ: 1412 kn->kn_fop = &pipe_rfiltops; 1413 break; 1414 case EVFILT_WRITE: 1415 kn->kn_fop = &pipe_wfiltops; 1416 /* XXXSMP: race for peer */ 1417 pipe = pipe->pipe_peer; 1418 if (pipe == NULL) { 1419 /* other end of pipe has been closed */ 1420 return (EBADF); 1421 } 1422 break; 1423 default: 1424 return (1); 1425 } 1426 kn->kn_hook = pipe; 1427 1428 PIPE_LOCK(pipe); 1429 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext); 1430 PIPE_UNLOCK(pipe); 1431 return (0); 1432 } 1433 1434 /* 1435 * Handle pipe sysctls. 1436 */ 1437 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup") 1438 { 1439 1440 sysctl_createv(clog, 0, NULL, NULL, 1441 CTLFLAG_PERMANENT, 1442 CTLTYPE_NODE, "kern", NULL, 1443 NULL, 0, NULL, 0, 1444 CTL_KERN, CTL_EOL); 1445 sysctl_createv(clog, 0, NULL, NULL, 1446 CTLFLAG_PERMANENT, 1447 CTLTYPE_NODE, "pipe", 1448 SYSCTL_DESCR("Pipe settings"), 1449 NULL, 0, NULL, 0, 1450 CTL_KERN, KERN_PIPE, CTL_EOL); 1451 1452 sysctl_createv(clog, 0, NULL, NULL, 1453 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1454 CTLTYPE_INT, "maxkvasz", 1455 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1456 "used for pipes"), 1457 NULL, 0, &maxpipekva, 0, 1458 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL); 1459 sysctl_createv(clog, 0, NULL, NULL, 1460 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1461 CTLTYPE_INT, "maxloankvasz", 1462 SYSCTL_DESCR("Limit for direct transfers via page loan"), 1463 NULL, 0, &limitpipekva, 0, 1464 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL); 1465 sysctl_createv(clog, 0, NULL, NULL, 1466 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1467 CTLTYPE_INT, "maxbigpipes", 1468 SYSCTL_DESCR("Maximum number of \"big\" pipes"), 1469 NULL, 0, &maxbigpipes, 0, 1470 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL); 1471 sysctl_createv(clog, 0, NULL, NULL, 1472 CTLFLAG_PERMANENT, 1473 CTLTYPE_INT, "nbigpipes", 1474 SYSCTL_DESCR("Number of \"big\" pipes"), 1475 NULL, 0, &nbigpipe, 0, 1476 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL); 1477 sysctl_createv(clog, 0, NULL, NULL, 1478 CTLFLAG_PERMANENT, 1479 CTLTYPE_INT, "kvasize", 1480 SYSCTL_DESCR("Amount of kernel memory consumed by pipe " 1481 "buffers"), 1482 NULL, 0, &amountpipekva, 0, 1483 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL); 1484 } 1485